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Abstract
This study explores a novel approach to en-001
hance the performance of Large Language002
Models (LLMs) through the optimization of003
input data within prompts. While previous re-004
search has primarily focused on refining in-005
struction components and augmenting input006
data with in-context examples, our work in-007
vestigates the potential benefits of optimizing008
the input data itself. We introduce a two-009
pronged strategy for input data optimization:010
content engineering and structural reformu-011
lation. Content engineering involves imput-012
ing missing values, removing irrelevant at-013
tributes, and enriching profiles by generating014
additional information inferred from existing015
attributes. Subsequent to content engineering,016
structural reformulation is applied to optimize017
the presentation of the modified content to018
LLMs, given their sensitivity to input format.019
Our findings suggest that these optimizations020
can significantly improve the performance of021
LLMs in various tasks, offering a promising022
avenue for future research in prompt engineer-023
ing. The source code is available at https://024
anonymous.4open.science/r/ADO-6BC5/.025

1 Introduction026

Large Language Models (LLMs) (Achiam et al.,027

2023; Team et al., 2023; Touvron et al., 2023)028

have demonstrated exceptional proficiency across029

a wide array of tasks. They have been success-030

fully implemented in various real-world applica-031

tions, including personalized recommendations032

(Wu et al., 2024; Hua et al., 2023), healthcare (Yu033

et al., 2024b,a; Li et al., 2024a), financial decision-034

making (Li et al., 2023b; Wu et al., 2023), and035

advanced language reasoning (Huang and Chang,036

2022; Fan et al., 2023; Sharan et al., 2023). In037

particular, LLM prompting has become a critical038

research area (Chen et al., 2023, 2024). This is039

because LLMs are highly sensitive to input con-040

tent and format; even slight modifications, such041

as changes in word order or indentation, can sig- 042

nificantly influence their performance (Sclar et al., 043

2023; Fang et al., 2024). 044

When LLMs are employed for task inferencing, 045

a user prompt (or query) typically comprises two 046

primary components: a task-specific instruction 047

and the input data to be processed according to 048

that instruction. For example,when employing an 049

LLM for Heart Disease classification (Baccouche 050

et al., 2020), the task-specific instruction can be 051

“analyze the following user’s health profile to de- 052

termine the likelihood of a heart attack”, while 053

the input data can include the individual’s health 054

profile, encompassing attributes such as age, med- 055

ical history, and lifestyle habits. In the context of 056

personalized recommendations, such as for beauty 057

products (Geng et al., 2022), the instruction can be 058

“generate beauty product recommendations based 059

on the user’s recent interaction history with other 060

beauty products”, with the input data consisting of 061

the user’s interaction history and a set of candidate 062

beauty products to make recommendations from. 063

Various prompting methods have been proposed 064

to enhance the inference performance of LLMs. 065

For example, multiple studies have focused on 066

crafting manual prompting strategies (Bsharat et al., 067

2023; Sahoo et al., 2024; Marvin et al., 2023), such 068

as Chain-of-Thought (CoT) reasoning (Wei et al., 069

2022). Additionally, automated methods have been 070

developed to search for optimal instructions tai- 071

lored to specific tasks (Do et al., 2024; Li et al., 072

2024b). For instance, APE (Zhou et al., 2023) in- 073

troduces an iterative Monte Carlo search to refine 074

prompt instructions. Other works focus on provid- 075

ing in-context demonstrations (Dong et al., 2022), 076

offering examples to guide the model’s responses. 077

Most prior works on prompt engineering have 078

focused on two aspects: (1) optimizing the instruc- 079

tion component of the prompt and (2) augmenting 080

the input data with additional context, such as in- 081

context exemplars, as illustrated on the “Traditional 082
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Task Description: Please solve the logical puzzle:

Input Data: Tom is five years older than Lily. Lily is 10

years old. Tom likes playing soccer. How old is Tom?

Task Description: Please solve the following math-based

logical puzzle involving age relationships. The puzzle 

provides a set of age-related clues between multiple 

individuals, such as comparative age rankings.

Input Data: Tom is five years older than Lily. Lily is 10

years old. Tom likes playing soccer. How old is Tom?

5 years

older

Lily: 10 years How old?Tom: Unknown

Automatic Data Optimization (ADO)

Structural 

Reformulation

Content

Engineering

Task Description: Please solve the logical puzzle:

Input Data:

<sentence>

<subject>Tom</subject>

<verb>is</verb>

<ageDifference>5 years older than

 </ageDifference>

<subject>Lily</subject>

</sentence>

 <question>How old is Tom? </question>

Tom: like soccer

Instruction Optimization Data Augmentation

An example of logical puzzle (Irrelevant) (Question) A Prompt = Task Description + Input Data

<sentence>

<subject>Lily</subject>

<verb>is</verb>

<age>10 years old</age>

</sentence>
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Task Description: Please solve the logical puzzle:

Input Data: Tom is five years older than Lily. Lily is 10 years old. Tom likes playing

soccer. How old is Tom?

Below are some examples to learn how to solve this type of question:

1. Bob is 4 years younger than Amy. If Bob is 8 years old, then Amy is 12 years old.

2. Sam is twice the age of Julia. If Julia is 7 years old, then Sam is 14 years old.

Figure 1: Types of prompt engineering approaches. Given an inference task, such as solving a logical puzzle (as
shown in the middle of the figure), prior works primarily focus on either optimizing instructions or augmenting the
input data with similar examples, as depicted at the top of the figure. In contrast, we propose optimizing the input
data to enhance its presentation to LLMs for more effective task inference, as illustrated at the bottom of the figure.

Approach” section of Figure 1. Nevertheless, the083

role of input data optimization in enhancing LLM084

performance remains underexplored.085

To address this gap, we investigate whether opti-086

mizing the input data portion of the prompt can also087

enhance performance, as depicted on the “Proposed088

Solution” section of Figure 1. Towards this goal,089

we propose a new framework “Automatic Data090

Optimization (ADO)” as well as a new algorithm,091

“Diverse Prompt Search (DPS)”. This framework092

can optimize input data through two key strategies:093

content engineering and structural reformulation.094

First, we apply content engineering to refine in-095

put data, such as imputing missing values based096

on domain knowledge and removing irrelevant at-097

tributes that may hinder decision-making. Second,098

we leverage structural reformulation to modify the099

format of input data, aiming to optimize data pre-100

sentation to LLMs. Together, our proposed frame-101

work has demonstrated its effectiveness to comple-102

ment conventional prompting strategies to enhance103

LLM inference performance.104

2 ADO Framework105

This section outlines the objectives of input data op-106

timization and explains the mechanisms by which107

the ADO framework achieves these objectives.108

2.1 Framework Objective109

In this work, we conduct data optimization on110

the input data part of the prompt prior to submit-111

ting the prompt to a LLM for inference. Our data 112

optimization objectives can be categorized into two 113

aspects: content optimization and format optimiza- 114

tion. Content optimization emphasizes enhancing 115

the saliency of features within the data, ensuring 116

that the most relevant and informative attributes 117

are highlighted. Format optimization focuses on 118

structuring the data in an optimal format, such as 119

tables, XML, or other representations that facili- 120

tate efficient processing and interpretation. Let D 121

represents the original input data. The overall data 122

optimization process can be considered as a com- 123

bination of both content and format optimizations, 124

resulting in an optimized dataset D′: 125

D′ = fformat(fcontent(D)) = f(D) (1) 126

where f is the composite optimization function. 127

This comprehensive approach ensures that the data 128

not only contains salient features but is also pre- 129

sented in a format that maximizes its utility for 130

inference tasks. 131

Content Optimization has been a prominent 132

area of research across various fields and modalities 133

(Ahmad et al., 2018; Zhou and Aggarwal, 2004). 134

For example, in tabular datasets, where each in- 135

dividual is represented by a set of attribute-value 136

pairs, common content optimization procedures in- 137

clude feature extraction, missing value imputation, 138

and attribute aggregation (Zheng and Casari, 2018). 139

These techniques aim to enhance the quality of the 140
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DPS Algorithm – Bayes Search
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Objective Evaluator
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▪ Score constraint

▪ # candidate prompts Data optimization prompts Optimized data

Samples of input data

< 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑟𝑜𝑚𝑝𝑡1 >
< 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑟𝑜𝑚𝑝𝑡2 >
< 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑟𝑜𝑚𝑝𝑡3 >
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< 𝑝𝑟𝑜𝑚𝑝𝑡4 > −< 𝑠𝑐𝑜𝑟𝑒4 >

Generate

Figure 2: ADO Workflow. The Prompt-Generation LLM initially proposes task-specific instructions for optimizing
input data, which the Data Optimization LLM executes on validation set samples, generating optimized inputs.
These optimized samples are then processed by the Task Inference LLM to produce task predictions. The Objective
Evaluator compares these predictions against the expected outputs (ground truth) using task-specific metrics to
compute a score. This score represents the quality of the data optimization instructions, with prior prompt-score
pairs provided as additional context to the Prompt-Generation LLM for refining instructions in future iterations.

data by emphasizing salient features and reducing141

noise. In another example for image inputs, content142

optimization often involves transformations such143

as rotation, translation, flipping, cropping, and ad-144

justments to brightness and contrast (Jiao and Zhao,145

2019). These procedures are employed to enhance146

model performance by augmenting the dataset and147

improving the representation of important features148

(Barrett and Cheney, 2002; Ling et al., 2021).149

Traditionally, task-specific data engineering has150

relied heavily on domain expertise (Ling et al.,151

2021). For example, in the medical field, ex-152

perts may derive new attributes from existing153

ones—such as calculating the Body Mass Index154

(BMI) from weight and height measurements—to155

create more informative features for analysis. Simi-156

larly, for data in natural language form, such as log-157

ical puzzles or mathematical problem statements,158

individuals with linguistic and analytical expertise159

may augment the text by identifying contextual160

cues, deducing relevant implicit information, and161

explicitly defining known and unknown variables162

to facilitate more effective interpretation.163

However, employing human experts to craft and164

refine each input data can be both costly and time-165

consuming. With recent advancements in LLMs,166

we propose leveraging LLMs as universal domain167

experts. Specifically, we investigate their ability168

to propose and execute content optimization pro-169

cedures across datasets from diverse fields. By au-170

tomating the content optimization process, we aim171

to transform the original dataset D to optimized172

version D’. The objective is to reduce reliance on 173

human expertise while maintaining or enhancing 174

model performance. This approach not only accel- 175

erates the data preparation phase but also has the 176

potential to uncover novel optimization strategies 177

that may be overlooked by human practitioners. 178

Format Optimization concentrates on the au- 179

tomatic discovery of the optimal format for pre- 180

senting input data to a LLM, after the content has 181

been optimized. Recent studies have demonstrated 182

that LLMs are highly sensitive to input formatting 183

(Sclar et al., 2023). For example, manipulations 184

such as positional swapping of in-context examples 185

or alphabet shifting have been observed to influ- 186

ence an LLM’s performance. Additionally, trans- 187

forming attribute-value pairs in tabular data into 188

structured formats like XML can enhance LLM 189

performance on classification tasks. Similarly, con- 190

verting natural language inputs into non-natural 191

language formats using emojis, logical operators, 192

or other symbolic figures has been shown to im- 193

prove LLM performance (Lin et al., 2024a). Here, 194

we again leverage LLM to find an optimal format- 195

ting function that maximizes the performance. By 196

utilizing LLMs to explore various formatting strate- 197

gies, we aim to identify structural reformulations 198

that enhance the LLM’s performance without alter- 199

ing the underlying content of the data. 200

2.2 Framework Workflow Design 201

The ADO framework employs a set of LLMs to 202

automatically optimize the representation of input 203
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data D. As illustrated in Figure 2, the process ini-204

tiates with a Prompt Generation LLM, which pro-205

poses a data-optimization prompt Po that outlines206

a set of procedures for modifying D. Specifically,207

these procedures consist of two sequential compo-208

nents: the first provides step-by-step instructions209

for modifying the content of D, while the second210

details step-by-step instructions for reformulating211

the content-optimized data.212

Subsequently, a Data Optimization LLM pro-213

gressively executes the proposed data-optimization214

prompt by processing both Po and D, instruct-215

ing the model to generate the optimized data216

D′ to implement the target function D′ =217

fformat(fcontent(D)). The optimized data D′ is then218

submitted to a Task Inference LLM for processing,219

and its performance is evaluated on a reserved vali-220

dation set, serving as the performance measure for221

Po. Finally, Po and its corresponding performance222

are fed back into the Prompt Generation LLM as223

additional context, enabling it to generate improved224

data-optimization prompts in future search rounds.225

We now formally define the ADO framework,226

which involves three instances of LLMs:227

• Prompt Generation LLM (LLMG): Given a228

meta-prompt Pm used to instruct generating229

the data-optimization-prompt Po, LLMG gen-230

erates a set of candidate Pos aiming at provid-231

ing instructions on how to optimize D:232

Po = LLMG(Pm) (2)233

• Data Optimization LLM (LLMO): Given a234

data-optimization prompt Po, LLMO opti-235

mizes D to produce the optimized data D′:236

D′ = LLMO(Po,D) (3)237

• Task Inference LLM (LLMI): Using the op-238

timized data D′ and the task-specific instruc-239

tion t, LLMI generates the final result y:240

y = LLMI(D
′, t) (4)241

In the ADO framework, the search for the opti-242

mal data-optimization prompt Po is typically con-243

ducted using a reserved set of data points S =244

{(x, y) | x ∈ DS , y ∈ YDS
} where YDS

is the245

set of ground truth corresponding to DS . Given246

S, we sequentially utilize the three LLM instances247

to generate candidate prompts Pos, optimize the248

data D, and produce the final inference result y′.249

By comparing the generated outputs y and with the 250

ground truth labels y′, we can evaluate the quality 251

of each candidate Po using some task-specific loss 252

function L(y, y′). The optimization of Po can be 253

formulated as minimizing the loss over S: 254

P∗
o = arg min

Po∈LLMG(Pm)
255∑

(xi,yi)∈S

L(LLMI(LLMO(Po, xi), t), yi) (5) 256

Various optimization algorithms such as Auto- 257

matic Prompt Engineer (APE) (Zhou et al., 2023), 258

Automatic Prompt Optimization (APO) (Pryzant 259

et al., 2023), and Optimization by PROmpting 260

(OPRO) (Yang et al., 2024; Liu et al., 2024; Zhou 261

et al., 2023) can be employed to search for a bet- 262

ter Po based on the loss function L. Nevertheless, 263

such algorithms exhibit a potential limitation in 264

optimizing Po. In the following subsection, we 265

introduce the novel Diverse Prompt Search (DPS) 266

algorithm to address the limitation. 267

2.3 DPS Algorithm for Po Optimization 268

Recently, various optimization algorithms (Pryzant 269

et al., 2023; Yang et al., 2024; Liu et al., 2024) have 270

been proposed that leverage LLMs for automatic 271

prompt optimization. Specifically, APE employs 272

an LLM to propose several candidate prompts and 273

selects the one with the best performance based on 274

a reserved validation set. Subsequent works, such 275

as OPRO, build upon this by directly utilizing an 276

LLM as the prompt optimizer. For instance, OPRO 277

instructs an LLM to iteratively propose candidate 278

prompts, one at a time, while providing feedback 279

on the performance of prior proposed prompts on a 280

reserved validation set. This additional context en- 281

ables the LLM to generate prompts with improved 282

performance in subsequent iterations. 283

Nevertheless, recent studies (Zhang et al., 2024; 284

Tang et al., 2024) have shown that optimizing by 285

augmenting a single candidate prompt as context 286

in each iteration, without any constraints on the re- 287

semblance between candidate prompts, may hinder 288

the discovery of an optimal prompt. Despite being 289

instructed to generate new candidate prompts that 290

differ from previous ones, the LLM may at times 291

converge toward semantically or lexically similar 292

variations of prior proposed prompt(s). In our case, 293

instead of proposing novel data optimization pro- 294

cedures, the LLM may keep proposing procedures 295

that refine the wording or reorder the steps in the 296
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prior proposed procedures. This behavior reduces297

diversity in prompt generation, restricting explo-298

ration to a narrow region of the prompt space and299

yielding only marginal performance improvements.300

To this end, we propose the DPS algorithm,301

which also employs a LLM as the prompt opti-302

mizer, while generating multiple diverse candidate303

prompts for each iteration of the search process,304

with both semantic and lexical diversity constraints305

enforced to grant prompt diversity. Specifically,306

we request LLMG to generate k distinct candi-307

date prompts {P1
o, ...,P

k
o} for each iteration of the308

search. For both semantic and lexical diversity309

among these prompts, we propose two constraints:310

• Cosine similarity constraint (c1): The cosine311

similarity between any pair of prompts should312

be less than c1: cos (Pi
o,P

j
o) < c1, ∀i ̸= j313

• METEOR Score Constraint (c2): The ME-314

TEOR score (Saadany and Orasan, 2021) be-315

tween any pair of prompts should be less than316

c2: METEOR(Pi
o,P

j
o) < c2, ∀i ̸= j317

To dynamically control the extent of prompt318

diversity tailored to specific tasks, we propose319

the novel idea of incorporating Bayesian Search320

(Turner et al., 2021) to automatically determine321

optimal values for k, c1, and c2 based on valida-322

tion set performance. Since Bayesian Search has323

been widely employed for hyper-parameter tun-324

ing in various deep learning models, we propose325

to integrate this approach with automatic prompt326

search by treating ADO as a standalone model,327

with k, c1, and c2 as its hyper-parameters. The328

performance metric for each Bayesian Search itera-329

tion is defined as the highest performance achieved330

among all data-optimization prompts proposed by331

ADO with a fixed set of hyper-parameters. Such332

constraints ensure that the generated prompts are333

semantically and lexically diverse, encouraging ex-334

ploration of different regions in the prompt space.335

For Bayesian Search details, please refer to A.1.336

The generation of qualifying prompts is per-337

formed iteratively by repeatedly querying LLMG338

until all k diverse prompts satisfying the above con-339

straints are obtained. Each candidate prompt Pi
o340

is evaluated on S, based on which result we batch341

update the generation Po. The evaluation involves342

applying the data optimization and inference steps:343

• Data optimization: x′i = LLMO(P
i
o, xi)344

where xi is one input data in S345

• Result inference: y′i = LLMI(x
′
i, t) where t 346

is the task-specific instruction. 347

The performance of each candidate Pi
o is as- 348

sessed by computing a loss function L over S: 349

li =
∑

(xi,yi)∈S

L(y′i, yi) (6) 350

The batch of prompt-performance pairs (Pi
o, li) 351

is then appended to Pm to guide subsequent itera- 352

tions of prompt generation. This feedback mech- 353

anism informs LLMG about the effectiveness of 354

previously generated prompts, enabling it to gener- 355

ate more promising candidates in future iterations. 356

By iteratively refining the set of candidate 357

prompts and incorporating performance feedback 358

with batch update, the DPS algorithm encourages 359

the exploration of a broader search space. This in- 360

creases the likelihood of discovering more effective 361

data optimization procedures, ultimately enhancing 362

the performance of the LLM on the given task. 363

3 Implementation Details 364

This section provides key implementation details 365

of the ADO framework, including the structure of 366

meta-prompts, the execution of parallelized data 367

optimization tasks, the handling of LLM hallu- 368

cinations through multi-agent debate with cross- 369

validation. By leveraging these components, the 370

ADO framework effectively enhances both the con- 371

tent and format of input data to improve perfor- 372

mance across diverse tasks while maintaining fac- 373

tual accuracy and efficiency. 374

Meta-Prompt In this purely text-based data opti- 375

mization framework, the data-optimization prompt 376

Po must consist of instructions that can be executed 377

by the LLM without relying on external tools or op- 378

erations. To ensure this, we incorporate a compre- 379

hensive set of modality-specific constraints within 380

the meta-prompt Pm provided to LLMG . These 381

constraints guide the prompt generation process, 382

ensuring that LLMG avoids proposing optimization 383

procedures that LLMO is incapable of performing. 384

For instance, when generating instructions for tabu- 385

lar data, the meta-prompt explicitly prohibits steps 386

such as Principal Component Analysis (PCA), nor- 387

malization, standardization, or one-hot encoding of 388

categorical attributes, as these require tool-based 389

operations beyond the LLM’s text-based capabili- 390

ties. Below is an example of Pm: 391
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Parallelized Execution The generated data-392

optimization prompt Po typically includes mul-393

tiple procedures, each addressing a specific aspect394

of data engineering or reformulation (e.g., missing395

data imputation, structural conversion). We parse396

the number of procedures generated from Po and397

employ an equivalent number of LLM instances to398

execute each procedure concurrently.399

Parallel execution provides two advantages: (1)400

avoiding omission or redundancy – we observed401

that prompting LLMO to execute a lengthy list of402

detailed procedures in one go often leads to omis-403

sions and repetition. By executing procedures in404

parallel, we mitigate these issues by breaking down405

the tasks into smaller, independent units of work for406

each LLM instance. (2) improving time efficiency –407

Sequential execution of a long series of procedures408

can be time-consuming. Since many procedures are409

independent of each other and can be directly ap-410

plied to the raw input data, distributing them across411

multiple LLM instances significantly reduces the412

overall time required for data optimization. For413

procedures that depend on sequential execution –414

where the output of one serves as the input for the415

next – their execution is grouped together.416

Hallucination Mitigation Instructions included417

Po may sometimes be implemented inaccurately418

by LLMO due to hallucinations. For example, if419

Po includes a directive such as “Please identify the420

mathematical terminologies and provide concise421

definitions, accompanied by examples for each.”422

LLMO may generate incorrect or inaccurate defini-423

tions for some of the terms identified. These inac-424

curacies could mislead the performance of LLMI ,425

potentially degrading overall output quality.426

To mitigate the risk of hallucination and im-427

prove factual accuracy, we adapt a cross-validation428

method inspired by (Du et al., 2023). In this frame-429

work, we introduce an additional LLM, denoted430

as LLMF which reviews the optimized input data431

to identify factual inaccuracies and provides con-432

cise explanations for any detected errors. When433

errors are found, LLMF ’s feedback is passed back434

to LLMO, prompting it either to justify its original435

output or to agree with the corrections suggested436

by LLMF . By incorporating this cross-validation437

framework, we ensure a higher level of factual ac-438

curacy, leveraging the complementary strengths of439

multiple LLMs to reduce the likelihood of halluci-440

nations and errors in the final output.441

4 Experiments 442

In this section, we aim to evaluate: (1) the effective- 443

ness of ADO as a standalone approach for perfor- 444

mance enhancement, (2) whether DPS outperforms 445

existing optimization algorithms in searching for 446

data-optimization procedures, and (3) whether inte- 447

grating ADO with other prompt engineering meth- 448

ods can further improve performance. 449

4.1 Experiment Settings 450

Dataset To demonstrate the wide applicability of 451

data optimization, we conduct experiments on nine 452

publicly available, real-world datasets across vari- 453

ous domains where LLMs are frequently applied 454

(Fang et al., 2024; Li et al., 2023a; Lin et al., 2024b; 455

Rouzegar and Makrehchi, 2024). These datasets 456

include Big-Bench StrategyQA (QA) 1, Fraudu- 457

lent Job Detection (Job) 2, Grade School Math 8k 458

(GSM8k) 3, Amazon Beauty (AB) 4, Amazon Toys 459

(AT) 5, Amazon Electronics (AE) 6, Census Income 460

(CI) 7, Heart Disease (HR) 8, and Financial Distress 461

(FD) 9. For each dataset, we randomly select 1,000 462

samples to form the validation set S. 463

Modeling The evaluation modeling is twofold. 464

First, we evaluate the effectiveness of ADO un- 465

der zero-shot prompting, with three LLMs with 466

different backbones for generalizability. To per- 467

form data-optimization procedure search, we em- 468

ploy APE, OPRO, and DPS algorithms. Second, 469

we assess whether ADO can be integrated with 470

existing Prompt Engineering techniques (i.e., in- 471

struction optimization and data augmentation) to 472

further enhance performance, with GPT-3.5 Turbo 473

as the backbone. For instruction optimization, we 474

employ either Chain-of-Thought reasoning (CoT) 475

(Wei et al., 2022) or PE2 (Ye et al., 2023) after 476

ADO is applied; similarly, for data augmentation, 477

we employ In-Context Learning (ICL) (Liu et al., 478

2022) subsequent to employing ADO. For CoT, we 479

1https://github.com/google/BIG-bench/tree/
main/bigbench/benchmark_tasks/strategyqa

2https://www.kaggle.com/datasets/shivamb/
real-or-fake-fake-jobposting-prediction

3https://huggingface.co/datasets/DaertML/
gsm8k-jsonl

4https://jmcauley.ucsd.edu/data/amazon/
5https://jmcauley.ucsd.edu/data/amazon/
6https://jmcauley.ucsd.edu/data/amazon/
7https://archive.ics.uci.edu/dataset/2/adult
8https://www.kaggle.com/datasets/kamilpytlak/

personal-key-indicators-of-heart-disease
9https://www.kaggle.com/c/GiveMeSomeCredit/

data?select=cs-test.csv
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LLM for ADO Algorithm QA Job GSM AB AT AE CI HD FD Mean

GPT-3.5 Turbo

N/A 0.578 0.619 0.285 0.124 0.129 0.211 0.788 0.617 0.639 0.443
APE 0.575 0.633 0.721 0.161 0.184 0.241 0.839 0.687 0.658 0.522

OPRO 0.583 0.627 0.734 0.169 0.195 0.238 0.846 0.681 0.667 0.527
DPS 0.589 0.638 0.755 0.166 0.213 0.253 0.853 0.704 0.652 0.536

Gemini-1.5 Flash

N/A 0.569 0.607 0.299 0.137 0.115 0.197 0.791 0.625 0.612 0.439
APE 0.581 0.621 0.698 0.159 0.176 0.219 0.827 0.701 0.661 0.516

OPRO 0.589 0.624 0.704 0.173 0.183 0.238 0.841 0.709 0.672 0.526
DPS 0.595 0.643 0.729 0.198 0.201 0.225 0.838 0.722 0.699 0.539

Llama-3.1 70B

N/A 0.563 0.588 0.281 0.117 0.135 0.188 0.769 0.629 0.615 0.431
APE 0.571 0.613 0.675 0.129 0.166 0.205 0.798 0.673 0.649 0.498

OPRO 0.574 0.619 0.693 0.135 0.173 0.213 0.806 0.692 0.657 0.507
DPS 0.581 0.635 0.718 0.159 0.189 0.229 0.827 0.711 0.661 0.523

Table 1: ADO performance across all datasets. “LLM for ADO” denotes the LLM used within the ADO framework.
“Algorithm” denotes the algorithm to search for optimal data-optimization procedures. “Mean” denotes the mean
performance across all datasets. The best performance for each dataset on every LLM is highlighted in bold.

follow (Wei et al., 2022) by appending the phrase480

“Let’s think step-by-step” at the end of the task in-481

struction. For PE2, we employ it to search for the482

optimal task instruction. For ICL, we randomly483

select ten samples per dataset and augment them484

to the prompt for additional context, following the485

approach from (Liu et al., 2022).486

Evaluation metrics We employ accuracy (with487

balanced accuracy for datasets that have imbal-488

anced binary targets) and Hit@10 for the recom-489

mendation datasets from Amazon.490

Baselines To evaluate the effectiveness of ADO,491

we compare LLMIs
′ performance without data op-492

timization to the performance achieved after ADO493

is applied. To evaluate the effectiveness of the DPS494

algorithm on data-optimization procedure search,495

we compare it against two recent optimization al-496

gorithms: APE and OPRO. It is important to high-497

light that ADO represents a novel sub-direction in498

the field of prompt engineering and can be com-499

bined with existing prompt engineering techniques.500

Unlike a competitive relationship, ADO and tech-501

niques such as CoT, PE2, and ICL are in fact502

complementary, enabling joint application for en-503

hanced performance. Thus, we utilize CoT, PE2,504

and ICL as baselines to observe whether combining505

ADO with any of these techniques achieves better506

performance compared to using them alone.507

LLM Backbones We employ three instances of508

the same LLM as LLMG , LLMO, and LLMI . For509

generalizability, we test with three different LLMs,510

including GPT-3.5 Turbo, Gemini-1.5 Flash, and511

Llama-3.1 70B. Additionally, Gemini-1.5 Pro is512

instantiated as LLMF , which will be employed513

in Section 4.3. We set the temperature to 1.0 for514

LLMG to encourage the generation of more cre-515

ative content. For LLMO and LLMI , we set the 516

temperature to 0 to obtain more consistent outputs. 517

4.2 Result and Analysis 518

As demonstrated by Table 1, employing ADO for 519

data optimization consistently leads to comparable 520

or superior performance across all datasets for all 521

three LLM backbones, compared to inferencing 522

with unoptimized data. Additionally, DPS out- 523

performs both APE and OPRO in eight, seven, 524

and nine out of nine datasets for GPT-3.5 Turbo, 525

Gemini-1.5 Flash, and Llama-3.1 70B, respectively. 526

This highlights the effectiveness of batch-based 527

prompt search with diverse candidates. 528

Furthermore, Table 2 demonstrates that integrat- 529

ing ADO with existing Prompt Engineering tech- 530

niques, including CoT, ICL, and PE2, consistently 531

results in a noticeable performance enhancement 532

compared to employing these techniques alone 533

across all nine datasets. For instance, ADO sig- 534

nificantly enhances the effectiveness of CoT, par- 535

ticularly in the QA, Job, and FD datasets. For QA, 536

applying CoT alone even results in slightly worse 537

performance compared to not applying it, while 538

combining CoT with ADO yields substantially bet- 539

ter performance. These results demonstrate the 540

complementarity of ADO towards both Instruction 541

Optimization and Data Augmentation. 542

4.3 Ablation Study 543

In this section, we perform an ablation study to as- 544

sess the impact of different components of the ADO 545

framework from three perspectives: (1) whether 546

both content optimization and format optimization 547

are necessary, (2) whether incorporating a factual- 548

validation LLM (LLMF ) improves performance, 549

and (3) whether data-optimizing in-context exam- 550
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Modeling variant QA Job GSM AB AT AE CI HD FD Mean
GPT 0.578 0.619 0.285 0.124 0.129 0.211 0.788 0.617 0.639 0.443
GPT w/ CoT 0.571 0.663 0.698 0.127 0.137 0.198 0.827 0.678 0.688 0.510
GPT w/ CoT + ADO 0.679 0.807 0.851 0.185 0.219 0.257 0.879 0.751 0.789 0.602
GPT w/ ICL 0.584 0.617 0.294 0.141 0.147 0.225 0.809 0.651 0.653 0.458
GPT w/ ICL + ADO 0.597 0.641 0.778 0.199 0.223 0.262 0.851 0.728 0.668 0.549
GPT w/ PE2 0.592 0.634 0.301 0.162 0.152 0.209 0.838 0.649 0.685 0.469
GPT w/ PE2 + ADO 0.618 0.659 0.312 0.183 0.178 0.234 0.863 0.697 0.722 0.496

Table 2: Performance when ADO is combined with other Prompt Engineering techniques, using GPT-3.5 Turbo as
the backbone (denoted as “GPT”). “CoT + ADO” denotes applying both CoT and ADO, “ICL + ADO” denotes
applying both ICL and ADO, and “PE2 + ADO” denotes applying both PE2 and ADO. For each dataset on each
technique, any performance enhancement resulting from ADO integration is highlighted in bold.

ples yields performance gains. For experiment de-551

tails, please refer to A.2. The results of all three ex-552

periments are presented in Table 3 in the Appendix.553

As the table demonstrates, both content and format554

optimizations are essential for performance: re-555

moving format optimization significantly reduced556

performance on recommendation datasets and the557

CI dataset, while removing content optimization558

led to declines on other datasets. Moreover, incor-559

porating LLMF for hallucination mitigation pro-560

duced comparable or improved performance across561

all datasets, with the most significant gains on the562

QA, Job, and GSM datasets. Finally, optimizing in-563

context examples led to noticeable improvements,564

particularly on the Job, GSM, and FD datasets.565

5 Related Work566

Numerous approaches have been proposed for mod-567

ifying prompts to enhance LLM performance, such568

as In-Context Learning and Instruction Optimiza-569

tion. In-Context Learning concentrates on provid-570

ing the LLM with additional in-prompt exemplars571

from the same task domain, typically in the form572

of input data paired with their corresponding la-573

bels or outputs (Wei et al., 2023; Dong et al., 2022;574

Shin et al., 2022). This method capitalizes on the575

model’s ability to generalize from in-prompt exam-576

ples, enabling the LLM to better comprehend the577

expected output format and task-specific require-578

ments based on the provided exemplars.579

Instruction Optimization aims to modify the in-580

struction part of the prompt to improve LLM per-581

formance. For example, Si et al. (2022) points582

out that composing better instructions can greatly583

boost LLM’s performance on task inferencing. Wei584

et al. (2022) proposes CoT reasoning, which intro-585

duces immediate reasoning steps into the output586

generation process. As demonstrated by (Wei et al.,587

2022), employing zero-shot CoT substantially im-588

prove LLM performance tasks including logical 589

reasoning, fraud detection, among many others. Ex- 590

tending beyond manually crafted instructions, vari- 591

ous studies have proposed automated methods to 592

search for optimal instructions tailored to specific 593

tasks (Zhou et al., 2023; Pryzant et al., 2023; Yang 594

et al., 2024). For instance, APE (Zhou et al., 2023) 595

introduces an iterative Monte Carlo search to refine 596

prompt instructions. It first uses an instruction- 597

proposing LLM to generate a set of candidate in- 598

structions, then evaluates each on a validation set 599

to select the best-performing candidates. 600

Despite these advances, directly optimizing the 601

presentation of input data has received little atten- 602

tion. In this work, we hypothesize that optimizing 603

both the data content and format may yield per- 604

formance improvement when employing LLM for 605

task inferencing. Building on the principles of au- 606

tomatic prompt optimization, we propose a novel 607

framework called Automatic Data Optimization 608

(ADO). In ADO, an LLM, denoted as LLMG , iter- 609

atively proposes and searches data-optimization in- 610

structions aimed at maximizing LLM performance. 611

6 Conclusions 612

In this paper, we introduce a new sub-direction 613

of prompt engineering: input data optimization, 614

facilitated by the ADO framework and the DPS 615

algorithm. The ADO framework automates con- 616

tent and format optimization by leveraging LLMs 617

as universal domain experts, reducing the need for 618

manual data processing. DPS enhances this process 619

by generating diverse data optimization prompts, 620

enabling broader exploration and increasing the 621

likelihood of identifying optimal procedures. Em- 622

pirical results demonstrate that ADO not only im- 623

proves modeling performance when used alone but 624

also further enhances performance when combined 625

with other prompt engineering methods. 626
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7 Limitations627

As we explore the novel approach of input data628

optimization within prompts, we question whether629

it is possible to simultaneously search for both the630

optimal instruction and the optimal procedures for631

input data optimization in a specific inference task.632

Currently, as detailed in the paper, we first search633

for the optimal data representation using ADO,634

and then for the optimal instruction using PE2.635

However, this process involves two distinct steps,636

and it would be more efficient to search for both637

the instruction and data optimization concurrently.638

Therefore, in the future, we aim to investigate the639

feasibility of jointly optimizing both components,640

as proposed in (Sordoni et al., 2024; Chen et al.,641

2024), to further enhance LLM performance.642
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A Appendix887

A.1 Bayesian Search Specifics888

Bayesian Search is an informed search which889

achieves better performance than uninformed890

searches such as Random Search (Turner et al.,891

2021). In this work, we propose to incorporate892

Bayesian Search as part of the data-optimization 893

procedure search, by tuning k, c1, and c2 as “hyper- 894

parameters” based on performance of the validation 895

set S. This enables us to dynamically control both 896

the number of candidate prompt to be generated 897

per iteration for batch update, as well as the degree 898

of diversity among candidate prompts. 899

A.2 Ablation Study Specifics 900

Data Optimization Objectives We evaluate 901

the effectiveness of the two optimization objec- 902

tives—content optimization and format optimiza- 903

tion—in ADO. To this end, we constrain the data- 904

optimization prompt Po to focus on either data 905

engineering procedures (content optimization) or 906

structural reformulation (format optimization), us- 907

ing zero-shot CoT as the prompting format. Specif- 908

ically, we modify the meta-prompt Pm to explicitly 909

prohibit instructions related to the non-evaluated 910

aspect, ensuring Pois restricted to either content or 911

format optimization. These are denoted as “ADO- 912

Engineering” (data engineering only) and “ADO- 913

Reformulation” (structural reformulation only). 914

Factual-validation LLM We also investigate 915

whether integrating the factual-validation LLM 916

(LLMF ), into the ADO workflow, as described in 917

Section 3 enhances performance. Using zero-shot 918

CoT, we perform cross-validation on optimized 919

input data, iterating between LLMF and LLMO 920

until a consensus is reached or a maximum of four 921

rounds is completed. If no consensus is reached, 922

the optimized input from the final validation round 923

is used for prompt construction. This configuration 924

is referred to as “ADO w/ Factual-check.” 925

Optimized Input for ICL In Section 4, all in- 926

context examples are presented in their unopti- 927

mized form. Here, we examine whether optimizing 928

the input data of ICL examples, using the same 929

procedures applied to the evaluation data, leads to 930

improved performance. The hypothesis is that op- 931

timized in-context examples will better align with 932

the evaluation input, facilitating easier learning for 933

the LLM. We optimize the ICL input data and aug- 934

ment the prompt with these optimized examples 935

paired with their respective outputs, denoted as 936

“ADO on ICL Samples.” 937

Table 3 presents the ablation study results. For 938

the first experiment: both data engineering and 939

structural reformulation are crucial for maintaining 940

performance. Limiting optimization to data engi- 941

neering led to a significant drop in performance 942
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QA Job GSM AB AT AE CI HD FD
ADO-Engineering 0.667 0.789 0.843 0.155 0.177 0.229 0.839 0.742 0.776
ADO-Reformulation 0.602 0.719 0.734 0.189 0.208 0.253 0.868 0.684 0.705
ADO w/ Factual-check 0.691 0.823 0.864 0.187 0.221 0.262 0.884 0.747 0.795
ADO on ICL Samples 0.599 0.682 0.803 0.187 0.228 0.267 0.871 0.734 0.691

Table 3: Ablation Study Performance.

on all recommendation datasets and the CI dataset,943

while restricting optimization to structural refor-944

mulation resulted in performance degradation on945

the other datasets. For the second experiment: in-946

corporating LLMF for factual validation produced947

comparable or improved performance across all948

datasets, with the most significant gains on the QA,949

Job, and GSM datasets. Finally, optimizing in-950

context examples led to noticeable improvements,951

particularly on the Job, GSM, and FD datasets.952

953
1 Dataset Description: <description>954
2955
3 Your task is to propose a creative,956
4 detailed, and step-by-step algorithm957
5 to enrich and then reformulate samples958
6 in this dataset. The goal of the959
7 algorithm is to perform thorough960
8 data engineering and reformulation on961
9 the sample, so that it is easier for962

10 an LLM to generate the target outputs.963
11964
12 Below are some example dataset samples965
13 with target outputs as references:966
14967
15 Examples:968
16 - <sample input1>; Output: <sample output1>969
17 - <sample input2>; Output: <sample output2>970
18 - <sample input3>; Output: <sample output3>971
19 - ...972
20973
21 Please Note:974
22 - Do NOT refer to any external database.975
23 - Do NOT perform vector generations.976
24 - ONLY propose steps that an LLM977
25 can do on its own.978
26 - ...979
27980
28 Below is a list of prior-proposed data981
29 optimization algorithms, provided to982
30 you as additional context:983
31 - Algorithm 1; Score: a1984
32 - Algorithm 1; Score: a2985
33 - ...986987

Listing 1: Meta Prompt Example
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