
Published as a conference paper at ICLR 2026

SINGLE-STREAM POLICY OPTIMIZATION

Zhongwen Xu∗ and Zihan Ding∗
Tencent

ABSTRACT

We revisit policy-gradient optimization for Large Language Models (LLMs) from
a single-stream perspective. Prevailing group-based methods like GRPO reduce
variance with on-the-fly baselines but suffer from critical flaws: frequent degenerate
groups erase learning signals, and synchronization barriers hinder scalability. We
introduce Single-stream Policy Optimization (SPO), which eliminates these issues
by design. SPO replaces per-group baselines with a persistent, KL-adaptive value
tracker and normalizes advantages globally across the batch, providing a stable, low-
variance learning signal for every sample. Being group-free, SPO enables higher
throughput and scales effectively in long-horizon or tool-integrated settings where
generation times vary. Furthermore, the persistent value tracker naturally enables
an adaptive curriculum via prioritized sampling. Experiments using Qwen3-8B
show that SPO converges more smoothly and attains higher accuracy than GRPO,
while eliminating computation wasted on degenerate groups. Ablation studies
confirm that SPO’s gains stem from its principled approach to baseline estimation
and advantage normalization, offering a more robust and efficient path for LLM
reasoning. Across five hard math benchmarks with Qwen3-8B, SPO improves the
average maj@32 by +3.4 percentage points (pp) over GRPO, driven by substantial
absolute point gains on challenging datasets, including +7.3 pp on BRUMO 25,
+4.4 pp on AIME 25, +3.3 pp on HMMT 25, and achieves consistent relative
gain in pass@k across the evaluated k values. SPO’s success challenges the
prevailing trend of adding incidental complexity to RL algorithms, highlighting a
path where fundamental principles, not architectural workarounds, drive the next
wave of progress in LLM reasoning. Our code is publicly available at https:
//github.com/verl-project/verl-recipe/tree/main/spo.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018) has become a cornerstone for advancing the
reasoning capabilities of Large Language Models (LLMs), notably the Reinforcement Learning with
Verifiable Reward (RLVR) paradigm (Lambert et al., 2024; DeepSeek, 2025). Methods like Group
Relative Policy Optimization (GRPO) (Shao et al., 2024; DeepSeek, 2025) have achieved remarkable
success by adopting a multi-outcome approach, generating a group of responses for each prompt
to construct an on-the-fly baseline for variance reduction. While this “group-based” paradigm has
pushed the state of the art, it suffers from fundamental inefficiencies. When all responses in a group
share the same outcome (e.g., all correct or all incorrect), the relative advantage collapses to zero,
yielding no learning signal. This degeneracy represents a fundamental waste of computation and data.
To counteract this, a series of engineering heuristics like dynamic sampling (Yu et al., 2025) have
been developed. These workarounds, while functional, add significant complexity and create a less
principled, more convoluted optimization process.

Group-based architectural choice also imposes a critical synchronization barrier. In distributed
training, the entire group must wait for its slowest member, a bottleneck that becomes particularly
acute in complex agentic tasks requiring multi-turn tool use or long-horizon reasoning (Gao et al.,
2025; Xu et al., 2025; Zhipu, 2025). In these settings, interaction times are highly variable (e.g.,
number of interaction turns, time per interaction, etc), and a single slow-running agentic trajectory
can stall its entire group, severely hindering training throughput and scalability.

We advocate for returning to the classic single-stream paradigm for policy gradient optimization (Sut-
ton & Barto, 2018), where each training sample is a single stream of prompt-response pair. This
is not a mere simplification, but a deliberate re-alignment with foundational RL principles to ad-
dress the aforementioned architectural flaws. To overcome the critical challenge of high gradient

∗Equal contributions, corresponding to: zhongwensxu@gmail.com, dingzihan737@gmail.com

1

https://github.com/verl-project/verl-recipe/tree/main/spo
https://github.com/verl-project/verl-recipe/tree/main/spo

Published as a conference paper at ICLR 2026

variance in this setting, we introduce Single-stream Policy Optimization (SPO). SPO replaces the
noisy, on-the-fly group baseline with three synergistic components for stable and efficient learning.
First, it employs a lightweight Bayesian value tracker to maintain a persistent, temporally-informed
estimate of the success probability for each prompt, serving as a low-variance baseline. Second, it
normalizes advantages globally across the entire batch, avoiding the instability of per-group statistics.
Finally, this architecture naturally enables an adaptive curriculum via prioritized sampling, focusing
computational resources on the most informative prompts.

The benefits of this principled approach are clear: SPO is inherently more scalable and eliminates the
computational waste of degenerate groups. Our experiments confirm these advantages, demonstrating
that SPO consistently outperforms GRPO on challenging reasoning benchmarks, improving the
absolute point gains on challenging datasets, including 7.3 percentage points (pp) on BRUMO 25,
4.4 pp on AIME 25, 3.3 pp on HMMT 25, and the pass@k curves of SPO are above GRPO for all
ks. The scalability benefit is particularly pronounced in agentic settings. Our simulations, designed
to model these variable-time scenarios, show that SPO’s group-free design can achieve a 4.35×
training throughput speedup by eliminating group synchronization bottlenecks. SPO thus provides a
more robust foundation for modern LLM optimization, prompting a re-evaluation of essential versus
incidental complexity in the field.

2 RELATED WORK

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) addresses the computational overhead
and training instability of PPO-style algorithms (Schulman et al., 2017) by eliminating the need for
a separate critic network. Instead, GRPO constructs baselines on-the-fly using multiple responses
generated for each prompt. Specifically, GRPO samples a group of multiple responses for each
prompt and normalizes the rewards within this group to have zero mean and unit variance, creating
relative advantages for policy updates. However, this approach can be inefficient if all responses
in a group receive the same reward (e.g., all incorrect or all correct), resulting in a zero-advantage
for all samples and providing no learning signal. To address this, DAPO (Yu et al., 2025) enhances
GRPO with engineering treatments like dynamic sampling, which continues generating responses
until non-zero advantages are achieved, ensuring meaningful gradients.

Several other works have proposed improvements to group-based methods. Zheng et al. (2025b)
introduce GRESO, an online filtering algorithm that leverages reward training dynamics to predict
and skip uninformative prompts before generation, Qu et al. (2025) introduce a Bayesian estimation of
the prompt accuracy and use it to form a bandit strategy, significantly reducing rollout overhead. Liu
et al. (2025c) propose “Lite PPO”, which simplifies RLVR training to only advantage normalization
and token-level loss aggregation.

Other group-based approaches include RLOO (Ahmadian et al., 2024), which returns to the simpler
REINFORCE (Williams, 1992; Sutton & Barto, 2018) algorithm using a Leave-One-Out baseline that
treats entire generations as single actions. Similarly, Hao et al. (2025) propose On-Policy RL with
Optimal Baseline (OPO), which uses a length-weighted average of rewards as an optimal simplified
baseline. Despite these improvements, all group-based methods share fundamental limitations. They
construct baselines from concurrently generated responses rather than persistent, historical estimates,
inheriting the same core architectural constraints as GRPO: synchronization overhead and increased
generation costs in distributed settings.

Moving beyond group-based methods, Brantley et al. (2025) propose A∗-PO, a two-stage framework
for single-sample efficiency. In its first stage, A∗-PO performs offline estimation of the optimal value
function V ∗, not the policy-specific Vπ . The second stage then uses this pre-computed value to build
optimal advantage estimates A∗. However, A∗-PO has key limitations: its fixed, offline-computed
estimate does not adapt as the policy evolves, and it is constrained by KL-regularized optimization,
restricting deviation from a reference policy.

3 BACKGROUND

Reinforcement learning (RL) algorithms have been used to align Large Language Models (LLMs)
with human preferences (RLHF) and to optimize verifiable reward signals (RLVR; e.g., (Lambert
et al., 2024; Shao et al., 2024)).

2

Published as a conference paper at ICLR 2026

3.1 POLICY GRADIENT AND THE REINFORCE ALGORITHM

The foundational method for this optimization is the policy gradient theorem (Williams, 1992; Sutton
& Barto, 2018). For LLMs, a trajectory consists of generating a single response y from a prompt x.
The objective function is the expected reward:

J(θ) = Ex∼D,y∼πθ(·|x)[R(x, y)], (1)

where D is the prompt distribution and R(x, y) is the reward for generating response y for prompt x.
The gradient of this objective is given by:

∇θJ(θ) = Ex∼D,y∼πθ(·|x)[R(x, y)∇θ log πθ(y|x)]. (2)
This formulation gives rise to the REINFORCE algorithm (Williams, 1992; Sutton & Barto, 2018),
which updates the policy by taking a step in the direction of this estimated gradient. A significant
drawback of REINFORCE is the high variance of its gradient estimator. The raw reward R(x, y) can
fluctuate widely, leading to noisy updates and unstable training.

To mitigate high variance, a baseline b(x) that is conditionally independent of the action y can be
subtracted from the reward. This results in an unbiased gradient estimator with provably lower
variance (Greensmith et al., 2004):

∇θJ(θ) = Ex∼D,y∼πθ(·|x)[(R(x, y)− b(x))∇θ log πθ(y|x)]. (3)

The term A(x, y) = R(x, y)− b(x) is known as the advantage. The optimal baseline that minimizes
variance is the true value function Vπ(x) = Ey∼πθ(·|x)[R(x, y)], which is the expected reward for a
given prompt x. In practice, Vπ(x) is unknown and must be estimated. The quality of this estimation
is crucial for the stability and efficiency of the RL algorithm.

3.2 VARIANCE REDUCTION BASELINES FOR LARGE LANGUAGE MODELS

Several strategies have been developed to estimate the baseline b(x) in the context of LLM training.
PPO (Schulman et al., 2017) trains a parameterized critic network vϕ. However, learning vϕ is
notoriously unstable and resource-intensive, as ϕ typically matches the size of the LLM policy
parameters θ.

A common approach is to construct an empirical, on-the-fly baseline from multiple samples. Group
Relative Policy Optimization (GRPO) (Shao et al., 2024; DeepSeek, 2025) generates a group of
G responses {y1, . . . , yG} for a single prompt x, then uses the mean rewards of the group as the
baseline bGRPO. Another popular baseline is the Leave-One-Out (RLOO). For a given sample yi, the
baseline is the average reward of the other G− 1 samples in the group, denoted as bRLOO:

bGRPO(x) =
1

G

∑
j

R(x, yj), bRLOO(x, yi) =
1

G− 1

∑
j ̸=i

R(x, yj). (4)

The raw advantage for sample yi is then A(x, yi) = R(x, yi)− bGRPO(x), then it is normalized with
the standard deviation σG. While simple to implement, this approach suffers from two key limitations.
First, it is sample-inefficient, requiring G > 1 generations per prompt for each gradient step. Second,
the baseline is estimated from a very small group (G), making it a high-variance estimate of the true
value function, which in turn leads to noisy advantage estimates.

4 METHOD

We introduce Single-stream Policy Optimization (SPO), a method designed for policy optimization in
settings with verifiable feedback (RLVR) (Lambert et al., 2024). We assume the feedback is binary1,
i.e., +1 for success and 0 for failure. SPO addresses the challenge of estimating a non-stationary
success probability for a policy that evolves over training iterations. It integrates a Bayesian value
tracker with an adaptive memory mechanism into a policy gradient framework. The core components
are: (1) a KL-adaptive tracker that provides a low-variance, single-sample estimate of the success
probability; (2) a global advantage normalization scheme that ensures high sample efficiency and
stable learning dynamics; and (3) prioritized sampling across training prompts to focus on prompts
with high learning potential. The following subsections detail each component.

1Generalizing to non-binary rewards is straightforward, as discussed at the end of Section 4.1.

3

Published as a conference paper at ICLR 2026

4.1 A KL-ADAPTIVE VALUE TRACKER

The definition of a value function is the expected reward of the prompt x under policy π, i.e.,
Vπ(x) = Ey∼π(·|x)[R(x, y)]. We use v̂(x) to denote the tracker’s running estimate of Vπ(x); that
is, v̂(x) ≈ Vπ(x). To estimate the non-stationary success probability of a prompt x, we use a
Bayesian tabular tracker instead of a separate value network2. For the binary success/failure rewards
common in RLVR, this is elegantly modeled using a Beta distribution, which is the conjugate prior
for the Bernoulli process governing the outcomes. We therefore model the success probability v̂(x)
using a Beta distribution: v̂(x) ∼ Beta(α(x), β(x)), where the value estimate is the posterior mean
v̂(x) = α(x)/(α(x) + β(x)).

The tracker adapts to policy changes by dynamically adjusting its memory of past rewards. When the
policy changes significantly, older observations become less relevant and should be downweighted.
After each new observation r(x, y) ∈ {0, 1}, we discount the prior Beta parameters (α−1, β−1) by a
factor ρ(x) before incorporating the new evidence r(x, y):

α(x) = ρ(x)α−1(x)+r(x, y), β(x) = ρ(x)β−1(x)+(1−r(x, y)), v̂(x) =
α(x)

α(x) + β(x)
. (5)

The discount factor ρ(x) = 2−D(x)/Dhalf is determined by the KL divergence D(x) between the
current policy and the last policy that acted on prompt x, causing the tracker to forget faster as
the policy changes more significantly. The hyperparameter Dhalf controls this forgetting rate ρ ∈
[ρmin, ρmax].

Initialization. To initialize, we collect n0 samples to compute an initial value estimate v̂0(x).
To avoid transient instability, we set the initial effective sample size to its expected equilibrium,
N0 = 1/(1− ρmin), where ρmin is the minimum allowed forgetting factor. The initial parameters are
then:

α0(x) = N0 · v̂0(x), β0(x) = N0 · (1− v̂0(x)). (6)

This Bayesian update is equivalent to an adaptive Exponential Moving Average (EMA) on the value
estimate:

v̂(x) = v̂−1(x) + η(x)(r(x, y)− v̂−1(x)), (7)
where the learning rate η(x) = (ρ(x)Neff,−1(x) + 1)−1 naturally adapts to both policy shifts (via
ρ(x)) and statistical confidence (via Neff = α(x) + β(x)). This formulation highlights how our
tracker balances new evidence against accumulated knowledge. For general rewards beyond binary
ones, we can just use the same EMA formulation to directly track v̂, rather than relying on α and β in
the binary cases.

4.2 ADVANTAGE ESTIMATION AND POLICY OPTIMIZATION

SPO uses the tracker’s estimate v̂ as a baseline for advantage calculation in a policy gradient algorithm.
At iteration i, for a single reward r(x, y) obtained with policy πθi , the advantage is computed using
the pre-update baseline (denoted with subscript −1):

A(x, y) = r(x, y)− v̂−1(x). (8)

Using the baseline from the previous step ensures that it is independent of the action taken at step i,
preserving the unbiasedness of the policy gradient estimate. While the reward r(x, y) is typically a
direct outcome signal, SPO’s framework is also compatible with more sophisticated reward functions.
For instance, recent work like InfAlign (Balashankar et al., 2024) demonstrates how to calibrate
and transform the reward signal to be “inference-aware,” directly optimizing for procedures like
Best-of-N sampling. Such transformed rewards can be seamlessly integrated into SPO by replacing
the standard r(x, y) in the advantage calculation. Since v−1(x) is independent of y ∼ πθi(·|x),
E[(r − vi−1(x))∇θ log π] = ∇J(θ) (Williams, 1992). Instead of normalizing advantages on a
per-prompt basis in a group (Shao et al., 2024; DeepSeek, 2025), SPO normalizes them across an
entire batch of prompts B (Hu et al., 2025; Schulman et al., 2017; Andrychowicz et al., 2020; Liu
et al., 2025a). The normalized advantage Ã(x, y) is computed as:

Ã(x, y) =
A(x, y)− µB

σB
, (9)

2The development of core RL algorithms was on tabular representation (Sutton & Barto, 2018).

4

Published as a conference paper at ICLR 2026

𝑥 𝜋

𝑦1

𝑦2

𝑦𝐺

…

𝑟1

𝑟2

𝑟𝐺

…

Group

Norm

𝐴1

𝐴2

𝐴𝐺

…

GRPO

𝑥 𝜋 𝑦 𝑟 𝐴

ො𝑣

SPO

Figure 1: Illustrations of GRPO and SPO.

where µB and σB are the mean and standard deviation of advantages in the batch {A(x, y)}x∈B. We
then apply the advantage Ã(x, y) to each token in the response sequence y and update the policy
parameters using a standard PPO-Clip policy loss (Schulman et al., 2017)3:

LCLIP(θ) = Es,t

[
min

(
πθ(at | st)
πθold(at | st)

Ã, clip
(πθ(at | st)
πθold(at | st)

, 1− ε, 1 + ε
)
Ã

)]
. (10)

Methods like Clip-Higher (Yu et al., 2025), Clip-Cov (Cui et al., 2025) and KL-Cov (Cui et al., 2025)
to retain policy entropy are applicable here. Other policy optimization algorithms like CISPO (Mini-
Max, 2025) (similar to vtrace (Espeholt et al., 2018; Wu et al., 2025)) and GSPO (Zheng et al.,
2025a) (use sequence-level likelihood instead of token-level) are compatible with our advantage
estimator. Advanced methods to control policy behaviors like ASPO (Lin & Xu, 2025) can be utilized
to modulate the advantage values. We note that if we use “no baseline” (i.e., v̂ = 0), it is an extremely
simple and valid algorithm but may suffer from high policy gradient variance.

4.3 PRIORITIZED PROMPT SAMPLING

Algorithm 1 Single-stream Policy Optimization

1: for iteration i = 1, 2, . . . , T do
2: For each x ∈ X , compute sampling weight wi(x) according to Eqn. (11).
3: Sample a batch of B prompts Bi ⊂ X according to weights {wi(x)}.
4: D ← ∅
5: for each prompt x ∈ Bi do
6: Sample action y ∼ πθi−1(· | x) and observe reward r(x, y) ∈ {0, 1}.
7: Compute raw advantage A(x, y)← r(x, y)− v̂−1(x).
8: Store (x, y,A(x, y)) in D.
9: Update tracker v̂(x).

10: Normalize advantages: Ã(x, y)←
(
A(x, y)− µBi

)
/σBi

.
11: Update θi−1 to θi using mini-batches with a policy gradient algorithm (e.g., PPO-Clip).

To further enhance data efficiency, SPO employs a curriculum learning strategy by prioritizing prompts
with the highest learning potential (Schaul et al., 2015; Sutton & Barto, 2018). At each iteration, we

3The term “PPO” is frequently used with ambiguity. It may denote the entire algorithm suite (e.g., clipped
policy and value losses), refer narrowly to just the clipped policy objective, or describe the broader training
framework, including mechanisms like mini-batch updates.

5

Published as a conference paper at ICLR 2026

sample a batch of prompts based on a score that emphasizes prompts with high uncertainty, while
ensuring a minimum level of exploration. The sampling weight wi(x) for prompt x is defined as:

wi(x) ∝

√
v̂−1(x)

(
1− v̂−1(x)

)
Nγ

eff,−1(x)
+ ϵ. (11)

The first term corresponds to the estimated standard deviation of a Bernoulli outcome, which naturally
allocates more weight to prompts that are neither almost always solved (v̂ ≈ 1) nor almost always
failed (v̂ ≈ 0). The exploration bonus ϵ, set to 0.05 by default, prevents curriculum collapse by
ensuring that every prompt retains a non-zero probability of being sampled, thereby maintaining
broad coverage of the data distribution.

Here, (Neff = α+β) denotes the effective sample size of the Beta tracker and (γ ∈ [0, 1]) controls how
strongly we down-weight prompts with well-estimated success probabilities, allowing the sampler to
balance value-uncertainty, driven prioritization against broader exploration.

The complete SPO training procedure is outlined in Algorithm 1.

4.4 ADVANTAGES OVER GRPO

Group-Free for Scalable Infrastructure. SPO’s design is inherently “group-free”, a significant
advantage in distributed training frameworks for LLMs. Each sample, consisting of a single stream
of (prompt, response) pair, is a self-contained data point for the policy update. GRPO, however,
requires the generation and evaluation of an entire group of G samples for a single prompt before any
training signal can be computed. We provide our illustrations in Figure 1. In a distributed setting,
this introduces a synchronization barrier: the processing of a given prompt is not complete until
all G responses have been generated. This is particularly problematic in the presence of long-tail
generation times, where a single slow response generation can stall the processing for its entire group.
For constructing a training batch, SPO only needs to collect B independent (prompt, response) pairs,
which is far more flexible and efficient than waiting for B entire groups to complete. This makes
SPO’s architecture significantly more infrastructure-friendly and scalable. The advantage is amplified
in agentic training, especially in settings that require multi-turn interactions with tools (Gao et al.,
2025; Chen et al., 2025b) or long-horizon agent rollouts (Zhipu, 2025; Xu et al., 2025). The scale of
these interactions can be substantial: state-of-the-art open-source models (gpt-oss-120b) may
average 20 search turns per task (Chen et al., 2025b), with other agentic sessions reaching over 40 tool
calls and generating up to 150,000 tokens of context (Gao et al., 2025).

Adaptive Curriculum. To further enhance training efficiency, SPO integrates a prioritized sampling
scheme. This mechanism naturally creates an adaptive curriculum by focusing computational
resources on prompts with the highest learning potential. This ensures that the model’s training is
concentrated on the most informative examples at any given point in time. GRPO, in its standard
formulation, typically relies on uniform sampling of prompts. This may waste computation on
prompts that are already mastered or are currently too difficult to yield useful learning signals. While
dynamic sampling (Yu et al., 2025) and repeat strategies (An et al., 2025) have been proposed
to mitigate this issue, they often discard samples after generation, wasting computation. SPO’s
prioritized sampling addresses the scheduling problem before response generation, leading to a more
natural and efficient training process.

More discussions on the inefficiency of dynamic sampling and the variance reduction of policy
gradient are outlined in Appendix D, where we provide detailed analysis.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

The SPO algorithm is broadly applicable in LLM reasoning tasks (DeepSeek, 2025) and Agentic
training. We evaluate Tool-Integrated Reasoning (TIR) (Feng et al., 2025; Lin & Xu, 2025) scenarios,
where the LLMs can utilize external Python interpreter to help solve hard problems. We conduct
experiments using a moderately sized LLM, Qwen3-8B (Qwen, 2025). For training data, we use

6

Published as a conference paper at ICLR 2026

Table 1: Comparison of GRPO and SPO on five benchmarks using maj@32 and avg@32. Averages
are shown in the last column. Bold indicates the better-performing method for each metric.

Method AIME 24 AIME 25 BeyondAIME BRUMO 25 HMMT 25 Average

maj@32 avg@32 maj@32 avg@32 maj@32 avg@32 maj@32 avg@32 maj@32 avg@32 maj@32 avg@32

Qwen3-8B 77.8 64.4 70.5 58.4 45.2 38.0 55.1 49.4 36.8 30.3 57.1 48.1
GRPO 83.3 77.6 72.1 64.2 45.6 39.0 56.7 56.9 44.2 40.9 60.4 55.7
SPO 84.0 74.9 76.5 65.0 46.9 40.3 64.0 59.0 47.5 40.6 63.8 56.0

8 16 32
k

0.86

0.88

0.90

pa
ss

@
k

SPO
GRPO

(a) AIME 24

8 16 32
k

0.82

0.84

0.86

pa
ss

@
k

SPO
GRPO

(b) AIME 25

8 16 32
k

0.56

0.58

0.60

0.62

0.64

0.66

pa
ss

@
k

SPO
GRPO

(c) BeyondAIME

8 16 32
k

0.70

0.72

0.74

0.76

0.78

0.80

pa
ss

@
k

SPO
GRPO

(d) BRUMO 25

8 16 32
k

0.50

0.52

0.54

0.56

pa
ss

@
k

SPO
GRPO

(e) HMMT 25

8 16 32
k

0.68

0.70

0.72

0.74

0.76

pa
ss

@
k

SPO
GRPO

(f) Average

Figure 2: Pass@k plots comparing GRPO and SPO across five math competition benchmarks.

the English subset from the DAPO dataset (Yu et al., 2025). Only outcome reward is applied for
RLVR, without the format rewards. We evaluate performance on the challenging math competition
benchmarks, i.e., AIME 24, AIME 25, BeyondAIME (Seed, 2025), BRUMO 25 (Balunović et al.,
2025), and HMMT 25 (Balunović et al., 2025). See Appendix E for training and evaluation details.

We distinguish our goal from that of “hill-climbing” on benchmark leaderboards. The latter often
necessitates resource-intensive and highly specialized techniques, including SFT from frontier
models (Liu et al., 2025b), mid-training (Wang et al., 2025), multi-stage RL pipelines (Luo et al.,
2025; He et al., 2025; Chen et al., 2025a), curated hard datasets with intricate processing (An
et al., 2025; Shang et al., 2025), test-time scaling techniques (Fu et al., 2025) and extremely large
generation group sizes (Zhipu, 2025). Our work, instead, concentrates on the fundamental efficiency
and scalability of the RL algorithm itself.

5.2 EMPIRICAL COMPARISON WITH GRPO

Our experiments demonstrate that SPO outperforms the GRPO baseline on aggregate metrics when
training the Qwen-8B model. As shown in Table 1, SPO achieves superior weighted average scores
on both primary metrics. It obtains a maj@32 of 63.8 compared to GRPO’s 60.4, a significant
improvement of +3.4 percentage points (pp). This aggregate strength is driven by remarkable
consistency, as SPO outperforms GRPO on the maj@32 metric across all five benchmarks. The
performance gap is most pronounced on BRUMO 25, where SPO achieves a substantial +7.3 pp (64.0
vs. 56.7). Further significant gains are seen on AIME 25 (+4.4 pp) and HMMT 25 (+3.3 pp points),
underscoring the robustness of SPO’s improvements. Notably, these benchmarks have minimal data
contamination (Balunović et al., 2025), allowing them to serve as a true test of generalization. This
demonstrates that our SPO method improves the model’s ability to generalize rather than simply
overfit to the training data, a risk exemplified by the DAPO dataset’s strong correlation with AIME
24. While GRPO remains competitive on the avg@32 metric in some cases, SPO’s consistent and
significant advantage in maj@32 suggests it learns more robust and repeatable solutions, a key goal
for reliable reasoning models.

7

Published as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140
Training Steps

0.0

0.2

0.4

0.6

0.8

De
ge

ne
ra

te
 G

ro
up

s R
at

io
GRPO
SPO (=0.0001)
SPO (=0.02)

(a) Ineffective Gradient Ratios

0 20 40 60 80 100 120 140
Training Steps

0.08

0.10

0.12

0.14

0.16

0.18

Ad
va

nt
ag

e
Va

ria
nc

e

SPO
SPO No Baseline
GRPO Effective

(b) Advantage Variance Comparison

Figure 3: Signal Efficiency and Stability Analysis of SPO vs. GRPO. (a) GRPO suffers from a
high ratio of degenerate groups (blue), which yield no learning signal. In contrast, SPO’s rate of
near-zero advantages (red/green) increases as the model learns, reflecting prediction accuracy rather
than wasted computation. (b) SPO’s baseline (red) provides a stable, low-variance signal, significantly
reducing the raw reward variance (green). GRPO’s effective advantage (blue), calculated only on
non-degenerate samples, is highly volatile and unstable.

These findings are mirrored in the pass@k performance shown in Figure 2. The weighted average
curve (Figure 2f) shows a clear and consistent advantage for SPO across all values of k, translating
to an average improvement of approximately 2.4 pp. While the performance on avg@32 is more
competitive on a per-benchmark basis, SPO’s strong overall performance underscores the stability
and effectiveness of its learning signal. We provide additional ablation studies on A∗-PO, SPO with
no baseline, and SPO with no offline initialization in Appendix F.

5.3 ANALYSIS OF SIGNAL EFFICIENCY AND STABILITY

To empirically assess the architectural advantages of SPO, we conduct a two-part analysis of the
unnormalized advantage signals produced by SPO and GRPO (Figure 3). First, we quantify complete
signal loss arising from degenerate groups. Second, we measure the variance of the remaining
learning signals. Together, these metrics characterize each method’s efficiency and stability.

Signal Efficiency and Information Loss. Figure 3a reports the fraction of ineffective samples.
For GRPO (blue), the share of samples in degenerate groups rises from roughly 60% to over 80%,
yielding zero advantage and no gradient. For SPO, we instead track the proportion of near-zero
advantages under two diagnostic tolerances, |A| ≤ τ , with values of τ = 10−4 (red) and τ = 0.02
(green). Advantages under the tight tolerance τ = 10−4 remain rare throughout training (red line),
while the |A| ≤ 0.02 share (green) gradually increases as the value tracker v̂ becomes more accurate
and residuals shrink on mastered prompts. This trend is expected and desirable: it reflects accurate
prediction rather than signal loss. Unlike GRPO’s degenerate groups, these SPO samples are not
discarded, they still produce well-defined gradients and contribute to learning. Notably, even under
the stricter τ = 0.02 tolerance, SPO’s near-zero ratio remains far below GRPO’s degenerate rate,
underscoring SPO’s efficient use of compute.

Signal Stability and Advantage Variance. Figure 3b compares advantage variance across methods.
As a reference, the green line (“SPO No Baseline”) corresponds to raw rewards, i.e., the high-variance
signal faced by vanilla policy gradient. SPO’s history-informed baseline (red) delivers a substantial,
stable variance reduction of nearly 50%. For GRPO, computing variance only over non-degenerate
samples (“GRPO Effective”, blue) reveals a highly volatile signal with the largest variance among all
conditions, exceeding even “SPO No Baseline”. We conclude that SPO’s baseline is effective, yielding
stable, low-variance gradients, whereas GRPO’s on-the-fly baseline is noisy and destabilizing when it
produces a signal. The apparent stability of GRPO’s overall variance is driven by the prevalence of
zero-variance degenerate samples and thus reflects inefficiency rather than robustness.

8

Published as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8
Sample Index

100

200

300

400

500

To
ta

l I
nt

er
ac

tio
n

Ti
m

e

116s 112s
133s

62s
95s

112s
94s

114s

Low Variance Predictable

Group completion: 133s

(a) Low-variance Group

1 2 3 4 5 6 7 8
Sample Index

100

200

300

400

500

To
ta

l I
nt

er
ac

tio
n

Ti
m

e

90s

444s

508s

74s

114s 117s
87s

409s

High Variance Bottleneck Effect

Group completion: 508s

(b) High-variance Group

Figure 4: The Bottleneck Effect in Group-Based Sampling. (a) In a low-variance environment, sample
completion times are predictable, and the group synchronization cost is minimal. (b) In a realistic
high-variance agentic environment, three slow trajectories (444s, 508s, and 409s) create a severe
bottleneck, forcing the entire group to wait and wasting the compute used for the six faster samples.

1 2 3 4 5 6
Group Index

0

100

200

300

400

500

600

Gr
ou

p
Co

m
pl

et
io

n
Ti

m
e

130s 133s

519s
495s 486s

553s

Unselected groups
Selected (3 fastest)
Completion: 486s

(a) Group-base

0 10 20 30 40 50
Sample Index

100

200

300

400

500

To
ta

l I
nt

er
ac

tio
n

Ti
m

e

Unselected samples
Selected (24 fastest)
Completion: 112s

(b) Group-free

Group-Based Group-Free0

100

200

300

400

500

To
ta

l C
om

pl
et

io
n

Ti
m

e

486s

112s

Speedup: 4.35x

(c) Strategy Comparison

Figure 5: Throughput Comparison: Group-Based vs. Group-Free. (a) A group-based strategy, even
when parallelized, is bottlenecked by its slowest group, taking 486s to collect a batch of 3 groups
(24 samples). (b) A group-free strategy collects the 24 fastest samples from a larger pool of 48,
completing the batch in just 112s by avoiding stragglers. (c) The group-free approach achieves a
4.35× speedup, demonstrating its superior efficiency for agentic training.

5.4 AGENTIC TRAINING DEMONSTRATIONS

We perform simulations to demonstrate the practical implications of SPO’s group-free design in
agentic training scenarios, where interaction times can be highly variable. Group-based methods
like GRPO suffer from a critical scalability bottleneck due to their inherent synchronization barrier,
a problem that is particularly acute in agentic tasks involving multi-turn tool use or long-horizon
reasoning.

Figure 4 illustrates this fundamental issue. In an idealized low-variance setting (Figure 4a), where
all agentic trajectories complete in similar times, the group-based approach is efficient. However,
in a more realistic high-variance setting (Figure 4b) characterized by long-tail latencies, a single
slow-running trajectory (a “straggler”) can stall the entire group. In our simulation, while most
samples finish in under 133 seconds, the group must wait 508 seconds for its slowest member. This
bottleneck effect forces faster samples to remain idle, severely hindering training throughput and
wasting computational resources.

SPO’s group-free architecture directly resolves this inefficiency. Figure 5 compares the time required
to assemble a training batch of 24 samples using both strategies. The group-based approach (left),
even when optimized by running 6 groups in parallel and selecting the 3 fastest, is still constrained
by the slowest trajectory within those selected groups, taking 486s to complete. In contrast, the
group-free approach (middle) leverages asynchrony by starting 48 independent samples and simply
collecting the first 24 to finish. In our simulated scenario, this process takes only 112s, as it naturally

9

Published as a conference paper at ICLR 2026

filters out the slow outliers. As shown on the right, this architectural difference results in a significant
4.35× speedup in this realistic agentic simulation. Simulations show that SPO’s architecture can
lead to significant throughput gains, making it a more scalable and robust foundation for training on
complex, long-horizon agentic tasks.

6 CONCLUSIONS

We identified critical inefficiencies in group-based policy optimization methods for LLMs, namely
computational waste from degenerate groups and scalability bottlenecks from synchronization. To
address these, we proposed Single-stream Policy Optimization (SPO), a principled return to the classic
single-stream paradigm. SPO replaces the noisy, per-group baseline with a persistent KL-adaptive
value tracker and global advantage normalization, creating a more stable and efficient learning signal.

Our empirical results demonstrate that SPO’s design is not merely simpler, but superior. It consistently
outperformed GRPO on complex reasoning tasks while eliminating the systemic flaws of its group-
based counterpart. By demonstrating that a well-designed single-stream approach can surpass more
complex methods, our work challenges the prevailing trend of adding incidental complexity to RL
algorithms for LLMs. SPO provides a robust, scalable, and efficient foundation for future research in
agentic and reasoning model training, highlighting the enduring power of foundational reinforcement
learning principles. Future work can focus on refining the best practices for applying SPO and
exploring its limits, pushing its effectiveness to power the next generation of reasoning and agentic
LLMs.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in LLMs. arXiv preprint arXiv:2402.14740, 2024.

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing Xu,
Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. POLARIS: A post-training recipe for scaling
reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp.githu
b.io/blog/2025/Polaris.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael Marinier,
Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What matters in
on-policy reinforcement learning? A large-scale empirical study. arXiv preprint arXiv:2006.05990,
2020.

Ananth Balashankar, Ziteng Sun, Jonathan Berant, Jacob Eisenstein, Michael Collins, Adrian Hutter,
Jong Lee, Chirag Nagpal, Flavien Prost, Aradhana Sinha, et al. InfAlign: Inference-aware language
model alignment. arXiv preprint arXiv:2412.19792, 2024.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. MathArena:
Evaluating LLMs on uncontaminated math competitions. arXiv preprint arXiv:2505.23281, 2025.

Kianté Brantley, Mingyu Chen, Zhaolin Gao, Jason D Lee, Wen Sun, Wenhao Zhan, and Xuezhou
Zhang. Accelerating RL for LLM reasoning with optimal advantage regression. arXiv preprint
arXiv:2505.20686, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee, Peng Xu, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Acereason-Nemotron: Advancing math and code reasoning through reinforcement
learning. arXiv preprint arXiv:2505.16400, 2025a.

Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
Kshama Patel, Ruoxi Meng, Mingyi Su, et al. BrowseComp-Plus: A more fair and transparent
evaluation benchmark of deep-research agent. arXiv preprint arXiv:2508.06600, 2025b.

10

https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris

Published as a conference paper at ICLR 2026

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Team DeepSeek. DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning.
Nature, 645:633–638, 2025.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. IMPALA: Scalable distributed deep-RL with
importance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. ReTool: Reinforcement learning for strategic tool use in LLMs.
arXiv preprint arXiv:2504.11536, 2025.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu.
Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous RL. arXiv
preprint arXiv:2508.07976, 2025.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research, 5(Nov):1471–1530,
2004.

Yaru Hao, Li Dong, Xun Wu, Shaohan Huang, Zewen Chi, and Furu Wei. On-policy RL with optimal
reward baseline. arXiv preprint arXiv:2505.23585, 2025.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, et al. SkyWork Open Reasoner 1 technical report. arXiv preprint
arXiv:2505.22312, 2025.

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. REINFORCE++: An efficient RLHF algorithm
with robustness to both prompt and reward models. arXiv preprint arXiv:2501.03262, 2025.

Team Kimi. Kimi K1.5: Scaling reinforcement learning with LLMs. arXiv preprint arXiv:2501.12599,
2025.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Heng Lin and Zhongwen Xu. Understanding Tool-Integrated Reasoning. arXiv preprint
arXiv:2508.19201, 2025.

Zichen Liu, Anya Sims, Keyu Duan, Changyu Chen, Diyi Yang, Wee Sun Lee, and Min Lin. GEM:
A gym for generalist LLMs, 2025a. URL https://axon-rl.notion.site/gem.

Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. AceReason-Nemotron 1.1: Advancing math and code reasoning through SFT and RL
synergy. arXiv preprint arXiv:2506.13284, 2025b.

Zihe Liu, Jiashun Liu, Yancheng He, Weixun Wang, Jiaheng Liu, Ling Pan, Xinyu Hu, Shaopan
Xiong, Ju Huang, Jian Hu, et al. Part I: Tricks or traps? A deep dive into RL for LLM reasoning.
arXiv preprint arXiv:2508.08221, 2025c.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. DeepScaleR: Surpassing o1-Preview
with a 1.5B model by scaling RL. https://pretty-radio-b75.notion.site/Dee
pScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-1
9681902c1468005bed8ca303013a4e2, 2025. Notion Blog.

11

https://axon-rl.notion.site/gem
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2

Published as a conference paper at ICLR 2026

Team MiniMax. MiniMax-M1: Scaling test-time compute efficiently with lightning attention. arXiv
preprint arXiv:2506.13585, 2025.

Yun Qu, Qi Wang, Yixiu Mao, Vincent Tao Hu, Björn Ommer, and Xiangyang Ji. Can prompt
difficulty be online predicted for accelerating RL finetuning of reasoning models? arXiv preprint
arXiv:2507.04632, 2025.

Team Qwen. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Team Seed. Seed1.5-thinking: Advancing superb reasoning models with reinforcement learning.
arXiv preprint arXiv:2504.13914, 2025.

Ning Shang, Yifei Liu, Yi Zhu, Li Lyna Zhang, Weijiang Xu, Xinyu Guan, Buze Zhang, Bingcheng
Dong, Xudong Zhou, Bowen Zhang, et al. rStar2-Agent: Agentic Reasoning Technical Report.
arXiv preprint arXiv:2508.20722, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. DeepSeekMath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. HybridFlow: A flexible and efficient RLHF framework. arXiv preprint
arXiv: 2409.19256, 2024.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations (ICLR), 2023.
URL https://openreview.net/forum?id=ySyClPaTKAq.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. OctoThinker: Mid-training incentivizes
reinforcement learning scaling. arXiv preprint arXiv:2506.20512, 2025.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Bo Wu, Sid Wang, Yunhao Tang, Jia Ding, E1yk Helenowski, Liang Tan, Tengyu Xu, Tushar Gowda,
Zhengxing Chen, Chen Zhu, et al. LlamaRL: A distributed asynchronous reinforcement learning
framework for efficient large-scale LLM training. arXiv preprint arXiv:2505.24034, 2025.

Zhongwen Xu, Xianliang Wang, Siyi Li, Tao Yu, Liang Wang, Qiang Fu, and Wei Yang. Agents play
thousands of 3D video games. arXiv preprint arXiv:2503.13356, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. DAPO: An open-source LLM reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025a.

Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
Beidi Chen. Act only when it pays: Efficient reinforcement learning for LLM reasoning via
selective rollouts. arXiv preprint arXiv:2506.02177, 2025b.

Team Zhipu. GLM-4.5: Agentic, reasoning, and coding (ARC) foundation models. 2025.

12

https://openreview.net/forum?id=ySyClPaTKAq

Published as a conference paper at ICLR 2026

A LLMS USAGE

LLMs were employed solely to assist with minor editorial improvements to the text. Their use was
limited to polishing language, and they did not contribute to the conceptual or scientific content of
the paper.

B SPO INITIALIZATION

We show the SPO initialization procedure in Algorithm 2. In the experiments, we use n0 = 8 to have
a good estimation of initial baseline tracker. We ablate the setting where we use no offline estimation
and rely on the online moving estimator in Section F.

Algorithm 2 SPO Initialization

1: Set initial effective sample size N0 = 1/(1− ρmin).
2: for each prompt x ∈ X do
3: Collect n0 outcomes {r(k)}n0

k=1 with an initial policy π0.
4: Compute initial value estimate v̂0(x) = 1

n0

∑n0

k=1 r
(k).

5: Set α0(x) = N0 · v̂0(x) and β0(x) = N0 · (1− v̂0(x)).

Practically, one may concern about the extra cost during the offline estimation of v̂0. We note that we
share the offline estimation for our experiments so that people could skip this process and directly
load our datasets, and there are datasets like Polaris (An et al., 2025) that pre-compute accuracy for
Deepseek-R1-Distill-Qwen-7B (DeepSeek, 2025). The cost can be amortized across the experiments
people run themselves, and we will share more (dataset, base model) combinations to
facilitate experiment efficiency.

C BATCH EXTENSIONS

We could adapt Single-stream Policy Optimization (SPO) into a prompt-repetition scheme4, process-
ing each prompt G times per batch with a shared baseline estimator v̂ to better handle sparse rewards.
Our method’s primary advantage over GRPO lies in its asynchronous nature, achieved by removing
the group synchronization barrier. Treating repeated prompts as independent trajectories unlocks two
key efficiency improvements. First, it enables robust handling of long-tail generation issues, as slow
or problematic trajectories can be terminated early, discarded, or managed via partial rollouts (Kimi,
2025) without delaying the entire batch. Second, it facilitates a more flexible batching strategy. By
over-sampling the number of initial prompts (e.g., by 50%), a full training batch can be assembled
from the first-finishing trajectories, allowing the optimization step to proceed immediately without
waiting for stragglers. This design significantly reduces training latency compared to the rigid group
synchronization required by GRPO. When tackling hard prompts, the batch extensions may help
obtain learning signals more quickly.

D COMPARISONS AGAINST GRPO

D.1 INEFFICIENCY OF DYNAMIC SAMPLING

To address the information loss from degenerate sample groups (where all rewards are identical),
methods like DAPO (Yu et al., 2025) employ dynamic sampling. This strategy continues generating
responses for a prompt until the collected set contains at least one success and one failure, guaranteeing
a non-zero advantage. While effective at ensuring a learning signal, this approach can be extremely
data- and time-inefficient. Note that when people report performance with dynamic sampling, the
“steps” indicate the learning steps rather than the sampling steps, where the latter is normally a
multiple of the former (e.g., 5×).

4Batch SPO or BSPO

13

Published as a conference paper at ICLR 2026

We can formalize the expected computational cost. For a prompt x with true success probability
p = Vπ(x), let N be the number of samples required to obtain a non-degenerate set. We have:

E[N | p] = p
(
1 + 1

1−p

)
+ (1− p)

(
1 + 1

p

)
=

1

p(1− p)
− 1.

This cost grows hyperbolically as the policy becomes either proficient (p → 1) or incompetent
(p → 0). For example, if a policy has a 10% success rate (p = 0.1), the expected number of
generations needed to collect both a success and a failure is E[N] ≈ 10.11. In contrast, SPO
requires exactly one sample per prompt and uses its adaptive curriculum to actively de-prioritize
these inefficient prompts, allocating resources to where learning is most effective. This makes SPO
fundamentally more scalable and computationally efficient.

D.2 VARIANCE REDUCTION FOR POLICY GRADIENT

The per-sample policy gradient is g = A(x, y)∇θ log πθ(y|x), where the advantage A is an estimate
of the expected return over a baseline. The variance of this gradient, Var[g], is a key driver of
training efficiency. We analyze how the construction of the advantage A leads to significant variance
differences between GRPO and SPO.

GRPO’s High-Variance Group-Based Advantage: GRPO computes advantages by comparing
outcomes within a small group of G (G = 8, 16, ...) samples generated for the same prompt. The
normalized advantage for sample x with binary reward r ∈ {0, 1} is ÃGRPO = r−µG

σG+ϵ , where both the
baseline µG (e.g., the group mean 1

G

∑
j rj) and the standard deviation σG are estimated from the

same small group of G samples. This coupled, small-sample estimation introduces three fundamental
sources of variance:

• Noisy Baseline (Numerator): The baseline µG , estimated from only G samples, where G is
small, is a high-variance quantity. This inflates the variance of the unnormalized advantage
(r − µG) by a factor of (1 + 1

G) compared to using an optimal baseline.
• Noisy Scaling (Denominator): The standard deviation σG , estimated from only G samples,

is also highly variable. Scaling the gradient by this noisy random variable further increases
total variance.

• Information Loss (Degeneracy): When all rewards in the group are identical (e.g., all 0s or
all 1s), the advantage for every sample becomes zero, providing no gradient signal. This
event, which occurs with probability ZG(p) = pG+(1−p)G where p = V π(x), effectively
reduces the batch size and inflates variance by a factor of 1/(1− ZG(p)), an issue that is
especially severe for easy (p ≈ 1) or hard (p ≈ 0) prompts.

SPO’s Low-Variance Decoupled Advantage: In contrast, SPO is designed to minimize these
variance sources by decoupling the advantage calculation from the current group of samples. It uses an
action-independent baseline b = v̂(x) from a historical tracker, which provides a stable, low-variance
estimate of the true success probability p. The advantage is simply ASPO = batch norm(r(x, y)−
v̂(x)). Crucially, SPO then applies global normalization (Schulman et al., 2017; Andrychowicz et al.,
2020; Liu et al., 2025c), scaling all advantages in a large batch of size B ≫ G by a single, stable
standard deviation σbatch. This design avoids GRPO’s pitfalls: the baseline b is near-optimal, the
normalization scaler σ is stable, and there is no systematic information loss from group-outcome
degeneracy.

Quantitative Comparison: A simplified ratio of the reward-term variance quantifies the difference:

Var[g]GRPO

Var[g]SPO
≈

1 + 1
G

1 + 1
Neff+1︸ ︷︷ ︸

Baseline Noise

× 1

1− ZG(p)︸ ︷︷ ︸
Information Loss

× 1 + ψG

1 + ψB︸ ︷︷ ︸
Normalization Noise

. (12)

Here, Neff is the effective sample count for SPO’s tracker, and ψG > 0 captures the excess variance
from per-group, ψB represents the excess variance introduced by estimating the normalization
statistics (mean and standard deviation) from a large global batch of size NB (ψB ≈ 0). For a
moderately difficult prompt (p = 0.5) with G = 8, the normalization noise dominates. However, for
an easy/hard prompt (p = 0.9/p = 0.1), the information loss term dominates, and the ratio swells to

14

Published as a conference paper at ICLR 2026

≈ 1.97. While increasing G in GRPO mitigates information loss, it does so at a multiple generation
cost and cannot fix the inherent noise from its small-sample baseline and scaling. SPO achieves lower
variance more efficiently by design.

E TRAINING AND EVALUATION DETAILS

All experiments in this paper are implemented on top of verl (Sheng et al., 2024) and ReTool (Feng
et al., 2025) for the tool-integrated reasoning setup. During training, we set the maximum response
length to 16,384 tokens. The policy learning rate is fixed at 1 × 10−6. Following DAPO (Yu
et al., 2025), we adopt the Clip-Higher mechanism, with clipping parameters εlow = 0.2 and
εhigh = 0.28, to balance exploration and exploitation. The sampling parameters are set to temperature
1.0, top-p = 1.0, and top-k = −1. The forgetting rate thresholds are chosen as ρmin = 0.875 and
ρmax = 0.96, yielding window sizes Wmin = 1− 1

ρmin
= 8 and Wmax = 25.

GRPO rollouts are collected with multiple responses per prompt, and training mini-batch sizes are
chosen such that 8 gradient updates are performed per rollout step. For a fair comparison, the prompt
batch size in SPO is set equal to the total number of responses in GRPO, as SPO generates only a
single response for each prompt. Specifically, GRPO uses a prompt batch size of 256 with 8 responses
per prompt and a training mini-batch size of 256, while SPO operates on 2, 048 = 256× 8 prompts.
Both algorithms are set with maximum of 8 Python interpreter interaction turns.

For evaluation on hard math competition benchmarks, i.e., AIME 24, AIME 25, BeyondAIME (Seed,
2025), BRUMO 25 (Balunović et al., 2025) and HMMT 25 (Balunović et al., 2025), we set sampling
parameters to temperature 0.6, top-p 0.95, and top-k 20, as officially recommended. We define
a binary reward function ri,j such that a response receives ri,j = 1 if the final answer is correct,
and ri,j = 0 otherwise. The same reward function is consistently used during training for policy
optimization and during evaluation. We set the maximum response token to 32,768.

Given a test set with M problems, and for each problem i we independently sample k responses with
rewards {ri,1, ri,2, . . . , ri,k}, we define:

• avg@k: the expected correctness of an individual response:

avg@k =
1

M

M∑
i=1

1

k

k∑
j=1

ri,j .

• pass@k: the probability of solving a problem within k attempts. Directly computing
1
(
max1≤j≤k ri,j = 1

)
can lead to high variance. Following (Chen et al., 2021), we instead

generate n ≥ k responses per problem, count the number of correct ones c ≤ n, and use the
unbiased estimator:

pass@k =
1

M

M∑
i=1

[
1−

(
n−ci
k

)(
n
k

)]
,

where ci denotes the number of correct responses for problem i.
• maj@k: the correctness of the majority-voted answer (Wang et al., 2023). This metric first

identifies the most frequent answer among k responses for each problem. The score is 1 if
that modal answer is correct, and 0 otherwise. Let ai,j be the final answer string for the j-th
response to problem i, and let r(·) be the reward function for a given answer string. The
metric is defined as:

maj@k =
1

M

M∑
i=1

r
(
mode{ai,j}kj=1

)
.

F ABLATION STUDIES

We conduct a series of ablation studies to dissect the core components of SPO and validate our design
choices. To facilitate efficient experimentation, these studies are performed under a streamlined setting
compared to our main experiments. Specifically, we utilize a batch size of 256 prompt-response
pairs, and the model is updated with 4 gradient steps for each collected batch. All ablation results are

15

Published as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140
Training Steps

0.30

0.35

0.40

0.45

0.50

0.55

0.60

av
g@

16

SPO
A * -PO

(a) SPO vs. A∗-PO

0 20 40 60 80 100 120 140
Training Steps

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

av
g@

16

w/ Baseline
w/o Baseline

(b) Baseline Ablation

0 20 40 60 80 100
Training Steps

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

av
g@

16

w/ Offline Init
w/o Offline Init

(c) Offline Initialization Ablation

0 20 40 60 80 100 120 140
Training Steps

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

av
g@

16

w/ Batch Norm
w/o Batch Norm

(d) Batch Normalization Ablation

Figure 6: Ablation studies evaluating the core components of SPO. (a) SPO’s adaptive baseline
outperforms the static baseline of A∗-PO, demonstrating the benefit of a value function that evolves
with the policy. (b) Removing the value tracker (“w/o Baseline”) causes a severe performance drop,
confirming its critical role in reducing gradient variance. (c) Eliminating the offline initialization step
(“w/o Offline Init”) leads to initial training instability and suboptimal convergence, highlighting the
importance of a warm start for the value tracker. (d) Removing batch normalization (“w/o Batch
Norm”) results in slower convergence and reduced stability, showing the normalization’s role in
stabilizing updates.

reported on the AIME 25 benchmark, using the avg@16 metric with a maximum generation length
of 16, 384 tokens.

SPO vs. A∗-PO. This experiment, presented in Figure 6a, compares our proposed SPO with A∗-
PO (Brantley et al., 2025). A∗-PO utilizes a static baseline derived from a pre-computed optimal
value function, V ∗, which is tied to the KL-regularized objective with respect to an initial reference
policy, πref. While this approach is highly efficient, its central assumption may be challenged
in tool-calling scenarios. In these tasks, learning involves acquiring new functional capabilities,
leading to a significant policy drift where the learned policy, πt, diverges substantially from πref.
Consequently, the pre-computed V ∗ may become a less representative baseline for the current policy’s
true value function, Vπt , potentially affecting the accuracy of the advantage estimates. In contrast,
SPO’s baseline is adaptive, dynamically tracking an estimate of Vπt as the policy evolves. The
empirical results, which show SPO’s superior performance, suggest that this adaptability is crucial.
By maintaining a baseline that remains relevant to the current policy, SPO provides a more stable and
effective learning signal in environments that demand significant policy evolution. Finally, from a
practical perspective, πref computation during A∗-PO policy update occupies an extra trunk of GPU
memory, making it less appealing than the proposed SPO algorithm.

Baseline Ablation. Figure 6b presents a crucial ablation that validates the fundamental principle
of using a baseline for variance reduction. In this experiment, we remove the value tracker com-
ponent v̂−1(x) from the advantage calculation, causing the algorithm to rely solely on the globally
batch-normalized raw reward r(x, y) as its learning signal. However, the substantial performance
degradation observed is a classic illustration of the remaining challenges. While global normalization
effectively controls the overall scale of rewards, the raw reward signal is still noisy on a per-sample
basis as it fails to account for prompt-specific difficulty. SPO’s history-informed baseline is designed
to subtract this expected difficulty, thereby effectively reducing variance and providing a much
cleaner, more reliable gradient for learning. This experiment confirms that the adaptive value tracker

16

Published as a conference paper at ICLR 2026

is the most critical component for SPO’s success, directly addressing the core challenge of variance
in single-stream policy optimization.

Offline Initialization Ablation. In Figure 6c, we analyze the impact of the value tracker’s initial-
ization phase. The standard SPO algorithm initializes the value tracker with estimates computed
from a small set of n0 offline samples, giving it a “warm start”. The ablation removes this step,
forcing the tracker to learn from scratch online. The results clearly demonstrate the benefit of the
offline initialization. Without it, the tracker begins with a highly inaccurate baseline, leading to
high-variance gradients and significant instability in the initial training phase, as evidenced by the
performance dip. Although the model’s performance is initially lower, it eventually recovers and
catches up to the level of the properly initialized model. This initial performance gap neverthe-
less underscores the importance of a good initial value estimate for ensuring training stability and
accelerating convergence.

Batch Normalization Ablation. Figure 6d isolates the contribution of SPO’s global advantage
normalization (Eqn. 9). In this variant, we compute policy updates using the unnormalized advantages
A(x, y) = r(x, y)− v−1(x), omitting the batch centering and scaling. Compared to the full method,
the training curve rises more slowly and exhibits larger oscillations, with a lower final avg@16.
This behavior is consistent with our analysis: without standardizing by the batch statistics (µB, σB),
the effective step size becomes entangled with the transient reward scale and the prompt-mix in
each batch, inflating gradient variance and worsening PPO clipping dynamics. In contrast, SPO’s
batch-wise normalization stabilizes the update scale across iterations, yielding faster and smoother
convergence. Together with the baseline and offline-initialization ablations, these results underscore
that SPO’s low-variance learning signal derives from both a history-informed baseline and global,
batch-level normalization, as predicted by the variance decomposition in Appendix D.2.

G ADDITIONAL EXPERIMENTS AND ANALYSES

This section reports additional experiments conducted after the initial submission. They probe the
sensitivity of the KL-adaptive value tracker, the effect of the prompt curriculum, the robustness of
the warm-start initialization, and the competitiveness of SPO against further baselines and model
scales. Unless otherwise stated, all new studies are performed on Qwen3-8B with the Tool-Integrated
Reasoning setup described in Appendix E, using the DAPO training corpus and the same reward and
evaluation protocols as in the main text.

Training setup. For the additional experiments we slightly reduce the per-step training budget due
to time constraints. GRPO (with and without global normalization) and RLOO use a prompt batch
size of 128, group size G = 8, and mini-batch size 16. SPO uses a single-stream batch of 1,024
prompts and a mini-batch size of 128, so that the total number of sampled trajectories per update
matches the group-based methods (128 prompts × 8 samples). In all settings, the maximum response
length is set to 8,192 tokens; other hyperparameters follow Appendix E.

G.1 SENSITIVITY OF THE KL-ADAPTIVE VALUE TRACKER

Incorporating effective sample size into the curriculum. The sampling weight in Eq. 11 priori-
tizes prompts according to the Bernoulli standard deviation

√
v̂(1− v̂), which is maximized when

v̂ ≈ 0.5 and down-weights prompts that are almost always solved or failed. As pointed out in the
reviews, this heuristic does not explicitly account for the estimation confidence encoded by the
effective sample size Neff = α+ β of the Beta tracker.

To investigate this, we introduce an alternative sampling weight that down-weights prompts once
their success probability is well-estimated:

wi(x) ∝

√
v̂i−1(x)

(
1− v̂i−1(x)

)
Neff,i−1(x)

+ ϵ, (13)

where Neff,i−1(x) is the effective sample size of the tracker for prompt x before iteration i and ϵ
is the exploration bonus from Eq. 11. Table 2 compares the original and Neff -aware curricula on
AIME 24 and AIME 25 at Dhalf = 0.08.

17

Published as a conference paper at ICLR 2026

Table 2: Effect of incorporating Neff into the sampling weight on AIME 24/25 maj@16 (Qwen3-8B,
Dhalf = 0.08).

Sampling weight AIME 24 maj@16 AIME 25 maj@16√
v̂(1− v̂) + ϵ 55.95 52.75√
v̂(1− v̂)/Neff + ϵ 60.64 46.24

Table 3: Ablation on Dhalf for Qwen3-8B with the Neff -aware curriculum. Higher is better (maj@16).

Dhalf AIME 24 maj@16 AIME 25 maj@16
0.06 57.58 51.28
0.08 60.64 46.24
0.10 58.90 52.73
0.12 67.20 55.23

The mixed trend highlights a nuanced exploration–exploitation trade-off. Dividing byNeff encourages
cycling through prompts more aggressively: once a prompt has been sampled many times, its weight
decreases even when v̂ ≈ 0.5. This broader coverage appears beneficial for AIME 24, but less so for
AIME 25, where spending more steps on a smaller set of challenging prompts is advantageous. We
therefore modify the sampling weight in the mainpaper to incorporate Neff in a manner that balances
this need for exploration with the deep learning required for generalization.

Sensitivity to Dhalf. The hyperparameter Dhalf controls how quickly the Beta tracker forgets past
observations as the policy drifts: a larger Dhalf yields a longer effective memory, reducing variance
but increasing bias with respect to the current policy. We ablate Dhalf ∈ {0.06, 0.08, 0.10, 0.12}
using the Neff -aware curriculum above. Results are summarized in Table 3.

Performance is relatively stable over a broad range, but Dhalf = 0.12 provides the best overall
trade-off. In our setting (learning rate, batch size, and reward sparsity), this value implicitly defines a
“half-life” that allows the tracker to accumulate enough history to reduce variance, while not retaining
excessively stale information once the policy has moved far in KL.

G.2 ANALYSIS OF THE PROMPT CURRICULUM

Effect of prioritized sampling. To isolate the contribution of the automatic curriculum, we compare
the full SPO algorithm (with prioritized sampling from Eq. 11) against a variant without sampling
mechanism, keeping all other components unchanged (including the value tracker and global nor-
malization). Table 4 reports maj@16 on AIME 24 and AIME 25. Removing the curriculum leads
to a substantial drop (−10.8 and −9.3 percentage points on AIME 24 and AIME 25 respectively),
confirming that focusing computation on prompts with high estimated learning potential is critical for
both data efficiency and final performance.

Revisiting hard prompts. A natural concern with the variance-based weight
√
v̂(1− v̂) is that

prompts that are consistently failed (v̂ ≈ 0) could effectively disappear from training. In Eq. (11)
we explicitly prevent this collapse by adding an exploration bonus ϵ, which ensures a non-zero
lower bound on each prompt’s sampling probability. As the model improves, such hard prompts are
periodically revisited, allowing the tracker to update their value estimates if the policy’s capabilities
increase.

G.3 WARM-START SAMPLE SIZE n0

Appendix F already ablated the extreme case of removing the offline initialization entirely (n0 = 0),
which leads to unstable early training but eventually recovers. Here we ask whether a very small
warm start is sufficient by comparing n0 = 2 against the default n0 = 8.

The results are:

18

Published as a conference paper at ICLR 2026

Table 4: Effect of prioritized prompt sampling (Eq. (11)) on maj@16 (Qwen3-8B, Dhalf = 0.12).

Sampling scheme AIME 24 maj@16 AIME 25 maj@16
None 56.38 45.90
Prioritized (SPO) 67.20 55.23

Table 5: Comparison with additional RL baselines on AIME 24/25 maj@16 (Qwen3-8B).

Method AIME 24 maj@16 AIME 25 maj@16
GRPO (standard) 55.02 44.71
GRPO + Global Norm 60.59 48.32
RLOO 62.91 51.70
SPO (ours) 67.20 55.23

• Early training (step 20): n0 = 8 reaches avg@16 of 40.42, whereas n0 = 2 lags behind at
36.46.

• Convergence (step 120): the gap closes and slightly reverses: 47.50 for n0 = 8 versus
47.71 for n0 = 2.

Thus, even a minimal warm start (n0 = 2) is sufficient to reach essentially identical final performance,
demonstrating that SPO’s online tracker is robust. However, a somewhat larger initialization (e.g.,
n0 = 8) remains preferable in practice, as it stabilizes the initial phase and accelerates early
convergence.

G.4 ADDITIONAL BASELINES: RLOO AND GRPO WITH GLOBAL NORMALIZATION

RLOO. Beyond GRPO and A∗-PO (Appendix F), we evaluate SPO against RLOO, which uses
a leave-one-out group baseline as in Eq. 4 with the same group size G = 8. RLOO is a strong
group-based baseline but is consistently outperformed by SPO.

GRPO with batch-level global normalization. To disentangle the effect of global advantage
normalization from the rest of SPO, we augment GRPO with the same batch-level normalization used
by SPO: advantages are computed with the standard GRPO group baseline but are then normalized
across the whole batch rather than within each group. This variant (“GRPO + Global Norm”)
substantially improves over standard GRPO, but still falls short of SPO, indicating that global
normalization is an important but not exclusive contributor to SPO’s gains. Table 5 summarizes the
comparison.

These results confirm three points: (i) batch-level normalization alone yields tangible gains even for
group-based methods, (ii) single-stream SPO remains competitive against strong variants such as
RLOO, and (iii) SPO’s remaining advantage primarily stems from its group-free data efficiency and
KL-adaptive baseline, which enable 8× more unique prompts per update at fixed rollout budget.

G.5 EXPERIMENTS ON A SMALLER BASE MODEL: QWEN3-4B

To assess robustness across model scales, we repeat the comparison between GRPO and SPO on
Qwen3-4B, using the same Tool-Integrated Reasoning setup and training hyperparameters (including
Dhalf = 0.12 and the prioritized curriculum). Table 6 reports maj@16 performance on AIME 24 and
AIME 25.

Table 6: GRPO vs. SPO on Qwen3-4B (maj@16).

Method AIME 24 maj@16 AIME 25 maj@16
GRPO 56.01 46.62
SPO 59.32 48.07

SPO again outperforms GRPO on both benchmarks, indicating that the benefits of single-stream
optimization and the KL-adaptive value tracker are not specific to the 8B scale. During Qwen3-4B

19

Published as a conference paper at ICLR 2026

training we also observe that the model tends to degenerate into a pure-text solver, rarely producing
successful tool calls; both methods eventually rely more on text-only reasoning. This suggests that
smaller tool-augmented backbones may require a more careful cold-start or auxiliary supervision to
reliably acquire tool-use capabilities, which we leave as an avenue for future work.

20

	Introduction
	Related Work
	Background
	Policy Gradient and the REINFORCE Algorithm
	Variance Reduction Baselines for Large Language Models

	Method
	A KL-Adaptive Value Tracker
	Advantage Estimation and Policy Optimization
	Prioritized Prompt Sampling
	Advantages over GRPO

	Experiments
	Experimental Setup
	Empirical Comparison with GRPO
	Analysis of Signal Efficiency and Stability
	Agentic Training Demonstrations

	Conclusions
	LLMs Usage
	SPO Initialization
	Batch Extensions
	Comparisons against GRPO
	Inefficiency of Dynamic Sampling
	Variance Reduction for Policy Gradient

	Training and Evaluation Details
	Ablation Studies
	Additional Experiments and Analyses
	Sensitivity of the KL-Adaptive Value Tracker
	Analysis of the Prompt Curriculum
	Warm-Start Sample Size n0
	Additional Baselines: RLOO and GRPO with Global Normalization
	Experiments on a Smaller Base Model: Qwen3-4B

