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Abstract

Active Learning (AL) is a user-interactive approach aimed at reducing annotation costs by
selecting the most crucial examples to label. Although AL has been extensively studied for
image classification tasks, the specific scenario of interactive image retrieval has received rel-
atively little attention. This scenario presents unique characteristics, including an open-set
and class-imbalanced binary classification, starting with very few labeled samples. We intro-
duce a novel batch-mode Active Learning framework named GAL (Greedy Active Learning)
that better copes with this application. It incorporates a new acquisition function for sample
selection that measures the impact of each unlabeled sample on the classifier. We further
embed this strategy in a greedy selection approach, better exploiting the samples within each
batch. We evaluate our framework with both linear (SVM) and non-linear MLP/Gaussian
Process classifiers. For the Gaussian Process case, we show a theoretical guarantee on the
greedy approximation. Finally, we assess our performance for the interactive content-based
image retrieval task on several benchmarks and demonstrate its superiority over existing
approaches and common baselines.

1 Introduction

Annotated datasets are in high demand for the majority of machine learning applications today. Active
Learning (AL) aims to actively select the most valuable samples for annotation, that when labeled and
added to the training process, will maximally boost the performance in the target task (e.g. a classifier).
In recent years, task specific AL has gained popularity, e.g. for multi-class image classification (36; 12), few
shot learning (3; 37) pose estimation (18), person re-identification (29), object detection (49) and interactive
Content-Based Image Retrieval (CBIR) (31; 4; 33; 19).

CBIR methods play an important role for data mining in large image datasets. AL has been engaged in
interactive CBIR to boost the retrieval and reach the desired target images with just few user interactions. In
this process, the system selects significant samples from a collection of unlabeled images, suggesting them to
the user for tagging, i.e. indicating whether those images are relevant (positive, belongs to the query concept)
or irrelevant (negative). The tagged images are then added to the training set, with their corresponding
given (true) label to train a new, improved classifier for retrieval. The idea is to learn and recognize the
finer details of user intent through an iterative and interactive process, as it is difficult to perceive the user’s
intention based on a single or a few query images. In the context of Content-Based Image Retrieval (CBIR),
this task involves a form of AL known as pool-based active learning (30), where the learner has access to
a pool of unlabeled data and can request the user’s label for a certain number of instances from within
that pool. For image retrieval, the unlabeled pool typically comprises the entire searched database or a
subset of it. This introduces a binary classification task, characterized by highly imbalanced classes and an
open-set scenario (where the categories in the search domain are typically unknown). Moreover, the negative
class generally consists of irrelevant images from diverse and heterogeneous classes, creating an asymmetric
scenario.

Selecting a batch of images at each AL iteration is referred to as Batch Mode AL (BMAL) (29; 26; 47;
12; 50; 36). This approach differs from the single sample batch (26; 43), where at each iteration the user
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tags a single sample. Active learning methods are typically employed for multi-class classification problems
where the training set is substantial, and the classes are evenly distributed. In this work, we introduce a
novel AL algorithm for Interactive Image Retrieval (IIR). This application can be defined as a binary (or
one-class) classification task with several unique characteristics: (i) Open-set: The number of classes and
their categories in the pool are unknown. (ii) Imbalance: Often, less than 1% of the pool contains the query
concept (positive class). (iii) Asymmetric sets: While the positive set contains a single semantic class, the
negative set can contain a variety of samples belonging to different categories. (iv) Cold start: Only a few
labeled samples are available at each cycle, particularly in the early and crucial cycles.
A general pipeline describing the process of AL for IIR is shown in Fig. 3. Common AL methods are not
specifically designed and tested in scenarios that combine several characteristics, such as cold start, imbalance,
rare classes, and an open-set scenario. In the context of pool-based IIR, few initial studies have proposed
the use of a tuned SVM with either engineered or deep features (42; 19; 33; 39). The SVM classifier is a
practical solution for handling small training sets due to its strong regularization capabilities. For instance,
(42) used a kernel SVM classifier for binary classification tasks.

Selection strategies in active learning (AL) aim to evaluate a score of unlabeled samples to enhance an
objective metric, such as classification accuracy or, in our case, retrieval performance. Common criteria used
for this purpose include uncertainty (11; 16; 45) and diversity (6; 41). However, each criterion has its own
limitations when used individually. Uncertainty-based selection targets valuable samples near the decision
boundary to refine it but overlooks the broader data distribution. Moreover, reliably measuring uncertainty
requires a sufficient number of labeled samples, which is often unavailable, especially in the initial cycles
of interactive image retrieval (IIR). In this context, many methods that begin with a cold start tend to be
inefficient and ultimately fail to outperform the basic random selection process(20). Conversely, diversity-
based selection aims to cover the data distribution but can lead to redundant selections or the inclusion of
less valuable points that are far from the decision boundary and have a marginal impact on the classifier.
Recent studies have demonstrated that integrating both cues, in a method known as a hybrid approach,
can leverage the strengths of each concept and yield improved results(46; 51; 1; 36). In response to these
challenges, our method introduces a new hybrid approach that implicitly incorporates both uncertainty and
diversity, effectively addressing the cold start scenario.

To this end, we propose a Batch Mode Active Learning method for IIR that effectively handles a cold start in
an open-set scenario. Typical AL methods designed for standard image classification can become impractical
under such circumstances, due to model instability and unreliable uncertainty estimation (53; 24; 35). We
hereby focus on each individual sample and propose acquisition functions for AL sample selection, that
measure the global change in the boundary decision. For a linear or non-linear classifier (SVM or MLP), we
assess the influence of two potential labels (positive or negative), and for a Gaussian Process, we minimize
the overall uncertainty of the classifier during sample selection. To further cope with the scarcity of labeled
samples, we suggest a greedy scheme that efficiently exploits each sample in the subsequent selection of each
batch. Our approach effectively combines both uncertainty and diversity, as demonstrated in Section 4.

To summarize, we present an innovative approach to Batch Mode Active Learning (BMAL) for IIR tasks
with the following contributions:

1. We propose new acquisition functions that quantify the impact value on the classifier as a selection
strategy, tailored to both linear and non-linear classifiers. Our framework is adaptable to different
classifiers, where, for instance, the impact value can measure the global shift in the decision boundary
or the level of global uncertainty of the classifier.

2. We propose a novel greedy scheme to cope with very few labeled samples, focusing on only one class,
and operating in an open-set regime with highly imbalanced classes.

3. For the Gaussian Process-based classifier, we show a lower bound on the performance of the greedy
algorithm using the (1− 1/e)-Approximation Theorem.

4. We present a more realistic multi-label benchmark for the Content-Based Image Retrieval (CBIR)
task, named FSOD, where the query concept involves an object within the input image.

2



Under review as submission to TMLR

5. We evaluate our framework using three classification methods (linear and non-linear) on four diverse
datasets, showcasing superior results compared to previous methods and strong baselines.

2 Related Work

Two main characteristics drive the design of AL methods, namely diversity and uncertainty. The BADGE
model (2) effectively balances diversity and uncertainty without the need for any hand-tuned hyper-
parameters, similar to our approach. Few works address the batch (budget) size of the selected samples
at each cycle of the AL procedure and the cold-start scenario. Recent studies such as (20; 52) have investi-
gated the influence of budget size on active learning strategies and have also addressed the challenge of cold
start, where the initial labeled training set is small (20; 52; 53; 17). In the context of cold start, poor results
are attributed to the inaccuracy of trained classifiers in capturing uncertainty, a problem that becomes more
pronounced with small labeled training sets (34; 15). Some recent methods, address issues such as class im-
balance, rare classes, and redundancy, e.g. in SIMILAR (28). A different category of methods, utilize large
batch sizes, aiming to reduce the number of training runs required to update heavy Deep Neural Networks
(DNNs). For instance, ClusterMargin (9) addresses the presence of redundant examples within a batch.

The literature suggests only few works for AL in the domain of IIR (5; 19; 31; 33; 39; 54). In this respect,
Gosselin et al. (19) proposed RETIN, a method that incorporates boundary correction to improve the
representation of the database ranking objective in CBIR. In (33), the authors introduced an SVM-based
Batch Mode Active Learning approach that breaks down the problem into two stages. First, an SVM is
trained to filter the images in the database. Then, a ranking function is computed to select the most
informative samples, considering both the scores of the SVM function and the similarity metric between the
’ideal query’ and the images in the database. A more recent work by (39) addresses the challenges related
to the insufficiency of the training set and limited feedback information in each relevance feedback iteration.
They begin with an initial SVM classifier for image retrieval and propose a feature subspace partition based
on a pseudo-labeling strategy

Zhang et al. (54) proposed a method based on multiple instance learning and Fisher information, where
they consider the most ambiguous picture as the most valuable one and utilize pseudo-labeling. In contrast,
Mehra et al. (31) adopt a semi-supervised approach, using the unlabeled data in the pool for classifier
training. They employ an uncertainty sampling strategy that selects the label of the point nearest to the
decision boundary of the classifier, which is based on a heuristic of adaptive thresholding. To enhance their
results, they incorporate semantic information extracted from WordNet, requiring additional textual input
from the user. On the other hand, Barz et al. (5) proposes a method called ITAL that aims to maximize
the mutual information (MI) between the expected user feedback and the relevance model. They utilize a
non-linear Gaussian process as the classifier for retrieval.

Kapoor et al. (25) introduced an AL technique employing Gaussian processes for object categorization. In
each cycle, the method selects a single point-specifically, an unlabeled point characterized by the highest
uncertainty in classification. This uncertainty is assessed by taking into account both the minimum posterior
mean (closest to the boundary) and the maximum posterior variance. Zhao et al. (55) introduced an efficient
Bayesian active learning method for Gaussian Process classification. In this procedure, one sample is chosen
in each cycle. In our method, however, we select a batch of samples by minimizing the overall uncertainty.
Additionally, our approach does not rely on knowledge about the distribution of the negative set, which can
be highly multimodal due to the presence of various class types.

MaxMin-based operators focus on the classifier parameters (43; 26). However, these methods are applied
to a single sample budget, which is associated with increased computation time and user burden due to
frequent interactions. Our work is closely related to the MaxiMin algorithm (26). Nonetheless, we extend
and generalize this idea by introducing a flexible framework that can be adapted to different classifiers and
accommodate a larger batch size. This is achieved through novel acquisition functions within the proposed
greedy method.
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3 Algorithm Overview and Motivation

This section presents the motivation and key features of our Greedy Active Learning (GAL) algorithm. In
the context of a cold start scenario, where the labeled dataset is exceptionally limited, the active learning
procedure becomes notably more challenging. The complexity arises from the inability to rely on the classifier
to estimate the label or uncertainty of a candidate data point. This scenario is a common challenge in active
learning in general (20) and AL-IIR in particular. Additionally, in AL-IIR, there is the open-set classification
challenge, involving dealing with unknown classes. The proposed GAL algorithm addresses these challenges
through two key aspects: (i) A greedy method that optimally exploits the few labeled samples available
and gradually expands the training set within the batch cycle. (ii) Formulating acquisition functions that
prioritize data points with the most significant impact on reshaping the decision boundary or the global
uncertainty measure. These acquisition functions facilitate improved selection of relevant samples as well
as hard-irrelevant (i.e., hard-negative) points that may belong to different unknown categories. Therefore,
we depart from the common hypothesis that relies on parameters estimated from a weak classifier (e.g.,
uncertainty or direct prediction), shifting instead to an approach that focuses on the impact of individual
samples on the classifier. This approach is better suited to AL for a binary classifier with few positives and
unknown open-set negatives.

In GAL, the samples in the batch are chosen greedily, aiming to maximize an acquisition function that
reflects the change in the decision boundary in a MaxMin paradigm. To assess this change, one may require
the true labels of the candidate set, which are unavailable in practice. The method therefore calculates a
pseudo-label, l̂, by measuring the change in the decision boundary, for both positive and negative options of
each candidate sample. A false label is likely to lead to a larger change in the decision boundary. This is not
desirable for the selection, as the importance of the point might be spurious. The true label, though, leads
to a smoother and more moderate behavior. This minimal shift, serving as an approximation for the true
label, is treated as a pseudo-label. Subsequently, we maximize these minimal shifts across the candidates.
Figure 1 illustrates with a 2D toy example using an imbalanced dataset with Gaussian distributions in R2,
the rationale behind our pseudo-labeling approach. Positive (relevant) and negative (irrelevant) samples are
represented by blue and red colors, respectively. The current training set is depicted in bold, with candidate
points shown in a lighter shade. In this scenario, there is one labeled relevant point and 13 labeled irrelevant
points. The black dashed line indicates the classifier trained with the whole dataset. Let the dashed green
line represent the current boundary (based on the training set). Now, let’s select a candidate point (depicted
in green). If we designate it as positive and calculate the new boundary, we obtain the blue line; whereas if
we designate it as negative, we get the red line. It’s important to note that the true label (blue) results in
a classifier that is closer to the original dashed green line. Therefore, selecting the label that minimizes the
boundary shift approximates the true label. For each candidate point, we determine the pseudo-label and
calculate an acquisition function. The optimal point x∗ is the one that maximizes this function, resulting in
a score which we refer to as an impact value. Our algorithm then proceeds to find the next optimal sample.
Subsequently, x∗ and l̂∗ are added to the labeled set. The process repeats to select the next sample until
a designated budget B is reached. This budget is then allocated for annotation in the next cycle, during
which the pseudo-labels are discarded.

We now illustrate the behaviour of various traditional selection strategies, on our toy example in Fig. 2. This
toy example demonstrates binary classification in the presence of an imbalanced dataset and a cold-start
scenario (consisting of one tagged relevant point and 13 irrelevant points). For each case, we display the
current linear classifier (SVM) as a color dashed line and the updated classifier (color solid line) according to
different AL selection strategies. For the sake of comparison, we present an upper-bound (in terms of the size
of the dataset used for training) of a classifier trained on all the samples with the true labels (dashed black).
As observed, random selection achieves a reasonable improvement from the current classifier to the updated
version after using the selected points for training. This result is achieved despite ignoring both uncertainty
and diversity principles (see also (20)). Kmeans++ is based solely on diversity, selecting points well spread
over the dataset. The uncertainty approach (highest Entropy), however, selects points near the current and
an inaccurate boundary, caused by the extreme cold-start. Both Kmeans++ and Entropy methods yield an
improvement as expected.
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Figure 1: Label proxy demonstration: The points are sampled from two Gaussian distributions, demonstrat-
ing the change in the decision boundary for two label options. Red and blue denote negative and positive
labels, respectively. Bold and light points represent train and candidate samples, respectively, with their
corresponding labels. The green dashed line represents the classifier based solely on the train set (bold
circles). The blue and red lines signify the resulting classifier if the selected point (green circle) is labeled
as blue or red. The blue classifier exhibits a lower deviation from the dashed green line, consistent with the
true label (blue).

However, our greedy method demonstrates the most significant enhancement in narrowing the gap towards
the upper-bound classifier. In Fig. 2d, we showcase that our hybrid approach inherently incorporates both
uncertainty and diversity. The selection sequence ranges from i0 to i5, with i0-i2 and i4 chosen far from the
green dashed classifier margin and comply with the diversity principle. On the other hand, two points (i3
and i5) were selected within the classifier margin, tending to comply with the uncertainty principle. Note
that, in contrast to Kmeans++ and Random, our approach avoids selecting any irrelevant samples due to
an abundance of labeled negatives in the current training set. The combination of our novel acquisition
function and greedy approach yields a conditioned diversity, where the diversity depends on the train-set
distribution, better coping with the scarcity of labeled samples and the diversity of categories within the
dataset.

Uncertainty Diversity ∥θ − θall∥ ↓
Random 0.82 0.54 1.22
Kmeans++ 0.86 0.78 0.98
Entropy 0.99 0.24 0.71
SVM-GAL (ours) 0.96 0.52 0.29

Table 1: Quantitative comparison of diversity versus uncertainty characteristics for various methods with
an SVM classifier. Uncertainty represents the mean entropy of the selected points, while diversity denotes
the mean pairwise distances among the selected points. The third column indicates the distance between
the resulting and the best classifier, where lower values are preferable. Note that GAL achieves a superior
balance between uncertainty and diversity factors, effectively addressing both criteria.

We further demonstrate this crucial aspect quantitatively in Table 1, where we assess uncertainty, diversity,
and accuracy errors. It is evident that Kmeans++ exhibits the highest diversity score, while Entropy
demonstrates the highest uncertainty score. GAL, on the other hand, showcases intermediate values and
the lowest accuracy error. These metrics confirm that GAL suggests an adaptive strategy that integrates
both uncertainty and diversity. Throughout the greedy procedure, each subsequent sample is chosen to
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maximize the impact score, based on the pseudo-labels from the previous samples in the batch. This method
avoids choosing samples that have already been selected, as selecting a similar point would not maximize
the impact value. Consequently, we achieve the diversity property. Conversely, at certain configurations,
the most significant change in the decision boundary is induced by the samples in the classifier margin,
specifically those near the boundary with a high level of uncertainty. We also provide an analysis of the cold
start performance in Appendix A.
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Figure 2: In a 2D Gaussian toy example, we illustrate a binary class scenario characterized by an imbalanced
distribution of data, showcasing red samples representing irrelevant data and blue samples representing rele-
vant data. We compare three fundamental selection strategies (a) Random, (b) Pure diversity (Kmeans++),
and (c) Pure uncertainty (maximal entropy) to (d), the suggested GAL method. Initially, one relevant and
13 irrelevant samples are labeled. The initial SVM classifier is illustrated by a colored dashed line, followed
by the corresponding solid line after updating the classifier with the addition of six samples (B = 6). The
dashed black line represents an “upper-bound”, where the classifier is trained with all the data and their
true labels. Notice the most significant improvement observed in the classifier with our GAL method, closing
the gap toward the upper-bound and demonstrating a selection pattern that effectively combines diversity
and uncertainty. The order of selection in GAL is depicted in (d) by i0 to i5, with corresponding impact
scores of 1.75, 1.02, 0.80, 1.06, 0.59, and 0.66. Note that although i3 and i5 are close, they are on opposite
sides of the classifier and close to the boundary. This means they have significant uncertainty measures and
therefore a substantial impact on the decision boundary.
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Figure 3: Main flow of the AL cycle. The top-K candidate set at cycle t determined by the classifier Ct(θ),
can be selected as the pool from the unlabeled/search corpus. The AL module extracts a batch set Xb which
is sent for annotation by a user (oracle) that generates the label set Yb. Based on the extended training set,
a new classifier Ct+1(θ) is trained for the next cycle.

4 Algorithm Description

We follow the common strategy in few-shot learning where features are a-priori learned on a large la-
beled corpus (e.g. ImageNet). We then follow the assumption where all the images in the dataset are
represented by feature vectors xi ∈ Rd, (where d is the feature dimension) either engineered or coming
from a pretrained network. In this paper we derive our image features from a pre-trained backbone. Let
Xu := (x1, x2, . . . , xm) denote the set of unlabeled image features (representing the searched dataset), and
Xl := (xm+1, xm+2, . . . , xm+l) the labeled set. Relevant (positive) and irrelevant (negative) samples are
labeled by yi ∈ {+1,−1} respectively, and the label set is denoted by Yl. The initial labeled set Xl which
defines the query concept, consists of few (usually 1-3) query image features labeled by +1. In the course
of the iterative process, the user receives an unlabeled batch set Xb ⊂ Xu of size B := |Xb|, and is asked to
label the relevant (y = +1) and irrelevant (y = −1) images. The AL procedure selects the set of B samples,
such that when labeled and added to the training set, aims to reach the maximum retrieval performance.
In this work, we suggest a greedy-based framework which consists of two phases at each AL cycle. Let Ct

be the classifier at cycle t. In the first phase, a candidate subset Xc ⊆ Xu of size K := |Xc| is selected out
of the unlabeled pool. This set can be either the whole unlabeled dataset or a subset which is determined
by the top-K relevance probabilities. The candidate set Xc accommodates mostly irrelevant samples due to
the natural data imbalance. In the second phase, the algorithm extracts a batch set Xb ⊂ Xc by an AL
procedure. A user (oracle) annotates the images selected in Xb and adds their features and labels into the
labeled set (Xl,Yl). Based on the new training set, a classifier Ct+1 is trained for the next cycle, as illustrated
in Fig. 3.

The selection process is designed to pick the samples which are mostly effective upon being labeled, i.e. max-
imally improve the classifier performance. At each greedy step, an impact value of each unlabeled sample
is computed, evaluating the contribution of the sample to the classifier improvement, and the sample with
the highest impact value is added to Xb as described in Algorithm 1. We now demonstrate the GAL frame-
work in three settings: linear (SVM) and non-linear (Gaussian Process and MLP) classifiers via the greedy
approach.

4.1 Sample-wise Impact Value

Linear Classifier - SVM: Let us start with a linear classification such as SVM. We define the outcome
of a trained binary classifier C parameterized by θ, as the measure for the relevance of a sample to a query
image. Effective or prominent samples are those that apply the most influence on the classifier’s decision
boundary. These sample points play a significant role in the active learning process, shaping the classifier’s
evolution across iterative cycles. However, two primary challenges emerge with this approach: (i) When
dealing with a search space that may encompass millions or even more samples, computational efficiency
becomes a critical concern. (ii) Due to the scarcity of labels, a shallow classifier such as SVM linear classifier
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Algorithm 1 Greedy Active Learning (GAL) Algorithm
function GAL(Xc,Xl,Yl, B)
Xb ← {}
for i← 1 to B do

x∗, l̂∗ ← Next(Xc,Xl,Yl) ▷ Find the point that maximizes the impact value S
Xl ← Xl ∪ {x∗}
Yl ← Yl ∪ {l̂∗}
Xc ← Xc \ x∗

Xb ← Xb ∪ {x∗}
end for
return Xb

end function

Figure 4: To calculate the score for a point xi in the candidate set, we train a classifier C(θ+
i ) by assuming

the sample is positive. Similarly, we train another classifier C(θ−
i ) with a negative label. The impact value

Si is then determined as the minimum value obtained by applying a function F to both options (4).

is favored (42; 19; 33; 39). Additionally, SVM has a strong regularizer to avoid an overfit. Such a classifier also
enables relatively rapid training durations. It’s important to mention that a single-layer feed-forward neural
network (NN) can also be utilized, as it is equivalent to Logistic Regression and is expected to produce
outcomes similar to those of SVM. However, the use of a multi-layer perceptron (MLP) for classification
carries the risk of overfitting due to the limited size of the training dataset, and potentially resulting in
increased computational overhead during the search procedure. We therefore test MLP in the context of
AL model (see Sec. 5.2.3) Furthermore, we restrict our examination to samples within the candidate set,
denoted as x ∈ Xc, which is notably smaller than the entire dataset. Regarding the second issue, given the
absence of true labels, we employ pseudo labels. The core principle of our proposed algorithm is rooted
in the MaxMin paradigm, where we aim to MAXimize the MINimal shift in the decision boundary. This
minimal shift serves as an approximation for the true label and is thus treated as a pseudo label.

Let us assume that xi has a label li, and θli represents the parameters of a classifier as if the point xi is
included in the training set with label li. One possible impact value could be the quantification of the decision
boundary’s change when xi is added to the training set. Let W0 ∈ Rd define the initial SVM hyperplane of
the AL cycle, and W ∈ Rd the hyperplane which was obtained with an additional candidate point xi with
label li. We then define an acquisition function as

Fsvm := ∥W (xi, li)−W0∥2
2. (1)

Note that theoretically, there are two unknowns involved in this process. The label, and the most effective
point x∗ given the label. Ideally, if the labels of the candidate points were known, then

x∗ = argmax
xi∈Xc

Fsvm(xi, li, θli), (2)

and l∗ is the label of the optimal point. This selection is conditioned on the sample label which is unavailable
in practice. We therefore suggest to estimate the label by the minimizer of Fsvm such that

l̂i := argmin
li∈{−1,+1}

Fsvm(xi, li, θli). (3)
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Figure 5: In the SVM scenario, the GAL algorithm employs a binary tree structure. The initial point xi0

is chosen through the NEXT procedure (Algorithm 2). The red circles represent the results obtained from
NEXT, which are based on the corresponding pseudo-labels.

We refer to l̂i as a pseudo-label. The acquisition function is therefore defined as

Si := Fsvm(xi, l̂i, θl̂i) = min
li∈{−1,1}

Fsvm(xi, li, θli). (4)

The index of the selected point is then given by the largest value among the candidate points,

i∗ = argmax
i∈1,2,...,|Xc|

Si, (5)

where
Si = min

li∈{−1,+1}
Fsvm(xi, li, θli). (6)

This selection procedure, denoted by NEXT, is summarized in Algorithm 2 and Fig. 4.

Nonlinear Classifier - MLP: We will now consider a network that comprises of L layers, using a non-linear
activation function (ReLU). The classifier is trained using the cross-entropy loss function. As in the linear
case, the acquisition function measures the extent of the change in the decision boundary. The AL algorithm
remains identical to Algorithm 2, with the only change of replacement of Fsvm with Fmlp:

Fmlp := ∥Ψ(xi, li)−Ψ0∥, (7)

where Ψ is a vector of concatenated and flattened network weights. Specifically, Ψ0 defines the initial MLP
weights at the current active learning cycle, and Ψ(xi, ii) is the weight vector as if the network was trained
with xi and label li.

4.1.1 Greedy Approach

The ultimate objective of the AL procedure is to extract a batch consisting of B samples. Ideally, the
optimal solution would search for all the permutations of positive and negative labels of the candidate set
such that the impact value would be maximal. This is of course intractable. We therefore use the greedy
active learning (GAL) approach which is illustrated in Fig. 5. In GAL, the sample xi0 is initially selected by
NEXT (Algorithm 2). We then insert its pseudo label into the train set, and calculate the next optimal point
xi1 . In this illustration, l̂0 = +1 associated with the left child of the tree root. At the third iteration l̂1 = −1
and i4 is selected. Samples i0, i1, i4 (marked by the red circles in Fig. 5) are then inserted into the budget
set Xb. This procedure continues recursively until the budget B is reached, as described in Algorithm 1.

The selection sequence is demonstrated in Fig. 2d. The factors of uncertainty and diversity can drive to
different selections. The uncertainty is a by product of the MaxMin operator (5), (6). Points with high
uncertainty (close to the boundary) will likely cause the maximum change in the separating hyperplane and
therefore will be selected by (1) (see i3 and i5 in Fig. 2d). As for diversity, selection of nearby samples in
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Algorithm 2 Selecting the Next Point
function Next(Xc, Xl, Yl)

for i← 1 to |Xc| do
xi ← Xc[i]
if SVM then

θ+ ← Classifier(Xl ∪ xi, Yl ∪+1) ▷ SVM
θ− ← Classifier(Xl ∪ xi, Yl ∪ −1)
l̂i ← argminli∈{−1,+1} Fsvm(xi, li, θli) by (1) and (6)
Si ← Fsvm(xi, l̂i, θl̂i)

else if GP then
Si ← Fgp(xi) by (13) ▷ Gaussian Process
l̂i ← Null

end if
end for
i∗ ← arg maxi Si

return xi∗ , l̂i∗

end function

the embedding space (which are not close to the boundary) are discouraged due to our approach. Note that
whenever a sample point is added to the labeled set, selection of a similar point will result in a low impact
value and will be discouraged due to the Max operation, promoting selection of distant points (see global
analysis in Table 1.)

Another theoretical aspect of the algorithm relies on the budget size B. The suggested algorithm is highly
dependent on the pseudo label l̂, where the effectiveness of the AL algorithm increases as the pseudo labels
become more reliable. Let p be the probability for a correct pseudo label. The normalized probability,
denoted as PN , of obtaining B accurate pseudo labels is given by

PN = 1
B

B∑
i=1

pi. (8)

The normalized probability Pn (8) is plotted in Fig. 6 for different B values and correct pseudo labels
probabilities. It naturally suggests that a larger batch size is more sensitive to errors, while a smaller value
of B is preferred in each AL cycle. This reasoning will be demonstrated in the experimental results.

4.1.2 Complexity for SVM-Based GAL

Lastly, the complexity of training a linear classifier such as SVM is approximately O(dn2), where n is the
number of samples and d is the feature dimension (8). Hence, the complexity of our algorithm at cycle i
with K candidates and a budget B is given by

Complexity(i) = O(BKd(iB)2). (9)

4.2 Global Impact Value

Non-linear Gaussian Process Classifier: Gaussian Processes (GP) (48) are generic supervised learning
method designed to solve regression and probabilistic classification problems where the prediction interpo-
lates the observations. Classification or regression by means of a GP, is a non-linear and non-parametric
procedure that does not require iterative algorithms for updating. In addition, GP provides an estimate of
the uncertainty for every test point, as illustrated in Fig. 7. As can be seen, uncertainty (pink region) is
significant as we get further away from the the train (black) points. A Gaussian process can be thought of as
a Gaussian distribution over functions f : X → R, where in our case f(x) represents the decision boundary.
GP is fully specified by a mean function µ : X → R and a covariance function Σ : X ×X → R (also known as
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Figure 6: Theoretical results for the normalized probability of obtaining B accurate pseudo-labels vs. the
probability of correctly estimating one pseudo-label (see Eq. (8)).

a kernel function). The mean function represents the expected value of the function at any input point, while
the covariance function determines the similarity between different input points. The Squared Exponential
Kernel is defined as

K(x, x′) = exp
(
− 1

2γ2 ∥x− x′∥2
)

. (10)

Let A := Xl be the train set of size L, and Xc the candidate set of size K. The training kernel matrix
is defines as Σ11(A) ∈ RL×L where every entry in the matrix is given by (10) for x, x′ ∈ A. Similarly,
the train-test kernel matrix is defined as Σ12 ∈ RL×K , x ∈ A, x′ ∈ Xc, and test kernel matrix is given by
Σ22 ∈ RK×K , x, x′ ∈ Xc. Then, the mean function is expressed by

µA = ΣT
12Σ−1

11 (A)f(x), x = [x1, x2, . . .] ∈ A,

and the covariance matrix is given by

ΣA = Σ22 − Σ21Σ−1
11 (A)Σ12. (11)

The variance at test point x′
i is given by the diagonal term

σ2
A(x′

i) = ΣA[i, i]. (12)

Equation (11) reflects the variance reduction of the test set due to the train set A. In our setting, µA(xi)
and σ2

A(xi) denote the decision boundary (red curve in Fig. 7), and uncertainty (pink area in Fig. 7) at point
xi given the train set A. In the AL procedure, our goal is to identify samples that minimize the overall
uncertainty. Now, At each AL cycle, if the current train set is denoted by A, we define the acquisition
function of a candidate point xi as the uncertainty area as if xi was added into the train set,

Fgp(xi) := −
( ∑

x∈Xc

σ2
A∪xi

(x) + α max
x∈Xc

σ2
A∪xi

(x)
)

. (13)

The first term describes the global extent of uncertainty across Xc in the integral or average sense and is
therefore insensitive to abrupt changes in the pointwise variation of σ2(x). On the other hand, the second
term represents the L∞ norm, ∥σ2(x)∥∞ which is designed to manage potential points of discontinuity or
large deviations that we aim to minimize. Samples which maximize this function are considered informative1.
Note that by (11), the uncertainty covariance does not depend on the labels of the training set, avoiding the
problem of pseudo labeling. The NEXT algorithm for the GP is described in Algorithm 2.

1The minus sign is used to change the min to max operator.
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Figure 7: Gaussian Process: The true function is represented by a dashed blue line, while the prediction
based on the training points is depicted by the red line. The uncertainty (std) of the prediction is illustrated
by the pink area, and the training points are denoted by black circles.

4.2.1 Theoretical Analysis

We now investigate the conditions which guarantee a reasonable good approximation to the optimal batch
selection. Nemhauser et al. (32) established a performance lower bound for a greedy algorithm when employed
to maximize a set function. Let B ∈ N be a budget, X , a finite set and a set function F (A) with A ⊆ X .
For the following maximization problem

A∗ = argmax
|A|≤B

F (A),

the greedy algorithm returns

F (Agreedy) ≥
(

1− 1
e

)
F (A∗).

under the following conditions:

1. F (A) ≥ 0.

2. F is non-negative and monotone, A ⊂ B implies F (A) ≤ F (B).

3. F is submodular if for all subsets S ⊆ T ⊆ X , and all x ∈ X \T , F (S∪x)−F (S) ≥ F (T ∪x)−F (T ).

The submodularity property has the diminishing returns behavior: the gain of adding in a particular element
x decreases or stays the same each time another element is added to the subset. By (11) and (12), the variance
at test point xi is given by

σ2
A(xi) := Σ22[i, i]−

(
Σ21Σ−1

11 (A)Σ12

)
[i, i]. (14)

The acquisition function given a train batch A is then given by

F (A) = −
(∑

x∈Xc

σ2
A(x) + α max

x∈Xc

σ2
A(x)

)
. (15)
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We now show that the conditions for the (1− 1/e)-Approximation theorem are satisfied for (15).
The amount of variance reduction for every test point,

(
Σ21Σ−1

11 (A)Σ12

)
[i, i] is guaranteed to be strictly

positive due to the positive-definite nature of the covariance matrix, which is an inherent property of GP
modeling, and proved to be increasing monotone and submodular by Das and Kempe (10). Based on the
property that the class of submodular functions is closed under non-negative linear combinations (14), (15)
is submodular as well. Employing the same considerations implies that (15) exhibits monotonic increasing
behavior. Consequently, our acquisition function (15) satisfies the conditions of the (1−1/e)-Approximation
theorem.

4.2.2 Complexity for Gaussian Process-Based GAL

Lastly, the complexity of a matrix of order n inversion is O(n3) and two matrix multiplications in (14) are
O(n2K) and O(K2n). Hence for each AL cycle i with K candidates and a budget B,

Complexity(i) = O
(

BK
[
(iB)3) + K2(iB) + K(iB)2

])
. (16)

5 Evaluation

We assess the GAL framework by employing three image retrieval techniques, which utilize linear (SVM)
and two non-linear (Gaussian Process, MLP) classifiers. The algorithm for SVM and MLP is based on the
acquisition functions (1) and (7) respectively. In our evaluation, we compare our approach against various
AL algorithms. (i) Random selection, (ii) Cyclic Output Discrepancy (COD) (21), (iii) MaxiMin (26),
(iv) Ranked batch-mode AL (RBMAL) (7), and in the cases where B > 1, (v) Coreset (41; 27) and (vi)
Kmeans++ (44). The COD (21) method estimates the sample uncertainty by measuring the difference of
model outputs between two consecutive active learning cycles,

Scod := ∥C(x; θt)− C(x; θt−1)∥ (17)

where C(x) is the classifier prediction, θt and θt−1 are its parameter set in the current and previous ac-
tive learning cycles, respectively. MaxiMin (26) algorithm maximizes the minimum norm of the classifier,
i.e. prioratizing smoother classifiers among the possible functions

SMaxiMin := min
l∈{+1,−1}

∥f(x)l∥. (18)

∥f(x)l∥ denotes the norm of interpolating function when training the classifier with positive and negative
labels of x. In the linear SVM case, f(x) = ∥W∥2

2. RBMAL method (7) combines uncertainty and diversity
by

SRBMAL := α(1− ϕ(x, xlabeled)) + (1− α)u(x), (19)

where ϕ is a similarity measure, u(x) the uncertainty, and α = |Xu|/(|Xu|+ |Xl|). The batch set extracted by
the above three methods, is obtained by selection of top-B score samples. Kmeans++ (44) and Coreset (27;
41) are diversity-based BMAL methods, and therefore applicable for B > 1. In Kmeans++, the batch
samples are chosen as the closest points to each of the B centroids, and in Coreset, we ensure that the batch
samples adequately represent the entire candidate pool based on the L2 norm distance.

In our third image retrieval approach, we incorporate a Gaussian Process (GP) technique, which was proposed
in (5) and referred to as Information-Theoretic AL (ITAL). This method employs a selection strategy that
aims to maximize the mutual information between the expected user feedback and the relevance model. To
integrate the GP into our framework, we steer the active learning selection process towards data points that
minimize the overall uncertainty of the GP classifier, as defined in equation (13).

5.1 Datasets

We evaluate GAL on a wide range of scenarios including 4 datasets, representing image-level and object-level
IIR. For instance-level retrieval, we used Paris-6K abbreviated as Paris, following the standard protocol as
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suggested in (38). This dataset contains 11 different monuments from Paris, plus 1M distractor images,
from which we sampled a small subset, resulting in 9,994 images with 51-289 samples per-class and 8,204
distractors. Next, we built a benchmark based on Places365 (56), indicated as Places. It contains a larger
lake size of 36,500 images with 365 different types of places such as ’restaurants’, ’basements’, ’swimming
pools’ etc. Our Places dataset consists of the validation set of Places365. We used 30 classes as queries
(randomly sampled) with 100 samples per-class. Lastly, we validated ourselves on object-level retrieval, a
previously unexplored task in CBIR-AL. To this end we built a new benchmark from the FSOD dataset (13),
often used for few-shot object detection tasks. At this benchmark, images often include multiple objects
(labels), therefore introducing a high challenge for a retrieval model. FSOD dataset is split into base and
novel classes. We used the base set, for our benchmark. The base set contains 5, 2350 images with 800 objects
categories where each object appears in 22-208 images. As our query pool, we randomly chose 30 object
categories appearing in 50-200 images. We refer to this dataset as FSOD-IR and we intend to share the
protocol publicly for future research. In all the above experiments, we used a Resnet-50 backbone pre-trained
on Imagenet-21K (40). For the first iteration we used the top-K nearest neighbors by the cosine similarity.
We used one query for Paris and Places benchmarks, and two queries for FSOD-IR (due to multiplicity of
objects in images). We repeated the process for 5 random queries and calculated mAP at each AL cycle.
For all these experimetns we used a pretrained ResNet50 features of 2048D.

To ensure a fair comparison between our method and ITAL (5) and Kapoor et al. (25), we conducted our
evaluation of the GAL framework on the identical dataset of MIRFLICKR-25K (23), which was also
employed in ITAL. We followed the same protocol used in ITAL for consistency. This benchmark designed
for retrieval consists of 25K images, with query images belonging to multiple categories. We further used
the same feature extractor as ITAL (see (5)). For all datasets we follow the same protocol: sample a query
image from a certain class, consider all images belonging to that class (or containing the same object in
FSOD-IR) as relevant, while instances from different classes are considered irrelevant.

Our evaluation employs retrieval ranking results, typically measured by mean Average Precision (mAP)
(5; 39; 31; 33). In all our experiments, we start with five different initial queries for each class and report
mAP as the measure of retrieval performance. According to the standard Interactive Image Retrieval (IIR)
process, retrieval is applied to the same corpus at every round, obtaining a new ranked list of results. At
each round, the tagged samples are used to update both the retrieval and AL models to be used for the next
round. After calculation of mAP at each round we determine the (normalized) area under the curve as the
overall score for AL performance.

5.2 Experimental Results

We quantified the AL methods by their learning curves, indicating the retrieval performance (measured in
mAP) progress along the interactive cycles. The curves are then aggregated by a single measure of the
Normalized Area under Learning Curve (5) between 1,2 to 95 labeled samples. The results for SVM, MLP
and GP are averaged over five different randomly selected queries.

As an ablation study, we conducted tests to evaluate the impact of our suggested acquisition functions for
AL selection. Additionally, we tested our algorithm under non-greedy settings, indicated as GAL(batch),
by selecting the top-B samples that maximize the impact values (1), (6), and (13), given a budget B. The
non-greedy approach may encounter issues with redundant samples, as similar points could have similar
scores. In contrast, the greedy algorithm prevents this scenario by ensuring that once a sample is selected,
it is added to the training set. This allows for the selection of a new sample that maximizes the acquisition
function, taking into account the updated training set.

5.2.1 Runtime and Pool of Selection Candidates

One factor affecting runtime is the ability to achieve a high level of accuracy while searching within a small
pool of candidates. We found that selecting from a pool of top-K ranked samples, according to the relevance
probabilities obtained from the previous round, is beneficial in GAL and often in competitive methods. This
subset Xc is relatively rich in positive samples and hard negatives, thereby reducing the extreme imbalance
in the general dataset. For example, our experiment on FSOD showed that, on average, 30% of the candidate
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set selected from the top-200 ranked samples were positive, compared to 0.5% in the general dataset. In our
model, K can be viewed as a hyper-parameter influenced by the topology of the data in the feature space.
The value of K can be estimated through unsupervised analysis of the feature space topology, based on
distances from various queries. Conducting this analysis by bootstrapping over randomly sampled queries
from our datasets reveals a long tail distribution. We found that typical values around a few percentage of
the dataset size (up to 10%), present a reasonable cut-off on this long tail distribution and can also be used
to set K. Alternatively, K can be set using a different labeled case with the same feature representation (see
Sec. 5.2.2). Note that our training process can be easily distributed in a parallel manner by assigning each
candidate to a separate process (via multi-threading or multi-processing). We report runtime in Sec. 5.2.2
and conduct a comparison in Appendix C

5.2.2 SVM Classifier

We first present the global performance measure of Normalized Area Under Learning Curve for the SVM-
based scenario, tested for budget size B = 1 and B = 3 in tables 2 and 3. It is worth noting that the
results obtained when B = 1 allow us to assess the impact value independently from the greedy scheme.
We indicate the top performing method in bold and the second place by an underline mark. Interestingly,
random sampling often yields high performance. This is consistent to other AL studies in classification
benchmarks in the literature, under cold-start conditions (20) (as a diversity based strategy). Yet, in 8 out
of 9 tests, GAL outperforms other methods and baselines for B = 1, where for B = 3, GAL is consistently
the top performing method. Note that the top performance for all methods is reached for K = 100 or 200
and there is no consistent competitor in the second place, indicating the robustness of GAL approach under
different candidate pools.

Paris Places FSOD
Candidate size 100 200 1k all 100 200 1k all 100 200 1k all

Random 0.847 0.942 0.834 0.810 0.375 0.390 0.298 0.224 0.576 0.630 0.452 0.404
RBMAL (7) 0.915 0.920 0.806 0.731 0.410 0.375 0.293 0.217 0.660 0.610 0.466 0.390
COD (22) 0.909 0.924 0.881 0.716 0.399 0.391 0.359 0.221 0.630 0.639 0.606 0.410
MaxiMin (26) 0.883 0.885 0.892 - 0.395 0.381 0.363 - 0.625 0.621 0.603 -
GAL (ours) 0.903 0.960 0.960 - 0.428 0.426 0.418 - 0.674 0.672 0.672 -

Table 2: Normalized Area under Learning Curve with B = 1 under different candidate settings. These
results indicate the influence of our impact value of the selected samples. We indicate the top performing
method in bold and the second place by the underline mark. We omit the test results for “all" in several
cases due to increased computation cost and saturation.

Paris Places FSOD
Candidate size 100 200 1k all 100 200 1k all 100 200 1k all

Random 0.922 0.905 0.812 0.807 0.402 0.388 0.283 0.217 0.637 0.633 0.473 0.404
RBMAL (7) 0.923 0.888 0.785 0.718 0.397 0.355 0.295 0.213 0.652 0.592 0.467 0.389
COD (22) 0.914 0.927 0.895 0.692 0.394 0.394 0.351 0.213 0.625 0.627 0.605 0.398
Kmeans++ 0.922 0.941 0.935 0.744 0.416 0.417 0.394 0.205 0.661 0.666 0.632 0.393
Coreset (27) 0.915 0.943 0.914 0.767 0.405 0.407 0.357 0.230 0.664 0.666 0.599 0.418
MaxiMin (26) 0.906 0.926 0.916 0.906 0.409 0.402 0.368 - 0.657 0.648 0.612 -

GAL (ours) 0.946 0.960 0.952 - 0.430 0.427 0.419 - 0.681 0.686 0.675 -
GAL (batch) 0.943 0.957 0.955 - 0.431 0.421 0.417 - 0.679 0.678 0.675 -

Table 3: Normalized Area Under Learning Curve with B = 3, under different candidate settings. We indicate
the top performing method in bold and the second place by the underline mark. GAL(batch) shows the
result of our approach without the greedy component of our scheme.
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Figure 8: mAP Learning Curves of SVM-based GAL with B = 1 and K = 200 for different datasets.
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Figure 9: mAP Learning Curves of SVM-based GAL with B = 3 and K = 200 for different datasets.

Another interesting observation shows that considering a larger candidate pool (from 100 to the whole
dataset) does not necessarily improve the performance. Often a smaller candidate pool is preferred as
observed in all the methods compared in our datasets for B = 3 (cf. Table 2 bottom, due to higher
concentration of positive and hard negative samples, being better candidates for AL. For the majority of
competitive methods, we discovered that a candidate set size of K = 200 is optimal and can significantly
reduce the computational cost, an important aspect in an interactive system. The results further show that
GAL is relatively insensitive to K, above a minimal value, and that this value of K generalizes to other
datasets and domains.

Next, we present a comparison of the learning curves by retrieval mean Average Precision (mAP) in figs. 8
and 9 for B = 1 and B = 3 with K = 200. These figures show the superior performance of GAL over
previous methods and various baselines. The strongest competitor at B = 3 is found to be Kmeans++
which is purely based on diversity, performing comparably to GAL in low the extreme cold start (up to 25 in
FSOD-IR and up to 40 in Places). This result is consistent with the analysis in (20) showing that diversity
based models such as Kmeans++ or Coreset are top performing methods at extreme cold start. Yet, as more
labels are accumulated, Kmeans++ under-performs GAL that leverages also uncertainty. Furthermore, we
note a substantial disparity, with 5-10% (absolute points) higher mAP when compared to MaxiMin (dark
green) and around 5% better (from e.g. 0.75 to 0.80 in FSOD) compared to Kmeans++.

We conducted an additional investigation using a pure uncertainty-based method, in which the selection
criterion involved identifying samples that are positioned closest to the decision boundary. This was achieved
by selecting points greedily based on maximum entropy, referred to as Entropy. The results for budget size
B = 3 and K = 200 are presented in Table 4. It is evident that the results obtained using this Entropy
method are considerably inferior to those of GAL across all the datasets. This experiment further strengthens
our claim that GAL effectively combines both diversity and uncertainty. Methods that solely rely on one of
these aspects tend to exhibit lower performance.

As illustrated in Fig. 11a and supported by our earlier analysis presented in Fig. 6, larger budget sizes present
more significant challenge, especially during the initial cycles. The challenge is demonstrated in Fig. 11b.
During the initial cycles, the pseudo-label accuracy is inadequate, leading to accumulated errors, particularly
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Figure 10: mAP Learning Curves of SVM-based GAL with B = 3 followed by B = 7 and K = 200 for
different datasets.

Paris Places FSOD

Random 0.905 0.388 0.633
RBMAL (7) 0.888 0.355 0.592
COD (22) 0.927 0.394 0.627
Kmeans++ 0.941 0.417 0.666
Coreset (27) 0.943 0.407 0.666
MaxiMin (26) 0.926 0.402 0.648
Entropy 0.903 0.329 0.586

GAL (ours) 0.960 0.427 0.686
GAL (batch) 0.957 0.421 0.678

Table 4: Normalized Area Under Learning Curve with B = 3, K = 200. We indicate the top performing
method in bold. Entropy shows a selection by the distance to the decision boundary.

for larger values of B. In response to this challenge, we conducted experiments where we set B = 3 for the
first 10 cycles, followed by B = 7. Nevertheless, our method is superior to other approaches, as shown in
Table 5 and Fig. 10. It is noteworthy that overall, although Kmeans++ performed better in the first 10
cycles, our method still showcases superior performance. The greedy approach has a slight impact in the
linear SVM case, presumably due to unreliable pseudo-labels, which mostly occur in the initial cycles (see
fig. 11b). This strategy is better manifested in the GP process, that is label independent.

Paris Places FSOD
Candidate size 100 200 500 100 200 500 100 200 500

Random 0.908 0.908 0.910 0.344 0.348 0.316 0.593 0.582 0.580
RBMAL (7) 0.906 0.876 0.811 0.332 0.310 0.281 0.590 0.534 0.487
COD (22) 0.900 0.909 0.897 0.332 0.320 0.318 0.555 0.559 0.552
Kmeans++ 0.913 0.935 0.919 0.374 0.363 0.357 0.611 0.622 0.603
Coreset (27) 0.900 0.902 0.880 0.347 0.342 0.326 0.583 0.581 0.569
MaxiMin (26) 0.910 0.925 0.919 0.355 0.353 0.323 0.589 0.591 0.563

GAL (ours) 0.929 0.939 0.932 0.366 0.369 0.369 0.618 0.625 0.612
GAL (batch) 0.930 0.941 0.927 0.366 0.361 0.361 0.619 0.614 0.615

Table 5: Normalized Area Under Learning Curve with B = 3 at first 10 cycles and then B = 7, under
different candidate settings. We indicate the top performing method in bold and the second place by the
underline mark.

Next, we present a qualitative result displayed in Figure 12. We take two query images belonging to the
’Tin Can’ class in the FSOD-IR dataset and showcase the top-16 relevant images retrieved by the GAL and
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Figure 11: (a) mAP Learning Curves of SVM-based GAL with B = 3 and B = 7. It is evident that the
larger batch size yields inferior results. (b) Pseudo-label accuracy tested on FSOD Benchmark, averaged
over all classes and for candidate size of 200 and B = 1. Random choice is 50%.

RBMAL methods at the fourth iteration, with a budget of B = 3. In the visualization, green and red boxes
are used to indicate relevant and irrelevant results, respectively. It’s worth noting that the right query image
contains not only a ’Tin Can’ but also a monitor display. GAL successfully retrieves 15 out of 16 relevant
images, with one visually reasonable error. In contrast, the RBMAL method selects a few monitor images,
which are exclusively present in the second query image. This example demonstrates a common challenge
in CBIR when dealing with images that contain multiple objects. While there may be initial ambiguity
in the query, as the active learning cycles progress and the user tags positive examples, our model excels
at selecting samples that capture the user intention concept (as shared pattern between the queries) more
rapidly.

Figure 12: Image retrieval results for Tin Can in FSOD-IR dataset with B = 3 at iteration 4. Green
boxes stand for relevant results while red boxes account for false positives. The second query image has two
objects: Can and Display monitor. The RBMAL method mistakenly retrieves images with monitor, where
GAL succeeds to find the common pattern in the queries. This example illustrates how the initial ambiguity
regarding the object is gradually resolved through the active learning cycles, allowing the algorithm to
effectively capture the query concept.

Finally, despite GAL evaluating a classifier for each selection candidate, the computational cost of our method
remains reasonable for several reasons.
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1. We demonstrate that a small candidate set of the dataset (obtained from the classifier’s top-k), is
sufficient as the active learning selection pool. In many cases, this approach even yields improved
performance, as evidenced in Tables 2 and 3. Consequently, there is no need to run our algorithm
on the entire unlabeled set.

2. This allows for quick training and AL cycles, a practical requirement in an interactive system such
as IIR.

3. The average runtime for B = 3 ranges from approximately 1.2-1.4 seconds per iterations on CPU,
for 10 to 30 iterations (without parallelization). In comparison, for MaxiMin, the corresponding
times range from 0.5-1 seconds. The remaining faster methods (approximately 0.1 seconds) involve
a trade-off in accuracy (see Table 3). We also provide a runtime comparison with ITAL in Appendix
C.

5.2.3 AL with MLP Classifier

In this section, we present the outcomes of AL when applied to an additional non-linear classifier. It’s
important to note that the classifier in the context of AL-CBIR comprises two distinct stages: (i) the sample
selection strategy (AL) and (ii) retrieval. As discussed in section 4.1, it is crucial to recognize that the
utilization of non-linear classifiers in retrieval tasks may lead to immediate overfitting issues, primarily due
to the significantly limited size of the training dataset. We therefore extended our work by employing a
three-layer MLP (10 neurons at the inner layers) with a ReLU activation function for the AL selection,
while continuing to utilize the Gaussian Process (GP) method for retrieval. To make a fair comparison we
used the same retrieval method of GP in all compared methods. In this setting as well, the GAL method
outperformed competitive algorithms as can be seen in Fig. 13a for the MIRFLICKR dataset with B = 3
and K = 200.

0 10 20 30 40 50
number of labeled samples

0.400

0.425

0.450

0.475

0.500

0.525

0.550

m
AP

MIRFLICKR
GAL
kmeans++
random
MaxiMin

(a)

0 10 20 30 40 50 60 70
number of labeled samples

0.35

0.40

0.45

0.50

0.55

0.60

0.65

m
AP

MIRFLICKR

ITAL all
ITAL 1k
ITAL 400
ITAL 200

(b)

Figure 13: (a) mAP Learning Curves of MLP-based AL selection with B = 3 and K = 200 applied on
MIRFLICKR. (b) mAP Learning Curves of ITAL for B = 3 and different candidate set size K.

5.2.4 AL with Gaussian Process

We further present the results of GAL utilizing a Gaussian Process (GP) classifier, which are compared
to ITAL (5). For this purpose, we replaced AL module of ITAL with GAL, employing our acquisition
function (13). To make a fair comparison, we first ran ITAL with varying candidate pool sizes K. Fig. 13b
illustrates the results of ITAL for B = 3 and K = 200, 400, 1000, as well as the entire dataset (K = 20, 000).
We present the results of ITAL for various K settings in Appendix B, showing that the entire unlabeled
dataset is needed for ITAL to reach it’s best result.
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Figure 14: mAP Learning Curves of GP-based GAL with B = 1 (a) and B = 3 (b) for MIRFLICKR
database. ITAL used the whole unlabeled set, while GAL and Kapoor et al. (25) used different candidate
set size K (see Table 6).

Next, we compared GAL and ITAL. Normalized Areas under Curve are summarized in the top panel of
Table 6, where GAL outperforms ITAL even when considering only 1,500 points which are 7.5% of the
unlabeled dataset as candidates. We further observe the impact of our greedy scheme component boosting
the overall performance by nearly 7% (from 0.566 to 0.605) with respect to standard batch selection strategy
(denoted by GAL(batch), i.e. choosing the top-B scores at each round). Fig. 14 depicts the comparison
between these two methods for B = 1 and B = 3 respectively with candidate pool K = 200, 400, and 1, 500.
The figure shows 2-5% mAP improvement with K = 1, 500.

Finally, we conducted a comparison between GAL and another uncertainty-based approach proposed by
Kapoor et al.(25) which was designed for B = 1. This method aims to identify the sample which is closest
to the decision boundary with the highest uncertainty σ. We adapted this approach to our framework,
evaluating its performance across various values of K, with the optimal performance observed at K = 3, 000.
GAL consistently outperformed this method across all tested values of K. The summarized results can be
found in Table 6 and depicted in the left part of Fig. 14.

method K B = 1 B = 3
ITAL (5) 20,000 (all) 0.586 0.585
Kappor et al. (25) 1,500 0.517
Kapoor et al. (25) 3,000 0.542
Kapoor et al. (25) 20,000 (all) 0.457
GAL (ours) 200 0.584 0.570
GAL (ours) 400 0.593 0.583
GAL (ours) 1,500 0.608 0.605
GAL (batch) 200 0.584 0.553
GAL (batch) 400 0.593 0.573
GAL (batch) 1,500 0.608 0.566

Table 6: Normalized Area under Learning Curves for MIRFLICKR database. Our GAL outperforms
ITAL (5) and Kapoor et al. (25). Note that for B = 1 there is no greedy process. The impact of our
greedy scheme is manifested in B = 3.
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6 Summary and Future Work

In this paper we address the problem of active learning for Interactive Image Retrieval. This task introduces
several unique challenges including, a process starting with only few labeled samples in hand and challenging
open-set and asymmetric scenario (the negative set includes various unknown categories with different size).
In this study, we suggested a new approach that copes with the above challenges by means of two main
concepts. First, by considering the impact of each individual sample on the decision boundary as a cue for
sample selection in the AL process. To this end, our acquisition functions, may evaluate pseudo-labels or
directly optimize a global uncertainty measure. Second, to better cope with the scarcity of labeled samples
in a batch mode AL, we embed our approach in a greedy framework where each selected sample in the batch
is added to the train set, before selecting the subsequent best promising one. This process is continued
until the designated budget is reached, attempting to effectively extend the train set, and provide diversity
within each batch. We demonstrate the properties of our method over a toy example, disentangling the
two main attributes of AL, namely diversity and uncertainty. We further showed that these attributes are
inherently achieved in our approach. Additionally, we provide a theoretical analysis that supports the idea
that our greedy scheme offers a reliable approximation (in the context of Gaussian Process). We evaluated
our approach over several large image retrieval benchmarks, including a new challenging one including small
objects. Superior results obtained compared to previous methods, demonstrate the impact of our approach.
In addition, we believe that our framework can pave the way for broader applications, particularly, the
cold-start problem of AL, in realistic open-set scenarios.
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Appendices
A Cold Start Analysis

The cold start scenario in active learning refers to the initial phase where the model has a small amount of
labeled data to begin with. This lack of labeled data makes it challenging for the model to make accurate
predictions or to understand the underlying data distribution. Due tho these challenges, random selection
approach is often selected (20). We demonstrate the cold start scenario performance of GAL on the toy
example and compare it to the strong baseline of random selection (see discussion in (20) and references
therein). Figure A1 shows the mean average precision of our toy example classification (Sec. 3) as the
number of labeled points is increased by B = 2, up to 100 training samples and 220 test samples. The
light and dark blue lines show the performance of the random and GAL algorithms in a cold start, where
they start with only 7 labeled points. The light and dark red curves show the results when starting with 50
labeled samples. Clearly, in the cold start case, the classification task is more challenging. Nevertheless, the
GAL algorithm outperforms the random selection.
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Figure A1: Cold start scenario demonstration. The classification results are shown against the number of
labeled samples, where at each iteration, we increased the number by B = 2. In the cold start case (light and
dark blue), we started with 7 labeled samples, while in the other scenario (light and dark red), we started
with 50 labeled samples. In both cases, the GAL algorithm outperforms the random selection.

B Analysis of ITAL Performance for Various Candidate Size

Table A1 provides an analysis of ITAL for various candidate set size on MIRFLICKR. It is evident that the
entire unlabeled dataset is needed for ITAL to reach it’s best result.

K Normalized AUC
200 0.547
400 0.552

1,000 0.564
20,000 0.585

Table A1: Normalized Areas under Curve of ITAL (5) for B = 3 at variety of candidate set sizes K. ITAL
requires all the corpus for maximum performance.
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C Runtime Comparison and Analysis

Here, we show the runtime of GAL-Gaussian Process with ITAL (5). For a fair comparison, we select
the settings for both methods such that they have a similar performance level. Figure A2 illustrates the
results, showing that ITAL and GAL have comparable runtimes. It is important to note that our training
process can easily be parallelized by assigning each candidate to a separate process using multi-threading or
multi-processing, thus achieving significant speed-ups.

The experimental data was further fitted to a third-degree polynomial (with respect to i in (16)) which is
in accordance with the complexity equation (16).
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Figure A2: GAL run-time [sec] for GP, K = 200, B = 3. We further display the run-time of ITAL
for comparison, under a setting with the same accuracy level (approximately 0.57), which corresponds to
K = 1000. GAL shows comparable run-time performance, predominantly due to the fact that GAL needs a
significantly lower candidate pool for sample selection. We also demonstrate agreement with the theoretical
complexity (16) using a third-degree polynomial fit.
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