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Abstract
In goal-conditioned hierarchical reinforcement
learning (HRL), a high-level policy specifies a
subgoal for the low-level policy to reach. Effec-
tive HRL hinges on a suitable subgoal represen-
tation function, abstracting state space into latent
subgoal space and inducing varied low-level be-
haviors. Existing methods adopt a subgoal repre-
sentation that provides a deterministic mapping
from state space to latent subgoal space. Instead,
this paper utilizes Gaussian Processes (GPs) for
the first probabilistic subgoal representation. Our
method employs a GP prior on the latent subgoal
space to learn a posterior distribution over the sub-
goal representation functions while exploiting the
long-range correlation in the state space through
learnable kernels. This enables an adaptive mem-
ory that integrates long-range subgoal information
from prior planning steps allowing to cope with
stochastic uncertainties. Furthermore, we propose
a novel learning objective to facilitate the simulta-
neous learning of probabilistic subgoal represen-
tations and policies within a unified framework.
In experiments, our approach outperforms state-
of-the-art baselines in standard benchmarks but
also in environments with stochastic elements and
under diverse reward conditions. Additionally,
our model shows promising capabilities in trans-
ferring low-level policies across different tasks.

1. Introduction
Addressing intricate issues that require long-term credit as-
signment remains a significant hurdle in reinforcement learn-
ing (RL). Hierarchical deep reinforcement learning (HRL)
stands out in this context, demonstrating potential in han-
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dling various temporally extended tasks with sparse rewards.
This is achieved through its ability to facilitate control at
multiple temporal scales using a hierarchical framework.
Goal-conditioned HRL methods, in which the higher-level
policies periodically set subgoals for lower-level policies
and the lower level is intrinsically rewarded for reaching
those subgoals, have long held the promise to be an effective
paradigm in HRL (Dayan & Hinton, 1992; Schmidhuber &
Wahnsiedler, 1993; Kulkarni et al., 2016; Vezhnevets et al.,
2017; Nachum et al., 2018; Levy et al., 2019; Zhang et al.,
2020; Li et al., 2021; 2022; Wang et al., 2023).

The subgoal representation function in goal-conditioned
HRL maps the state space to a latent subgoal space. Learn-
ing an appropriate subgoal representation function is critical
to the performance and stability of goal-conditioned HRL.
Since the subgoal space corresponds to the high-level action
space, the subgoal representation contributes to the station-
arity of the high-level transition functions. Furthermore, the
low-level reward function, i.e., intrinsic rewards, is defined
in latent subgoal space in goal-conditioned HRL, and low-
level behaviors can be induced by dynamically changing
subgoal space as well. As such, a proper abstract subgoal
space contributes to the stationarity of hierarchical policy
learning.

A wide variety of subgoal representations have been investi-
gated, ranging from directly utilizing the state space (Levy
et al., 2019) or hand-crafted space (Nachum et al., 2018),
to end-to-end learning without explicit objectives (Vezhn-
evets et al., 2017) or deterministic representations learned
by imposing local constraints (Li et al., 2021). Notably, pre-
vious works utilizing deterministic subgoal representation
functions, e.g., Li et al. (2021), often struggle to adapt to
unforeseen or novel states, as they rely on fixed represen-
tations that may not accurately capture the variability and
unpredictability of dynamic environments. The determin-
istic mapping inherently lacks the capacity to account for
stochastic uncertainties, some arising directly from envi-
ronmental stochasticity, while others can be attributed to
unexplored areas of the state space. This potentially limits
the exploration capacity of hierarchical policies and leading
to convergence on suboptimal solutions. In scenarios involv-
ing novel state regions, deterministic mapping may not have
sufficient historical data to form an appropriate subgoal rep-
resentation, possibly underfitting the learning objective and
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Figure 1: A schematic illustration of the hierarchical policy
execution. One high-level step corresponds to k low-level
steps. The negative Euclidean distance in the latent space
provides intrinsic rewards for the low-level policy.

Figure 2: The representation function consists of an encod-
ing layer and a latent GP layer. Taking as input the state s,
the encoding layer comprises a neural network to generate
an intermediate latent space representation f , which will be
transformed by the GP layer to produce the final subgoal rep-
resentation z.

failing to accurately capture the dynamic nature of new state
regions. This limitation often results in poor performance
and hinders the agent’s goal achievement. Although the
active exploration strategy proposed by Li et al. (2022) aims
to mitigate some of these issues in Li et al. (2021), the fun-
damental limitations associated with deterministic mapping
and the emphasis on short-term smoothness — stemming
from local constraints — continue to restrict effective ex-
ploration and impact the stationarity of training hierarchical
policies.

To address these limitations, we propose a novel GP based
approach to learning probabilistic subgoal representations
for goal-conditioned HRL (HLPS). HLPS considers a con-
tinuum of possible subgoal representation functions rather
than a single, predetermined mapping. This probabilistic
formulation which better reflects the uncertain nature of the
environment, is achieved by harnessing a nonparametric
GP prior on the latent subgoal space to learn a posterior
distribution over the subgoal representation functions. This
probabilistic nature of HLPS enables the adaptation to new
observations without the need for redefining the model struc-
ture. As more state regions are explored, the posterior distri-
bution of subgoal representation functions updates, refining
the model’s predictions and making it more robust to unseen
states. With the learnable kernels, HLPS can adaptively
exploit the long-range correlations in the state space which
allows to capture and utilize the underlying patterns and
relationships within the state space. We further propose a
novel learning objective that cohesively integrates the learn-
ing of probabilistic subgoal representations and hierarchical
policies. Leveraging the nature of Markov chains, we also
present a lightweight subgoal representation formulation
for online inference, harnessing the state-space form GP,

which efficiently fuses the subgoal information from an ar-
bitrary number of previous planning steps with a constant
computational and memory complexity.

We benchmark our method on challenging continuous con-
trol tasks in both deterministic and stochastic settings with
dense or sparse external rewards. Experimental results em-
pirically demonstrate that our method is capable of gen-
erating stable subgoal representations which, on the one
hand, contribute to the stationarity in both the high-level
state transition and the low-level reward functions and, on
the other hand, facilitates transferable low-level policies
between tasks. The advantages of this first probabilistic
subgoal representation within HRL manifest as increased
sample efficiency, heightened resilience against stochastic
uncertainties, and a marked improvement in asymptotic per-
formance when benchmarked against leading HRL methods.

Our main contributions are as follows:

• We introduce probabilistic subgoal representations
for goal-conditioned HRL, which consider a contin-
uum of possible subgoal representation functions rather
than a single, deterministic mapping. This allows us
to better reflect the stochastic uncertainties of the en-
vironment and to adapt to new observations without
redefining the model structure.

• We propose a novel learning objective that cohesively
integrates the learning of probabilistic subgoal repre-
sentations and hierarchical policies.

• We present a lightweight subgoal representation for-
mulation for online inference, harnessing the state-
space form GP, which efficiently fuses the subgoal
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information from an arbitrary number of previous plan-
ning steps with a constant computational and memory
complexity.

2. Preliminaries
The interaction between the agent and environment is gen-
erally modeled as a Markov Decision Process (MDP).
Consider a goal-conditioned MDP which is represented
by a tuple: MDP =< S,G,A,P,R, γ >, where S is
a state space, G is the subgoal set, A is an action set,
P : S × A × S → [0, 1] is a state transition function,
R : S × A → R is a reward function, and γ ∈ [0, 1) is
a discount factor. We consider an HRL framework with
two levels following Nachum et al. (2018) as illustrated in
Fig. 1: the high-level policy πh(g|s) which operates at a
coarser layer and generates a high-level action, i.e., subgoal,
and the low-level policy πl(a|s, g) which aims to achieve
these subgoals. The high-level policy maximizes external
reward by generating subgoals, i.e., gi ∼ πh(·|si) ∈ G, ev-
ery k timesteps when i ≡ 0 (mod k). The low-level policy
maximizes intrinsic reward associated with the subgoals by
executing the primitive action.

3. Method
In this section, we present our Gaussian Process based prob-
abilistic subgoal representation. Firstly, we introduce a two-
level goal-conditioned HRL framework with state-kernel
GP prior. Then we present GP latent-state batch estimation
and training objective, which is followed by a lightweight
online planning scheme.

3.1. Framework

We define the subgoal g in the two-level HRL framework
introduced by Nachum et al. (2018) in a low dimensional
space abstracted by representation function ϕ(s) : s 7→ Rd.
Our method learns ϕ(s) simultaneously with the hierar-
chical policy. Specifically, we train the low-level policy
πl(a|s, g) with an intrinsic reward function defined as the
negative Euclidean distance in the latent subgoal space, i.e.,
rl(si, ai, si+1, gi) = −||ϕ(si+1) − gi||2. The high-level
policy is trained to maximize the extrinsic reward rhi de-
fined as rhi =

∑i+k−1
t=i renv

t , i = 0, 1, 2, · · · , where renv
t is

the reward from the environment. Our framework adopts the
off-policy algorithm SAC (Haarnoja et al., 2018) for each
level in the HRL structure, which generalizes the standard
RL objective by augmenting it with an entropy term, i.e.,
π∗ = argmax

π

∑
t E(si,ai)∼ρπ

[r(si, ai) + αH(π(·|si))] .
Nonetheless, it is important to note that our method is ag-
nostic to the specific HRL framework used.

As illustrated in Fig. 1, the high-level policy samples a

subgoal g from the latent subgoal space abstracted by the
representation function ϕ(s). The low-level controller then
strives to achieve these subgoals, with z = ϕ(s) serving as
the mapping from the state space to the subgoal space. As
shown in Fig. 2, the representation function ϕ(s) consists
of an encoding layer and a latent GP layer. The encoding
layer comprises a neural network to generate an intermediate
latent space representation f by taking as input the state s,
which will be transformed by the GP layer to produce the
final subgoal representation z.

3.2. Probabilistic Subgoal Representation

In order to specify a complete probabilistic model connect-
ing state and subgoal spaces, a prior distribution for the
latent subgoal z has to be defined. To this end, we impose
GP priors to all z to model the stochastic uncertainties in
subgoal space. Some of these uncertainties arise directly
from environmental stochasticity, while others may be at-
tributed to the unexplored regions of the state space. Specifi-
cally, we model the intermediate latent space representation
f as a noise-corrupted version of the true latent subgoal
space representation z, and the inference can be stated as
the following GP regression model:

zi ∼ GP (0, κ (si, sj)) ,

fi = zi + ϵ, ϵ ∼ N (0, σ),
(1)

where the noise variance σ2 is a learnable parameter of the
likelihood model, and κ (si, sj) is a positive-definite kernel
function.

By modeling the uncertainties in the subgoal space with
GP priors, the mapping from state space to subgoal space
transforms from a deterministic function into a probabilistic
distribution of subgoal representation functions. GP priors
also define a probabilistic prior on the intermediate latent
space which encodes for a priori knowledge that similar
states should be mapped to more relevant latent subgoal rep-
resentations than those mapped from distinct states. Such
prior knowledge could be encoded by the kernel function,
i.e., κ (si, sj), defined over a distance in state space. Our
insight is that the long-range correlation in the state space
could be exploited through learnable kernel function. We
define the prior to be mean square continuous, once differ-
entiable, and stationary in state space for the latent space
processes (Williams & Rasmussen, 2006). Since the latent
functions are intended to model the intrinsic structure of
the state space, the latent space is expected to behave in a
smooth and continuous fashion which is satisfied by Matérn
kernel (Williams & Rasmussen, 2006),

κ (si, sj) = γ2

(
1 +

√
3D (si, sj)

ℓ

)
exp

(
−
√
3D (si, sj)

ℓ

)
.

(2)
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This kernel encodes the similarity between two states si and
sj in latent subgoal space subject to the distance function
D(·) which is defined as ℓ2-norm. The learnable hyperpa-
rameters γ2 and ℓ characterize the magnitude and length-
scale of the processes respectively.

The inference problem in Eq. 1 can be solved for an un-
ordered set of states, and the posterior mean and covariance
are given by (Williams & Rasmussen, 2006):

E[Z | S,F] = C
(
C+ σ2I

)−1
F,

V[Z | S,F] = diag
(
C−C

(
C+ σ2I

)−1
C
)
,

(3)

where Z = (z1, z2, · · · , zN ) are the set of subgoal rep-
resentations, F = (f1, f2, · · · , fN ) are the set of inter-
mediate latent representations from encoding layer, and
Ci,j = κ (si, sj) represents the covariance matrix. The true
latent space representation, i.e., the subgoal representation,
Z can be restored by taking the posterior mean of the GP.

3.3. Learning Objective

In order to learn the hyperparameters of our probabilistic
subgoal representation, i.e., σ2, γ2 and ℓ, we propose a
learning objective as follows:

L =
∆1

f

∆k
f

log(1 + exp(∆1
z −∆k

z)), (4)

where ∆1
f ∝ ||fi − fi+1||, ∆k

f ∝ ||fi − fi+k||, ∆1
z ∝

||zi − zi+1|| and ∆k
z ∝ ||zi − zi+k||. The logarithmic

term in our proposed objective is designed to minimize
the distance between low-level state transitions (∆1

z) in the
latent subgoal space, while maximizing the distance for
high-level state transitions (∆k

z). We employ the softplus
function (Dugas et al., 2000) over the hinge loss for two
main reasons. Firstly, it eliminates the need for a margin
hyperparameter, thus simplifying the optimization process.
Secondly, the softplus function provides continuous gra-
dients, as opposed to the discontinuous gradients around
margin planes seen in the hinge loss, facilitating finer adjust-
ments within the subgoal space Z. Furthermore, to enhance
feature discrimination and the interaction between F and Z,
we use the ratio ∆1

f

∆k
f

as a relative distance measure in F for
the auxiliary loss. This approach promotes closer intermedi-
ate latent representations for low-level state transitions with
smaller ratios and greater separation for high-level transi-
tions with larger ratios, focusing on the relative ratio rather
than the absolute difference.

This objective is specifically designed for modeling the
stochasticity of subgoal space (ratio term) while facilitating
smooth and yet discriminative subgoal representation learn-
ing in GP latent space (logarithm term). Rather than learning
a deterministic mapping from state space to subgoal space,

our probabilistic approach explicitly represents subgoals at a
finite number of support points, i.e., S = {si, si+1, si+k},
and let the GPs generalize to the entire space through the
kernel function with learned hyperparameters.

3.4. Efficient Online Subgoal Generation

During learning, we proposed a batch solution for HRL
with latent GP subgoals that considers all the interconnected
states in the trajectory. However, the inference involves
matrix inversion of the covariance matrix C which grows
with the number of states in the trajectory. Consequently,
the inference complexity scales cubically with the number
of states in the trajectory. During online HRL inference,
the subgoal representation corresponding to states in the
low-level trajectory follows a natural ordering, and thus our
model can be relaxed to a direct graph, i.e., Markov chain.
This formulation can be solved exactly without approxima-
tions by state-space form GP (Sarkka & Hartikainen, 2012;
Sarkka et al., 2013) with a constant memory and computa-
tional complexity per state.

Specifically, the GP prior for latent subgoals can be trans-
formed into a dynamical model for state-space GP infer-
ence, based on the hyperparameters γ2, ℓ and σ2 learned
from training. The initial latent subgoal representation
is estimated corresponding to Matérn covariance func-
tion, i.e., z0 ∼ N (µ0,Σ0) where µ0 = 0 and Σ0 =
diag

(
γ2, 3γ2/ℓ

)
. As derived in Sarkka et al. (2013), an

evolution operator which has the behavior of the Matérn
kernel is defined:

Ψi = exp

[(
0 1

−3/ℓ2 −2
√
3/ℓ

)
∆Si

]
, (5)

where the state difference ∆Si = D(si, si−1) is the distance
between consecutive states. Then the subgoal representation
is predicted by zi|f1:i−1 ∼ N (µ̃i, Σ̃i), where the mean and
covariance are propagated as:

µ̃i = Ψiµi−1, (6)

Σ̃i = ΨiΣi−1Ψ
⊤
i +Ωi, (7)

where Ωi = Σ0 − ΨiΣ0Ψ
⊤
i . The posterior mean and

covariance is conditioned on the current intermediate latent
representation fi:

µi = µ̃i + ki(f
⊤
i − h⊤µ̃i), (8)

Σi = Σ̃i − kih
⊤Σ̃i, (9)

where ki = Σ̃ih/
(
h⊤Σ̃ih+ σ2

)
and the observation

model h = (1 0)
⊤. The derivation of the above recursive

update for the posterior mean and covariance for a new state
si can be found in the Appendix. We note its resemblance
to the Kalman Filter updates.
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Figure 3: Environments used in our experiments.

Note that the posterior latent subgoal representation
zi|f1:i ∼ N (µi,Σi) is conditioned on all state till the cur-
rent time step and thus is able to encode longer-term memory
of high-level actions.

4. Related Work
Goal-conditioned HRL (Vezhnevets et al., 2017; Nachum
et al., 2018; Levy et al., 2019; Zhang et al., 2020; Wang
et al., 2020; Li et al., 2021) where the high-level policy
periodically generates subgoals to a low-level policy whilst
the low-level policy learns how to efficiently reach these
subgoals, has demonstrated great potentials in tackling tem-
porally extended problems. A proper subgoal representation
is crucial to goal-conditioned HRL since it defines the high-
level action space and thus contributes to the stationarity
of the high-level transition functions. Moreover, low-level
behaviors can also be induced by dynamically changing
subgoal space where the low-level reward function is de-
fined. Hand-crafted space, e.g., predefining a subset of the
state space as the subgoal space, is adopted in Nachum et al.
(2018); Zhang et al. (2020). However, this approach requires
domain knowledge and is limited to certain tasks. Using
the whole state space has been investigated in Levy et al.
(2019), which is unscalable to tasks with high-dimensional
observations. Péré et al. (2018); Nasiriany et al. (2019);
Nair & Finn (2020) utilize variational autoencoder (VAE)
(Kingma & Welling, 2014) to compress high-dimensional
observations in an unsupervised way, which, however, is
unable to encode the states of hierarchical temporal scales
in HRL. Vezhnevets et al. (2017) and Dilokthanakul et al.
(2019) develop implicit subgoal representations by learn-
ing in end-to-end manner jointly with hierarchical policies.
Sukhbaatar et al. (2018) develops a pre-training approach to
learning subgoal representations via self-play. Nachum et al.
(2019) introduces the NOR approach by learning subgoal
representations bounding the sub-optimality of hierarchi-
cal policies. Li et al. (2021) develops a slowness objective
for learning a deterministic subgoal representation func-
tion. Nevertheless, the existing methods have only proposed
deterministic subgoal representations which may hinder ef-
fective explorations. Adopting the deterministic subgoal
representation of Li et al. (2021), Li et al. (2022) develops
an active exploration strategy to enhance the high-level ex-
ploration, by designing measures of novelty and potential

for subgoals.

Gaussian processes, which encode flexible priors over
functions, are a probabilistic machine learning paradigm
(Williams & Rasmussen, 2006). GPs have been used in
other latent variable modeling tasks in RL. In Engel et al.
(2003), the use of GPs for solving the RL problem of value
estimation was first introduced. Then Kuss & Rasmussen
(2003) uses GPs to model the system dynamics and the
value function. Deisenroth et al. (2013) also develops a GP
based transition model of a model-based learning system
which explicitly incorporates model uncertainty into long-
term planning and controller learning to reduce the effects
of model errors. Levine et al. (2011) proposes an algorithm
for inverse reinforcement learning that represents nonlin-
ear reward functions with GPs, which was able to recover
both a reward function and the hyperparameters of a kernel
function that describes the structure of the reward.

5. Experiments
We evaluate our method in challenging environments with
dense and sparse external rewards which require a combina-
tion of locomotion and object manipulation to demonstrate
the effectiveness and transferability of our learned prob-
abilistic subgoal representations. We compare our meth-
ods against standard RL and prior HRL methods. We also
perform ablative studies to understand the importance of
various components. 1

5.1. Environments

We evaluate our approach on long-horizon continuous con-
trol tasks based on MuJoCo simulator (Todorov et al., 2012),
which are widely adopted in the HRL community. These
tasks include Ant Maze, Ant Push, Ant Fall, Ant FourRooms,
two robotic arm environments 7-DOF Reacher and 7-DOF
Pusher (Chua et al., 2018), as well as four variants of Maze
tasks featuring low-resolution image observations.

To evaluate the benefits of the proposed probabilistic sub-
goal representation, we make all Maze tasks more challeng-
ing in the following ways: (1) Environmental stochasticity:
we enhance the robustness assessment of HLPS by intro-

1Code is available at https://github.com/vi2enne/HLPS
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Figure 4: Learning curves of our method and baselines in stochastic environments, with sparse (rows 1 and 2) or dense (row 3) external
rewards, and with (rows 2 and 3) or without top-down image observations. Each curve and its shaded region represent the average success
rate and 95% confidence interval respectively, averaged over 10 independent trials.
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Figure 5: Learning curves of our method and baselines in robotic
arm environments 7-DOF Reacher and 7-DOF Pusher, with sparse
external rewards.

ducing Gaussian noise with standard deviation σ = 0.1 to
the (x, y) position of the agent at each step, following the
precedent set by recent works such as HIGL (Kim et al.,
2021) and HRAC (Zhang et al., 2020). The results from
deterministic environments are detailed in the Appendix. (2)
Definition of “success”: we tighten the success criterion to
being within an ℓ2 distance of 1.5 from the goal, compared
to a distance of 5 in Nachum et al. (2018) and Zhang et al.
(2020). (3) External rewards: unlike the exclusive use of
dense external rewards in Nachum et al. (2018), Zhang et al.
(2020), and Li et al. (2021), we also test settings with sparse
external rewards, where a successful goal reach yields a
reward of 1, and all other outcomes yield 0. (4) Random
start/goal: Contrary to Li et al. (2022), where the agent has
fixed start and target positions, our tasks feature randomly

selected start and target locations during training. For the
7-DOF Reacher task, we employ a 3D goal space repre-
senting the (x, y, z) coordinates of the end-effector. In the
7-DOF Pusher task, the goal is to push an object to a 3D
goal position. A success of an episode is defined to be if the
goal is achieved at the final step of the episode. All methods
undergo evaluation and comparison under the uniform task
settings, ensuring a fair assessment 2.

5.2. Analysis

We conduct experiments comparing to the following state-
of-the-art baseline methods: (1) LESSON (Li et al., 2021):
a HRL algorithm that learns the deterministic subgoal rep-
resentation. (2) HESS (Li et al., 2022): a HRL algorithm
which introduces an active exploration strategy to LESSON
(Li et al., 2021). (3) HRAC (Zhang et al., 2020): a HRL
algorithm which uses a pre-defined subgoal space. (4) TD3
(Fujimoto et al., 2018): a flat RL algorithm to validate the
need for hierarchical policies.

Can HLPS surpass state-of-the-art HRL methods in
learning stability, sample efficiency, and asymptotic per-
formance? Table 1 and Table 2 in the Appendix show
the final performance of the trained policy. Our method
significantly outperforms all compared baselines. Fig. 4

2Further details, including environment specifics and parameter
settings for experiment reproduction, are provided in the Appendix.
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(a) HLPS

(b) HESS

(c) LESSON

Figure 6: Subgoal representation learning process in the challenging stochastic Ant Fall task with sparse reward. The illustration presents
agent trajectories in the learned 2D latent subgoal space, transitioning from red to blue, and features color-coded stars marking subgoals.
Additionally, a top-left minimap displays these trajectories within the x, y coordinate system. HLPS consistently learns stable subgoal
representations over training, compared to HESS and LESSON - there is no significant change in the latent space from 5M steps until the
end. The subgoals of HLPS align with low-level trajectories projected in the latent subgoal space, ensuring stable high-level transitions and
low-level reward functions in unexplored state spaces. In contrast, HESS and LESSON exhibit poor subgoal reachability. HESS uses the
counts across dramatically changing representation as novelty measure which misleads the exploration and generates unreachable subgoals.
Both LESSON and HESS struggle to learn stable deterministic representations imposing local constraint in the presence of environmental
stochasticity. In HLPS, distances in the latent subgoal space correlate with global transition counts, ensuring a representative distance
between the start and goal of the maze. This global perspective helps to mitigate the local optima observed in HESS and LESSON, which
arise from the local constraints applied during the training of deterministic subgoal representations.
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Figure 7: (Left) HLPS, HESS and LESSON on various levels
of environmental stochasticities. (Right) HLPS for various time
window sizes of the state set from Eq. (3), used in batch estimation
of model hyperparameters.
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subgoal representation and low-level policy enable superior sample
efficiency and enhanced asymptotic performance.
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Figure 9: Ablation study comparing two baselines: HLPS-A omits
our proposed learning objective and probabilistic subgoal repre-
sentation, while HLPS-B enhances HLPS-A by incorporating the
proposed probabilistic subgoal formulation and learning using an
contrastive learning objective similar to that in Li et al. (2021).

and Fig. 5 illustrate the learning curves of our method and
baselines across all tasks. Results for Maze tasks with dense
external rewards provided in the Appendix. Our method out-
performs all baselines in terms of stability, sample efficiency
and asymptotic performance. The advantage of the proba-
bilistic subgoal representation is more pronounced in the
challenging Ant Fall and Ant FourRooms tasks, as well as
the two more challenging robotic arm environments 7-DOF
Reacher and 7-DOF Pusher. Ant Fall requires both task and
motion planning, while Ant FourRooms uses a larger scale
maze. Thus both tasks demand learning subgoal representa-
tion for unexplored areas. In the tasks with image input, the
benefit of probabilistic subgoal representation of our method
is more substantial, since learning the subgoal representa-
tion in a higher dimensional state space is more challenging
and creates non-stationarities for deterministic subgoal rep-
resentations in LESSON. The active exploration method
introduced by HESS provides advantages in enhancing the
generalization of deterministic subgoal representations in
unexplored states (e.g., Ant FourRooms with images) which
is optimized for tasks with a fixed start and goal. However,
its novelty measure, which combines counts in dynamically
changing representation spaces, can potentially mislead ex-
ploration (as seen in Ant Fall), especially when the goal is
random. The results show a clear advantage of learned sub-
goal representations (HLPS, LESSON and HESS) compared
to pre-defined (HRAC) subgoal spaces. Finally, the flat RL
algorithm TD3 does not learn in the complex environments
used in the experiments which further validates the need for
hierarchical policies. In the 7-DOF Reacher and 7-DOF
Pusher environments, similar comparisons can be made
with HESS and LESSON, notably emphasizing LESSON’s
difficulties in effectively learning to achieve goals.

Is HLPS capable of generating reachable subgoals to
address the non-stationarity issue commonly encoun-
tered in off-policy training within HRL? Fig. 6 illus-
trates the state embeddings learned at various training stages
for the challenging Ant Fall task with sparse external re-
wards. This allows for an intuitive comparison of subgoal

representations acquired by HLPS, HESS, and LESSON.
Notably, HLPS demonstrates stable evolution of subgoal
representations throughout training, in contrast to HESS
and LESSON. There are two in-depth observations: (1) The
subgoals learned by HLPS are not only reachable but also
largely align with the low-level trajectories projected into
the latent subgoal space. This suggests that a stable subgoal
representation enhances the stationarity of the high-level
transitions and the low-level reward functions, providing
strong learning signal even at the early stage of training.
On the other hand, HESS and LESSON exhibit unstable
embeddings, often leading to frequently shifting and distant
subgoals. (2) In HLPS, the Euclidean distances in the latent
space roughly correspond to the total number of transitions.
More precisely, considering the number of transitions nec-
essary for the agent to navigate between them, the start and
goal positions in the maze should be distinctly separated
in the latent space. However, due to the local constraints
applied to the deterministic subgoal representations in both
HESS and LESSON, the start and goal locations remain
closely associated in the latent space. Consequently, many
intermediate embeddings become stuck in local optima be-
cause they lack the global constraint present in HLPS. We
underscore that our probabilistic representation learns the
hyperparameters for the kernel function through finite num-
ber of support states, and then generalize to the entire space
with a posterior distribution over the subgoal latent space.

Does HLPS offer enhanced robustness in the face of en-
vironmental stochasticity? We evaluate the robustness
of HLPS against various environmental stochasticities and
compare its performance with the deterministic subgoal rep-
resentation approach LESSON, as well as with HESS. As
illustrated in Fig. 7 (Left), HLPS consistently outperforms
both HESS and LESSON with increasing levels of Gaussian
noise, specifically at σ values from the set (0, 0.1, 0.15). No-
tably, HLPS demonstrates significantly smaller degradation
in performance and lower variance in outcomes as environ-
mental stochasticity increases, compared to the observed
results in HESS and LESSON.

Can HLPS effectively facilitate the transferability of
learned subgoal space or low-level policies? The gener-
ality of our GP based subgoal representation learning frame-
work underpins transferable subgoal space as well as the
low-level policy between different tasks of the same agent.
To empirically experiment its transferability, the subgoal
representation network, i.e., encoding layer and latent GP
layer, and low-level policy network are initialized in a target
task with the weights learned in a source task, with the rest
of the network randomly initialized. Two pairs of source
and target tasks, i.e., Ant Fall → Ant Push and Ant Fall (Im-
age) → Ant Push (Image), are experimented. The learning
curves on those two tasks are shown in Fig. 8, and we can
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observe that with the transferred subgoal representation and
low-level policy the agent is more sample efficient and able
to achieve higher performance.

How do various design choices within HLPS impact its
empirical performance and effectiveness? We conduct
several ablation studies to analyze the design choices in our
method. Initially, we compare our method, HLPS, with two
baselines. HLPS-BL-A omits our proposed learning objec-
tive and probabilistic subgoal representation. In contrast,
HLPS-BL-B builds upon HLPS-BL-A by incorporating the
proposed probabilistic subgoal formulation and employing
a contrastive learning objective akin to that used in Li et al.
(2021). Fig. 9 shows the learning curves of various base-
lines. HLPS-BL-B exhibits much higher asymptotic per-
formance than HLPS-BL-A but slightly lower performance
than HLPS. This empirically demonstrates the effective-
ness of our probabilistic subgoal representation and learning
objective respectively.

We investigate the time window size of the set of states in
Eq. (3) which are used to learn the model hyperparameters
in batch estimation. As shown in Fig. 7 (Right), increasing
the time window size T gives better performance at early
training steps (106 ∼ 7× 106) and eventually achieves sim-
ilar performance as small time windows in larger training
steps (7 × 106 ∼ 107). Our insight is that a larger time
window gives more stable model hyperparameters with less
training steps, which in turn induces sample-efficient station-
arity of the policies due to stable subgoal representations.
We report all other results based on time window T = 3
without loss of generality.

6. Conclusion
This paper proposes a novel Gaussian process based method
for learning probabilistic subgoal representations in Hierar-
chical Reinforcement Learning. Unlike existing approaches
that focus on deterministic mappings, our model captures
the posterior probability over the latent subgoal space. This
approach yields stability in previously unexplored state
spaces, leading to stationarity in both the high-level tran-
sitions and low-level reward function. We also present a
novel learning objective, integrating the learning of model
hyperparameters and hierarchical policies within a unified
framework. Our experiments demonstrate that this proba-
bilistic subgoal representation significantly enhances sample
efficiency, robustness against stochastic uncertainties, and
asymptotic performance. Additionally, we show that our
learned probabilistic subgoal representation facilitates the
transfer of low-level policies between different tasks.
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A. Appendix
A.1. Algorithm

We provide Algorithm 1 to show the training procedure of HLPS. Some details of subgoal latent space formulation z are
omitted for brevity, which refers to Eq. (3).

Algorithm 1 HLPS

Input: High-level policy πh
θh

, low-level policy πl
θl

, encoding layer f(·), non-parametric latent GP layer with learnable
hyperparameters (σ2, γ2 and ℓ), GP update frequency m, higher-level action frequency k, number of training steps N ,
replay buffer D.
for n = 1 to N do

Apply policies πl
θl

and πh
θh

, collect experience (st, gt, at, rt, st+1, gt+1)
Compute intrinsic reward rl(st, at, st+1, gt) = −||ϕ(st+1)− gt||2
Update replay buffer D
Update low-level policy πl

θl
and encoding layer f(·) with experience from replay buffer D every timestep with Eq. (4)

Update high-level policy πh
θh

with experience from replay buffer D every k timesteps
Update latent layer hyperparameter with a batch of state transitions from replay buffer D every m timesteps with Eq.
(4)

end for

A.2. Online Inference

The Gaussian process inference problem we formulated in the batch scheme can be rewritten in the form

z ∼ GP (0, κ (s, s′))

f = H z(s) + ϵ, ϵ ∼ N (0, σ),
(10)

where the linear operator H selects the training set inputs among the latent subgoal space values Hz(s) = (z(s1), ..., z(sN)).
This problem can be seen as an infinite-dimensional version of the Bayesian linear regression problem:

z ∼ N (0,K)

f = H z(s) + ϵ
(11)

where z is a vector with Gaussian prior N (0,K) and H is constructed to select those elements of the vector z that can be
actually observed (Sarkka & Hartikainen, 2012) .

This linear model can be extended such that the vector is allowed to change in time according to a linear stochastic differential
equation (SDE) model and a new vector of measurements is obtained at times ti for i = 1, ..., T (Särkkä & Solin, 2019):

∂z(t)
∂t = A z(t) + Lw(t)

fi = H z(ti) + ϵi,
(12)

where i = 1, ...T , A, L and H are given matrices, ϵi is a vector of Gaussian measurements noises, and w(t) is a vector
of white noise processes. The problem of estimating z(t) given the measurements can be solved using the classical
Kalman filter and Rauch-Tung-Striebel (RTS) smoother. Assuming z(t0) = N (µ0,Σ0), evolution operator Ψi, and
Ωi = Σ0 −ΨiΣ0Ψ

⊤
i , the filtering solution is recursively given by the following Kalman filter (Sarkka et al., 2013):

- Prediction step:

µ̃i = Ψi−1µi−1,

Σ̃i = Ψi−1Σi−1Ψ
⊤
i−1 +Ωi
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- Update step:
vi = yi −Hiµ̃i,

Si = HiΣ̃iH
⊤
i + σ2,

Ki = Σ̃iH
⊤
i S

−1
i

µi = µ̃i +Kivi,

Σi = Σ̃i −KiSiK
⊤
i

The subgoal representation during online planning can be formulated as spatio-temporal Gaussian process regression
problem with models of the form

z(s, t) ∼ GP
(
0, κ

(
s, t; s, t

′
))

fi = Hiz(s, ti) + ϵi.
(13)

By representing the temporal correlation as a stochastic differential equation kind of model and the spatial dimension as an
additional vector element index, it is equivalent to the infinite-dimensional state space model (Sarkka & Hartikainen, 2012)
as counterpart of model Eq. 12:

∂z(s,t)
∂t = A z(s, t) + Lw(s, t)

fi = Hi z(s, ti) + ϵi,
(14)

where the latent state z(s, t) at time t consists of the whole function s 7→ z(s, t), A is a s × s matrix of linear operators
operating on s, L ∈ Rs×q, Hi ∈ Rd×s are given matrices, fi ∈ Rd, ϵi ∼ N (0,Σi), and w(s, t) ∈ Rq is a Wiener process
with a given diffusion matrix Qc ∈ Rq×q . This formulation is an infinite-dimensional Markovian type of model, where the
problem of estimating z(s, t) given the measurements can be similarly solved using the above Kalman filter resulting in the
prediction and update steps in paper.

A.3. Environments

1. Ant Maze A ‘⊃’-shaped maze of size 12×12 for a quadruped-Ant to solve a navigation task. The ant needs to reach a
goal position starting from a random position in a maze with dense rewards. It has a continuous state space including
the current position and velocity, the current time step t, and the goal location. During training, a random position is
generated as the goal for each episode, and at each time step the agent receives a dense or sparse reward according to
its negative Euclidean distance from the goal position. The success is defined as being within an Euclidean distance of
1.5 from the goal. At evaluation stage, the goal position is set to (0, 8). Each episode ends at 500 time steps.

2. Ant Push: A challenging task that requires both task and motion planning. The agent needs to move to the left then
move up and push the block to the right in order to reach the target.

3. Ant Fall: This task extends the navigation to three dimensions. The agent starts on a platform of height 4 with the
target located across a chasm that it cannot cross by itself. The agent needs to push the block into the chasm and walk
on top of it before navigating to the target.

4. Ant FourRooms: This Task requires the agent to navigate from one room to another to reach the exogenous goal. In
this task, a larger (18 × 18) maze structure is used.

5. 7-DOF Reacher/Pusher: In this setup, a 7-DOF robot arm is situated in front of a table. In the 7-DOF Reacher task,
success is defined as the gripper reaching a specified 3D goal position. In the 7-DOF Pusher task, the primary objective
is to maneuver a cylinder into this target. Each trial introduces variability with randomized positions of the cylinder
and different initial velocities for the arm, though the target’s location is fixed. The encompassed state space includes:
(1) Joint positions and velocities of the robot (14 dimensions); (2) Center of mass of the cylinder (3 dimensions); (3)
Center of mass of the gripper (3 dimensions). Collectively, these elements form a 20-dimensional state space. Both
tasks have a horizon of 100 steps.

6. Variants: Another Ant Maze of size 24 × 24 with the same definition of “success” is used (labeled ‘Large’). A
variant (labeled ‘Image’) with low-resolution image observations for each of the above task is adopted; the observation
is formed by zeroing out the x, and y coordinates and appending a 5×5×3 top-down view of the environment, as
described in (Nachum et al., 2019; Li et al., 2021). Another variant with environmental stochasticity is also adopted -
Gaussian noise with standard deviation σ = 0.1 to the (x, y) position of the ant robot at every step is added.
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A.4. Implementation

A.4.1. TRAINING AND EVALUATION PARAMETERS

• Learning rate of latent GP 1e− 5

• Latent GP update frequency 100

• Batch GP scheme time window size 3

• Subgoal dimension of size 2

• Learning rate 0.0002 for actor/critic of both levels

• Interval of high-level actions k = 50

• Target network smoothing coefficient 0.005

• Reward scaling 0.1 for both levels

• Discount factor γ = 0.99 for both levels

• Learning rate for encoding layer 0.0001

• Hierarchical policies are evaluated every 25000 timesteps by averaging over 10 randomly seeded trials

A.4.2. NETWORK ARCHITECTURES

We employ a two-layer hierarchical policy network similar to (Levy et al., 2019; Li et al., 2021) which adopts SAC (Haarnoja
et al., 2018) for each level in the HRL structure. Specifically, we adopt two networks each comprising three fully-connected
layers (hidden layer dimension 256) with ReLU nonlinearities as the actor and critic networks of both low-level and
high-level SAC networks. The output of the actor networks of both levels is activated using the tanh function and scaled
according to the size of the environments. The encoding layer f(·) is parameterized by an MLP with one hidden layer of
dimension 100 using ReLU activations. Adam optimizer is used for all networks.

A.4.3. HARDWARE

All of the experiments were processed using a single GPU (Tesla V100) and 8 CPU cores (Intel Xeon Gold 6278C @
2.60GHz) with 64 GB RAM.

A.5. Additional Experiments

We show the learning curves of our method and baselines in stochastic environments with dense external rewards in Fig. 10,
and its quantitative evaluation results can be found in Table 1.

Additionally, we evaluate on deterministic Ant Maze, Ant Push and Ant Fall, as well as a ‘large’ Ant Maze of size 24× 24,
with dense external reward. These experiments are conducted in comparison to HESS (Li et al., 2022), LESSON (Li et al.,
2021), HRAC (Zhang et al., 2020) and TD3 (Fujimoto et al., 2018), as well as the following two baseline methods3:

1. Oracle: HRL with the oracle subgoal space, i.e., x, y coordinates of the agent, in navigation tasks.

2. HIRO (Nachum et al., 2018): an off-policy goal-conditioned HRL algorithm using a pre-defined subgoal space.

Note, all methods are evaluated and compared using the same settings of tasks. Table 3 shows the comparative results on
deterministic environments, and Fig. 11 shows the learning curves of all baselines.

3We use the official implementations https://github.com/SiyuanLee/LESSON, https://github.com/SiyuanLee/HESS/, https://github.
com/trzhang0116/HRAC and https://github.com/sfujim/TD3.
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HLPS HESS LESSON HRAC TD3

Dense 0.90±0.04 0.86±0.01 0.81±0.04 0.76±0.06 0.00±0.00
Ant Maze Sparse 0.93±0.05 0.84±0.01 0.77±0.10 0.83±0.06 0.00±0.00

Dense /w image 0.83±0.06 0.78±0.05 0.73±0.05 0.00±0.00 0.00±0.00
Sparse /w image 0.79±0.07 0.67±0.12 0.71±0.05 0.00±0.00 0.00±0.00

Dense 0.93±0.01 0.80±0.04 0.71±0.02 0.01±0.00 0.00±0.00
Ant Push Sparse 0.91±0.01 0.77±0.05 0.71±0.02 0.08±0.03 0.00±0.00

Dense /w image 0.84±0.05 0.70±0.03 0.24±0.01 0.01±0.01 0.00±0.00
Sparse /w image 0.87±0.03 0.73±0.06 0.67±0.03 0.00±0.00 0.00±0.00

Dense 0.69±0.03 0.54±0.01 0.49±0.03 0.11±0.09 0.00±0.00
Ant Fall Sparse 0.79±0.01 0.29±0.05 0.54±0.02 0.24±0.07 0.00±0.00

Dense /w image 0.66±0.01 0.54±0.07 0.19±0.02 0.28±0.10 0.00±0.00
Sparse /w image 0.74±0.04 0.30±0.02 0.32±0.01 0.00±0.00 0.00±0.00

Dense 0.93±0.02 0.80±0.01 0.76±0.03 0.65±0.03 0.00±0.00
Ant FourRooms Sparse 0.89±0.04 0.82±0.08 0.77±0.01 0.76±0.01 0.00±0.00

Dense /w image 0.61±0.02 0.42±0.06 0.34±0.04 0.00±0.00 0.00±0.00
Sparse /w image 0.57±0.03 0.42±0.07 0.21±0.01 0.00±0.00 0.00±0.00

Table 1: Final performance of the policy obtained after 10M steps of training, averaged over 10 randomly seeded trials with standard error.
Comparisons are to HESS (Li et al., 2022), LESSON (Li et al., 2021), HRAC (Zhang et al., 2020), and “flat” RL TD3 (Fujimoto et al.,
2018). We can observe the overall superior performance of our method in stochastic environments, with dense or sparse external rewards
and with or without top-down image observations.

HLPS HESS LESSON

7-DOF Reacher 0.62±0.03 0.48±0.13 0.06±0.04

7-DOF Pusher 0.54±0.11 0.21±0.10 0.01±0.01

Table 2: Final performance of the policy obtained after 5M steps of training with sparse reward, averaged over 10 randomly seeded trials
with standard error. Comparisons are to HESS (Li et al., 2022) and LESSON (Li et al., 2021).

Ant Maze
Ant Maze
(Large)

Ant Push Ant Fall

HLPS 0.96±0.00 0.93±0.03 0.90±0.01 0.74±0.02
HESS 0.91±0.01 0.85±0.02 0.80±0.02 0.56±0.02
LESSON 0.89±0.06 0.74±0.15 0.74±0.02 0.54±0.03
HRAC 0.90±0.03 0.83±0.03 0.01±0.00 0.45±0.08
HIRO 0.71±0.02 0.57±0.05 0.00±0.00 0.13±0.07
ORACLE 0.64±0.11 0.56±0.09 0.70±0.05 0.28±0.09
TD3 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00

Table 3: Final performance of the policy obtained after 5M steps of training in deterministic environments, averaged over 10 randomly
seeded trials with standard error. Comparisons are to HESS (Li et al., 2022), LESSON (Li et al., 2021), HRAC (Zhang et al., 2020),
HIRO (Nachum et al., 2018), HRL with oracle subgoal space Oracle, and flat RL TD3 (Fujimoto et al., 2018). We can observe the overall
superior performance of our method, which is consistent with the evaluation results in stochastic environments.
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Figure 10: Learning curves of our method and baselines in stochastic environments with dense external rewards.

15



Probabilistic Subgoal Representations for Hierarchical Reinforcement Learning

0 1 2 3 4 5
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Ant Maze (dense reward)

HLPS
HESS
LESSON
HRAC

HIRO
TD3
ORACLE

(a)

0 1 2 3 4 5
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Ant Maze (Large)

(b)

0 1 2 3 4 5
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Ant Push (dense reward)

(c)

0 1 2 3 4 5
Time Steps 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s R

at
e

Ant Fall (dense reward)

(d)

Figure 11: Learning curves of our method and baselines in deterministic environments with dense external rewards.
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