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ABSTRACT

In this paper, we present a compositional generalization approach in grounded
agent instruction learning. Compositional generalization is an important part of
human intelligence, but current neural network models do not have such ability.
This is more complicated in multi-modal problems with grounding. Our proposed
approach has two main ideas. First, we use interactions between agent and the
environment to find components in the output. Second, we apply entropy regular-
ization to learn corresponding input components for each output component. The
results show the proposed approach significantly outperforms baselines in most
tasks, with more than 25% absolute average accuracy increase. We also investi-
gate the impact of entropy regularization and other changes with ablation study.
We hope this work is the first step to address grounded compositional generaliza-
tion, and it will be helpful in advancing artificial intelligence research. The source
code is included in supplementary material.

1 INTRODUCTION

Compositional generalization is a key skill for flexible and efficient learning. Humans leverage
compositionality to create and recognize new combinations of familiar concepts (Chomsky, 1957;
Minsky, 1986). Though there are many progresses for machine learning and deep learning in various
areas recently (LeCun et al., 2015), current main learning algorithms are not able to perform com-
positional generalization, and require many samples to train models. Such efficient learning is even
more important when machines interact with the environment for grounding, because interactions
are usually slow.

Machine learning has been mostly developed with an assumption that training and test distributions
are identical. Compositional generalization, however, is a kind of out-of-distribution generaliza-
tion (Bengio, 2017), where training and test distributions are different. During training, dataset does
not contain the information of the difference, so it can only be given as prior knowledge. In compo-
sitional generalization, a sample is a combination of several components. Test distribution changes
as test samples are new combinations of seen components in training. For example, if we can find
“large apple” and “small orange” in some environments, then we can also find “large orange” among
multiple objects in a new environment.

The recombination is enabled when an output component depends only on the corresponding input
components, and invariant of other components (please see Section 4.1 for more details). So there
are two aspects to consider. What are the components in output, and how to find the corresponding
input signals. We propose to use interactions between agent and the environment to define output
components. This is analogues to model-free reinforcement learning (Sutton & Barto, 2018), where
an agent does not have an environment model, but leans to act at each step during the interactions
with the environment. Then we use entropy regularization (Li et al., 2019; Li & Eisner, 2019) to
learn the minimal input components for outputs.

We evaluate the approach with gSCAN dataset (Ruis et al., 2020), which is designed to study com-
positional generalization in grounded agent instruction learning. Please see Figure 1 for examples.
The results show the proposed approach significantly outperforms baselines in most tasks, with
more than 25% absolute average accuracy increase, and the high accuracy indicates that the pro-
posed approach addresses the designed grounded compositional generalization problems in these
tasks. We also look into the impact of entropy regularization and other changes with ablation study.
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(a) Walk to a small cylinder. (b) Walk to a large blue circle.

Figure 1: Examples of gSCAN dataset. The dataset evaluates compositional generalization ability in
grounded instruction learning. The agent needs to understand command and the environment to take
sequence of actions. Training and test data have different distributions and tasks require different
kinds of compositional generalization. Please refer to Section 5 for more details.

We hope this work will be helpful in advancing grounded compositional generalization and artificial
intelligence research.

The contributions of this paper can be summarized as follows.

• This is the first work to enable accurate compositional generalization in grounded instruc-
tion learning problem, serving for analyzing and understanding the mechanism.

• The novelty of this paper is to find that the combination of environment interaction and
entropy regularization helps the generalization.

2 RELATED WORK

Compositional generalization research has a long history, and recently there are increasing focus
on this area. SCAN dataset (Lake, 2019) was proposed to study compositional generalization in
instruction learning. It maps a command sentence to a sequence of actions. This dataset has a
property that input words and output actions have direct correspondence. Though some NLP tasks,
such as machine translation, have similar property, not all problems fit to the setting. Also this
dataset does not contain an environment for an agent to take actions.

SCAN dataset inspired multiple approaches (Russin et al., 2019; Andreas, 2019; Li et al., 2019;
Lake, 2019; Gordon et al., 2020; Liu et al., 2020). Some of them lead to general techniques for
compositional generalization. For example, entropy regularization (Li et al., 2019) is proposed to
avoid redundant dependency on input, and it is a core idea of the approach in this paper.

Compositional generalization has applications in various fields such as question answering (An-
dreas et al., 2016; Hudson & Manning, 2019; Keysers et al., 2020), counting (Rodriguez & Wiles,
1998; Weiss et al., 2018), systematic behaviour (Wong & Wang, 2007; Brakel & Frank, 2009),
and hierarchical structure (Linzen et al., 2016). Another related work is independent disentangled
representation (Higgins et al., 2017; Locatello et al., 2019), but they do not address compositional
generalization. Compositionality is also helpful for reasoning (Talmor et al., 2020) and continual
learning (Jin et al., 2020; Li et al., 2020).

Grounded SCAN (gSCAN) dataset was proposed to introduce environment and grounding to agent
instruction learning with compositional generalization (Ruis et al., 2020). It has a command sentence
as input and a sequence of actions as output. However, the input command does not tell the specific
way to act, but agent needs to understand the environment and take corresponding actions. This also
avoids direct mapping between input words and output actions.

Different approaches have been proposed to address this problem. As compositional generalization
requires prior knowledge for distribution change, these approaches correspond to different ways to
provide the prior knowledge. Andreas (2019) uses linguistic knowledge to augment training data.
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Kuo et al. (2020) uses external syntactic parser and WordNet. In this paper, we apply the prior
knowledge for the interactions of agent and the environment.

3 PROBLEM DESCRIPTION

gSCAN dataset contains episodes of commands and actions, and each episode has an input and an
output. The input includes a command and an environment. A command is a sequence of words. An
environment contains an agent and a set of objects. An agent has its position and initial direction.
An object has its position and attributes of color, shape and size. The output contains a sequence of
actions (Figure 1).

We hope to extract prior knowledge from environment interactions. We first notice that an agent
should know whether it is going to change position. This means we can break an episode to a
sequence of steps, where each step corresponds to an action for position change. An agent should
also know the change of directions between steps. So we separate the direction change and the
manner of action in a step. Therefore, we have three output for each step: direction, action and
manner. We further convert the environment to be agent centered, and rotate the environment to
make agent facing forward. We also assume automatic collision prevention. If the agent tries to
push or pull an object to collide with other objects or boarder, then it stops. This makes us focus on
addressing grounded compositional generalization problem.

In summary, when we consider agent interaction with the environment, we can convert the problem
to a set of step-wise label prediction problems with multiple outputs. Input contains command,
environment, state, and output contains direction, action and manner.

4 APPROACH

In this section, we describe the approach for grounded compositional generalization. As we use en-
tropy regularization in different modules, we first introduce it, then move to the model architecture.

4.1 ENTROPY REGULARIZATION

The difficulty of compositional generalization is that there might be incorrect dependency between
input and output components. For example, when “red” and “square” do not appear together in
any training sample, a model might learn that square is not red. However, this causes errors for
compositional generalization in test. To avoid such case, we hope the representation of shape not
influenced by input information of color.

Entropy regularization (Li et al., 2019; Li & Eisner, 2019) aims at reducing entropy of a represen-
tation to avoid dependency on redundant input components. Given an representation x, we compute
the L2 norm and add normal noise to each element of the representation. This decreases the channel
capacity, so that the entropy for the representation reduces. We then feed the noised representation
to the next layer, and add the norm to loss function.

L = Loriginal + λL2(x) EntReg(x) = x+ αN (0, I)

where α is a weight of noise, positive for training and zero for inference.

A representation can be fed to multiple networks, requiring different regularization for each input
node. So we design entropy regularization layer, where we achieve non-linear mapping by expand-
ing each node xi to a vector hi ∈ RH with ReLU activation, and maps it back to a node yi with linear
activation, then apply entropy regularization on y to get y′. The input x and output ERL(x) = y′

have the same size.

hi = ffAi (xi, H), yi = ffBi (hi, 1), y′ = EntReg(y).

We write ff(x,K) for feed-forward neural network with x as input and K as output size. We use
EntReg for word embeddings and ERL for environment inputs.
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xc: command

q: query

t: type rep.

v: value rep.

wc: score ac: attention map
r: attended value rep.

(a) Command module (CM).

CMi

xa: attributes

xp: positions

wgi : score wg: score sum ag: attention map
p: target position

i = 1, . . . , N

(b) Grounding module (GM).

CM

p: target position

s: state

z: concatenated rep. ŷ: prediction

(c) Prediction module (PM).

Figure 2: Flow charts for core part of each module in the proposed approach. Command module and
grounding module are based on attention mechanism as the main architecture, and prediction module
concatenates inputs and use feed-forward network. More details can be found in Algorithm 1.

4.2 MODEL ARCHITECTURE

Input contains one-hot representation of a command xc with sentence length n and vocabulary size
V c, and a sequence of m objects. We denote object attributes xa with vector size V a, and object
positions xp with vector size V p. We also has a binary state s ∈ {0, 1} indicating whether it is
the first step of an episode. Output has three types. Direction yd has Cd classes, action ya has Ca
classes, and manner ym has Cm classes.

xc = xc1, . . . , x
c
n ∈ RV

c×n, xa = xa1 , . . . , x
a
m ∈ RV

a×m, xp = xp1, . . . , x
p
m ∈ RV

p×m.

The model has the following modules, as summarized in Figure 2 and Algorithm 1.

Command module (CM) This module takes a command xc as input and returns a representation
r with size K, r = CM(xc,K). r is expected to be the embedding of certain type of keyword, e.g.
action, color, etc. To enable compositional generalization, we hope to separate representations of
types (e.g. color) and values (e.g. red). We use types for attention maps and values for attended
values in attention mechanism. For a new combination of values, the types are still recognizable,
so that attention maps are correct and the corresponding values are extracted (Li et al., 2019). We
design that each word xci in command xc has two embeddings for type ti and value vi with corre-
sponding embedding matrices, Et ∈ Rkt×V c

, Ev ∈ Rkv×V c

, where kt and kv are embedding sizes,
respectively. We then apply entropy regularization on both t and v to reduce redundant dependency.

t = EntReg(Etxc) ∈ Rkt×n, v = EntReg(Evxc) ∈ Rkv×n.

We use attention mechanism with a query q ∈ Rkt as learnable parameters, keys t, values v, and
temperature τ c ∈ R. We compute score wc and attention map ac. The attended value u is fed to a
feed-forward network with output size K.

wc = qt ∈ Rn, ac = Softmax(wc/τ c) ∈ Rn, u = vac ∈ Rkv , r = ffθ(u,K) ∈ RK .

Grounding module (GM) This module finds target in the environment according to the command.
We use N command modules for queries. For each query ri, we have an dedicated entropy regu-
larization layer on attributes x′ai , because different queries correspond to different type of attributes,
and other attributes would be redundant. We then compute a score wgi . For i = 1, . . . , N ,

ri = CM(xc, V a) ∈ RV
a

x′ai = ERL(xa) ∈ RV
a×m, wgi = rix

′a
i ∈ Rm.
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Algorithm 1 The proposed approach. Input includes command xc, state s, object attributes xa and
object positions xp. K is an embedding size. Please see Section 4 for more information.

Command module
Input: xc,K
Output: r: embedding

1: t = EntReg(Etxc)
2: v = EntReg(Evxc)
3: wc = qt
4: ac = Softmax(wc/τ c)
5: u = vac

6: r = ffθ(u,K)

Grounding module
Input: xc, xa, xp
Output: p: target position

1: for i = 1, . . . , N do
2: ri = CM(xc, V a)
3: x′ai = ERL(xa)
4: wgi = rix

′a
i

5: end for
6: wg =

∑N
i=1 w

g
i

7: ag = Softmax(wg/τg)
8: p = xpag

Prediction module
Input: xc, xa, xp, s,K
Output: ŷ: prediction

1: p = GM(xc, xa, xp)
2: for each output type i do
3: ki = CM(xc,K)
4: for each node j do
5: p′i,j = ERL(p)
6: zi,j = [kTi , p

′T
i,j , s

T ]T

7: li,j = ffφi,j(zi,j , 1)
8: end for
9: ŷi = Softmax(li)

10: end for

The scores are added as wg . Attention map ag is computed by Softmax with temperature τg ∈ R,
and is applied to get the attended object position p.

wg =

N∑
i=1

wgi ∈ Rm, ag = Softmax(wg/τg) ∈ Rm, p = xpag ∈ RV
p

.

Prediction module (PM) Prediction module takes command, environment and state as input, and
outputs a prediction. We have three separate prediction modules for direction, action and manner,
respectively. Modules correspond to different keywords but share the same grounded target and
state. So for each prediction module, we use one command module to extract a keyword k with size
K for the prediction. We also have a environment module for target object position p, and all the
prediction modules share it as an input. There is a input of state s, and this is also a shared input for
each prediction module.

We build a dedicated feed-forward neural network from input to each output node without weight
sharing. In each network of output type i and node j, we use entropy regularization layer for target
position p. This is because different output nodes may need to be computed from different input
components, and other components are redundant, so we hope to reduce dependency of each output
node to input nodes (more discussion in Section 6.1). Then all the inputs are concatenated to form a
vector z with size L = K + V p + 1.

ki = CM(xc,K) ∈ RK , p′i,j = ERL(p) ∈ RV
p

, zi,j = [kTi , p
′T
i,j , s

T ]T ∈ RL.

We then feed it to another feed-forward network to get a output node li,j . They are concatenated to
form a logit li, and we use Softmax to output ŷi. Ci is the number of classes for the output type.

li,j = ffφi,j(zi,j , 1) ∈ R, li = [li,1, . . . , li,Ci
] ∈ RCi , ŷi = Softmax(li) ∈ RCi

We use cross entropy and the norms for entropy regularization with weight λ as training objective.

5 EXPERIMENTS

We use all eight tasks in gSCAN for experiment. Figure 1 shows examples of two gSCAN com-
mands in different environments. We run experiments to show that the designed compositional
generalization problems are correctly addressed. The tasks are summarized as follows.

A: Random is from the same distribution as training data. It does not contain compositional gener-
alization, and is used to compare with other tasks as reference.

B: Yellow squares has a new way of referring to a type of object, e.g., “small square” in training,
but “yellow square” only in test.
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A: Random

B: Yellow squares

C: Red squares

D: Novel direction

E: Relativity

F: Class inference

G: Adverb k
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Figure 3: Bar graph of accuracy results. Seq2seq and GECA are from Ruis et al. (2020). Semantic
is from Kuo et al. (2020). The results shows that the proposed approach can effectively address most
of the tasks, and task G is analyzed in discussion section.

C: Red squares has a new combination of attribute and object, e.g., “red” and “square” appears
separately in training, but “red square” appears only in test.

D: Novel direction has target object in a new direction, e.g., down left direction only in test.

E: Relativity newly has objects of specific sizes as “small” or “large”. e.g., refer size 2 as “large”
(a sample does not contain larger sizes) only in test.

F: Class inference requires inferring object properties, e.g., the object size decides the number of
pull or push actions to take.

G: Adverbs requires learning adverbs, e.g., “cautiously”, with one or a few samples.

H: Adverb to verb has new combination of adverb and verb, e.g., “walking” and “while spinning”
both appear in training, but “walking while spinning” appears only in test.

The dataset statistics and more details of settings in model design and training can be found in
Appendix A. We evaluate accuracy on episodes. An episode is correct when all the steps are correct.
Following Ruis et al. (2020), we run each experiment three times, and report mean and standard
deviation (note that their sum may be above 100%).

The results are shown in Figure 3 and more details in Table 1. The proposed approach has signif-
icantly higher accuracy than the baseline methods in most of the tasks. It does not work in Exper-
iment G, and we discuss about it in Section 6.3. This indicates that the approach can effectively
address most of the designed compositional generalization problems. Especially in Experiment D:
Novel direction and Experiment H: Adverb to verb, there are more than 94% and 78% absolute im-
provements, respectively. Experiment D requires recombining different directions, and experiment
H requires recombining verbs and adverbs. These tasks are standard compositional generalization
problems with recombination of seen components.

6 DISCUSSIONS

In this section, we discuss and analyze more details to have better understanding of the approach.
We will first run ablation study to find what factors enable the improvement. We then analyze the
grounding ability of the proposed approach. We also discuss the one-shot learning problem. We
further apply the approach on target length task.
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Table 1: Details of accuracy results (%) for experiments. We report mean and standard deviations.

Seq2seq GECA Semantic Proposed
A: Random 97.69 ± 0.22 87.60 ± 1.19 97.32 100.00 ± 0.00
B: Yellow squares 54.96 ± 39.39 34.92 ± 39.30 95.35 99.35 ± 0.84
C: Red squares 23.51 ± 21.82 78.77 ± 6.63 80.16 98.69 ± 1.85
D: Novel direction 0.00 ± 0.00 0.00 ± 0.00 5.73 100.00 ± 0.00
E: Relativity 35.02 ± 2.35 33.19 ± 3.69 75.19 99.72 ± 0.38
F: Class inference 92.52 ± 6.75 85.99 ± 0.85 98.63 100.00 ± 0.00
G: Adverb k = 1 0.00 ± 0.00 0.00 ± 0.00 11.94 0.00 ± 0.00
H: Adverb to verb 22.70 ± 4.59 11.83 ± 0.31 21.95 100.00 ± 0.00

6.1 ABLATION STUDY

We conduct ablation study to understand what factors of the algorithm are important. One change
of the approach is entropy regularization (EntReg). We also have structure change to apply the
regularization (ERL). We have element-wise prediction for each output node (NodeOut). We design
experiments by removing each of these factors.

The results in Table 2 show that the ablation experiments have lower accuracy than the proposed
approach. This means all the changes are important for the approach. The reduction is especially
significant for Experiment D: Novel direction. In this task, each value of the output depends on
different input components, because different output values have priorities in the setting. When
target appears on back, back right or back left, the agent turns around. When it appears on right,
the agent turns right. Setting agent faces horizontal positive direction, this means turning around
node depends only on one coordinate (horizontal is negative), but turn right node depends on two
coordinates (horizontal is zero and vertical is negative). This is different from previous composi-
tional generalization where all values of an output component depend on the same input component.
Though this particular case may be solved in other ways, it is general that different output values
may depend on different input components, and the proposed method is able to address the problem.

Table 2: Accuracy results (%) for ablation study. The ablation experiments have lower accuracy
than the proposed approach. This means all the changes are important for the approach.

Proposed No EntReg No ERL No NodeOut
A: Random 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 95.51 ± 6.35
B: Yellow squares 99.35 ± 0.84 94.60 ± 4.37 74.50 ± 0.57 95.73 ± 5.20
C: Red squares 98.69 ± 1.85 98.27 ± 1.38 94.72 ± 2.96 96.40 ± 5.09
D: Novel direction 100.00 ± 0.00 92.44 ± 7.03 13.29 ± 14.63 0.00 ± 0.00
E: Relativity 99.72 ± 0.38 99.69 ± 0.43 96.57 ± 3.17 95.98 ± 5.67
F: Class inference 100.00 ± 0.00 100.00 ± 0.00 99.99 ± 0.01 95.76 ± 6.00
G: Adverb k = 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
H: Adverb to verb 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 96.67 ± 4.71

6.2 GROUNDING

We run visualization to show that the approach works in the expected way. The grounding finds
correct object according to descriptions in command. A common way for grounding, which is also
used in the proposed approach, is to use attention. So we evaluate whether the correct target object
is attended.

The results in Table 3 show that the proposed approach has good grounding ability in all the tasks.
Note that it also works on Experiment G, where the final prediction is not accurate. This means
the errors in Experiment G are not caused by grounding, and the proposed approach addresses the
designed grounding problems in all the tasks of gSCAN.
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Table 3: Grounding accuracy results (%) for the proposed method. Grounding works well in all the
tasks.

A: Random 100.00 ± 0.00 E: Relativity 100.00 ± 0.00
B: Yellow squares 100.00 ± 0.00 F: Class inference 100.00 ± 0.00
C: Red squares 98.91 ± 1.54 G: Adverb k = 1 98.68 ± 0.88
D: Novel direction 100.00 ± 0.00 H: Adverb to verb 100.00 ± 0.00

6.3 ONE-SHOT LEARNING

The gSCAN experiment result shows that Experiment G: Adverb does not work well for methods
without external lexical information. This experiment was designed as few-shot or one-shot (k = 1)
learning task, however it is different from standard settings. Conventionally, one-shot learning has
only one sample for a class, but the frequency or weight of the sample is not fixed. For example, in
Lake & Baroni (2018), the one-shot sample is repeated to be 10% of the whole dataset. Changing the
weight of one-shot samples is also common in human learning, as we focus on one special sample
and learn from it. However, in experiment G, the frequency of the one-shot sample is one, while
there are more 300,000 other training samples.

This not only extremely lower the contribution of the sample to prediction loss, but also decrease
the chance to be included in a mini-batch for training. To some extent, this requires the algorithm
to partially address catastrophic forgetting (Kirkpatrick et al., 2017). This is because when the last
mini-batches do not contain the sample, the model should not forget it. So this experiment contains
more challenges than core compositional generalization, and they are beyond the scope of this paper.

6.4 TARGET LENGTH TASK

Ruis et al. (2020) also contains a separate dataset for target length task. It requires the model to
perform on the target action sequence longer than those in training. This is not the focus of this
paper, but we run experiments for references.

The result in Table 4 shows that, for the proposed approach, the accuracy does not drastically de-
crease when the evaluation target length increases. This might be because of using step-wise predic-
tion, which is less influenced by the length of an episode. The result indicates an additional benefit
of using environment interactions.

Table 4: Accuracy results (%) for target length experiments. Seq2seq is from Ruis et al. (2020).
Semantic is from Kuo et al. (2020). The proposed approach avoids drastic decrease when the length
increases.

Target length Seq2seq Semantic Proposed
15 94.98 ± 0.12 93.43 94.45 ± 4.56
16 19.32 ± 0.02 90.88 96.28 ± 3.36
17 1.71 ± 0.38 87.92 96.04 ± 3.25
≥18 < 1.00 56.50 97.64 ± 2.06

7 CONCLUSION

We propose an approach to address compositional generalization in grounded agent instruction
learning. We use interactions between agent and the environment to define output components,
and entropy regularization to reduce redundant dependency on input. We achieve significant im-
provements in most of gSCAN tasks, and the high accuracy indicates that the proposed approach
addresses the designed grounded compositional generalization problems in these tasks. In ablation
study, we show the effectiveness of entropy regularization and other changes, and look into differ-
ent aspects of the approach. We hope this work will be a step towards addressing compositional
generalization in grounded language learning and general artificial intelligence.
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A EXPERIMENT SETTINGS

We implement the model as follows. We use one layer feed-forward neural network for ffA and ffB

with H = 4. ffA has ReLU activation and ffB has linear activation. In command module, we use
kt = 32 and kv = 32. ffθ is a one layer feed-forward network with linear activation. τ c = 1. In
grounding module, we useN = 3 and τg = 0.1. In prediction module, we useK = 8. ffφ·,· is a three
layer feed-forward network. The first and second layers have 32 hidden nodes with Relu activation.
The third layer has one output node with linear activation. For target length task, the setting is the
same except N = 8 in grounding module.

In training, we use λ = 1 and α = 0.1. We use Adam optimizer (Kingma & Ba, 2014) with
10,000 training steps. Each mini-batch has 256 samples selected from training data uniformly at
random with replacement. Gradient is clip by norm of 1. We use initial learning rate 0.001, which
exponentially decays every 100 steps by a factor of 0.96. TensorFlow (Abadi et al., 2016) is used
for implementation.

The sample size of gSCAN dataset is summarized in Table 5.

Table 5: Sample size of gSCAN dataset.

Task Samples
Train 367,933
A: Random 19,282
B: Yellow squares 18,718
C: Red squares 37,436
D: Novel direction 88,642
E: Relativity 16,808
F: Class inference 11,460
G: Adverb k = 1 112,880
H: Adverb to verb 38,582

B FEW-SHOT LEARNING

The results of other few-shot learning settings in Experiment G are summarized in Table 6. More
discussions for the task can be found in Section 6.3.

Table 6: Accuracy results (%) for few-shot learning experiments. Seq2seq is from Ruis et al. (2020).
Semantic is from Kuo et al. (2020).

Seq2seq Semantic Proposed
Adverb k = 1 0.00 ± 0.00 11.94 0.00 ± 0.00
Adverb k = 5 0.47 ± 0.14 10.17 0.00 ± 0.00
Adverb k = 10 2.04 ± 0.95 33.28 0.00 ± 0.00
Adverb k = 15 - 40.78 0.00 ± 0.00
Adverb k = 50 4.63 ± 2.08 - 67.44 ± 28.27
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