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Abstract

Enabling Large Language Models (LLMs) to001
handle a wider range of complex tasks (e.g.,002
coding, math) has drawn great attention from003
many researchers. As LLMs continue to evolve,004
increasing the number of model parameters005
yields diminishing performance improvements006
and heavy computational costs. Recently, Ope-007
nAI’s o1 model has shown that inference strate-008
gies (i.e., Test-time Compute methods) can also009
significantly enhance the reasoning capabilities010
of LLMs. However, the mechanisms behind011
these methods are still unexplored. In our work,012
to investigate the reasoning patterns of o1, we013
compare o1 with existing Test-time Compute014
methods (BoN, Step-wise BoN, Agent Work-015
flow, and Self-Refine) by using OpenAI’s GPT-016
4o as a backbone on general reasoning bench-017
marks in three domains (i.e., math, code and018
commonsense reasoning). Specifically, first,019
our experiments show that the o1 model has020
achieved the best performance on most datasets.021
Second, as for the methods of searching diverse022
responses (e.g., BoN), we find the reward mod-023
els’ capability and the search space both limit024
the upper boundary of these methods. Third,025
as for the methods that break the problem into026
many sub-problems, the Agent Workflow has027
achieved better performance than Step-wise028
BoN due to the domain-specific system prompt029
for planning better reasoning processes. Fourth,030
we summarize six reasoning patterns of o1, and031
provide a detailed analysis across different rea-032
soning benchmarks.033

1 Introduction034

Large Language Models (LLMs) have achieved035

great success in various tasks (e.g., Commonsense036

Reasoning (Yang et al., 2018), Coding (Jain et al.,037

2024; Chai et al., 2024a), Math (Satpute et al.,038

2024; Chai et al., 2024b), and Dialogue (Young039

and Shishido, 2023)). To further improve their per-040

formance, researchers have continuously increased041

the number of model parameters and expanded the042

training data. However, this method of scaling up 043

the model parameters is reaching a bottleneck, and 044

the efficiency of performance improvement is be- 045

coming progressively limited. 046

Recently, Test-time Compute methods, such as 047

Best-of-N (BoN) and Self-Refine (Madaan et al., 048

2024), have been proposed to enhance model per- 049

formance during the inference phase and have 050

shown to be more efficient than simply increas- 051

ing model parameters. However, there is a lack of 052

research comparing the effectiveness of different 053

Test-time Compute methods across various tasks, 054

which would provide valuable guidance for re- 055

searchers developing new models. Besides, under- 056

standing the inference mechanism of the o1 model 057

is very important to help researchers enhance the 058

capabilities of LLMs. 059

To address the aforementioned issues, we com- 060

pare OpenAI’s o1 model with various Test-time 061

Compute methods, using GPT-4o as the backbone. 062

According to the OpenAI o1 report 1, the model 063

demonstrates exceptional improvements in areas 064

such as mathematics and coding. Therefore, we 065

select four benchmarks—HotpotQA (Yang et al., 066

2018), Collie (Yao et al., 2023), USACO (Shi et al., 067

2024), and AIME 2—to encompass three key rea- 068

soning domains. For certain benchmarks (i.e., Hot- 069

potQA and Collie) that are not challenging for cur- 070

rent LLMs, we follow the LIME (Zhu et al., 2024) 071

and implement a voting method using four selected 072

models (i.e., Qwen (Bai et al., 2023; Yang et al., 073

2024), Yi (AI et al., 2024), Llama3 (Dubey et al., 074

2024), and Claude 3) to filter out samples that can- 075

not be correctly answered by more than two of the 076

LLMs. Then we select four Test-time Compute 077

methods (including Best-of-N (BoN), Step-wise 078

1https://openai.com/index/
introducing-openai-o1-preview/

2https://huggingface.co/datasets/AI-MO/
aimo-validation-aime

3https://claude.ai/

1

https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://claude.ai/


BoN, Agent Workflow, and Self-Refine) as base-079

lines which use the GPT-4o as the backbone. As080

for BoN and Step-wise BoN, we use GPT-4o as the081

reward model to select the most suitable responses082

for a given sample. We directly use the code from083

the GitHub of the Self-Refine (Madaan et al., 2024).084

As for the Agent Workflow, we utilize the state-of-085

the-art agent framework (Zhou et al., 2024) on the086

HotpotQA and Collie, and we use the GPTs 4 for087

USACO and AIME.088

We have conducted comprehensive experiments089

on our filtered benchmarks, and we have the fol-090

lowing insightful findings:091

• The OpenAI’s o1 model achieves the best re-092

sults across almost all benchmarks and demon-093

strates significant improvements in coding and094

math tasks using the CoT-based approach.095

• The domain-specific system prompt is cru-096

cial for Step-wise methods. Specifically, the097

Agent Workflow method greatly enhances the098

model’s performance and it is relatively close099

to the o1’s performance, while the impact of100

Step-wise BoN on the model’s capabilities is101

mainly evident in the HotpotQA task. Besides,102

we assume that the Agent Workflow with a se-103

ries of domain-specific system prompts can104

not only reduce unnecessary reasoning steps105

but also carefully align with the reasoning106

problems.107

• We summarize 6 types of o1 reasoning108

patterns (i.e., Systematic Analysis (SA),109

Method Reuse (MR), Divide and Conquer110

(DC), Self-Refinement (SR), Context Identi-111

fication (CI), and Emphasizing Constraints112

(EC)) across four benchmarks, and we ob-113

serve that the most commonly used reasoning114

patterns in o1 are DC and SR, which might be115

the key to o1’s success. Moreover, the reason-116

ing patterns vary across different tasks. Specif-117

ically, for commonsense reasoning tasks, o1118

tends to use CI and EC. In contrast, in math119

and coding tasks, o1 mainly relies on MR and120

DC.121

• We also explore the number of reasoning to-122

kens of o1 across different tasks, and observe123

that the number of reasoning tokens varies a124

lot across different tasks.125

4https://openai.com/index/introducing-gpts/

2 Related Work 126

2.1 Large Language Models 127

With the emergence of Transformers (Vaswani, 128

2017) and the scaling laws (Henighan et al., 2020), 129

the researchers try to scale up the parameters of the 130

generative language model. As a result, OpenAI’s 131

GPT series models (Radford, 2018; Radford et al., 132

2019; Brown, 2020; Achiam et al., 2023) have 133

achieved remarkable success in the NLP field. In- 134

spired by the scaling law, the rapid development of 135

open-source models has also been achieved through 136

scaling up the size of parameters and collecting 137

huge data for pre-training, such as Qwen (Bai 138

et al., 2023; Yang et al., 2024), Yi (AI et al., 2024), 139

Llama (Touvron et al., 2023; Dubey et al., 2024), 140

and Deepseek (Bi et al., 2024). Apart from these, 141

current researchers are meeting the demands of 142

training LLMs by collecting higher-quality instruc- 143

tion data and pre-training data. Moreover, improv- 144

ing the quality of the collected data has also gained 145

significant attention in developing LLMs. However, 146

the approach of enhancing model performance by 147

increasing model parameters and collecting more 148

data is facing a bottleneck (Snell et al., 2024). 149

2.2 Test Time Compute Methods 150

Snell et al. (2024) propose that scaling LLMs Test- 151

time Compute optimally can be more effective than 152

scaling model parameters. Besides, there are some 153

methods designed for adapting Test-time Compute 154

to LLMs’ reasoning. OpenAI’s o1 model 5 is de- 155

signed to spend more time reasoning before they re- 156

spond for the sake of obtaining better performance. 157

Wang et al. (2023) conduct a hierarchical hypothe- 158

sis search to enable inductive reasoning capabilities. 159

Besides, A number of related works have been pro- 160

posed to augment LLMs with tools with Test-time 161

Compute, which can greatly improve their perfor- 162

mance on downstream tasks (Gao et al., 2023; Qin 163

et al., 2023; Qu et al., 2024). Moreover, several 164

works have been proposed to learn thought tokens 165

in an unsupervised manner (Goyal et al., 2023; Ze- 166

likman et al., 2024), which enable models to more 167

effectively utilize the Test-time compute with sam- 168

pling longer sequences. In this work, we explore 169

the performance of OpenAI’s o1 model on several 170

common NLP reasoning tasks and investigate the 171

reasoning patterns when compared to some classi- 172

cal Test-time Compute methods. 173

5https://openai.com/o1/
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3 Experimental Setup174

In order to comprehensively evaluate the capabil-175

ity of OpenAI’s o1 model, we select and filter 4176

benchmarks covering 3 domains (i.e. Common-177

sense Reasoning, Math, and Code). Then we pro-178

vide the results of o1, GPT-4o, and some traditional179

Test-time Compute methods.180

3.1 Benchmarks181

Commonsense Reasoning. We select Hot-182

potQA (Yang et al., 2018) and Collie (Yao et al.,183

2023) to evaluate the commonsense reasoning abil-184

ity of LLMs. The HotpotQA mainly focuses on185

commonsense reasoning, which requires LLMs to186

use multiple supporting documents to answer. Col-187

lie needs LLMs to generate text allowing the speci-188

fication of rich, compositional constraints with di-189

verse generation levels. Due to the excellent open-190

ended response generation capabilities of GPT-4o191

and o1, these models demonstrate relatively strong192

performance on certain benchmarks, particularly in193

commonsense reasoning. According to LIME (Zhu194

et al., 2024), we design a data filtering module to195

show the performance differences among different196

models. This module involves using four differ-197

ent LLMs (i.e., Llama3-72B (Dubey et al., 2024),198

Qwen-72B (Bai et al., 2023), Claude to answer199

each sample in those benchmarks and subsequently200

filtering out samples that more than two models201

can answer correctly.202

Code. We are using the bronze level of the US-203

ACO (Shi et al., 2024) competition to test the cod-204

ing skills of LLMs. The USACO focuses on al-205

gorithmic and problem-solving skills. We employ206

LLMs like Llama3-72B, Qwen-72B, and Claude207

to solve these problems, selecting only those that208

prove challenging across multiple models to ensure209

a rigorous assessment of their coding abilities.210

Math. We directly use the AIME 6 benchmark to211

evaluate the model’s math ability, which contains212

90 problems from AIME 22, AIME 23, and AIME213

24, and have been extracted directly from the AOPS214

wiki page.215

3.2 Baseline methods216

We select two powerful closed-source LLMs for217

evaluation.218

6https://huggingface.co/datasets/AI-MO/
aimo-validation-aime

o1 model. It is designed to spend more time 219

reasoning before they respond, which can reason 220

through complex tasks and solve harder problems 221

than previous models in science, coding, and math. 222

GPT-4o. It is a multimodal model that integrates 223

text, vision, and audio processing capabilities into 224

a single and unified neural network. 225

As for Test-time Compute methods, we select 226

four methods based on GPT-4o. 227

Best-of-N (BoN). It makes LLMs generate mul- 228

tiple N outputs for a given input, and the most 229

suitable response is selected as the output. 230

Step-wise BoN. It enables LLMs to analyze 231

a problem and break it down into several sub- 232

problems. For each step, the model generates N 233

responses based on the previous sub-problems and 234

answers, and then we use a reward model to select 235

the best response. This process continues itera- 236

tively until the final answer to the original problem 237

is obtained. 238

Self-Refine. It improves initial outputs from 239

LLMs through iterative feedback and refine- 240

ment (Madaan et al., 2024). 241

Agent Workflow. LLM agents break down com- 242

plex tasks into smaller sub-tasks, plan their ex- 243

ecution through a structured workflow, and uti- 244

lize various tools to achieve their goals. For the 245

commonsense reasoning datasets, we leverage the 246

existing state-of-the-art agent framework (Zhou 247

et al., 2023, 2024) for evaluation. For the code and 248

math datasets, we select the top-picked agents from 249

GPTs 7, specifically code copilot and math solver, 250

respectively. 251

3.3 Metrics 252

As for HotpotQA and AIME, we design a rule to 253

determine whether the model-generated response 254

contains the correct answer and use the accuracy 255

of the model’s responses as the final score. Re- 256

garding Collie, we directly determine whether the 257

model-generated response is correct. As for coding 258

tasks (i.e., USACO), we manually run the LLMs- 259

generated code on the test examples, and regard the 260

code passing the test cases as right. 261
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Commonsense Reasoning Code MathSetting Baselines N Overall HotpotQA Collie USACO AIME

Direct
o1-preview - 34.32 14.59 34.07 44.60 44.00
o1-mini - 35.77 15.32 53.53 12.23 62.00
GPT4o - 18.44 13.14 43.36 5.04 12.22

BoN 4 17.65 13.50 39.82 5.04 12.22
BoN 8 19.04 16.42 38.50 7.91 13.33
Step-wise BoN 1 6.09 13.50 5.31 0.00 5.56
Step-wise BoN 4 9.79 15.69 19.55 0.00 7.78
Self-Refine 3 5.62 13.25 0.00 0.00 9.23

Test-Time

Agent Workflow - 24.70 14.96 46.07 22.22 15.56

Table 1: The results of OpenAI’s o1 model, GPT4o, and some Test-time Compute methods on our selected four
benchmarks (i.e., HotpotQA, Collie, USACO, AIME). The ‘-’ in the table represents that the method does not
search the multiple responses for generation. Direct refers to having the LLMs generate a response directly from
the input text, while Test-Time refers to using the Test-time Compute method based on GPT-4o.

4 Results262

4.1 Overall Analysis263

We conduct various experiments to evaluate the per-264

formance of o1 and the Test-time Compute meth-265

ods. As shown in Table 1, the OpenAI’s o1 model266

achieves the best performance on most benchmarks267

compared to previous Test-time Compute methods268

and GPT-4o, particularly in Math and Code tasks.269

Among those benchmarks, o1’s improvement in270

mathematical and coding tasks is particularly no-271

table compared to other methods, which shows that272

this thinking-before-reasoning approach is more273

suitable for complex multi-step reasoning in mathe-274

matical and coding tasks. Specifically, the o1-mini275

surpasses the o1-preview on some tasks, it shows276

that the reasoning process of o1 does not always277

lead to better improvements.278

The performance improvement from Self-Refine279

is not significant. On most tasks, Self-Refine280

shows only a slight improvement compared to GPT-281

4, and its performance even declines on Collie. For282

this phenomenon, we assume that LLMs may gen-283

erate responses that slightly deviate from the re-284

quired format during the refinement iterations of285

Self-Refine.286

BoN achieves relatively good results on Hot-287

potQA. It demonstrates the necessity of search-288

ing for more possible responses during the infer-289

ence stage by scaling time. However, the perfor-290

mance of BoN on Collie has declined compared to291

the original GPT-4o. Besides, when N increases,292

7https://openai.com/index/introducing-gpts/

there is a slight degradation in performance. We 293

believe this is due to Collie’s strict format require- 294

ments, which limit the effectiveness of diverse out- 295

puts from LLMs. 296

The Step-wise BoN is limited by the complex 297

tasks. As for Step-wise BoN, it achieves an excel- 298

lent result on HotpotQA, which does not have a re- 299

striction on output text. However, its performance 300

drops significantly on other complex benchmarks 301

that make Step-wise BoN generate numerous inter- 302

mediate steps and cannot follow the original ques- 303

tion. 304

Agent Workflow achieves a significant improve- 305

ment in performance on all benchmarks. The 306

Agent Workflow uses a similar idea to the step-wise 307

BoN that breaks down complex tasks into smaller 308

subtasks, but it designs a series of domain-specific 309

system prompts, which reduces unnecessary long- 310

context reasoning processes. However, there is 311

still a gap between the Agent Workflow and the 312

o1 model, which may be because Agent Workflow 313

explores a less diverse space of responses. 314

4.2 Analysis of the reasoning pattern of o1 315

As shown in Table 1, although o1 is generally much 316

better than other models, some Test-time Compute 317

methods can still achieve relatively close results 318

to o1 in certain specific tasks. To this end, we 319

analyze the reasoning patterns of o1 across various 320

tasks and summarize the reasoning patterns across 321

different benchmarks as follows: 322

• Systematic Analysis (SA). Starting from the 323

overall structure of the problem, o1 first an- 324

4
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Figure 1: The statistics of different reasoning patterns on different benchmarks.

alyzes the inputs and outputs, as well as the325

constraints, and then decides on the choice of326

algorithm and the use of data structures.327

• Method Reuse (MR). For some problems328

that can be transformed into classic problems329

(such as the shortest path or knapsack prob-330

lem), o1 can quickly reuse existing methods331

to solve them.332

• Divide and Conquer (DC). It breaks down a333

complex problem into subproblems and con-334

structs the overall solution by solving the sub-335

problems.336

• Self-Refinement (SR). o1 assesses its reason-337

ing process during inference to determine if338

there are any issues and correct any errors.339

• Context Identification (CI). For some340

datasets requiring additional information in-341

put (e.g., HotpotQA), o1 first summarizes dif-342

ferent aspects of the context related to the343

query, and then gives the response for the cor-344

responding query.345

• Emphasizing Constraints (EC). For some346

datasets with constraints on the generated text347

(e.g., Collie), o1 usually emphasizes the cor-348

responding constraints during the reasoning349

process.350
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Figure 2: The statistics of reasoning patterns.

We randomly selected 20 to 30 samples of each 351

benchmark to count the number of different reason- 352

ing patterns. As shown in Fig. 2, the performance 353

of o1 is primarily influenced by three reasoning 354

patterns: DC, SR, and SA. Among these, SA and 355

DC appear most frequently, suggesting that the 356

combination of SR and DC plays a crucial role in 357

enhancing the performance of o1. 358

We also show the statistics of the reasoning pat- 359

terns on different benchmarks in Fig. 1, where dif- 360

ferent tasks require different reasoning patterns. 361

Specifically, in commonsense reasoning tasks, o1 362

tends to use task-specific global analysis methods 363

(such as CI and EC) and DC. In math and coding 364

tasks, o1 mainly relies on DC and MR. For both 365

Collie and AIME, o1 follows a relatively shorter 366
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Figure 3: The statistics of the number of o1’s reasoning tokens on different tasks. ‘ALL’ represents the average
length of reasoning tokens for all samples, while ‘True’ and ‘False’ show the averages for correctly and incorrectly
answered samples, respectively. ‘Input’ refers to the average length of the input prompt.

reasoning process, which we find is also linked to367

its reasoning patterns. Specifically, o1 often em-368

ploys the MR approach, where it directly applies369

well-known classic solutions to solve mathematical370

problems without the need for multi-step reasoning.371

In the case of Collie, o1 tends to use the EC reason-372

ing pattern. This allows the model to place greater373

emphasis on Collie’s output format requirements,374

preventing the generation of an excessively long375

reasoning process that would result in outputs not376

meeting the format requirement.377

4.3 Long Context Inference Limits Step-Wise378

BoN379

Apart from generating multiple responses in380

breadth, the Step-wise strategy is also important for381

scaling inference time. Specifically, the Step-wise382

methods often produce many intermediate steps,383

and excessively long context information can pre-384

vent the model from following the original input385

text to generate the correct response. As shown in386

Table 2, we provide the average number of tokens387

in the intermediate steps of Step-wise BoN infer-388

ence across different tasks. The average number of389

reasoning tokens in almost all tasks exceeded 200,390

which also confirms that Step-wise BoN requires391

the model to have strong long-context following ca-392

pabilities. The Step-wise BoN performs relatively393

worse on tasks like Collie and AIME, where the394

output text format and reasoning process are highly395

complex (for instance, Step-wise BoN achieves less396

than 12% accuracy on Collie, and its performance397

Commonsense Reasoning Coding Math
HotpotQA Collie USACO AIME

273.59 450.31 439.90 262.51

Table 2: The average reasoning token length of Step-
wise BoN (N = 4).

on AIME is only half that of other methods). How- 398

ever, for tasks (e.g., HotpotQA) that do not require 399

stringent output formatting or intricate reasoning, 400

both BoN and Step-wise BoN significantly enhance 401

the model’s results (when N = 4, Step-wise BoN 402

outperforms GPT-4o by 2.55% and BoN surpasses 403

GPT-4o by 0.36% on HotpotQA). 404

4.4 The Number of Reasoning Tokens Across 405

Different Tasks for o1 406

To investigate whether the number of reasoning to- 407

kens is related to o1’s ability, we developed a rule 408

to extract o1’s reasoning tokens and computed their 409

count across different tasks. Additionally, we calcu- 410

lated the average number of tokens for both correct 411

and incorrect samples. Furthermore, to explore the 412

relation between input prompt length and reasoning 413

tokens length, we also calculate the average input 414

length. As shown in Fig. 3, we observe that the 415

number of reasoning tokens for correct and incor- 416

rect samples is similar for the same task, and there 417

is no clear correlation between the input prompt 418

length and the length of the reasoning tokens. In- 419

stead, there is a significant difference in reason- 420
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Figure 5: The results of BoN under different search
spaces (i.e. the N ranging from 1 to 16) on HotpotQA.

ing tokens across different tasks. Specifically, for421

commonsense reasoning tasks (i.e., HotpotQA and422

Collie), the o1’s reasoning token length is relatively423

short. However, for more difficult tasks like Code424

(i.e., USACO) and Math (i.e., AIME), the model425

often requires a longer reasoning process to obtain426

the correct answer.427

4.5 The Reward Model Limits Abilities of428

Searching Methods429

As for the BoN series methods, they need to use a430

reward model to choose the most suitable responses431

among all the generated responses. Especially for432

the Step-wise method, an error in any intermediate433

step can lead to error accumulation, which signifi-434

cantly affects the final output of the model. There-435

fore, for BoN, we conduct experiments by using436

different reward models (e.g. Skywork-Reward-437

Gemma-2-27B (Liu and Zeng, 2024) and URM-438

LLaMa-3.1-8B (Lou et al., 2024)) from the Leader-439

board of RewardBench (Lambert et al., 2024). We440
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Figure 6: The results of o1 model on AIME24, AIME23,
and AIME22.

also use the GPT-4o as the reward model to choose 441

the most suitable response. Moreover, to demon- 442

strate the reward models’ limitation on the search- 443

ing ability of LLMs, we also use the Human as 444

the reward model to judge the most suitable gen- 445

erated response of BoN. As shown in Fig. 4, we 446

provide the results of BoN (GPT-4o) using different 447

reward models. As for HotpotQA, those methods 448

have relatively worse performance (i.e., their ac- 449

curacies are under 15%), while the human-based 450

reward model could help to improve the LLMs’ 451

ACC to 33%. As for the Collie, the performances 452

of using other reward models are close to human 453

results, which show the reward models’ ability to 454

determine the upper boundary of those methods. 455

Besides, although the BoN could have comparable 456

results on HotpotQA compared with o1, it can be 457

significantly improved by using a more powerful 458

reward model, demonstrating that the reward model 459

is crucial for the search methods. 460

4.6 The Search Space also Determines the 461

Upper Boundary of LLMs 462

Apart from the Agent Workflow, BoN also per- 463

forms relatively well across various datasets, but its 464

performance is limited by N . To fully explore the 465

upper bound of BoN’s capabilities, we increased 466

the value of N in HotpotQA. For the sake of com- 467

prehensively evaluating the BoN’s capability based 468

on different LLMs with different capability levels, 469

we also evaluate Qwen2.5-72B and Llama3-70B in 470

Fig. 5. Specifically, as shown in Fig. 5, we compare 471

the results of BoN using different backbone models 472

under different search spaces (i.e., N = 1, 4, 8, 16). 473

With the N increasing, the performance of BoN 474

tends to stabilize. Notably, both Qwen2.5 and 475
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Figure 7: The results of the LLMs on the raw bench and the filtered bench. On the left subfigure, we present LLMs’
capabilities on the raw and filtered HotpotQA, and on the right subfigure, we provide the corresponding results on
Collie.

Commonsense Reasoning Coding Math
HotpotQA Collie USACO AIME

274 226 139 90

Table 3: The statistics of filtered benchmarks.

Llama3 achieve excellent performance on the Hot-476

potQA dataset. However, when BoN uses these477

three models as backbone models, performance478

does not improve consistently with increasing N .479

When N > 8, the performance of the models either480

stabilizes or declines. We suppose the reason is that481

the performance of the search methods is jointly482

related to the reward model and searching space.483

4.7 Analysis on Data Filter484

The current benchmarks contain many simple sam-485

ples that cannot distinguish the performance dif-486

ference across different LLMs, and we filter the487

samples in HotpotQA and Collie. To demonstrate488

the impact of our data filter module, we compare489

the performance of LLMs on benchmarks before490

and after applying the data filter, where Table 3491

presents the statistics about our selected bench-492

marks after data filtering. As shown in Fig. 7, after493

data filtering, the scores of different LLMs are rela-494

tively lower and show greater distinction. Notably,495

on HotpotQA, the differences between Qwen2.5496

and GPT-4o become evident on our filtered bench-497

mark, which demonstrates the effect of our data498

filter strategy.499

4.8 The Math Ability of OpenAI’s o1500

To comprehensively evaluate the o1 models’ ability501

in math, we evaluate the o1-preview, o1-web, and502

o1-mini on the AIME22, AIME23, and AIME24. It 503

is worth mentioning that the o1-mini demonstrates 504

the best performance (around 60%) across these 505

three datasets. However, the performance of the 506

o1-preview fluctuates significantly across different 507

datasets. For example, for o1-preview, the best 508

performance on AIME24 is 57%, while results on 509

the other two datasets are both around 40%. 510

5 Conclusion 511

In this work, we explore the capabilities of Ope- 512

nAI’s o1 model in tasks involving mathematics, 513

coding, and commonsense reasoning, and com- 514

pare o1 with previous Test-time Compute methods 515

(i.e., BoN, Step-wise BoN, Self-Refine, and Agent 516

Workflow), where the findings are as follows. First, 517

we find that o1 achieves better results than other 518

Test-time Compute methods across most tasks. Sec- 519

ond, the Agent Workflow method shows significant 520

improvements in all tasks, but the BoN, Step-wise 521

BoN, and Self-Refine methods yield limited im- 522

provements due to their reliance on the model’s 523

long-context instruction-following ability and the 524

performance of the reward model. Third, we also 525

summarize six reasoning patterns (i.e., SA, MR, 526

DC, SR, CI, EC) of o1, and demonstrate that SR 527

and DC are the main reasoning patterns of o1. We 528

also found that on specific tasks, o1 achieves a 529

higher accuracy by using a certain reasoning pat- 530

tern, which indicates that these reasoning patterns 531

are crucial for improving reasoning performance. 532

Finally, we hope our study on the reasoning pat- 533

terns of o1 can guide developers and researchers in 534

understanding the principle of o1 and facilitate the 535

growth of foundation models. 536
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Limitations537

In this work, we have extensively investigated538

the gap between various test-time methods and539

o1. However, we did not specifically design a re-540

ward model to evaluate different paths of reason-541

ing within this chain-of-thought framework, which542

greatly limited the performance of our baseline in543

the experiments. Furthermore, although we found544

that current LLMs struggle to effectively handle545

longer chains of reasoning, we did not explore546

whether context compression methods could allevi-547

ate this issue.548

Ethics Statement549

The dataset used in our research is constructed us-550

ing publicly available data sources, ensuring that551

there are no privacy concerns or violations. We552

do not collect any personally identifiable informa-553

tion, and all data used in our research is obtained554

following legal and ethical standards.555
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A Case Study 717

The HotpotQA needs LLMs to process multiple 718

documents to obtain the results of the reasoning 719

question, which needs multi-hop reasoning. The o1 720

generally summarizes the content of the documents 721

from different perspectives to arrive at a solution. 722

As shown in Fig. 8, firstly, the o1 model proposes 723

the “main idea” (i.e., analyzing the context related 724

to the question). Then it obtains the content in the 725

three dimensions (i.e., “Mapping out attractions”, 726

“Mapping out attractions”, and “Navigating the evo- 727

lution”). It is worth mentioning that “Navigating 728

the evolution” contains the reasoning chain of the 729

multi-hot reasoning question. 730

A.1 AIME 731

Unlike simpler methods that tackle problems 732

through straightforward subtasks, AIME demands 733

a deep integration of diverse mathematical princi- 734

ples to derive accurate solutions. As illustrated in 735

Fig. 9, o1 uses a CoT method following a struc- 736

tured approach: “Identify Key Concepts”, “Ana- 737

lyze Constraints”, “Apply Mathematical Formu- 738

las”, and “Construct Logical Reasoning”, where 739

the “Logical Reasoning” involves a systematic and 740

detailed process for solving multi-step problems. 741

This reasoning pattern emphasizes the importance 742

of integrating insights from various mathematical 743

concepts to enhance the model’s ability to handle 744

complex problems effectively. By following this 745

framework, LLMs can navigate the intricate nature 746
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Give you a question: The attraction at universal studios that was based on "The 
Tonight Show" replaced an attraction that replaced an attraction based on what 
movie? And a context: …

> Thinking
**Examining the context**
I’m analyzing the context, which highlights Universal Studios attractions and their updates. 
Noting which movie-based attraction was replaced before 'The Tonight Show' attraction.

**1. Mapping out attractions**
I'm identifying the attractions at Universal Studios: T2 3-D: Battle Across Time closes 
soon, and Waterworld: A Live Sea War Spectacular, praised despite the film's 
challenges, continues to be a favorite.
**2. Trying another way**
Disney plans to build a "Guardians of the Galaxy" attraction at Epcot, replacing the 
Universe of Energy pavilion. It will be Walt Disney World's first Marvel-themed 
attraction, complementing the existing Iron Man Experience at other parks.
**3. Navigating the evolution**
Universal Studios Florida revamped its offering with 'Twister...Ride It Out', shutting 
down 'Ghostbusters Spooktacular' in 1997. The attraction, featuring icons Bill Paxton 
and Helen Hunt, closed on November 2, 2015, and was succeeded by 'Race Through 
New York Starring Jimmy Fallon' starting April 6, 2017.

>Input

>Inference
Based on the provided context, the attraction at Universal Studios that is based on "The 
Tonight Show" is **Race Through New York Starring Jimmy Fallon**. This attraction replaced 
**Twister...Ride It Out**, which was based on the 1996 film **"Twister"**. Before that, 
"Twister...Ride It Out" had replaced the **Ghostbusters Spooktacular** attraction, which was 
based on the movie **Ghostbusters Spooktacular **.

O1’s Answer:  Ghostbusters Spooktacular
Golden Answer: Ghostbusters Spooktacular

HotpotQA

Figure 8: The o1’s case of HotpotQA.

of AIME problems, ensuring that all relevant math-747

ematical concepts and logical steps are thoroughly748

considered.749

A.2 Collie750

The task of the Collie dataset requires generating751

a paragraph based on the constraint. Specifically,752

as illustrated in Fig. 10, at each step of the rea-753

soning process of the o1 model, the form of the754

constraint is emphasized to strengthen for better755

generation. Therefore, for tasks requiring strictly756

controlled generation, the model needs to empha-757

size the instructions multiple times to guide the758

content generation.759

A.3 USACO760

In the USACO competition, o1 demonstrates its761

robust problem-solving capabilities. As illustrated762

in Fig. 11, o1 starts by establishing a foundational763

framework by defining key variables and data struc- 764

tures, and then applies algorithmic logic for state 765

transitions, which will produce the optimal solu- 766

tion gradually. Besides, o1 not only considers all 767

possible paths and scenarios but also uses loops, 768

recursion, and other methods to verify each step 769

rigorously, which helps o1 comprehensively cover 770

multiple aspects of the problems and generate cor- 771

rect solutions efficiently. 772
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> Thinking
1.Formulating constraints
l’m mapping out the constraints for 𝑥𝑥76 − 𝑥𝑥16 ensuring the ….
2.Analyzing constraints
l’m examining the constraints of the variables, aiming to maximize the difference
between the 76th and 16th ….
3.Setting indices
I’m setting 𝑥𝑥16 to the most negative value and 𝑥𝑥76 to the most positive one, given… .
…
6.Unraveling the equation

l’m digging into the equation 𝑏𝑏 = 16
25
𝑎𝑎 to….

> Input
AIME

Let 𝑥𝑥1 ≤ 𝑥𝑥2 ≤ ⋯ ≤ 𝑥𝑥100 be real numbers such that 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥100 = 1
and 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥100 = 0. Among all such 100-tuples of numbers, the greatest 
value that 𝑥𝑥76 − 𝑥𝑥16 can achieve is 𝑚𝑚

𝑛𝑛
, where 𝑚𝑚 and 𝑛𝑛 are relatively prime positive 

integers. Find 𝑚𝑚 + 𝑛𝑛.

> Inference
Step 1: Assign Extreme Values
To maximize 𝑥𝑥76 − 𝑥𝑥16, we need to maximize 𝑥𝑥76 and minimize 𝑥𝑥16.: …
•Step 2: Apply the Sum Constraints
Next, apply the absolute value sum constraint: …

Step 3: Compute 𝐱𝐱𝟕𝟕𝟕𝟕 − 𝐱𝐱𝟏𝟏𝟕𝟕 Simplify: 82
1600

= 41
800

.

Step 4: Find 𝐦𝐦 + 𝐧𝐧 Let 𝐦𝐦 = 𝟒𝟒𝟏𝟏,𝐧𝐧 = 𝟖𝟖𝟖𝟖𝟖𝟖, so 𝐦𝐦 + 𝐧𝐧 = 𝟒𝟒𝟏𝟏 + 𝟖𝟖𝟖𝟖𝟖𝟖 = 𝟖𝟖𝟒𝟒𝟏𝟏.

O1’s Answer:  841 Golden Answer: 841

Figure 9: The o1’s case of AIME.
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Please generate a paragraph:
1) with exactly 3 sentences;
2) not containing the word 'be';
3) not containing the word 'of';
4) not containing the word 'is'.

>Input

>Inference
The sun climbs slowly, painting the horizon with vibrant shades that hint at warmth. Birds 

sing in unison, their melody drifting across the quiet streets. People stroll along paths, their 
faces glowing with anticipation for what lies ahead.

Grammar Check:  Pass

COLLIE

> Thinking
**Crafting the paragraph**
I’m careful not to use 'be', 'of', or 'is'. Instead, I’m selecting precise, vivid words, ensuring 
the paragraph's structure and meaning are thoughtfully established. This approach keeps 
the text engaging and grammatically sound.
**Creating compliant content**
I’m crafting a 3-sentence paragraph that avoids 'be', 'of', and 'is'. The paragraph will stay 
clear of mentioning policies or hidden reasoning, ensuring compliance and appropriateness.
**Clarifying usage rules**
I’m sorting out which forms of 'to be' are allowed, like 'being' and 'been', while 'be', 'is', 
'are', 'was', and 'were' are prohibited. This distinction ensures precision in word choice.
**Crafting the scene**
I’m thinking about a sentence to paint a vivid picture without using 'of', 'be', or 'is'. The 
phrase "hues of pink and orange" needs rephrasing to avoid 'of'.
**Painting a morning**
I'm crafting a vivid morning scene: the sun rises, colors the sky in pink and orange, birds 
sing, and people enjoy hopeful smiles as the day starts. It's sprucing up each sentence for 
clarity and appeal.

Figure 10: The o1’s case of Collie.
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Given N cows (2 <= N <= 100) with a social hierarchy and specific milking position demands, 
find the earliest position cow 1 can be milked. The input includes:
- N: Total number of cows.
- M: Number of cows in a specific social order.
- K: Number of cows with a fixed milking position.
- A list of M integers representing the social hierarchy order.
- K pairs of integers: cow c_i and its required position p_i.

> Thinking
**Cracking the problem** I’m analyzing the given constraints and how they shape the 
milking order. The objective is to find the earliest possible position for cow 1 in the milking 
sequence, ensuring all constraints are met. 
**Mapping out constraints** Focusing on N cows, peculiar positions for M of them, and 
rearrangements for K. The goal is to spot the earliest position for cow 1.
...

>Input

>Inference
To solve this problem, we need to determine the earliest position that cow 1 can occupy in 
the milking order while satisfying all the given constraints: 

1. **Ordering Constraints**: Cows in the hierarchy must be milked in the specified order. 
2. **Fixed Positions**: Certain cows must be milked at specific positions. 
3. **Unique Positions**: Each cow must occupy a unique position in the order.

**Approach Overview**:
...
**Implementation Considerations**:
...

USACO

Grammar Check: Pass

Figure 11: The o1’s case of USACO.
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