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Abstract

Real-world Temporal Knowledge Graphs keep
growing with time and new entities and facts
emerge continually, necessitating a model that
can extrapolate to future timestamps and trans-
fer knowledge for new components. Therefore,
our work first dives into this more realistic is-
sue, lifelong TKG reasoning, where existing
methods can only address part of the challenges.
Specifically, we formulate lifelong TKG rea-
soning as a temporal-path-based reinforcement
learning (RL) framework. Then, we add tempo-
ral displacement into the action space of RL to
extrapolate for the future and further propose
a temporal-rule-based reward shaping to guide
the training. To transfer and update knowledge,
we design a new edge-aware message passing
module, where the embeddings of new entities
and edges are inductive. We conduct extensive
experiments on three newly constructed bench-
marks for lifelong TKG reasoning. Experimen-
tal results show the outperforming effectiveness
of our model against all well-adapted baselines.

1 Introduction

Knowledge Graphs (KGs) are constructed to store
structured facts about human knowledge or the
objective world, and formalize facts as entities e
(nodes) and relations r (links) between them. Static
Knowledge Graphs (SKGs) and Temporal Knowl-
edge Graphs (TKGs) are two typical forms of KGs.
SKGs store facts in the form of triples (es, r, eo)
and TKGs extend triples to quadruples (es, r, eo, t),
where t indicates the happening time. Since real-
world events are usually ever-changing and associ-
ated with time, TKGs are naturally confronted with
issues of continually emerging entities and facts in
the future timestamps throughout their whole life-
cycle (Chen et al., 2023a). Therefore, this paper
investigates TKG link prediction task over incom-
plete TKGs in the lifelong setting, named lifelong
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Figure 1: A sample sequence of three TKG snapshots
in lifelong TKG reasoning. New entities (blue nodes)
and new facts (all edges) in each snapshot emerge with
time.

TKG reasoning. Figure 1 is an example in dataset
ICEWS14 for temporally growing TKGs.

However, SKG reasoning methods (Trouillon
et al., 2016) lack the consideration of temporal
changing; conventional transductive TKG reason-
ing methods (Lacroix et al., 2020) need re-train for
their closed-world assumption; and the latest induc-
tive TKG reasoning methods (Chen et al., 2023b)
treat emerging entities as simultaneous, oversim-
plifying the real scenario and thereby leading their
genuine performance to be questionable. Hence,
our proposed lifelong TKG reasoning issue is more
challenging and realistic.

We formulate the lifelong TKG reasoning as
a temporal-path-based RL framework and design
the whole pipeline for extrapolating, transferring
and updating. In the following, we introduce our
targeted solutions and expound on their advantages
over existing methods.

First, we focus on the temporal displacement
between timestamps of candidate edge and its pre-
ceding edge and add temporal displacement into
RL action space. TKGE models (Xu et al., 2021)
rely on embeddings of absolute timestamps and are
only fit for the past timestamps. Obviously, they
do not meet the requirements of lifelong learning.
On the contrary, our used transferable temporal dis-



placement in RL can be extrapolated from known
timestamps to arbitrary future timestamps based on
the magnitude of the displacement. In addition, we
further design a reward-shaping module based on
temporal rules found by RL, which only have the
temporal order constraints of relations. This mod-
ule makes the reasoning get rid of particular entities
and will still be applicable for future timestamps.

Secondly, lifelong TKG reasoning can be consid-
ered as multiple consecutive inductive TKG reason-
ing processes. Recently, inductive TKG reasoning
methods (Park et al., 2022; Xu et al., 2023) can
only deal with future time, not new components,
not to mention their ability to continuously learn as
required in lifelong TKG reasoning. Therefore, we
design a new edge-aware message passing module,
which not only transfers learned relation types to
initialize emerging entities, but also updates the
embeddings of all entities and edges in new TKGs.
We also use the embeddings of specific edges rather
than immobile relation types, since we seek to ex-
plore the concrete environment for each fact to
counteract the influence of rapid TKG growth.

We build three new benchmarks based on three
popular datasets to simulate the lifelong TKG rea-
soning scenario. In the experiments, we carefully
adapt existing baselines by empowering them with
temporal extrapolation or knowledge transfer capa-
bilities. In summary, our main contributions are:

• To our knowledge, we are the first to pose and ex-
plore the more challenging and realistic lifelong
TKG reasoning issue, which simulates growing
TKGs in terms of timestamps, entities and facts,
and we formulate it as a RL-based framework.

• To solve the challenges of temporal extrapolation
and knowledge transfer in lifelong TKG reason-
ing, we propose the targeted solutions: temporal
displacement, temporal-rule-based reward shap-
ing and an edge-aware message passing module.

• We build three new benchmarks to evaluate our
model. Experiments on temporal link prediction
show that our model not only achieves the best
average performance but also has progressively
improving results on growing TKG snapshots.

2 Related Works

2.1 Inductive SKG Reasoning
Traditional SKG reasoning models, such as SKG
Embedding (SKGE) methods, focus on the trans-

ductive setting where they are trained and tested
in a fixed set of components. Recently, induc-
tive SKG reasoning has drawn much attention.
GraIL (Teru et al., 2020), SE-GNN (Li et al.,
2021a) and MaKEr (Chen et al., 2022) are all GNN-
based inductive reasoning models, from the points
of view of subgraphs, data relevance and meta-
learning. PathCon (Wang et al., 2021) leverages
relational message passing for relation prediction,
however, we aim at the harder entity prediction.
Moreover, MINERVA (Das et al., 2018) first in-
troduces RL to search for the tail entity of each
query end-to-end. Multi-Hop (Lin et al., 2018) ad-
vances MINERVA and does reward shaping based
on SKGE methods.

2.2 Inductive TKG Reasoning
Inductive TKG reasoning models mainly deal with
seen entities in the future time. xERTE (Han et al.,
2021) is delicately designed to forecast future links
by an iterative sampling of temporal neighbours.
TGAP (Jung et al., 2021) introduces temporally
relevant events in GNN for better explainability.
For RL-based TKG reasoning, CluSTeR (Li et al.,
2021b) regards RL as a clue searching stage, but
it strips temporal dimension away from RL and
then rearranges the clues in chronological order at
the next temporal reasoning stage. However, they
can not handle unseen entities emerging with time.
TITer (Sun et al., 2021) further defines a relative
time encoding to distinguish the same entity in dif-
ferent timestamps and leverage the query informa-
tion to represent unseen entities. Different from the
above models, we introduce temporal displacement
of facts in the RL and propose relation-type-based
knowledge transferring for emerging entities.

2.3 Lifelong KG Reasoning
Recently, how to retain and reuse previous knowl-
edge in a new environment has become a research
highlight (Wang et al., 2019). MBE (Cui et al.,
2022) explores inductive SKG reasoning under the
multi-batch emergence scenario, which is similar
to the concept of lifelong KG reasoning without
considering time. Next, LKGE (Cui et al., 2023)
first formally studies lifelong SKG reasoning via
transferring knowledge and using TransE (Bordes
et al., 2013) as the base model. However, they did
not pay attention to the crucial temporal factor in
TKGs. To this end, we raise lifelong TKG reason-
ing, which involves both unseen components and
future timestamps, making this issue challenging



Figure 2: Model overview. ei is candidate entity and δtiM is the corresponding temporal displacement (i = 1, 2, 3).

and realistic.

3 Methodology

3.1 Preliminaries

Growing TKGs in lifelong TKG reasoning can be
viewed as a sequence of ρ snapshots: G = (G1,G2,
. . . ,Gρ), each of which, Gi, contains a collection
of fact quadruples over a continuous time period
and Gi = {Ei,Ri, Ti,Di}. Ei,Ri, Ti,Di are entity,
relation, timestamp and fact sets, and Ei ⫋ Ei+1,
Ri = Ri+1, ti < ti+1 (ti ∈ Ti, ti+1 ∈ Ti+1), and
Di ∩ Di+1 = ∅. We use E∆i+1 = Ei+1 − Ei and
Di+1 to denote the emerging entities and facts. The
TKG link prediction task asks to predict the miss-
ing entities of the query edge in incomplete TKGs.
For lifelong TKG reasoning, we leverage the TKG
link prediction task above to train a new model
Mi+1 by transferring and updating knowledge in
Mi to fit E∆i+1 and Di+1. Specifically, Di in Gi

is divided into a training set Fi, a validation set Vi

and a test set Qi. After finishing the training on Fi

and validation on Vi, the model Mi is evaluated
on the accumulated test sets ∪i

j=1Qj for overall
assessments.

3.2 Model Overview

Figure 2 is the architecture of our model. Along
a sequence of growing TKGs, our model trans-
fers and updates knowledge iteratively from the
previous TKG snapshot to the next one, avoiding
re-training. Inside each Gi, we regard the reasoning
as walk-based action selecting process. An agent
starts from the query entity, constantly takes ac-
tions through temporal edges based on temporal
displacement, and expects to reach the target entity
within a limited number of steps (Section 3.3). To

achieve knowledge transferring and updating, we
inject embeddings of relation types into emerging
entities enew, and then update all the embeddings of
entities e and edges g in our proposed edge-aware
message passing module (Section 3.4). Section 3.5
describes our designed temporal-rule-based reward
shaping.

3.3 Reinforcement Learning Framework
For each edge, we add its reversed edge to Gi, mak-
ing the reasoning traceable and controllable. For
each entity e, we also add self-loop temporal edges
at every timestamp to Gi, which allows the agent to
stay in a place, and they work as stop actions.

3.3.1 Environment Setting
Our environment can be formulated as a Markov
Decision Process (MDP) over TKGs and has the
following components. We take Gi as an example.

States. Let Si and (eq, rq, ?, tq) denote all possi-
ble states of Gi and the query. At step m ∈ [0,M ],
the agent locates at entity em and timestamp tm, so
the state sm = (em, tm, eq, rq, tq) ∈ Si. Specifi-
cally, the initial state is s0 = (eq, tq, eq, rq, tq).

Time-constrained Actions. Let Ai denote the
action space of Gi. Let Am

i denote the set of op-
tional actions of sm in Gi. Compared with SKGs,
the time dimension causes the action space of RL
in TKGs extremely large. Hence, we add two tem-
poral constraints to prune the action space, since
facts closer to tm in the state sm under considera-
tion are more likely to be directly relevant to the
prediction:

Am
i = {(e′, g′, tm − t′) | g′ = (em, r′, e′, t′) ∈ Gi,

tm − t′ ≤ T, t′ ≤ tm ≤ tq
}
,

(1)



where g′ is a candidate edge, tm−t′ is the temporal
displacement, T is a hyperparameter. Am

i naturally
considers reversed and self-loop temporal edges.

Transitions. The transition function ω : Si ×
Ai → Si is deterministic under Gi and updates the
states depending on the selected actions.

Rewards. In the default formulation, agents
receive reward Rb(sM )= I(eM == eans), where
sM =(eM , tM , eq, rq, tq) is the final state, eans is
the answer to the query and I is a binary indicator
function. Our designed reward R(sM ) shaped by
temporal rules will be described in Section 3.5.

3.3.2 Policy Network

First, the temporal displacement between times-
tamps of current state tm−1 (t0 = tq) and its sub-
sequent action tm can integrally capture the time-
related dynamics. The temporal displacement is
donated as δtm = tm−1 − tm ≤ T . Secondly,
because of temporally evolving TKGs, even if the
relation types of two edges in Gi and Gi+1 are the
same, their semantics can change considerably due
to different surrounding environments. It is only by
taking surrounding edges into account that we can
understand their contextual semantics. Moreover,
the above operations are also in line with the foun-
dation of RL, which is constant interaction with the
environment.

Therefore, the input of policy network has three
parts: uem ,ugm , τδtm ∈ Rd, i.e., the embeddings
of entity em, edge gm = (em−1, rm, em), and tem-
poral displacement δtm (uem , ugm are obtained
from edge-aware message passing module in Sec-
tion 3.4, τδtm is transferred from Gi−1 and updated
in Gi). Path history hm in Gi is encoded as follows:

hm = LSTM(hm−1, [uem ,ugm , τδtm ]) ;

h0 = LSTM (0, [ueq ,ur0 , τδtq ]),
(2)

where hm ∈ R2d, ur0 ∈ Rd is the embedding
of the special starting relation r0, and δtq = 0.
For a candidate next action a′ = (e′, g′, δt′) ∈ Am

i

(δt′ = tm−t′) in Eq. 1, we calculate the probability
of its state transition based on the correlation of the
action and the query in terms of entities and edges:

ϕ
(
a′, sm

)
= λ⟨[ue′ , τδt′ ],WeEq⟩

+(1− λ) ⟨[ug′ , τδt′ ],WgEq⟩;

Eq = ReLU
(
Wq

[
ueq ,urq , τδtq ,hm

])
;

λ = σ
(
Wλ

[
ue′ ,ug′ , τδt′ ,ueq ,urq , τδtq ,hm

])
,

(3)

where We,Wg,Wq,Wλ are learnable matrices,
⟨·, ·⟩ is vector dot product. After scoring all actions,
policy network πθ(am+1|sm) is obtained through
softmax.

3.3.3 Training and Optimization
We fix the search path length to M . In lifelong
TKG reasoning, the policy network is trained by
maximizing the expected reward over growing
TKG snapshots G1,G2, . . . ,Gρ. Hence, our model
is required to train over F1,F2, . . . ,Fρ in turn:

J(θ) = E(eq ,rq ,eans,tq)∼Fi
[Ea1,...,aM∼πθ

[R(sM |eq,rq,tq)]],
(4)

where i ∈ [1, ρ]. Then, we use the REINFORCE
algorithm to iteratively optimize our model:

∇θJ(θ)≈∇θ

∑
m∈[0,M ]

R(sM |eq,rq,tq) logπθ. (5)

3.4 Embedding Transfer and Update
SKGs with static entity properties can be seen as
long-term valid knowledge and are helpful to gener-
ate accurate evolutional embeddings of entities (Li
et al., 2021c; Niu and Li, 2023). Therefore, for
each TKG snapshot Gi, the timestamps are masked
to convert Gi to its corresponding SKG snapshot
Gs
i .
We adopt a relation-type-based transferring layer

over Gs
i , since the relation types of connected edges

provide valuable clues about their natures. Our in-
troduced transferring layer injects learned knowl-
edge about relation types into new entities. For-
mally, for a new entity e in Gi, we generate its
beginning embedding ub

i(e) ∈ Rd:

ub
i(e) = tanh

(∑
(e′,r,e)∈N in

i (e)
Win ur

+
∑

(e,r,e′)∈N out
i (e)

Wout ur

)
,

(6)
where N in

i (e) = {(e′, r, e) | (e′, r, e) ∈ Gs
i },

N out
i (e) = {(e, r, e′) | (e, r, e′) ∈ Gs

i }. Win ,Wout
∈ Rd×d are two learnable weight matrices. ur ∈
Rd, serving as the embedding of relation type
r, is learnable throughout the whole lifelong
TKG reasoning process. Furthermore, to avoid
recalculating for seen entities, we only generate
embeddings for emerging entities and inherit the



embeddings for seen ones from the preceding TKG
snapshot Gi−1.

In order to update embeddings for all compo-
nents in Gs

i , we propose a new edge-aware message
passing module via bidirectional communication
between edges and nodes. This module enables our
model to better adapt to the rapidly changing envi-
ronment in lifelong TKG learning. For each edge g
in Gs

i , the links connected to its two endpoints act
as a relevant semantic environment.

Therefore, we alternately pass edge-aware
messages between nodes and edges to aggregate
unique environment knowledge for each edge as
follows. uℓ

i(e) and uℓ
i(g) are embeddings of entity

e and edge g at ℓ-th layer:

uℓ+1
i (e) = tanh

(
Wℓ

selfu
ℓ
i(e)

+
∑

g′=(e′,r,e)∈N in
i (e)

Wℓ
in φ

(
uℓ
i(e

′),uℓ
i(g

′)
)

+
∑

g′=(e,r,e′)∈N out
i (e)

Wℓ
out φ

(
uℓ
i(e

′),uℓ
i(g

′)
))

;

(7)
uℓ+1
i (g) =

σ
(
Wℓ

g

[
uℓ
i(g),u

ℓ+1
i (eleft),u

ℓ+1
i (eright)

]
+bℓ

g

)
,

(8)
where u0

i (e) = ub
i(e), u

0
i (e

′) = ub
i(e

′), u0
i (g) =

ur, u0
i (g

′) = ur′ , r(r′) is the relation type of g(g′),
eleft and eright are two endpoints of edge g. Wℓ

self ,
Wℓ

in, Wℓ
out ∈ Rd×d; Wℓ

g ∈ Rd×3d and bℓ
g ∈ Rd

are learnable weight matrices. Message transition
function φ

(
uℓ
i(e

′),uℓ
i(g

′)
)
=uℓ

i(e
′) ◦ uℓ

i(g
′) stores

environment knowledge by calculating the corre-
lation between connected entities and edges. ◦ is
hadamard product.

After L-layer updating, the final representations
of each entity e and edge g are uL

i (e) and uL
i (g).

In the absence of ambiguity, we abbreviate them in
RL (Section 3.3) as ue and ug, respectively.

3.5 Temporal-Rule-Based Reward Shaping
For a query (eq, rq, ?, tq) with answer eans, RL
gives a reasoning trajectory ((eq, r1, e1, t1), (e1,
r2, e2, t2), . . . , (eM−1, rM , eM , tM )), where tq ≥
t1 ≥ t2 ≥ · · · ≥ tM . Then, we can extract a
temporal rule R : (rM , . . . , r2, r1) ⇒ rq with non-
descending temporal constraints and denote the
confidence of R as conf(R). According to Sec-
tion 3.3.1, since the agent receives a binary reward
only based on whether eM is equal to eans, regard-
less of the quality of the reasoning temporal paths,

we introduce a temporal-rule-based reward shaping
to guide the training of the agent:

R(sM ) = Rb(sM ) + conf(R). (9)

conf(R) is obtained by dividing the rule support
by the body support.

4 Constructed Benchmarks

To conduct evaluation for lifelong TKG reasoning,
we construct three new TKG benchmarks based
on three datasets ICEWS14, ICEWS05-15 (García-
Durán et al., 2018) and ICEWS18 (Jin et al., 2020)
to simulate their growth situation of entities, named
as ICEWS14-lifelong, ICEWS05-15-lifelong and
ICEWS18-lifelong. Table 1 shows the statistics of
the new benchmarks.

1. Counting. More uniform entity distribution
makes the changing of G more concentrated
and significant, so we filter entities that occur
less than 10 times and count the remaining
entities, relations, timestamps as |E|, |R|, |T |.

2. Lifelong Simulating. New entities emerge at
almost all the timestamps. Hence, we accu-
mulate the number of entities in chronological
order. First, we define the set of entities at
t0 = 0 as the initial Ei (i = 1, . . . , 5). Sec-
ondly, we iteratively add the set of entities
at the next timestamp to expand Ei. Once
|Ei| ≥ 4+i

10 |E|, we stop expanding Ei, record
the current timestamp ti and then start the
searching for ti+1 in the same way. Thirdly,
after obtaining five timestamps t1 ∼ t5, we
denote the union of TKGs from ti−1 to ti
as TKG snapshot Gi. Since the relations are
dense, we can ensure the number of relations
in all Gi, |Ri|, is equal to |R|. For the last
TKG snapshot G6, we set t6 = |T | to ensure
all facts in D are covered.

3. Dividing. For each TKG snapshot Gi, we
randomly divide Gi into training set Fi, vali-
dation set Vi and test set Qi with ratio 3:1:1.



Benchmarks
G1 G2 G3 G4 G5 G6

|E1| |D1| |T1| |E2| |D2| |T2| |E3| |D3| |T3| |E4| |D4| |T4| |E5| |D5| |T5| |E6| |D6| |T6|
ICEWS14-lifelong 3,609 19,690 83 4,333 9,282 39 5,075 11,328 45 5,803 14,937 62 6,533 17,531 67 7,128 17,962 69

ICEWS05-15-lifelong 1,065 9,197 457 1,157 3,843 172 1,249 5,296 229 1,342 8,255 394 1,434 19,064 917 1,520 33,201 1,848
ICEWS18-lifelong 1,782 5,418 29 1,950 1,601 8 2,107 2,661 13 2,265 3,854 18 2,422 8,832 39 2,519 38,207 197

Table 1: Statistics of the constructed benchmarks. |Ei|, |Di|, |Ti| are numbers of entities, facts and timestamps in Gi.

5 Experiments

5.1 Experimental Setup

Baselines.

We compare our model against the SOTA lifelong
SKG reasoning model LKGE (Cui et al., 2023).
LKGE uses TransE as the knowledge transfer mod-
ule and can be well-adapted to lifelong TKG rea-
soning. MBE (Cui et al., 2022) is designed for
multi-batch emergence scenario and is also a pow-
erful baseline since it leverages walk-based reason-
ing and has an inductive entity encoding module.
We name MBE adapted for lifelong TKG reasoning
as L-MBE.

Based on the framework of LKGE, we leverage
the SOTA TKGE model TeRo (Xu et al., 2020)
for L-TeRo, by defining the timestamp embed-
dings as a linear function. L-TITer, L-TGAP and
L-TLogic were modified from TITer (Sun et al.,
2021), TGAP (Jung et al., 2021) and TLogic (Liu
et al., 2022). TITer is encapsulated according to the
requirements of lifelong TKG reasoning, forming
L-TITer. TGAP can handle future timestamps, but
it is not inductive, so L-TGAP randomly initializes
the emerging entities. TLogic is based on entity-
independent temporal logical rules, so L-TLogic
can be used for lifelong TKG reasoning by trans-
ferring its found rules.
Evaluation Metrics.

Following the convention, we conduct the exper-
iments on the temporal link prediction task and
report Mean Reciprocal Rank (MRR) and Hits@k
(k = 3, 10). Then, we evaluate the knowledge
lifelong learning capability using forward transfer
(FWT) and backward transfer (BWT) (Lopez-Paz
and Ranzato, 2017).

FWT =
1

ρ− 1

ρ∑
i=2

hi−1,i;BWT =
1

ρ− 1

ρ−1∑
i=1

(hρ,i − hi,i) ,

where ρ is the number of TKG snapshots, hi,j is
the MRR scores on Qj after training the model Mi

on Fi.

5.2 Results on Lifelong TKG Reasoning

We run 10-seed experiments for all models on our
three new benchmarks and report average results
on the six TKG snapshots. The MRR, Hits@3 and
Hits@10 results are shown in Table 2. Although
the TransE used in LKGE is efficient to model
static relationships of entities, it is not sensitive
to temporal change. Therefore, LKGE does not
deal with the temporal dimension in lifelong TKG
reasoning and confuses the timestamps in growing
TKGs. As a result, LKGE only has comparable
Hits@10 results. Similar to our model, the adapted
L-MBE uses a RL framework, benefiting its rea-
soning process. The static link augmentation in
L-MBE is also proven to be effective in TKG rea-
soning (Niu and Li, 2023). Even so, the results of
L-MBE are still worse than ours. The reason is that
our model specifically constructs a more targeted
RL environment for lifelong TKG reasoning and
further takes temporal displacement into account
for temporally extrapolating.

However, the frameworks of LKGE and L-TeRo
are based on traditional KGE and TKGE models,
limiting their performances in lifelong TKG reason-
ing. L-TITer, L-TGAP and L-TLogic are adapted
from recent powerful TKG link prediction models,
but there is a certain degree of reduction in their
original performances when used in lifelong TKG
reasoning. The reasons are that the IM module in
TITer is parameter-free, so the knowledge can not
be transferred and updated; TGAP is in the interpo-
lation setting, so the embeddings of future times-
tamps can not be well initialized; TLogic relies on
temporal rules, but the transferred old rules may
conflict with the new ones in future TKG snapshots.
Therefore, these existing baselines can not perform
perfectly in the lifelong TKG reasoning. On the
contrary, our model consistently outperforms all
the baselines across the three benchmarks. Some
results of our model are even twice that of baselines.
This is because our model comprehensively con-
siders all the requirements of lifelong TKG reason-
ing and the proposed three targeted solutions solve
the problems of temporal extrapolation, knowledge
transfer and knowledge update.



ICEWS14-lifelong ICEWS05-15-lifelong ICEWS18-lifelong

MRR Hits@3 Hits@10 MRR Hits@3 Hits@10 MRR Hits@3 Hits@10
LKGE 0.178 22.73 44.31 0.214 34.91 53.73 0.132 17.78 31.77
L-MBE 0.349 37.32 46.93 0.287 32.39 44.80 0.155 16.97 25.03
L-TeRo 0.182 27.34 47.03 0.280 36.95 55.20 0.196 26.14 34.94
L-TITer 0.193 21.95 33.26 0.275 31.87 48.25 0.249 31.42 40.35
L-TGAP 0.220 24.84 36.92 0.309 34.71 51.45 0.293 37.52 43.67
L-TLogic 0.323 36.83 47.28 0.296 33.73 45.67 0.251 37.40 39.09

Ours 0.377 39.64 49.79 0.323 38.25 57.35 0.385 46.56 55.26

Table 2: Average lifelong TKG reasoning results on the six TKG snapshots (% for Hits@3 and Hits@10). Bold
numbers denote the best results.
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Figure 3: MRR changes on ICEWS05-15-lifelong of our
model and three baselines: LKGE, L-MBE, L-TGAP.

5.3 Performance Evolution

To demonstrate the performance evolution of our
model and three baselines during lifelong TKG
reasoning, the MRR results on all TKG snapshots
are reported in Figure 3.

We find:
(i) For the same Gi, as our model learns over

growing TKGs, the performance of Mi ∼M6 on
Gi remains relatively steady. This suggests that our
model has a strong ability to transfer embeddings
to emerging components continuously and avoids
forgetting previous knowledge. However, the other
three baselines all experience rapid degradation in
performance and suffer from catastrophic forget-
ting.

(ii) For the same Mi, we observe its perfor-
mance changing on different TKG snapshots. Since
old knowledge is not always suitable for new facts,
we need to update learned knowledge, otherwise
the performance of Mi will drop. The inductive
embedding layer in L-MBE sometimes succeeds
in updating (from G2 to G3). LKGE and L-TGAP
clearly fail to update knowledge for the decreasing
MRR. This demonstrates our powerful ability to
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Figure 4: FWT and BWT of MRR results on two bench-
marks: ICEWS14-lifelong and ICEWS18-lifelong.

update knowledge for new TKGs. Empirically, per-
formance on G1 is the upper bound of our model
since G1 injects knowledge to our model and knowl-
edge transfer and update start when G1 grows to
G2.

5.4 Knowledge Lifelong Learning Capability

To accurately quantify the knowledge lifelong
learning capability of all models in lifelong TKG
reasoning, we report the FWT and BWT scores of
MRR results in Figure 4. Since we specifically de-
sign the whole reasoning pipeline for extrapolating
and transferring, the FWT scores of our model are
the best among all baselines. LKGE and L-MBE
are originally suitable for lifelong KG reasoning,
so they work relatively well over SKGs. The FWT
scores of L-TLogic are also poor because its rule-
based strategy is too restricted by symbolic rela-
tions to reason over future TKGs.

The BWT scores of baselines are all negative due
to the overwriting of relation types embeddings as
the result of their update of learned knowledge.
On the contrary, our proposed edge-aware message
passing module focuses on updating the unique en-
vironment of each fact rather than individual rela-
tion types, which makes our model introduce richer
information for more accurate predictions. The low
BWT scores of L-TeRo show the inefficiency of



Query : (Sudan, sign formal agreement, Ethiopia, 2014/12/25) Confidence

(Sudan, praise or endorse, Ethiopia, 2014/11/26)
→ (Ethiopia, provide military aid, Sudan, 2014/10/19)

→ (Sudan, cooperate economically, Ethiopia, 2014/09/15)
0.75

(Sudan, sign formal agreement, South Sudan, 2014/11/26)
→ (South Sudan, express to meet, Ethiopia, 2014/10/22) 0.64

(Sudan, Criticize or denounce, Barack Obama, 2014/12/12)
→ (Barack Obama, sign formal agreement, China, 2014/12/01) 0.29

Table 3: Reasoning trajectories and confidence of corresponding temporal rules. Target entities are underlined.

Benchmarks Ours w/o td w/o mp w/o rs

ICEWS14-lifelong 0.377 0.321 0.335 0.349
ICEWS05-15-lifelong 0.323 0.268 0.284 0.291

ICEWS18-lifelong 0.385 0.299 0.349 0.362

Table 4: MRR results of ablation study for our model
on the three new benchmarks.

TKGE in lifelong TKG reasoning. L-TITer and
L-TGAP are well-adapted baselines by combining
their original TKG reasoning ability with the de-
mands of lifelong TKG reasoning, so their BWT
scores are better than other baselines.

5.5 Case Study

Reasoning Trajectories and Temporal Rules.
To demonstrate the reasoning ability of our model
over the temporal edges, we perform a case study
in Table 3, which shows two positive reasoning tra-
jectories and a negative one for the target query (Su-
dan, sign formal agreement, Ethiopia, 2014/12/25).
Then we further give the scores of confidence of
the corresponding temporal rules extracted from
the reasoning trajectories. The length of paths is set
to 3 and we remove the self-loop actions for clarity.
It can be seen that our model succeeds in telling
the reasonable temporal rules with high confidence
from weak ones with low confidence and thereby
guides the action selection stably and efficiently.

5.6 Ablation Study

To further examine the effect of the three proposed
solutions for lifelong TKG reasoning in our model,
we conduct an ablation study as shown in Table 4.

First, we replace temporal displacement in RL
with timestamps (w/o td), i.e., rely on embeddings
of explicit timestamps while selecting actions. The

MRR results decrease by 18.07% on average over
three benchmarks, indicating the significance of
considering temporal displacement in RL, because
it can be temporally extrapolated to the future time.

Secondly, we remove our proposed edge-aware
message passing module (w/o mp) and randomly
initialize new entities. In this case, our model can
not transfer or update knowledge and the agent can
not capture the specific environment of each edge
in RL. This leads to a drop of 10.86% on average
on MRR, implying the importance of this module.

Finally, we leverage the original binary reward
to replace the temporal-rule-based reward shaping
in our model (w/o rs) and obverse a 7.77% per-
formance degradation. This phenomenon means,
by the training guidance of temporal rules inde-
pendent of particular entities, our model obtains
comprehensively enhanced ability to select reliable
actions.

6 Conclusion

In this work, the lifelong TKG reasoning issue in-
volves continually emerging entities and facts in
the future timestamps. To address this new prob-
lem, we propose our model under the framework of
RL and our model uses temporal displacement in
the action space to extrapolate to the future times-
tamps; uses a new edge-aware message passing
module to inductively transfer and update learned
knowledge to new entities and facts; and uses a
temporal-rule-based reward shaping to guide the
training. The experimental results on three newly
constructed benchmarks illustrate that our model
has the best performance for lifelong TKG reason-
ing and the strongest knowledge lifelong learning
capability.



Limitations

This paper mainly focuses on lifelong TKG rea-
soning, where we consider emerging entities and
facts in the future timestamps as TKG grows, and
do not consider the changing case of relations. In
most cases, the number of entities in TKGs is much
larger than that of relations and the emergence of
entities lasts longer and is more common than that
of relations. For instance, ICEWS14 has 7128 en-
tities and 230 relations; the accumulated number
of relation types in ICEWS14 increases rapidly
to 115, half of the total number, in 10 days, on
the contrary, the accumulated number of entities is
steadily increasing over the entire time period of
ICEWS14. Therefore, we study the more severe
case of emerging entities and leave the research for
emerging relations in lifelong TKG reasoning to
future works.
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A Appendix

A.1 Implementation Details.

we tune the hyperparameters of our model us-
ing grid-search: learning rate in {0.0005, 0.0001,
0.001}, batch size in {4096, 8192}, embedding
dimension in {100, 200, 300}. The length of the
walking path of the agent in RL, M, is tuned in
{3, 4, 5}. The layer of our proposed edge-aware
message passing module, L, is in a range of {1, 2,
3} The hyperparameter T in Section 3.3.1 is 40 in
ICEWS14-lifelong, 300 in ICEWS05-15-lifelong,
29 in ICEWS18-lifelong. While training, The dis-
count factor of REINFORCE is 0.95. We clip gradi-
ents greater than 20 to avoid the gradient explosion.
While testing, we use beam search to obtain a list
of predicted entities with the corresponding scores.
The beam size is set to 100. The re-run baselines
are based on their public codes and further adapted
for our constructed benchmarks for lifelong TKG
reasoning. All the experiments are carried out on
one A100 GPU.

A.2 Computational Complexity Analysis.

To see the efficiency of our proposed model, we
analyze the computational complexity of the pro-
cess of knowledge transferring and updating. There
are two parts in the edge-aware message passing
module, one is for initializing the embeddings for
new entities, and the other is for updating all com-
ponents. First, for the first part, the expected time
complexity of Eq. 6 in each iteration is O(|E|),
where |E| is the maximum number of new entities
in the six TKG snapshots. Secondly, for the next
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part, if there are X emerging entities and Y edges
connected to new entities, each emerging entity
takes E[d] = 2Y

X elements as input in expectation,
where E[d] is the expected node degree. The cost
of aggregation is X · E[d] = 2Y . Therefore, Eq. 7
has the time complexity O(2|D|). For Eq. 8, it is
performed for |D| times and each update takes 3
elements as input. Therefore, the cost of update
in each iteration is O(3|D|). We iterate these two
updating functions for L times, so the overall time
complexity is O(L|D|), where |D| is the maximum
number of edges in the six TKG snapshots. Finally,
the time complexity of the process of knowledge
transferring and updating is O(|E|+ L|D|), where
|E| is the maximum number of new entities, |D|
is the maximum number of edges in the six TKG
snapshots; L is the iteration time.


