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Summary
We consider minimisation of dynamic regret in non-stationary multi-armed bandits with a

slowly varying property. Namely, we assume that arms’ rewards are stochastic and independent
over time, but that the absolute difference between the expected rewards of any arm at any
two consecutive time-steps is at most a drift limit δ > 0. For this setting that has not received
enough attention in the past, we give a new algorithm and establish the first instance-dependent
regret upper bound for slowly varying non-stationary bandits. The analysis, in turn, relies on a
novel characterization of the instance as a detectable gap profile that depends on the expected
arm reward differences. We also provide the first minimax regret lower bound for this problem,
enabling us to show that our algorithm is essentially minimax optimal. Also, this lower bound
we obtain establishes that the seemingly easier slowly-varying bandits problem is at least as
hard as the more general total variation-budgeted bandits problem in the minimax sense. We
complement our theoretical results with experimental illustrations.

Contribution(s)
1. We design a new algorithm for the problem of slowly-varying non-stationary multi-armed

bandits. We show an instance-dependent regret upper bound for this algorithm. For this, we
come up with a novel instance-dependent quantity that we call ‘detectable gap’.
Context: To the best of our knowledge, this is the first instance-dependent regret bound
for the slowly-varying settings. Instance-dependent bounds have so far been elusive in
any continuously varying bandits (both total variation-budgeted setting and slowly-varying
setting).

2. We show a minimax regret upper bound for our algorithm and establish that it is minimax
optimal.
Context: Besbes et al. (2014) already show a minimax optimal algorithm for the more gen-
eral total variation-budgeted bandits problem, so ours is not the first/only minimax optimal
algorithm.

3. We show a fundamental lower bound for slowly-varying non-stationary bandits problem.
This bound matches our upper bound and also matches the known lower bound of the total
variation-budgeted bandits problem. This establishes that the more constrained slowly-
varying setting is at least as hard (in a worst case sense) as the more general total variation-
budgeted setting.
Context: To the best of our knowledge, this is the first lower bound for the slowly-varying
non-stationary bandits problem.

4. We experimentally evaluate the performance of our new algorithm, and compare with ex-
isting approaches from the literature.
Context: None.
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Abstract

We consider minimisation of dynamic regret in non-stationary multi-armed bandits with1
a slowly varying property. Namely, we assume that arms’ rewards are stochastic and2
independent over time, but that the absolute difference between the expected rewards of3
any arm at any two consecutive time-steps is at most a drift limit δ > 0. For this setting4
that has not received enough attention in the past, we give a new algorithm and estab-5
lish the first instance-dependent regret upper bound for slowly varying non-stationary6
bandits. The analysis, in turn, relies on a novel characterization of the instance as a7
detectable gap profile that depends on the expected arm reward differences. We also8
provide the first minimax regret lower bound for this problem, enabling us to show that9
our algorithm is essentially minimax optimal. Also, this lower bound we obtain estab-10
lishes that the seemingly easier slowly-varying bandits problem is at least as hard as11
the more general total variation-budgeted bandits problem in the minimax sense. We12
complement our theoretical results with experimental illustrations.13

1 Introduction14

Reinforcement learning, and specifically bandit optimization, in dynamically changing environ-15
ments has remained an active topic of study in machine learning. A variety of non-stationary bandit16
settings have been studied incorporating a range of structural assumptions. At one end are classical17
stochastic models such as restless bandits (Whittle, 1988), where the state of the arms governs the18
bandit problem at any instant, but the transitions between these problems (states) follow probabilis-19
tic dynamics. At the other extreme are settings with non-stochastic and arbitrarily changing rewards20
such as prediction with expert advice (and the EXP3 algorithm)(Cesa-Bianchi & Lugosi, 2006; Auer21
et al., 2002). In between these extremes lie settings of changing environments where the adversary22
(environment) is assumed to be limited in its ability to change the rewards, i.e., a structural constraint23
is enforced on the amount of change in the rewards across time. These include the abrupt change24
(or switching experts) model (Garivier & Moulines, 2011), where at most M arbitrary changes to25
the reward distributions are allowed in the entire time horizon, and the variation-budgeted (drifting)26
change model (Besbes et al., 2014), in which the total magnitude of changes (of rewards) across27
successive time steps is constrained to be within an overall budget.28

In this paper, we focus on slowly-varying bandits—a different and arguably more commonly en-29
countered, yet less studied, model of non-stationary bandits. In this setting, the arms are allowed30
to change arbitrarily over time as long as the amount of change in their mean rewards between two31
successive time steps is bounded uniformly across the horizon. Many real-world settings naturally32
involve observables whose distributions are ‘smooth’ over time, in the sense that their instantaneous33
rate of change is not too large, e.g., slowly drifting distributions in natural language tasks (Lu et al.,34
2020), data from physical transducers (position, velocity, power, temperature, chemical concentra-35
tion), and slowly fading wireless channels (Tse & Viswanath, 2005). Though the slowly-varying36
bandit setting is subsumed by the total variation-budgeted model with an appropriate budget, the37
hope is that the local smoothness of the rewards with time can be exploited by the learner to perform38
better.39
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1.1 Our contributions40

We make the following contributions in this regard.41

1. We give a new algorithm, SNR, for slowly-varying multi-armed bandits. The algorithm is based42
on the principle of adaptive exploration followed by commitment in phases—a strategy that is43
known to be optimal for stationary stochastic bandits— but where the commitment phase is44
adjusted depending on the smoothness constraint on the rewards. The design of the algorithm45
also involves the estimation of a novel property of the bandit instance called the detectable gap46
profile, which essentially characterises the gap between the local averaged means of the arms that47
can be reliably detected, across time.48

2. We derive a regret bound for this algorithm in terms of the detectable gap profile of the bandit49
instance (Theorem 1). The bound, to our knowledge, is the first instance-dependent regret guar-50
antee for any algorithm for drifting stochastic bandits. Moreover, the worst case regret bound for51
a horizon T , over all instances for a given constraint δ on instantaneous reward change, is shown52
to be O(TK1/3δ1/3) (Theorem 2).53

3. We complement this worst case regret upper bound with a matching fundamental lower bound54
(Theorem 3) —the first of its kind for slowly-varying bandits— that shows that our algorithm55
is order-wise minimax-optimal. Interestingly, the minimax regret rate happens to be the same56
as that of the total variation-budgeted (with equivalent budget δT ) setting, establishing that the57
more constrained slowly-varying setting is at least as hard (in a worst case sense) as the more58
general total variation-budgeted setting.59

4. We evaluate the performance of our new algorithm and existing approaches, showing that it60
outperforms the other approaches in some synthetic experiments (Section 6).61

1.2 Related Work62

Non-stationarity in bandit optimization has been extensively studied and dates back to the seminal63
work of Whittle (1988) on restless bandits, in which arms’ states (and thus their reward distributions)64
change according to Markovian dynamics (also see Slivkins & Upfal (2008)). The past few decades,65
however, have witnessed the growth of hybrid adversarial and stochastic bandit models for non-66
stationarity, where the distributions of arms across time can be set by an adversary ahead of time in67
an arbitrary manner.68

Switching and total variation-budgeted non-stationary MAB. Among the many examples of69
non-stationary models are the following two: First, the abruptly changing (or switching) bandits70
setting (Garivier & Moulines, 2011; Mukherjee & Maillard, 2019; Auer et al., 2019), where the dis-71
tributions are piecewise stationary and can arbitrarily change at unknown time steps. And second,72
the total variation-budgeted (or the ‘drifting’ or the ‘continuously changing’) bandits setting intro-73
duced by Besbes et al. (2014; 2019) where VT =

∑T
t=2 ‖µt − µt−1‖∞ is the total-variation budget74

that puts a constraint on the total amount of successive changes in arms’ reward means. The authors75
show that it is possible to devise algorithms with guarantees on the dynamic regret that depend on76

the variation budget VT and total time horizon T of order roughly1 Õ
(
V

1/3
T K1/3T 2/3

)
. Table 177

juxtaposes our results against these relevant results from literature.78

Other non-stationary bandit settings. Subsequently, the notions of non-stationarity have been79
well studied under other bandit settings. (Kim & Tewari, 2020; Cheung et al., 2019; Russac80
et al., 2019) consider problems in the linear bandits (of d dimensions) with drifting non-stationarity81
regime, while Russac et al. (2020) look at generalized linear bandits with switching non-stationarity82
and both provide optimal minimax regret bounds Keskin & Zeevi (2017) work on the dynamic pric-83
ing problem where the demand over time is assumed to be drifting adhering to a variation metric, and84
Saha & Gupta (2022) investigate both switching and drifting rewards in a Duelling bandits setup.85

1Õ (.) hides logarithmic factors.
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Scenario
Instance-dependent
upper bound - Õ (.)

Minimax
upper bound - Õ (.)

Minimax
lower bound - Ω(.)

Abruptly switching.
(M breakpoints)

∑
arms a

∑
blocks j

log T/Hj
∆a,j

(Mukherjee & Maillard, 2019)

√
MKT

(Garivier & Moulines, 2011)

√
MKT

(Wei et al., 2016)

Total variation-budgeted.
(budget V ) —-

V
1/3K

1/3T
2/3

Besbes et al. (2014)
V

1/3K
1/3T

2/3

Besbes et al. (2014)

Slowly Varying.
(δ drift limit)

∑
arms a

∑
blocks j

log T

λa,min(j)

[Our Work]

δ
1/3K

1/3T
[Our Work]

Besbes et al. (2014)
δ

1/3K
1/3T

[Our Work]

Table 1: A comparison of different regret bounds from the literature for common structures/models
of non-stationarity. We highlight some observation below.
(a) For the abruptyly changing (switching) model of non-stationarity that has sequential periods (or
blocks of time) of stationarity, the instance-dependent regret of an arm is expressed as a function of
the sub-optimality gap ∆j in a block j summed over all M blocks. In their work, the term Hj is a
measure of statistical distinguishability of block j from the preceding block j − 1.
(b) Unlike in switching model above, however, in the continuously-varying models (total variation-
budgeted or slowly-varying), these notions such as blocks and a single value ∆. of gap therein don’t
apply. Thus, characterizing instance-dependent regret expression is non-obvious and has remained
elusive. The λa,min term we use to give such an instance-dependent regret bound above shall be
formalized in Theorem 1.
(c) On the minimax regret bounds front, we discover that the slowly-varying bandits and total-
variation budgeted bandits have the same minimax regret upper and lower bounds with a budget
V = Tδ. In this lens, it is to be noted that the minimax regret we show is indeed sublinear in T
when δ = V/T is a fraction that is o(1) w.r.t. T .

Most of these mentioned works use UCB-based approaches tailored to the non-stationary setup—86
such as only using samples from a sliding window of the recent past, or applying lesser (decaying)87
weightage to samples the further they are in the past—to impart more importance to newer samples88
over older ones. On that note, Zhao et al. (2020) handle non-stationarity by restarting algorithms89
to discard old information, and Wu et al. (2018) employ a master-slave paradigm, where the mas-90
ter bandit optimizes over many slave bandits that pull arms based on their knowledge. Manegueu91
et al. (2021) provide an algorithm and analysis that handles multiple closely related types of non-92
stationarity at once and provide an algorithm that uses restarting mechanism on top of change-point93
detection procedures to handle non-stationarity.94

Parameter-free algorithms There is a different thread of work that has removed the assump-95
tion of knowing the non-stationary parameter upfront and has incrementally progressed (Karnin &96
Anava, 2016; Luo et al., 2018; Cheung et al., 2022) to get to optimal minimax regret upper bounds97
(Auer et al., 2019; Chen et al., 2019). Further, Wei & Luo (2021) provide a (non-stationary) parame-98
terless black-box meta-algorithm that converts an minimax-optimal stationary bandit algorithm into99
a minimax optimal non-stationary bandit algorithm. However, an instance-dependent regret bound100
characterization has so far remained elusive under any sort of drifting reward constraint even when101
the non-stationary parameter is assumed to be known. Our results not only match the optimal regret102
rates in a minimax sense, but we also give a more instance-dependent regret characterisation for our103
algorithm in the slowly-varying drifting bandits setting.104

Lower Bounds. In terms of lower bounds, Besbes et al. (2014) provide a minimax lower bound105
of Ω(V

1/3
T K1/3T 2/3) that matched their algorithm’s upper bound (upto logarithmic factors), thereby106



Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

closing the door on any possible improvements to the total variation-budgeted setting. However, we107
show an identical lower bound for slowly-varying bandits setting as well, with equivalent per-round108
drift limit. This is a stronger result as our minimax lower bound applies to a more restricted class of109
problems instances.110

Slowly/smoothly varying bandits. Looking at works whose setups are very close to the slowly-111
varying non-stationarity that we consider, the setting where rewards are Lipschitz continuous over112
time (with the Lipschitz constant being similar in function to our drift limit δ) is considered in113
Combes & Proutiere (2014) who provide asymptotical regret guarantees, and in Trovo et al. (2020)114
who provide a Thompson Sampling based approach to obtain an instance specific expression for the115
regret. However, both these works additionally assume that the seperation between two arms (in116
terms of reward means) is arbitrarily small only for a limited number of time-steps, which makes the117
problem instance more manageable from an algorithmic perspective of distinguishing sub-optimal118
arms. Recently, Jia et al. (2023) consider smoothly-varying rewards that are β-Hölder functions over119
time for the two-armed case, and specifically exploit additional smoothness when β = 2 to show120
improved upper bounds. Additionally, a lower bound expression that is Ω(T 2/3) for 1-Hölder (or121
Lipschitz) reward function is shown without characterising dependence on the Lipschitz constant122
or the number of arms. Perhaps the only other work that studies the exact slowly-varying non-123
stationary bandit setting that we consider here is that of Wei & Srivatsva (2018). They modify the124
sliding-window-UCB algorithm of Garivier & Moulines (2011) to employ windows that grow in size125
with time to get the SW-UCB# algorithm and show minimax regret upper bounds (ignoring number126
of arms K) of O(δ1/4T ). In our work, we show an improved bound of O(δ1/3T ), where δ ∈ [0, 1] is127
the drift limit that shall be formally introduced in the next section.128

2 Setting and Preliminaries129

We consider bandits with arm/action set A = {1, 2, . . . ,K} and a time horizon of T . At time130
t ∈ [T ] := {1, 2, . . . , T}, when arm a ∈ A is played by a bandit algorithm depending on only131
past history, a stochastic reward µ̂a,t drawn from a Bernoulli 2 distribution with expected value132
µa,t ∈ [0, 1] is obtained. We denote by µt := (µ1,t, µ2,t, . . . , µK,t) the expected reward tuple at133
time t ∈ [T ]. Write µ := (µ1, µ2, . . . , µT ) to be the expected reward profile of the bandit instance.134

A bandit instance µ is defined to be slowly-varying with drift limit δ > 0 (denoted as µ ∈ Sδ) if the135
expected reward profile satisfies136

∀a ∈ A, t ∈ [T − 1], |µa,t − µa,t+1| ≤ δ. (1)

In other words, for an arm a ∈ A at a time step t, the expected reward µa,t can drift in value to some137
µa,t+1 (at the next time-step) by at most δ.138

Definition 1 (Regret). For a bandit instance µ, the (expected) regret incurred by an algorithm (or139
policy) ALG is R(ALG) =

∑T
t=1 µ

∗
t − E

[
µALG(t),t

]
, where µ∗t = maxa∈A µa,t is the mean reward140

of the optimal arm at time t, and ALG(t) ∈ A is the arm played by ALG at time t ∈ [T ].141

Note that this is the dynamic regret, where the performance benchmark at each time-step is the142
expected reward of the optimal arm at that time-step (µ∗t ). This is a stronger (i.e., harsher) notion143
of regret compared to the classical notion of static regret, where the benchmark at all time-steps is144
the expected reward of the best single arm across the entire horizon in hindsight. The goal is to145
learn to play arms to achieve low (dynamic) regret for any problem instance µ ∈ Sδ . We assume146
that the algorithm has access to the drift limit δ (or a suitable upper bound on it). This is reasonable147
as in practice there is often domain specific information available in advance about the drift of the148
quantity in consideration. We now introduce a novel characterization of a non-stationary bandit149
instance, and highlight its significance to the algorithm design and analysis to follow later.150

2In general, our theoretical analysis and results hold for any sub-gaussian reward distributions with a suitably bounded
variance.
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Figure 1: The figure depicts two arms’ true reward means, and the sub-optimal arm’s gap profile,
and the detectable gap profile of one problem instance illustrated at 4 zoom levels. The box in
each image is the region zoomed in for the next image (to its right). First, the detectable gaps (λ)
reasonably positively correlates with the gaps (∆), and initially (in general, whenever there is not a
sufficient window size to detect a gap), for a short span, it takes the form

√
c0K log T/t. Second, λ

roughly trails ∆ as it depends on a recent window (into the past) of ∆ at every time-step. Third, λ is
‘smoother’ compared to ∆, as by design, its values are averaged over a window of samples. Fourth,
although λ is described as a continuous optimization problem over [0, 1], it actually transforms into
a discrete optimization problem over different integral window sizes w. Thus, λ has a ‘piece-wise
constant’ appearance.

Detectable Gap Profile. In the stationary stochastic multi-armed bandit problem, the suboptimal-151
ity gap of some arm a is ∆a := µ∗ − µa, where µa is the expected reward of arm a and µ∗ is152
the expected reward of the optimal arm. These ∆. quantities essentially characterise the attainable153
regret rate3 of the problem instance. With non-stationary reward distributions, the notion of a (time-154
invariant) gap must be generalised to a gap profile For arm a, ∆a := (∆a,t)t where ∆a,t := µ∗t−µa,t155
is the difference at time t between the expected rewards of the optimal arm and arm a.156

In a continuously non-stationary setting, however, this instantaneous arm gap ∆t does not suffi-157
ciently capture the state of the problem instance (in terms of statistical distinguishability of arms) at158
the particular time t. It does not contain information about the nature of non-stationarity in the tem-159
poral neighborhood of that time-step t. We overcome this by introducing the notion of a detectable160
gap profile λ, which intuitively helps to characterise how hard it is to reliably estimate which arm161
is optimal and by how much at any time t. This is a derived quantity expressed in terms of the gap162
profile taken over a local window of time leading up to t.163

Definition 2 (Detectable gap). For an arm a ∈ A, we define its detectable gap λa := (λa,t)t where,164

λa,t =


max

b∈A\{a}

λ ∈ (0, 1] :
1

w(λ)

t∑
t′=t−w(λ)+1

µb,t′ − µa,t′ ≥ λ

 , if such λ exists.

√
c0 log T

t
, otherwise.

(2)

where, the summation is over a contiguous time-period of size w(λ) := dc0K log T/λ2e that termi-165
nates at t, and c0 = 144 is a constant 4.166

Intuitively, λa,t = α for some time-step t implies that a (sub-optimality) gap of α for arm a can be167
detected with high probability by observing samples from all arms in the past ≈ 1/α2 time-steps. In168
other words, if an observer directly received the true means of arms after playing them and considers169
them as observations from bounded random variables, then the choice of contiguous window w(α)170
essentially is upto how far in the past the observer would have to look to separate the arm from some171
other arm with high probability using Hoeffding’s concentration inequality.172

3assuming bounded/sub-gaussian rewards
4In fact, in the remainder of the paper, all notations of the form ci shall be suitable universal constants.
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Fig. 1 depicts the detectable gap profile (λ) and instantaneous gap profile (∆) of the sub-optimal173
arm in a two-armed bandit instance. We shall see that the detectable gap profile better reflects the174
nature of a non-stationary problem instance. Specifically, for our algorithm, we shall obtain a regret175
upper bound (to be shown in Theorem 1) as a function of the detectable gap profile, λ, which is an176
instance-dependent quantity.177

3 Algorithm Description178

Successive Elimination (SE) is a well-known algorithmic recipe for solving stationary stochastic179
bandits, built upon the Explore-Then-Commit (ETC) paradigm (see Slivkins (2019) for a text-book180
treatment of SE and ETC) In its classical form, SE adaptively pulls all arms in a round-robin fash-181
ion until it distinguishes an optimal arm from a sub-optimal arm with a high probability. Then,182
it drops the inferior arm indefinitely and continues this procedure with the remaining arms. Our183
algorithm, SNR (Snooze and Respawn) gracefully adapts this Successive Elimination paradigm to184
the non-stationary bandits setup. It pulls arms in a round-robin fashion until it can assertively iden-185
tify/distinguish a sub-optimal arm in a ‘local average’ sense, and then plays only the remaining arms186
for a period of time until the earlier distinguished sub-optimal arm can possibly become the optimal187
arm due to the non-stationarity.188

Specifically, SNR (pseudocode in Algorithm 1) runs in a series of episodes for every arm. Every189
episode of an arm a ∈ A begins with an active phase, during which SNR pulls arm a in every round190
as a part of its round-robin play. At the end of every time-step (or every round 5 of round-robin191
play), it performs a statistical test (Line 6) to detect a clear gap in reward means of arm a compared192
to some other arm b. If the test succeeds, the algorithm concludes that arm a is sub-optimal (in the193
current temporal neighbourhood) and the active phase of arm a ends, and it possibly snoozes arm194
a for a certain period of inactivity (Lines 10-11), termed as the passive phase. During this passive195
phase of arm a, SNR plays only the other arms that are in the active phases in their current episodes.196
At the end of this passive phase, arm a respawns to become active, and then its next episode begins.197

We introduce some notations to describe the statistical test and for further analysis.198

Let ea be the total number of episodes (indexed as 1, 2, . . . , ea) of arm a ∈ A in a run of SNR.199
For every episode i ∈ [ea] of every arm a, let ta,i denote the time after which the active phase of200
episode i of arm a begins. Note that ta,i+1 corresponds to the time at which episode i of arm a201
ends. We also always have ta,1 = 0 and ta,ea+1 = T , the end time of the final episode, for all arms202
a. Let ga,i denote the time at which the statistical test on line 6 of the algorithm passes, and write203
τa,i := ga,i − ta,i to denote the duration of the active phase of episode i of arm a. Let wa,i denote204
the number of rounds elapsed in the active phase, or equivalently, the number of times arm a has205
been played in the active phase [ta,i + 1, ga,i].206

For an arm a at time t in its ith episode, let ωa1 , ω
a
2 , . . . , ω

a
w ≤ t be the time steps in which arm a was207

played in its last w pulls, i.e., the the pull from each of the last w rounds of arm-play until time t.208
Write µ̂a,t(w) := 1

w

∑w
x=1 µ̂a,ωax to denote the empirical reward mean (or simply empirical mean)209

of arm a at time t measured/calculated from it’s last w pulls. Here, µ̂a,ωax is the actual reward the210
algorithm obtains on pulling arm a at time ωax. Note that the true reward means µa,ωa. for different211
time-steps corresponding to these w pulls need not be the same.212

At a particular time, for a passive (snoozed) arm a ∈ S, denote by ρ(a) the arm which arm a was213
compared against in the statistical test that resulted in the most recent snoozing of a. For an arm a,214
at a particular time, let ā denote the arm that transitively eliminated (or caused snoozing of) arm a.215
Precisely, recursively define 6 ā := ρ(a) if a is passive, and ā := a when a is active.216

With these definitions, we define the statistical test as follows.217

5the terms ‘time-step’ and ‘round’ are sometimes used interchangeably in the bandit literature, but, here, a round corre-
sponds to a sequence of time steps in a round-robin play of SNR in which all active arms are pulled once.

6the quantities ρ(a), a depend on the time t in consideration. But we refrain from explicity marking t in the notation as
it shall be obvious from the context of usage.
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Algorithm 1 SNR: Plays the non-stationary slowly-varying bandit problem instance
Input: Time horizon T , a set of arms A = {1, 2, . . . ,K} with sample access, the drift limit δ.
Output: Play an arm for every time-step.

1: Initialize active arms set A = A, snoozed arms set S = ∅.
2: Initialize episode index i(a)← 1 for all arms a ∈ A.
3: for t = 1, 2, . . . , T do
4: x← Least recently pulled arm in A. . Play active arms in round-robin fashion
5: Pull arm x and observe reward µ̂x,t.
6: if ∃ arms a, b ∈ A, ∃λ̂ ∈ [0, 1] such that b̄ >λ̂ a then . As in Definition 3
7: i← i(a), arm a’s current episode.
8: Statistical test success time, ga,i = t, Active phase duration, τa,i = ga,i − ta,i.
9: Compute sub-optimality buffer/snooze period, buf = 2

δ

√
log T
wa,i

.

10: if buf > τa,i then
11: Snooze arm a, update A← A \ {a}, and S ← S ∪ {(a, ta,i + buf)}
12: else
13: Increment episode i(a)← i+ 1, then ta,i ← t. . Episode ends without passive period
14: end if
15: end if
16: if ∃(a, s) ∈ S : t ≥ s then
17: Respawn arm a, update S ← S \ {(a, s)}, and A← A ∪ {a}.
18: Increment episode i(a)← i+ 1, then ta,i ← t. . Episode ends after passive period elapses
19: end if
20: end for

Definition 3 (λ̂-inferiority). Let λ̂ > 0. At time t, an arm a in the active phase of episode i, is said
to be λ̂-inferior to an arm b (written as b̄ >λ̂ a) if, for a window of w := dc0 log T/λ̂2e rounds that
falls entirely within episode i of arm a, we have

LCBb̄,t(w) > UCBa,t(w) + 2r(w)−Kδ,

and the inequality holds for no other λ̂′ > λ̂.218

In the above definition, we write LCBa,t(w) := µ̂a,t(w) − r(w) (sim. UCBa,t(w) := µ̂a,t(w) +219
r(w)) to denote the lower (sim. upper) confidence bound of an arm a’s recent reward mean, and220
r(w) :=

√
2 log T/w is the accuracy radius with w samples. Note that arm a is compared against arm221

b̄ which can denote different arms in the w rounds in the window of consideration. Essentially, in222
time periods in which arm b is passive, arm b̄ acts as a (superior) proxy for arm b. The constraint223
that all w rounds fall within the same (current) episode of arm a ensures that the rounds from which224
arm a’s samples are observed are consecutive.225

Using this statistical test (Line 6), SNR evaluates, at a time t, if some arm is λ̂-inferior to another226
(as in definition 3). The size of the window, w, in which the empirical means are calculated is227
dynamically chosen based on the empirical detectable gap, λ̂, itself that is being tested for. If the228
test passes, then SNR decides that arm a is sub-optimal and computes a sub-optimality buffer period,229
of duration buf = 2/δ.

√
log T/wa,i (Line 9), that begins at ta,i, the start of the current episode. By230

time t, if the buffer period has not fully elapsed, we snooze the sub-optimal arm for a passive phase231
that runs until the end of the buffer period.232

Optionally, we refer the reader to Appendix E for graphical illustrations (Figs. 6 and 7) of example233
algorithmic trajectories (with active/passive phases and statistical tests).234

4 Theoretical Guarantees235

Our first main result is a regret bound our algorithm in terms of the detectable gap profile of a236
slowly-varying bandit instance.237
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Theorem 1. [Instance-dependent regret bound] If SNR is run with a drift limit parameter δ on a238
problem instance µ ∈ Sδ , then its expected regret , R(SNR), is upper bounded by239

c6
∑
a∈A

m∑
j=1

1

λa,min(j)
. log T + c8,

wherem = T/τ is the number of blocks, each of length not more than τ = min{T, c9δ−2/3 log
1/3 T},240

and for every block j ∈ [m] spanning a time period bj := [(j−1)τ+1, jτ ]∩[T ], define λa,min(j) :=241
mint∈bj λa,t. Here, cis are suitable constants.242

We also have the following upper bound on the worst-case regret (over instances in Sδ) for SNR.243

Theorem 2. [Minimax Upper bound] If SNR is run with a drift limit parameter δ on any problem244
instance µ ∈ Sδ , then it incurs an expected regret of O(Tδ1/3K1/3 log

1/3 T ), where K is the number245
of arms.246

We finally complement the worst-case regret upper bound for SNR with a matching (upto logarith-247
mic factors) universal minimax regret lower bound for any algorithm:248

Theorem 3. [Minimax Lower Bound] For any algorithm ALG and a drift limit δ > 0, there exists249
a problem instance µ ∈ Sδ such that, ALG incurs a expected regret of Ω(Tδ1/3K1/3), where K is250
the number of arms.251

4.1 Discussion252

The minimax regret lower bound we obtain establishes (constructively) that if the drift limit δ =253
Ω(1), then it is impossible to achieve a sub-linear (in time) regret guarantee for any algorithm. The254
interesting problem space is thus when δ = o(1) as a function of total time T .255

A basic sanity check is to evaluate our results for the stationary bandits setting, that is when δ = 0,256
and the gap ∆ is unchanged over time. In that case, in Theorem 1, the size of a block is τ = T .257
From the detectable gap definition, either with λt = ∆ from the first assignment, or λt > ∆ from258
the second, we have λt ≥ ∆ at all times t. This gives us a regret bound of O

(
1
∆ log T

)
. One259

can also observe that SNR behaves similar to the classical Successive Elimination algorithm in this260
regime. After it distinguishes the optimal arm from the sub-optimal, that is, the statistical test passes,261
it computes a sub-optimality buffer limδ→0 buf = 2/δ ·

√
log T/wa,i →∞, an infinite passive phase,262

i.e., it snoozes the sub-optimal arm indefinitely.263

Moving on, for non-stationary instances with very small drift limits—specifically, for δ ≤264

O
(
T−3/2 · log

1/2 T
)

— applying Theorem 1 still yields a block size of τ = T . With a similar265

analysis, this results in a regret bound of O
(

1
∆ log T

)
. It is noteworthy that, despite the mild non-266

stationarity of the instance, SNR achieves a logarithmic regret, which is typical in a stationary bandit267
instance.268

This result in Theorem 2 is comparable with that of Besbes et al. (2014) who work on a total269
variation-budgeted setting. In our setting, a drift limit of δ per time-step translates to a cumulative270
drift limit of Tδ over the entire time horizon. Precisely, for an arm a,

∑T−1
t=1 |µa,t − µa,t+1| ≤ Tδ.271

This cumulative drift limit quantity is termed the total variation budget VT in theirs, and we, here,272
have VT = Tδ. Substituting this in their regret upper bound O(T 2/3V

1/3
T K1/3 log

1/3 T ), we get273
O(Tδ1/3K1/3 log

1/3 T ), the same upper bound as ours. Thus, we note that our minimax upper bound274
matches that of Besbes et al. (2014) which accommodates a more general setting.275

On a more interesting note, on substituting VT = Tδ in their regret lower bound Ω(T 2/3V
1/3
T K1/3),276

we get Ω(Tδ1/3K1/3), the same lower bound expression that we have established. That is, our mini-277
max lower bound matches that of Besbes et al. (2014). This crucially establishes that the seemingly278
easier problem of slowly-varying bandits is at least as hard (in a minimax regret sense) as the more279
general problem of total variation-budgeted bandits. It can be interpreted that the ability/power of a280
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total variation-budgeted problem instance to conserve budgets for long periods of time and manifest281
drastic non-stationarity in short bursts does not add to the difficulty (in terms of suffering higher282
regret) in playing the instance.283

5 Proof Sketches284

The formal proofs of all results are deferred to the Appendices B to D in the interest of space.285

Proof sketch for Theorem 1 (Instance-dependent regret bound) We first restrict our attention286
to a ‘good’ event where all empirical means fall close to the reward means, which occurs with high287
probability. We establish useful properties about the nature of the active and passive phases, the288
sizes of episodes, the connection between the regret and the detectable gap, λ.289

We show in Lemma 2 that in every episode, if an arm is snoozed, then it remains sub-optimal for290
the entirety of the passive phase. Towards this, we show that, for an arm a in its episode i, when the291
statistical test passes, we have, at some point of time (say t′) in the active phase, that true reward292
means of the arms are well separated, i.e., µb,t′ − µa,t′ ≥ f for some gap f and some arm b. Then,293
we argue that the snooze period is carefully chosen based on this guaranteed true gap f , the drift294
limit δ, and the active phase duration τa,i such that arm a remains sub-optimal in it. As only the295
other arms are played in the passive phase, our algorithm incurs regret for arm a only during the296
active phase, which we try to bound next.297

Next, we show in Lemma 4 a trajectory-dependent upper bound on arm a’s regret Ra,i, in episode i,298
based on τa,i, the duration of the active phase. We use the fact that the statistical test did not pass at299
time ga,i−1 = ta,i+τa,i−1, specifically the fact that arm awas not identified to be λ̂-inferior to any300
other arm. We deduce that, their empirical means, and by the good event assumption, also their true301
means over a period of time were not well separable after playing the active arms in the round-robin302
fashion for τa,i− 1 time steps. Put simply, for these τa,i− 1 time-steps, the gaps between arm a and303
other better arms were small. This helps us get the following bound the regret of arm a in episode304
i as a function of the active phase duration τa,i and the rounds of samples observed wa,i, or more305
precisely over carefully constructed blocks of time (as in Definition 5) that partition the active phase306
τa,i, where w(k)s are the rounds/sample count within each block.307

Ra,i . 1 +

j∑
k=1

c2
√
w(k). log T . (3)

We draw the reader’s attention to the fact that this expression in Equation (3) is an algorithmic308
trajectory-dependent quantity as it is a function of the active phase duration of the arm a that depends309
on the stochasticity/randomness in the observed rewards. Next, we convert this expression to a310
a problem instance-dependent quantity independent of the trajectory. Specifically, we go on to311
make a connection between the trajectory-specific active phase duration τ.,. and the instance-specific312
detectable gap profile, λ.313

Lemma 7 shows that, at time t in the active phase of some episode of arm a, if sufficiently many314
rounds w have passed, i.e., we have λa,t &

√
c0 log T/w, then our algorithm will detect a gap in arms315

sufficient to declare b̄ >λ̂ a for some arm b, and the statistical test shall pass. However, given that the316
statistical test did not pass in the period upto ga,i−1 = ta,i+τa,i−1, or more specifically at a certain317
points (αk)k∈[j] of choice (as shall be described in Definition 5) we derive the instance-dependent318

episodic regret bound: Ra,i .
∑j
k=1

log T/λαk in Lemma 6.319

The remainder of the proof involves collecting all the episodic regrets of all arms (Lemma 11),320
smartly accounting them into blocks of time based on minimum possible size of any episode321
(Claims 9 and 10) to arrive at the final bound.322
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Proof sketch of Theorem 2 (Minimax regret bound). For every episode i of any arm a, we first323
consider the average/per time-step regret Ravea,i =

Ra,i
ta,i+1−ta,i and upper bound it. We argue that the324

blocks (where a block k is of time period τ(k) with w(k) rounds of samples) are constructed within325
each episode’s active phase in such a design (in Definition 5) that we have τ(k) ≈ 1

δ

√
log T/w(k).326

As a tool of convenience, we introduce the notion of inflated episodes which are obtained by rear-327
ranging (or re-accounting) timesteps between episodes of different arms, thereby altering their dura-328
tions but not their regret expressions. We show that the block size constraints extend to the inflated329
episode as τ̃(k) ≥ τ(k) ≈ 1

δ

√
log T/w(k). By nature of construction of inflated episodes, we show330

that each round, after inflation, accounts one time-step for each of the K arms, thereby establishing331
that τ̃(k)/K = w(k). From Equation (3), we have the regret in an episode i of arm a dependent on the332
breakdown of active phase duration τa,i into some j blocks as Ra,i . 1 +

∑j
k=1 c2

√
w(k). log T ,333

where w(k) and τ̃(k) are the number of rounds and time steps respectivey of block k of an inflated334
episode.335

We finally argue that the average per-time-step regret of each block in an inflated episode is suitably336
bounded asO(δ1/3K−2/3 log

1/3 T ). We multiply this by the length of the horizon, T , and the number337
of arms K to show the desired bound.338

Proof sketch for Theorem 3 (Worst-case regret lower bound). We derive this result with339
information-theoretic arguments commonly employed in bandit literature (Garivier & Kaufmann,340
2016). First, in Lemma 12, we adapt the standard ‘change of measure inequality’ for sequential341
sampling (see Garivier et al. (2019) for example) to a version that can accommodate non-stationary342
reward distributions. Second, we break the time horizon into suitably small blocks of size m, es-343
tablish lower bounds within each of them, and finally aggregate them to arrive at the lower bound344
expression.345

Towards proving the lower bound within a block, we consider a base instance ν, where all arms are346
identical and stationary with Ber (1/2) reward distributions. We design a confusing instance, ν′,347
where all but one arm are stationary with Ber (1/2) rewards, whereas, the other arm (say, arm 1,348
with a distribution of ν′1,t at time t within the block) exhibits non-stationarity as follows:349

ν′i,t =



Ber

(
1

2

)
if i = 2, 3, . . . ,K

Ber

(
1

2
+
t− 1

m
.ε

)
if i = 1, t ≤

⌈m
2

⌉
Ber

(
1

2
+
m− t
m

.ε

)
if i = 1, t >

⌈m
2

⌉
.

(4)

Essentially, within a block, in the confusing instance, arm 1 starts identical to the other arms with350
Ber (1/2) rewards, and for the first half of the block, drifts (by a suitably chosen value ε) upwards351
and away from a mean of 1/2, and reaches a maximum reward mean gap at half-way point. Then,352
for the remainder of the block, it drifts towards (downwards) a mean of 1/2 and reaches back the353
Ber (1/2) reward distribution at the end of the block.354

With this setup, we argue that when presented with a randomly chosen bandit problem instance355
between ν and ν′, any algorithm is condemned to incur in expectation the stated minimum regret.356

6 Experiments357

We present some numerical experiments to better illustrate the characteristics of our algorithm. In358
this section, first, we compare the performance of our algorithm SNR against other algorithms in the359
literature for the slowly-varying (and also the closely related total variation-budgeted) bandits prob-360
lem in Section 6.1. Second, we show the algorithmic trajectory of SNR for two problem instances361
in Appendix E.2.362
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6.1 Comparison with Literature363

We numerically evaluate the performance of SNR on synthetic two-armed bandit problem instances.364
We also implement algorithms from the literature and conduct a comparative study with different365
problem instances. In particular, we consider the following algorithms; (1) REXP3 (Besbes et al.,366
2014), that divides the time into blocks upfront and repeatedly runs the Exp3 algorithm from scratch367
in each block, (2) SW-UCB# (Wei & Srivatsva, 2018), a soft exploration algorithm based on the368
arms’ reward means’ upper confidence bounds that are computed over a sliding window that enlarges369
with time. (3) EXP3.S (Besbes et al., 2019), a ‘smoother’ variant of Exp3 algorithm. We note that370
REXP3 and EXP3.S are originally proposed for the more general total variation-budgeted setting.371
Also, all these algorithms have knowledge of the drift limit δ (or the appropriate drift parameter) in372
advance.373

(a) (b)

Figure 2: Comparison of average regret among the 4 algorithms (SNR, EXP3.S, REXP3, and
SW-UCB#).

(a) (b)

Figure 3: Comparison of average regret incured by SNR on 4 problem instances characterized by
different drift limit δ values.

We consider a time horizon of T =
⌊
e12
⌋
' 1, 60, 000, and report results averaged from 10 runs, the374

translucent regions (of the same colour) around the curves mark 1 standard deviation. The rewards375
are drawn from a Gaussian distribution with the specified mean, and a variance of 1/4. 7.376

First, in Fig. 2a, we run all the algorithms on a problem instance with a low value of drift377
δ = 1/(10·c9 log T ) ' 2.1 × 10−5 where the arms are well-separated and the identity of the opti-378
mal arm remains unchanged throughout (problem instance depicted in Fig. 4a in Appendix E.1). We379
observe that REXP3 and EXP3.S perform poorer compared to SW-UCB# and SNR. While SNR and380
SW-UCB# are very adaptive in their behaviour to the observed empirical reward means, we see that381
REXP3 predetermines the sizes of blocks (tailored to the drift parameter), and EXP3.S, after tuning382

7Indeed, the choice of a Gaussian draw with 1/4 variance fits in with our theoretical analysis, specifically, the Hoeffding’s
inequality usage in Claim 1.
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the weights, additionally boosts up the weights of the arms equally without taking into account the383
observed empirical gaps.384

Second, in Fig. 2b, we run all algorithms on a problem instance with a relatively larger value of drift385
δ = 1/(c9 log T ) ' 2.1 × 10−3, where both arms have short alternating stretches of stationarity and386
drifts, with the identity of the optimal arm toggling with every drift (problem instance depicted in387
Fig. 4b in Appendix E.1). Interestingly, we observe that SW-UCB# performs poorer compared to388
SNR. We hypothesise that SNR makes better use of short frequent stretches of stationarity: With the389
arms oscillating as we have here, when the sliding window encompasses the optimal stretches (and390
the drifts) of both arms, SW-UCB# does not take into account the recency of the samples within the391
sliding window. SNR, on the other hand, operates with dynamically-sized windows based on the392
observed detectable gaps that always capture the most suitably sized number of recent samples.393

Third, in Fig. 3a, we evaluate the performance of our algorithm on different instances. In particular,394
we consider 4 instances with similar structure that differ only by the drift limit δ imposed, and have395
common periods of stationarity and drift (problem instance depicted in Fig. 5a in Appendix E.1).396
We observe that the average regret does not correlate with an increase in drift limit δ. The well397
separated nature of the arms in instances with a higher δ improves performance as increased detected398
(empirical) gaps lengthen the snooze periods. This potentially offsets the higher regret caused due399
to more frequent episodes with larger δ values leading to shorter snooze periods.400

Finally, in Fig. 3b, we consider another set of 4 structurally similar instances with different δ, where401
arms have equal total cumulative drift and almost common periods of stationarity and drift (problem402
instance depicted in Fig. 5b in Appendix E.1). With the same maximum gaps among instances, the403
regret increases with drift limit δ, which is in line with what our theory lays down.404

7 Conclusion & Future Work405

In this paper, we studied the slowly-varying non-stationary bandits and provided multiple theoret-406
ical results that help better understand the difficulty of that class of problems. We came up with407
the construct of detectable gap profile which enabled us to show an instance-dependent characteri-408
zation of the regret. We believe that our characterization of detectable gap profile is a fundamental409
property of non-stationarity in bandits, and may hold the key to more refined performance analysis,410
beyond merely the slowly-varying setting considered here. On that note, one interesting direction to411
pursue would be to characterize instant-dependent regret bounds in the more general total variation-412
budgeted setting.413

It would also be interesting to explore the suitability of other flavours of algorithms such as Thomp-414
son sampling and Upper Confidence Bound (UCB) based approaches, especially if such algorithms415
can be designed in a parameter-free fashion, given the state-of-the-art algorithms provide such min-416
imax guarantees in certain non-stationary settings.417
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Supplementary Materials494
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496

A Miscellaneous497

We present in Table 2 a compilation of frequently used notations in this paper.

Notation Description

A Set of all K arms.

µa,t Expected reward of arm a at time t.

µ∗t Expected reward of the optimal arm at time t.

µ̂a,t Empirical reward of arm a at time t.

∆a,t µ∗t − µa,t. Sub-optimality gap of arm a at time t.

λa,t ‘Detectable gap’ of arm a at time t (as in Equation (2)).

ea Number of episodes of arm a in an algorithmic run.

ta,i Time step after which active phase of episode i of arm a begins.

ga,i Time step at which statistical test of episode i of arm a passes.

τa,i ga,i − ta,i. Duration of active phase of episode i of arm a.

wa,i Number of rounds in the active phase of episode i of arm a,

(or equivalently) the number of times arm a is played in its episode i.

ωa1 , ω
a
2 , . . . , ω

a
w List of time steps of most recent w pulls of arm a until mentioned time step.

µa,t(w) 1
w

∑w
x=1 µa,ωax . Expected reward mean of arm a at time t in its last w pulls.

µ̂a,t(w) 1
w

∑w
x=1 µ̂a,ωax . Empirical reward mean of arm a at time t in its last w pulls.

ā (the arm that most recently snoozed)* arm a at mentioned time.

Ra,i Regret of playing arm a in its episode i.

Ra(j) Regret of playing arm a in its episode blocks accounted to block j.

Ra Regret of playing arm a in entire time horizon.

w(k) Number of rounds in block k of the mentioned arm and episode (as in Definition 5).

τ(k) Duration of block k of the mentioned arm and episode (as in Definition 5).

τ̃a,i Duration of ‘inflated’ active phase of episode i of arm a.

τ̃(k) Duration of ‘inflated’ block k of the mentioned arm and episode.

Table 2: Notations and their verbose descriptions.
498

A.1 On Computability of λ-inferiorty499

The statistical test (Line 6) of our algorithm, SNR, describes the identification of λ̂-inferiority of500
an arm as an optimization problem over the continuous domain λ̂ ∈ [0, 1]. However, with the501
integrality constraint of the sample window size w corresponding to a λ̂ ∈ [0, 1], we have w ∈ D ⊆502
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{1, 2, . . . , t} belongs to a finite countable domain of size not more than t. Thus, the identification503
of a λ̂-inferior arm becomes a discrete optimization problem. Also, at all times, for every arm b, it504
is feasible to keep track of the indentity of b̄ and the empirical means µ̂b̄,.(w) for different rounds of505
any window w. Thus, we note that the statistical test is deterministic and tractable.506

B Proof of Theorem 1507

We proceed to derive an instance-dependent regret upper bound expression for SNR. Towards that,508
we first establish useful properties about the nature of the active and passive phases, the sizes of509
episodes, the connection between the regret and the detectable gap, λ.510

Let G denote the good event where for all time-steps and all arms, for all valid window sizes, the511
empirical reward means of the arm (or its proxy in certain parts of the window) fall close to the true512
reward means. In other words,513

G := {∀a ∈ A, t ∈ [T ],∀w : µ̂ā,t(w)− r(w) < µā,t(w) < µ̂ā,t(w) + r(w)} . (5)

Claim 1. The good event G occurs with high probability; specifically, P {G} ≥ 1− 2
T .514

Proof. We work in the probability space in which the rewards from arm pulls µ̂a,ts are generated515
(as a tape) ahead of time, and for every time t ∈ [T ], arm a ∈ A, we have µ̂a,t is an independent516
sample from Ber (µa,t).517

Recalling the definitions in Section 3, for an arm a, the notion of ā refers to the arm that transitively518
snoozed arm a in the rounds in which a is passive, and refers to arm a itself otherwise (when a is519
active). Applying this to the other definitions, we have that, for any arm a, for some time-step t, for520
a window of w rounds, the arm ā was played by SNR at time steps ωā1 , ω

ā
2 , . . . , ω

ā
w ≤ t in the last521

w rounds, and µ̂ā,t(w) := 1
w

∑w
x=1 µ̂ā,ωāx is the average of empirical reward means of arm ā over522

those samples, while µā,t(w) := 1
w

∑w
x=1 µā,ωāx is the average of true reward means of arm ā in523

those time steps (ωāt )wt=1.524

Note that the terms µ̂ā,t(w) (sim. µā,t(w)) and µ̂a,t(w) (sim. µa,t(w)) denote the same quantity if525
arm a is active in all of the w rounds in consideration.526

Now, the probability of the average of empirical reward means µ̂ā,t(w) deviating from the average527

of true reward means µā,t(w) by more than a confidence radius r(w) :=
√

2 log T
w is upper bounded528

using Chernoff-Hoeffding inequality as follows:529

P {|µ̂ā,t(w)− µā,t(w)| ≥ r(w)} ≤ 2e−2w.r(w)2

= 2e−2w. 2 log T
w =

2

T 4
.

Taking a union bound over all arms a ∈ A (given |A| < T ), all time steps t ∈ [T ], all windows of530
rounds w (where w ≤ T ) gives531

P {∃a ∈ A, t ∈ [T ], w, s.t. |µ̂a,t(w)− µa,t(w)| ≥ r(w)} ≤ 2

T

=⇒ P {∀a ∈ A, t ∈ [T ],∀w : |µ̂a,t(w)− µa,t(w)| ≤ r(w)} ≥ 1− 2

T
.

532

For the rest of the analysis in this section until Theorem 1 is restated, we shall assume that event G533
occurs.534

Lemma 2 (Sub-optimality of snoozed arms). A snoozed arm is never optimal during the passive535
phase. Precisely, for an arm a in its episode i, for some arm b, we have b̄ >λ̂ a at time ga,i. Then,536
for all times t ∈ [ga,i + 1, ta,i+1], we have µa,t ≤ µ∗t .537
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Proof. Note that if there is no passive phase in the episode, i.e., when arm a is not snoozed, the538
result is vacuously true. Thus, what is to be shown is only the case where arm a is snoozed for a539
non-empty passive phase [ga,i + 1, ta,i+1]. We prove this lemma in two steps. First, we show (in540
Claim 3) that when SNR detects b̄ >λ̂ a at time ga,i, then, for a period of time culminating at ga,i,541
some arm α has a larger average true reward mean than that of arm a by a certain margin. Second,542
we argue that the duration of the passive phase for which arm a is snoozed is chosen based on this543
margin such that it remains sub-optimal for the entirety of the passive phase owing to the drift limit.544

At the end of the active phase of arm a’s episode i, at ga,i, SNR detects for some λ̂ ∈ [0, 1] and545
some arm b that b̄ >λ̂ a. We make the following claim about the sub-optimality gap of arm a from546
another arm at some point in time during this active phase.547

Claim 3. There exists a time-step t′ ∈ [ta,i + K/2, ga,i] such that for some arm α, we have

µα,t′ − µa,t′ ≥
λ̂

3
−Kδ ≥ 4

√
log T

wa,i
−Kδ.

Proof. As arm b̄ >λ̂ a at time t = ga,i, by Definition 3, we have, for a window of w rounds548

LCBb̄,t(w) > UCBa,t(w) + 2r(w)−Kδ
=⇒ µ̂b̄,t(w)− r(w) > µ̂a,t(w) + r(w) + 2r(w)−Kδ

(a)
=⇒ µb̄,t(w) > µ̂b̄,t(w)− r(w) > µ̂a,t(w) + r(w) + 2r(w)−Kδ > µa,t(w) + 2r(w)−Kδ
=⇒ µb̄,t(w)− µa,t(w) > 2r(w)−Kδ

=⇒ µb̄,t(w)− µa,t(w) > 2

√
2 log T

w
−Kδ = 2

√
2 log T.λ̂2

72 log T
−Kδ = 2

√
λ̂2

36
−Kδ =

λ̂

3
−Kδ.

(6)

The implication (a) is due to the occurence of event G. Note that λ̂ ∈ [0, 1] is constrained (again, as549
in Definition 3) by the number of samples w available in the current episode i as follows:550

⌈
c0 log T

λ̂2

⌉
≤ wa,i =⇒ λ̂ ≥

√
c0 log T

wa,i
. (7)

We use the short-hand f := 1
3

√
c0 log T
wa,i

= 4
√

log T
wa,i

for ease of expression. Expanding the terms551

µa,t(w) and µb̄,t(w) by their definitions, we have552

µb̄,t(w)− µa,t(w) =
1

w

w∑
i=1

µb̄,ωb̄i
− µa,ωai

(a)
>
λ̂

3
−Kδ

(b)
≥ f −Kδ. (8)

The (a) is due to Equation (6) and the (b) is due to f ≤ λ̂
3 from Equation (7).553

The average of w terms being larger than f − δ implies that atleast one term is larger than f − δ.554
Thus, for some 1 ≤ i ≤ w, we have µb̄,ωb̄i − µa,ωai > f − δ. The two time steps ωb̄i and ωai from555
the same round i can not be more than K − 1 time steps apart by the nature of round-robin play of556
arms. With the drift limit implication as in Equation (1), we have µb̄,ωai − µa,ωai > f −Kδ. Thus,557
we get for some t′ ∈ [ta,i + K/2, ga,i] that µb̄,t′ − µa,t′ ≥ f −Kδ. This completes the proof of the558
claim with the arm α = b̄ at time t′.559
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We continue to use the short-hand f := 4
√

log T
wa,i

for ease of expression. From Claim 3, at some560

time t′ ∈ [ta,i + K/2, ga,i], we have for some arm b that µb,t′ − µa,t′ > f − Kδ. By adhering561
to the drift limit, we have |∆a,t −∆a,t+1| ≤ 2δ for all time-steps t ∈ [T − 1]. Thus, for the562
identity of the optimal arm to change, i.e., for the sub-optimality gap of at least f − Kδ of arm a563
to get exhausted/overturned, it requires a minimum of (f−Kδ)/2δ = f/2δ − K/2 time-steps to pass.564
Thus, for all t′′ ∈ [t′, t′ + f/2δ − K/2], and thus for all t′′ ∈ [ga,i + 1, ta,i + f/2δ] (which is a565
shorter sub-period) we have µa,t′′ ≤ µb,t′′ ≤ µ∗t′′ . i.e., arm a is sub-optimal in the time period566
[ga,i + 1, ta,i + f/2δ].567

Once SNR detects b̄ >λ̂ a at time t, it computes the duration of the sub-optimality buffer period as568
buf = f/2δ (in Line 9). If ta,i + buf ≤ ga,i or equivaently buf ≤ τa,i, the arm a is not snoozed for a569
passive phase. Otherwise, as in Line 11 of the agorithm, the sub-optimal arm a is snoozed until time-570
step ta,i+1 = ta,i + buf = ta,i + f/2δ, i.e., the passive phase runs for the period [ga,i+1, ta,i + f/2δ].571
We have already shown that during this period arm a is sub-optimal.572

Thus, thanks to Lemma 2, during the passive phase of an episode, not playing the snoozed arm does573
not lead to any regret.574

We now bound the expected regret incurred by the sub-optimal arm a in episode i, Towards that, we575
define the notion of regret in an episode:576

Definition 4 (Episode Regret). In an algorithmic run of SNR with a drift limit parameter δ on a577
problem instance µ ∈ Sδ , the regret for arm a in its episode i defined as578

Ra,i =

ta,i+1∑
t=ta,i+1

(
µ∗t − µSNR(t),t

)
× 1 {SNR(t) = a} ,

where µ∗t = maxa∈A µa,t is the mean reward of the optimal arm at time t, SNR(t) ∈ A is the arm579
pulled by SNR at time t ∈ [T ].580

Here, 1 {X} is the indicator random variable that takes the value 1 if event X happens, and 0581
otherwise.582

Next, we upper bound the regret Ra,i as a function of wa,i, the number of times arm a is pulled in583
its episode i. Towards that, we state a key definition about partitioning the active phase into blocks584
of time as follows:585

Definition 5 (Blocks in an active phase of episode). For an episode i of arm a, divide the time period586
[ta,i + 1, ga,i − 1] of size τa,i − 1 (consisting of wa,i − 1 rounds) into j ≥ 1 consecutive blocks of587
time periods, where every block k ∈ [j] spans the time period [αk−1 + 1, αk] of size τ(k) which588
contains a window of w(k) rounds of samples.589

The size of every block k ∈ [j − 1] is τ(k) and is chosen such that τ(k) = 1
δ

√
log T
w(k) and for the last590

block, where k = j, such that τ(k) ≤ 1
δ

√
log T
w(k) . Note that the active phase’s first time step α0 = ta,i591

and last time step αj = ga,i − 1 here.592

Lemma 4 (Episode regret trajectory-dependent upper bound). In an algorithmic run of SNR with a593
drift limit parameter δ on a problem instance µ ∈ Sδ , the regret for arm a in its episode i is upper594
bounded as595

Ra,i ≤ 1 +

j∑
k=1

c2
√
w(k). log T .

where c2 = 10 is a constant, and terms j and w(k)s are as in Definition 5.596
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Proof. From Definition 4,597

Ra,i =

ta,i+1∑
t=ta,i+1

(
µ∗t − µSNR(t),t

)
× 1 {SNR(t) = a}

(a)
=

ga,i∑
t=ta,i+1

(µ∗t − µSNR(t),t)× 1 {SNR(t) = a}

(b)
≤1 +

ga,i−1∑
t=ta,i+1

(µ∗t − µSNR(t),t)× 1 {SNR(t) = a} . (9)

The (a) is due to the snoozed arm not being played in the entire passive phase [ga,i + 1, ta,i+1]. The598
(b) is obtained by trivially upper bounding the regret at time ga,i by 1.599

Recall that SNR rotates the active arms (i.e., play in a round-robin fashion) in the time period600
[ta,i + 1, ga,i − 1], and the statistical test did not pass in that period. Thus, we have that there601

was no λ̂ ∈ [0, 1] (and a corresponding window of w :=
⌈
c1 log T

λ̂2

⌉
rounds) for which b̄ >λ̂ a at any602

time t ∈ [ta,i + 1, ga,i − 1].603

Applying Definition 3 at time this time t with some valid window of w rounds, we have for all arms604
b ∈ A \ {a} that605

LCBb̄,t(w) ≤UCBa,t(w) + 2r(w)−Kδ
=⇒ µ̂b̄,t(w)− r(w) ≤µ̂a,t(w) + r(w) + 2r(w)−Kδ

(a)
=⇒ µb̄,t(w)− r(w)− r(w) ≤µ̂b,t(w)− r(w)

≤ µ̂a,t(w) + r(w) + 2r(w)−Kδ ≤µa,t(w) + r(w) + r(w) + 2r(w)−Kδ
=⇒ µb̄,t(w)− µa,t(w) ≤6r(w)−Kδ

⇐⇒ µb̄,t(w)− µa,t(w) ≤6

√
2 log T

w
−Kδ

(b)
=⇒ µb,t(w)− µa,t(w) ≤6

√
2 log T

w
−Kδ = c1

√
log T

w
−Kδ, (10)

where c1 =
√

72 is a constant. The (a) is due to occurrence of the good event G. The (b) is due to606
µb̄,t(w) ≥ µb,t(w) as per Lemma 2. Note that Equation (10) is a generic inequality to upper bound607
the gap of an arm a to another single arm b whilst the statistical test keeps failing.608

Continuing the analysis from Equation (10) that upper bounds the reward mean gap of arm a from609
another single arm b, we next try to upper bound the reward mean gap of arm a from that of the610
optimal arm at each time-step. For this, we constrain the number of rounds, w, of samples available611
from the current episode for the statistical test, and the time period τ that spans the w rounds as612
follows:613

Claim 5. At time t, if the statistical test doesn’t detect that arm a is λ-inferior with a window of
w rounds of samples that spans a time period of size τ from the current episode, such that τ ≤
1
δ

√
log T
w , then the sub-optimality of arm a is upper bounded as follows: for all t′ ∈ [t − τ + 1, t],

we have

µ∗t′ − µa,t′ ≤ c2

√
log T

w
−Kδ.

Proof. From Equation (10), for all arms b ∈ A\{a}, we have µb,t(w)−µa,t(w) ≤ c1
√

log T
w −Kδ.614

Expanding the terms, we have 1
w

∑w
x=1 µb,ωbx − µa,ωax ≤ c1

√
log T
w −Kδ. Thus, we have that for615
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some round ` ∈ [w],616

µb,ωb` − µa,ωa` ≤ c1

√
log T

w
−Kδ. (11)

By the drift limit implication, for any time steps t′, t′′ ∈ [t − τ + 1, t], we have for all arms b that617

µb,t′−µb,t′′ ≤ τ.δ ≤
√

log T
w . Combining this with Equation (11), for all time steps t′ ∈ [t−τ+1, t]618

and for all arms b ∈ A \ {a}, we have that µb,t′ − µa,t′ ≤
(
c1

√
log T
w −Kδ

)
+

(√
log T
w

)
=619

c2

√
log T
w − Kδ, where c2 = 10 ≥ c1 + 1 is a constant. Consequentially, as it holds for all other620

arms b, maxb∈A\{a} µb,t′ − µa,t′ = µ∗t′ − µa,t′ ≤ c2
√

log T
w −Kδ. This completes the proof of the621

claim.622

Using the results obtained in Claim 5 that constraints the window w of samples and time period τ623
that spans the window, we proceed with bounding the episodic regret Ra,i by similarly breaking624
down the active phase τa,i and total rounds wa,i of samples observed into suitably sized blocks of625
time periods as described in Definition 5.626

Next, bringing back Equation (9), we have627

Ra,i ≤1 +

ga,i−1∑
t=ta,i+1

(µ∗t − µSNR(t),t)× 1 {SNR(t) = a}

≤1 +

j∑
k=1

αk∑
t=αk−1+1

(µ∗t − µSNR(t),t)× 1 {SNR(t) = a}

(a)
≤1 +

j∑
k=1

(
c2

√
log T

w(k)
−Kδ

)
.w(k)

≤1 +

j∑
k=1

c2
√
w(k) log T . (12)

Here, (a) is due to Claim 5. This completes the proof of the Lemma 4.628

We see that Lemma 4 characterizes the episodic regret as a function of algorithm-run (trajectory)629
dependent quantities—such as the window of samples, wa,is, with a constrained break-up of the630
active phase of size τa,i. Next, we strive to get an instance dependent characterization of the episodic631
regret in terms of the detectable gap λ by drawing connections to the samples observed, wa,i (or632
w(k)s to be precise).633

Lemma 6 (Episode regret instance-dependent upper bound). In an algorithmic run of SNR with a634
drift limit parameter δ on a problem instance µ ∈ Sδ , the regret in episode i ∈ [e] of an arm a is635
upper bounded as636

Ra,i ≤ c4
j∑

k=1

1

λαk
log T + c5,

where c4 = 120, c5 = 1 are constants, and terms j and αks are as in Definition 5.637

Proof. Towards proving this lemma, we make an important observation about the connection be-638
tween the detectable gaps λ and the success of the statistical test used in our algorithm.639



Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Lemma 7. [Sufficient condition for positive statistical test] At some time t in the active phase of640

some episode of arm a when w rounds have passed, if we have λa,t >
√

c0 log T
w , then the statistical641

test passes, i.e., algorithm SNR at time t declares b̄ >λ̂ a for some arm b. Here, c0 = 144 is a642
constant.643

Proof. If λa,t =
√

c0 log T
t (from second assignment in Eqn. 2), we always have λa,t ≤

√
c0 log T
w644

as w ≤ t. But, given that we have its negation as the premise of the Lemma statement, we assume645
the description of detectable gap λ as quantified by the first assignment in Equation (2). While this646
description guarantees over an average of reward mean gaps computed over a window of contiguous647
time steps, to make a comparison with the algorithm’s statistical test, we desire similar guarantees648
about the average of reward mean gaps computed over a sparser set of time-steps from the window,649
specifically, from one time step per round over the window. We make the following claim towards650
that:651

Claim 8. The averages of the true reward means of arm a and some arm b at time t computed652
over a window of w ≥ c0 log T

λ2
a,t

rounds spanning a time period of at most c3K log T
λ2
a,t

obeys µb,t(w) −653

µa,t(w) ≥ λa,t −Kδ. Here, c3 = 72 is a constant.654

Proof. Let b be the arm that was compared with arm a in determining the value of λa,t. From655
Equation (2), we have for a contiguous window of size τ ′ := c0K log T

λ2
a,t

that spans [s = t− τ ′+ 1, t],656

we have657

1

τ ′

t∑
t′=s

µb,t′ − µa,t′ ≥ λa,t

(a)
=⇒ 1

w

w∑
x=1

µb,ωbx − µa,ωax ≥ λa,t −Kδ.

The (a) is due to the δ drift limit implication and the fact that the ωbx and ωba time steps are at most K658
steps apart between themselves and between two consecutive rounds (i.e., between ωbx and ωbx+1),659
and the fact that all w time steps are from within the time period of [s = t− τ ′+ 1, t] for which λa,t660
was originally computed.661

From Claim 8, we have662

µb,t(w)− µa,t(w) ≥ λa,t −Kδ
(a)

=⇒ µ̂b,t(w)− µ̂a,t(w) ≥ λa,t − 2r(w)−Kδ
(b)

=⇒ µ̂b̄,t(w)− µ̂a,t(w) ≥ λa,t − 2r(w)−Kδ
=⇒ LCBb̄,t(w)− UCBa,t(w) ≥ λa,t − 4r(w)−Kδ

=

√
c3K log T

τ ′
− 4

√
2 log T

w
−Kδ

(c)
≥
√
c3 log T

w
− 4

√
2 log T

w
−Kδ

= 2r(w)−Kδ, (13)

where c3 = 4 ≥ √c0 − 4
√

2 is a constant. Here, (a) is due to occurence of G, the (b) is due to663
µ̂b̄,t(w) ≥ µ̂b,t(w) from Lemma 2, and (c) uses w ≥ τ ′/K.664

The inequality in Equation (13) is the condition for the algorithm to declare b̄ >λ̂ a (as in Defini-665
tion 3) at time t. Thus, the statistical test passes. This completes the proof of Lemma 7.666
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Now, recall that the statistical test did not pass in the time period [ta,i + 1, ga,i − 1]. Specifically,667
the test did not pass in the time-steps α1, α2, . . . , αj = ga,i − 1 associated with the active phase668

of arm a’s episode i. By Lemma 7, for all k ∈ [j], we have λαk ≤
√

c0 log T
w(k) or equivalently,669 √

w(k) ≤
√
c0 log T
λαk

. Substituting this in Equation (12), we get670

Ra,i ≤ 1 +

j∑
k=1

c2
√
w(k). log T

≤ 1 +

j∑
k=1

c2

√
c0 log T

λαk

√
log T

=

j∑
k=1

c4
1

λαk
log T + 1

= c4

j∑
k=1

1

λαk
log T + c5.

This completes the proof of Lemma 6.671

Next, we upper bound the overall regret of an arm a over all episodes. Towards that, we argue that672
the time steps αks that are a part of the episodic regret upper bound in Lemma 6 are well spaced673
between themselves (as in Claim 9) and between different episodes (from Claim 10). We next674
present two claims in that regard.675

Claim 9. In the regret upper bound expressions in Lemma 6, for every episode i of arm a, the676
time steps α1, α2, . . . , αj that characterize the duration of the contiguous time blocks and the regret677
expression are spaced as follows: for all k ∈ [j − 1], we have αk − αk−1 ≥ δ−2/3 log

1/3 T .678

Proof. By definition (as in Lemma 4), we have the time period [ta,i+1, ga,i − 1] divided into j679
consecutive blocks of time periods, where every block k ∈ [j] spans the time period [αk−1 + 1, αk]680
of size τ(k) which contains a window of w(k) rounds of samples. The sizes of every block k ∈681

[j − 1] are chosen such that τ(k) = 1
δ

√
log T
w(k) . Trivially, τ(k) ≥ w(k). Thus, we have τ(k) ≥682

δ−2/3 log
1/3 T , completing the proof of Claim 9.683

Claim 10 (Minimum duration of an episode). In an algorithmic run of SNR, for any arm a, the684
duration of any episode i ∈ [ea − 1] (except the last one) is lower bounded as follows: ti+1 − ti ≥685
c9δ

−2/3 log
1/3 T . Here, c9 = 22/3 is a constant.686

Proof. At the end of the active phase (of duration τa,i) at time-step ga,i, the sub-optimality buffer687

computed is buf = 2
δ

√
log T
wa,i

. In Lines 10-11, the algorithm decides what the snooze duration of arm688

a should be, thus determining ta,i+1, the time when the episode i of arm a shall end, based on the689
following two cases.690

Case τa,i ≥ buf : Equivalently, we have τa,i ≥ 2
δ

√
log T
wa,i

. The sub-optimal arm does not get691

snoozed, so, episode i terminates at ta,i+1 = ga,i = ta,i + τa,i.692

Case τa,i < buf : Equivalently, we have τa,i < 2
δ

√
log T
wa,i

. The sub-optimal arm gets snoozed until693

time ta,i + buf = ta,i + 2
δ

√
log T
wa,i

. The end of the passive phase marks the end of episode i, thus,694

ta,i+1 = ta,i + 2
δ

√
log T
wa,i

.695
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From these two cases, we can see that ta,i+1 = ta,i + max
{
τa,i,

2
δ

√
log T
wa,i

}
. As τa,i ≥ wa,i, to696

lower bound ta,i+1 − ta,i, we minimize the quantity max
{
wa,i,

2
δ

√
log T
wa,i

}
. As the two quantities697

grow oppositely with wa,i, the minimum occurs when698

wa,i =
2

δ

√
log T

wa,i
⇔ wa,i = 2

2/3δ
−2/3 log

1/3 T.

Thus, we have ta,i+1 − ta,i ≥ c9δ−2/3 log
1/3 T , completing the proof of Claim 10.699

Lemma 11 (Single arm instance-dependent regret upper bound). In an algorithmic run of SNR with700
a drift limit parameter δ on a problem instance µ ∈ Sδ , the regret of an arm a is upper bounded as701

Ra =
∑
i∈[ea]

Ra,i ≤ c6
m∑
j=1

1

λa,min(j)
. log T + c7,

where m = T/τ is the number of blocks, each of length not more than τ =702

min
{
T, c3δ

−2/3K1/3 log
1/3 T

}
, and for every block j ∈ [m] spanning a time period bj :=703

[(j − 1)τ + 1, jτ ] ∩ [T ], define λa,min(j) := mint∈bj λa,t. Here, cis are suitable constants.704

Proof. To show this upper bound, we partition the time-horizon into blocks of suitably small size,705
and bound the regret in episodes (from Lemma 6) by accounting each term in them to some block.706

Recall that in an algorithmic run of SNR, ea is the number of episodes that arm a runs for. These707
episodes, indexed 1, 2, . . . , ea, start after times ta,1 = 0, ta,2, . . . , ta,ea (and a hypothetical tea+1 =708
T marks the end of the last episode e) respectively. Note that the collection of episode time periods709
([ta,i + 1, ta,i+1])i∈[ea] for each arm a partitions the entire time horizon [T ]. Thus, the total regret710

incurred by the algorithm (in a particular run 8 ) is R(SNR) =
∑
a∈A

∑
i∈[ea]Ra,i.711

For analysing the total regret, we partition the time horizon into m = T/τ blocks (indexed as712
1, 2, . . . ,m), each of size τ = c9δ

−2/3 log
1/3 T , where c9 = 22/3 is a constant. Each block j ∈ [m]713

spans the time period bj := [(j − 1)τ + 1, jτ ] ∩ [T ].714

As stated earlier, the chosen size of a block τ is the minimum duration of an episode stated in715
Claim 10. Thus, a block period bj overlaps with a maximum of two episodes.716

Note that the chosen block size τ is also the minimum size of a block (except the last one) as per717
Claim 9 in the episodic regret upper bound expression in Lemma 6. Thus, a block period bj overlaps718
with at most two episodic regret blocks from a particular episode.719

Thus, for any block j ∈ [m], there are at most 2 episodes, say i, i+ 1, and at most 4 corresponding720
episodic regret blocks end times, say αk, αk+1 for episode i and αk′,αk′+1

for episode i+1, intersect721
with the block period bj . We account the corresponding four block regrets to block j. We denote722
this regret to block j ∈ [m] as723

Ra(j) ≤ c4.

(
1

λa,αk
+

1

λa,αk+1

+
1

λa,α′k
+

1

λa,αk′+1

)
. log T + 4c5 (14)

As the αks in Equation (14) are algorithm trajectory dependent quantities, and every block j ∈ [m]724
accounts for at most a constant number of regret terms, we further upper bound Ra(j) as follows:725

8while the quantities eas, τa,is, wa,i etc. are random variables, we use them here as quantities obtained after a single
algorithmic trajectory/run.
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Ra(j) ≤4c4.max
t∈bj

1

λa,t
. log T + 4c5

c6.
1

mint∈bj λa,t
. log T + c7

c6.
1

λa,min(j)
. log T + c7, (15)

where we write λa,min(j) := mint∈bj λa,t, and c6 = 4c4 = 480, c7 = 4c5 = 4 are constants.726

Note that every regret term of every episode from Lemma 6 is accounted to some block j ∈ [m].727
By this accounting criteria, we modify the expression for regret of arm a from a summation over728
episodes to a summation over blocks as follows:729

Ra =
∑
i∈ea

Ra,i ≤
∑
j∈[m]

Ra(j)
(a)
≤
∑
j∈[m]

c6.
1

λa,min(j)
. log T + c7,

where (a) is from Equation (15).730

This completes the proof of the Lemma 11.731

Next, we come to the final part of the proof. We show the instance-dependent regret bound of SNR732
over the entire time horizon as an accumulation of regret bounds of all arms:733

R(SNR) =
∑
a∈A

Ra
(a)
≤
∑
a∈A

m∑
j=1

c6
1

λa,min(j)
+ c7, (16)

where (a) is from Lemma 11.734

For the remainder of the proof, we drop the implicit assumption that G occurs, and upper bound735
the conditional expected regret of our algorithm SNR when high probable event G occurs using736
Equation (16), and then generously upper bound the conditional regret when G′ occurs by T (a737
regret of 1 for every time-step). Along with Claim 1, we have738

E [R(SNR)]

=E [R(SNR|G)] .P {G}+ E [R(SNR|G′)] .P {G′}

≤

∑
a∈A

m∑
j=1

c6.
1

λa,min(j)
+ c7

+ T.
2

T
(17)

=c6
∑
a∈A

m∑
j=1

1

λa,min(j)
. log T + c8,

where c6 = 480 and c8 = c7 + 2 = 6 are constants. This completes the proof and leads to the739
Theorem.740

Theorem 1. [Instance-dependent regret bound] If SNR is run with a drift limit parameter δ on a741
problem instance µ ∈ Sδ , then its expected regret , R(SNR), is upper bounded by742

c6
∑
a∈A

m∑
j=1

1

λa,min(j)
. log T + c8,

wherem = T/τ is the number of blocks, each of length not more than τ = min{T, c9δ−2/3 log
1/3 T},743

and for every block j ∈ [m] spanning a time period bj := [(j−1)τ+1, jτ ]∩[T ], define λa,min(j) :=744
mint∈bj λa,t. Here, cis are suitable constants.745
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C Proof of Theorem 2746

In this section, we show a minimax (instance-independent) upper bound for the regret incurred747
by SNR that depends on the time horizon T , the drift limit δ, and the number of arms K but, is748
independent of the actual reward mean profile µ. Towards this, for every episode, we upper bound749
the average regret or per-time-step regret.750

Then, we shall show a minimax regret that is bounded by T times the maximum average regret751
incurred in any episode.752

Theorem 2. [Minimax Upper bound] If SNR is run with a drift limit parameter δ on any problem753
instance µ ∈ Sδ , then it incurs an expected regret of O(Tδ1/3K1/3 log

1/3 T ), where K is the number754
of arms.755

Proof of Theorem. As shown in Equation (17), the conditional regret when G′ occurs can be756
bounded as E [R(SNR|G′)] .P {G′} ≤ 2. Thus, it is sufficient to prove the required bound under757
the assumption of occurrence of G.758

We begin our proof from Equation (12) that was used as an intermediary part of the proof of the759
earlier Theorem 1. The regret of an arm a in its episode i as per Equation (12) is760

Ra,i ≤1 +

j∑
k=1

c2
√
w(k). log T

≤
j∑

k=1

c10

√
w(k). log T , (18)

where j is the number of blocks partitioning the active phase and w(k) is the number of rounds (or761
the number of times arm a is pulled) in block k ∈ [j], as per Definition 5.762

The total regret for our algorithm over the entire time horizon over all arms is763

R(SNR) =
∑
a∈A

∑
i∈[ea]

Ra,i

(a)
≤
∑
a∈A

∑
i∈[ea]

j∑
k=1

c10

√
w(k). log T

≤ KT max
a∈A,i∈[ea]

∑j
k=1 c10

√
w(k). log T

ta,i+1 − ta,i
, (19)

where (a) uses Equation (18).764

The final inequality is due to the fact that each time-step is a part of only one episode of every arm.765
Note that

∑j
k=1 c10

√
w(k). log T/ta,i+1−ta,i is the averaged regret per-time-step of episode i of arm a.766

The episode of period [ta,i + 1, ta,i+1] can comprise of both active and passive phases, and we have767
τa,i/K ≤ wa,i as not all K arms are necessarily active (and thus played) in every round.768

Inflated episodes. For convenience in handling these quantities, we introduce an analytical con-769
struct that we call inflated episodes. For an episode i of an arm a, we obtain an inflated episode770
(with inflated active and passive phase) by interleaving into it time steps from episodes of other771
arms. Precisely, we do the following. Consider some round in the algorithmic run/trajectory of size772
x ≤ K, i.e., x distinct arms are pulled once each during that round. We have x arms in their active773
phases and K − x arms in their passive phases for that round. There are x time steps in each of the774
K − x passive arms in the current round, thus a total of x(K − x) passive time steps. We inflate the775
current round of the x active arms by assigning K − x time steps each, thus each of the x(K − x)776
passive time steps are added into the round of some active arm. This inflated round is a part of the777
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inflated active phase (and inflated episode) of the active arm. Now, the round of each of the x active778
arms have K timesteps each, and the round of each of the K − x passive arms have no time steps.779

By repeating this exercise for all rounds of an algorithmic trajectory, we obtain the complete set of780
inflated episodes. Observe that every time step removed from the passive phase of some arm gets781
into the inflated active phase of some other arm. Thus, we have782

∑
a∈A

∑
i∈[ea]

ta,i+1 − ta,i =
∑
a∈A

∑
i∈[ea]

τa,i + (ta,i+1 − ga,i) =
∑
a∈A

∑
i∈[ea]

τ̃a,i,

where τ̃a,i is the length of the inflated active phase of episode i of arm a, and such inflated episodes783
don’t have a passive phase.784

Now, we make use this property and continue from Equation (19) by replacing the averaged per-785
time-step regret of an episode with the averaged per-time-step regret of an inflated episode as fol-786
lows:787

R(SNR) = KT. max
a∈A,i∈[ea]

∑j
k=1 c10

√
w(k). log T

τ̃a,i

≤ KT. max
a∈A,i∈[ea],k∈[j]

c10

√
w(k). log T

τ̃(k)
(20)

where τ̃(k) is the length of the inflated block k ∈ [j].788

What remains to be shown is that
√
w(k). log T

τ̃(k) term in Equation (20) is O(δ1/3K−2/3 log
1/3 T ).789

By the nature of our construction of inflated episodes where each round has K time steps, we have790
for all arms a and episodes i ∈ [ea] that τa,i ≤ τ̃a,i = K.wa,i. As the construction (i.e., moving time791
steps from passive arms to active arms) happens at a round level, we have for every block k ∈ [j]792
that τ(k) ≤ τ̃(k) = K.w(k).793

Thus, we have794

τ̃(k) ≥ τ(k) =
1

δ
.

√
log T

w(k)

≥ 1

δ
.

√
log T

w(k)

=⇒ τ̃(k) ≥ δ−2/3K
−1/6 log

−1/6 T.

Substituting this in averaged inflated block regret expresssion
√
w(k). log T

τ̃(k) to minimize, we have795

√
w(k). log T

τ̃(k)
=

√
log T

K.τ̃(k)

≤ log1/2 T.δ−1/3.K−1/6 log−1/6 T

K1/2

=δ
1/3K

−2/3 log
1/3 T.

This completes the proof of the Theorem.796

797
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D Proof of Theorem 3798

Theorem 3. [Minimax Lower Bound] For any algorithm ALG and a drift limit δ > 0, there exists799
a problem instance µ ∈ Sδ such that, ALG incurs a expected regret of Ω(Tδ1/3K1/3), where K is800
the number of arms.801

Proof of Theorem. Towards proving this theorem, first, we shall state and prove some useful infor-802
mation theoretic lemmas. Then, we will divide the time horizon into smaller blocks and lower bound803
the expected regret of each block using those lemmas. Finally, we shall aggregate the regrets of the804
individual blocks by adhering to problem specific limitations, specifically, the drift limit δ, to arrive805
at the final overall lower bound.806

The Change of Measure Inequality presented in Lemma 12 generalizes that of Garivier & Kaufmann807
(2016) by accommodating non-stationary reward distributions of arms.808

Lemma 12 (Non-stationary Change of Measure Inequality). Let ν and ν′ be two non-stationary809
bandit instances (sets of reward distributions for each time-step) with k arms over time horizon810
[T ]. For any bandit algorithm ALG, for any random variable Z with values in [0, 1] that is fully811
determinable from the trajectory (history) of an algorithmic run, HT , i.e., Z is σ(HT )- measurable,812
we have813

k∑
i=1

T∑
t=1

KL
(
νi,t, ν

′
i,t

)
Eν [1 {ALG(t) = i}] ≥ KL (Ber (Eν [Z]) , Ber (Eν′ [Z])) (21)

where, Eν [X] is the expected value of random variable X under bandit instance ν, ALG(t) is the814
arm played by ALG at time-step t, KL(a, b) is the Kullback-Leibler divergence between distribu-815
tions a and b, Ber(a) is the Bernoulli distribution with expectation a.816

Proof. We prove this inequality by establishing two intermediate results:817

k∑
i=1

T∑
t=1

KL
(
νi,t, ν

′
i,t

)
Eν [1 {ALG(t) = i}] = KL

(
PHT+1
ν ,PHT+1

ν′

)
, and (22)

KL
(
PHT+1
ν ,PHT+1

ν′

)
≥ KL (Ber (Eν [Z]) , Ber (Eν′ [Z])) . (23)

Here, PHT+1
ν (resp. PHT+1

ν′ ) is the probability distribution under instance ν (resp. ν′) of the algorith-818
mic trajectory HT+1 = (U1, I1, Y1, . . . , UT , IT , YT , UT+1). And, Ut, It, Yt are random variables819
that correspond to internal randomness, arm pulled, and reward obtained respectively at time t.820

We start with the right-hand-side (RHS) of step 1 (Equation (22)) and show it’s equality to the821
left-hand-side (LHS). By definition,822

KL
(
PHTν ,PHTν′

)
=
∑
hT+1

Pν {HT+1 = hT+1} log
Pν {HT+1 = hT+1}
Pν′ {HT+1 = hT+1}

,

where hT+1 := (u1, i1, y1, . . . , uT , iT , yT , uT+1) is a realisation of a trajectory of a bandit algo-823
rithm. We continue by writing the sought-after divergence as824

∑
hT+1

Pν {HT+1 = hT+1} log

(
fu(u1).Pν {I1 = i1|U1 = u1} .Pν {Y1 = y1|U1 = u1, I1 = i1} .fu(u2). . . .

fu(u1).Pν′ {I1 = i1|U1 = u1} .Pν′ {Y1 = y1|U1 = u1, I1 = i1} .fu(u2). . . .

)
.
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The internal randomness function fu(·) of the algorithm ALG is instance-agnostic. Also, the prob-825
ability distribution of It under instances ν and ν′ are identical when conditioned upon the the tra-826
jectory (u1, i1, y1, . . . , ut−1, it−1, yt−1, ut). We continue by writing the sought-after divergence827
as828 ∑

hT+1

Pν {HT+1 = hT+1} log

T∏
t=1

νit,t(yt)

ν′it,t(yt)
=
∑
hT+1

Pν {HT+1 = hT+1}
T∑
t=1

log
νit,t(yt)

ν′it,t(yt)
.

We represent the above expression as an expectation over all possible trajectories ht under instance829
ν. At time step t, the deterministic arm played it is replaced by the random variable It. We continue830
the derivation as follows.831

KL
(
PHTν ,PHTν′

)
= Eν

[
T∑
t=1

log
νIt,t(yt)

ν′It,t(yt)

]
(a)
= Eν

[
T∑
t=1

log
νIt,t(yt)

ν′It,t(yt)

k∑
i=1

1 {It = i}

]

=

k∑
i=1

T∑
t=1

Eν

[
1 {It = i} log

νi,t(yt)

ν′i,t(yt)

]
(b)
=

k∑
i=1

T∑
t=1

Eν

[
1 {It = i}Eν

[
log

νi,t(yt)

ν′i,t(yt)

]
|1 {It = i}

]

=

k∑
i=1

T∑
t=1

Eν
[
1 {It = i}KL(νi,t, ν

′
i,t)
]

=

k∑
i=1

T∑
t=1

KL(νi,t, ν
′
i,t)Eν [1 {It = i}] .

The (a) is due to the fact that at every time t, exactly one arm is played. In (b), the inner expectation832
is over all realisations of yt. This completes the proof of Equation (22).833

For the proof for Equation (23), to avoid repetition, we refer the reader to Garivier et al. (2019). This834
completes the proof of the Lemma 12.835

Next, we shall divide the time horizon into smaller blocks, and use this lemma to prove a lower836
bound on each of them individually. We shall finally aggregate them to get the final lower bound.837
Divide the time horizon [T ] := 1, 2, . . . , T into blocks of size m, to be determined later. We get838
T/m9 blocks in total. Throughout this section, we trade the notion of mean rewards µ (or µi,t) in839
favour of the more generic notion of reward distributions ν (or νi,t). Also, the time horizon of the840
block is [m] instead of the global time horizon [T ].841

Construction of ‘confusing’ problem instances. Consider two reward distributions ν, ν′. Let ν842
be a stationary instance with identical arms with Ber (1/2) rewards, i.e., for i ∈ A, all time steps843
t ∈ [m], we have νi,t ∼ Ber (1/2). One of the K arms is played at most in m/K number of time844
steps, i.e., ∃i ∈ A : Eν [Ni] ≤ m/K, where Ni is the number of times arm i is played in the block845
(by the end of time step m). Without loss of generality, assume that it is arm i = 1 that satisfies the846
above condition, i.e., Eν [N1] ≤ m/K.847

We construct bandit problem instance ν′ in such a way that the lesser played arm in instance ν (arm848
1) is optimal in ν′.849

9For technical clarity, we assume integrality of all quantities suitably.
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In ν′, all arms other than arm 1 have a stationary (for all times t ∈ [m]) Ber (1/2) reward distribu-850
tion. Whereas, arm 1 has a Ber (1/2) reward distribution at the beginning and ending time-step of851
the block, but, has reward distributions with larger means (than 1/2) in the intervening time-steps.852
Precisely,853

ν′i,t =



Ber

(
1

2

)
if i = 2, 3, . . . ,K

Ber

(
1

2
+
t− 1

m
.ε

)
if i = 1, t ≤

⌈m
2

⌉
Ber

(
1

2
+
m− t
m

.ε

)
if i = 1, t >

⌈m
2

⌉
.

(24)

We apply the non-stationary change of measure inequality stated in Lemma 12 to the instances ν and854
ν′ with a choice of Z = N1/m, the play fraction of the arm that is underplayed in ν, but is optimal in855
ν′.856

We first upper bound the LHS before plugging it into the inequality:857

K∑
i=1

m∑
t=1

KL
(
νi,t, ν

′
i,t

)
Eν [1 {ALG(t) = i}]

(a)
=

m∑
t=1

KL
(
ν1,t, ν

′
1,t

)
Eν [1 {ALG(t) = 1}]

=

dm2 e∑
t=1

KL

(
Ber

(
1

2

)
, Ber

(
1

2
+
t− 1

m
.ε

))
Eν [1 {ALG(t) = 1}] +

m∑
t=dm2 e+1

KL

(
Ber

(
1

2

)
, Ber

(
1

2
+
m− t
m

.ε

))
Eν [1 {ALG(t) = 1}]

≤
dm2 e∑
t=1

KL

(
Ber

(
1

2

)
, Ber

(
1 + ε

2

))
Eν [1 {ALG(t) = 1}] +

m∑
t=dm2 e+1

KL

(
Ber

(
1

2

)
, Ber

(
1 + ε

2

))
Eν [1 {ALG(t) = 1}] (25)

=KL

(
Ber

(
1

2

)
, Ber

(
1 + ε

2

)) m∑
t=1

Eν [1 {ALG(t) = 1}] ≤ ε2.Eν [N1] . (26)

The (a) is due to the fact that all arms other than arm 1 are identical in both the instances, i.e., for all858
time-steps t ∈ [m] and arms i ∈ A \ {1}, we have KL

(
νi,t, ν

′
i,t

)
= 0.859

The Equation (25) upper bounds the information gathered about the distinguishability of the arm 1860
(from stationary arm 1 withBer (1/2) rewards in instance ν) as if it were statinonary withBer

(
1+ε

2

)
861

rewards at all times t ∈ [m] in ν′.862
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We now plug the Equation (26) into Equation (21) with a choice of Z = N1/m to get863

ε2Eν [N1] ≥ KL
(
Ber

(
Eν [N1]

m

)
, Ber

(
Eν′ [N1]

m

))
(a)
≥ 2

(
Eν [N1]

m
− Eν′ [N1]

m

)2

(By Pinsker’s Inequality)

=⇒
√

1

2
.ε2Eν [N1] ≥ Eν′ [N1]

m
− Eν [N1]

m

=⇒ Eν′ [N1]

m
≤ Eν [N1]

m
+

√
1

2
.ε2Eν [N1]

(b)
≤ 1

K
+

√
1

2
.ε2.

m

K
.

Here, (a) is by Pinsker’s inequality, and (b) is due to Eν [N1] ≤ m/K. By fixing ε =
√
K/8m, we get864

Eν′ [N1]
m ≤ 1/K + 1/4 ≤ 3/4, since K ≥ 2. Thus, the sub-optimal arms in instance ν′ are played for865

more than a constant fraction of times in expectation, i.e.,
∑
i∈A\{1} Eν′ [Ni] ≥ m/4. In instance ν′,866

let these sub-optimal arms be played by ALG at time steps t1, t2, . . . , tx for some x ≥ m/4. Then,867
the expected regret in the block (denoted by Rb(ALG)) is868

Eν′
[
Rb(ALG)

]
=

x∑
i=1

µ∗ti − µALG(ti),ti =

x∑
i=1

µ1,ti − µ2,ti ,

where the second equality is because arm 1 is optimal throughout the block and the reward mean of869
any sub-optimal arm is identical to that of arm 2.870

By design (in Equation (24)), the set of reward mean gaps, {|µ1,t − µ2,t|}t∈[m], throughout the871

block [m] is {0, 0, εm ,
ε
m ,

2ε
m , . . . ,

ε
2}. We lower bound

∑x
i=1 µ1,ti − µ2,ti with the least possible872

sum of x ≥ m/4 values from the set of gaps as follows:873

Eν′
[
Rb(ALG)

]
=

x∑
i=1

µ1,ti − µ2,ti

≥ 2.

m/8∑
i=1

(i− 1).ε

m
=

2ε

m

m/8−1∑
i=0

i

=
2ε

m
.
m2 − 8m

64
=

ε

32
.(m− 8)

(a)
=

√
K

8m
.
m− 8

32

=

√
k

64
√

2
.
(
m1/2 − 8/m1/2

)
= Ω

(√
Km

)
. (27)

The (a) is due to ε =
√
K/8m.874

Also, at each time step in t ∈ [m], the maximum reward mean gap between any two arms is µ1,t −875
µ2,t ≤ ε. So, the regret in the block is trivially upper bounded as follows:876

Eν′
[
Rb(ALG)

]
≤ m.ε = m.

√
K/8m = O

(√
Km

)
. (28)

The following lemma is a consequence of Equations (27) and (28).877

Lemma 13. For a block of time period m, there exists a bandit instance ν′ (as in expression 24)878
such that, for any algorithm ALG, its expected regret Eν′

[
Rb(ALG)

]
is Θ(

√
Km).879
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Next, we aggregate the regret across T/m blocks to get the overall regret. Note that the instances ν880
and ν′ have a drift limit implication as follows:881

δ ≥ ε

m
⇐⇒ δ ≥ K1/2

√
8.m3/2

⇐⇒ m
3/2 ≥ 1√

8
.
K1/2

δ
⇐⇒

√
m ≥ 1√

2
.
K1/6

δ1/3
.

(29)

Now, the total regret is lower bounded by the number of blocks multiplied by the lower bound of882
regret within each block. Thus,883

E [R(ALG)] =
T

m
×Θ(

√
Km) =

T.K1/2

Θ(
√
m)

(a)
≥ T.K1/2.

√
2δ

1/3K
−1/6 = Ω

(
TK

1/3δ
1/3
)
,

where (a) uses Equation (29). This completes the proof of the Theorem 3.884

E Additonal simulations885

In this section, we plot supporting graphs that were not included in the main paper.886

E.1 Problem Instances887

We plot the problem instances whose regret plots were analysed in the main paper Section 6.888

(a) (b)

Figure 4: Illustration of problem instances, i.e., the true reward means of the arms. In (a), the
arms are well separated with no change in optimal arm’s identity throughout. Here, the drift limit
δ = 1/10.c9. log T ' 0.000021. In (b), the arms experience short stretches of stationarity and drift
alternately. The optimal arm’s identity toggles with every drift. Here, we have a relatively large drift
limit δ = 1/c9. log T ' 0.00021. The choice of δs are arbitrary to well describe the differences in
instances.

E.2 Algorithmic Trajectories889

In this subsection, we show two algorithmic trajectories (for two different instances) that can help890
better understand the functioning of our algorithm SNR in Figs. 6 and 7.891
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(a) (b)

Figure 5: Two sets of 4 structurally similar problems with varying drift limits δ. In (a), the instances
have common periods of stationarity and drift. The amount of drift varies with the corresponding δ =
a, 2a, 3a, 4a, for a = 1/c10 log T ' 0.000007 values. In (b), the instances have equal total cumulative
drift. To achieve that drift, the duration of drift varies with the corresponding δ = a, 2a, 3a, 4a, for
a = 1/c11 log T ' 0.000021 values. The choice of δs are arbitrary to well describe the differences in
instances.

Figure 6: Illustration of the trajectory of SNR for a problem instance whose gap, ∆2,t, and thus the
detectable gap, λ2,t (not shown in picture) increases with time t. One can observe that the statistical
test passes sooner (a shorter active phase [t2,i + 1, g2,i] of episode i) for larger observed gaps, λ̂s.
Also, the snooze period is more (a longer passive phase [g2,i + 1, t2,i+1]) for larger observed gaps.
The empirical means plotted are measured from the beginning of the episode till the current time-
step. Note that the empirical means of the sub-optimal arm remains unchanged during the passive
phase due to it not being played.
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Figure 7: Illustration of the trajectory of SNR for a problem instance with oscillating arms. Note
that episodes 1, 5, and 9 do not have a passive phase. Essentially, compared with the length of the
active phases, the gaps detected λ̂s were not sufficiently large to warrant snoozing the sub-optimal
arm. However, stretches of time where the arms are well separated enjoy substantial passive phases.


