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Abstract

Offline deep reinforcement learning (offline DRL) has attracted considerable attention across
various domains due to its ability to learn effective policies without direct environmental in-
teraction. Although highly effective, the trustworthiness of agent concerns the community.
Offline DRL can be categorized into three principal paradigms: model-based algorithms,
model-free algorithms, and trajectory optimization. While extant research predominantly
concentrates on calibration enhancement of model-based and model-free algorithms, cali-
bration of trajectory optimization remains a rather rare topic. In this paper, we introduce
the concept of Expected Agent Calibration Error (EACE), a novel metric designed to assess
agent calibration. Furthermore, we rigorously prove its theoretical relationship to the state-
action marginal distribution distance. Subsequently, we introduce the Calibration Enhanced
Decision Maker (CEDM), which employs a binning executor to process feature distribu-
tion histograms as input for the large sequence model, thereby minimizing the state-action
marginal distribution distance and enhancing the agent’s calibration. A series of in-depth
case studies of CEDM are carried out, with application on Decision Transformer, Decision
ConvFormer, and Decision Mamba. Empirical results substantiate the robustness of EACE
and demonstrate the effectiveness of CEDM in enhancing agent calibration, thereby offering
valuable insights for future research on trustworthy sequential decision-making.

1 Introduction

“A good decision is based on knowledge and not on numbers.”

—— Plato
∗Corresponding authors: Bo Xia, Tiantian Zhang
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Deep reinforcement learning, employing the trial-and-error mechanisms to learn and optimize specific reward
signals, has emerged as a powerful learning strategy executing autonomous data collection across various
domains, such as robotic motion control (Singh et al., 2022; Tang et al., 2024), autonomous driving (Kiran
et al., 2021; Zhao et al., 2024), large language model fine-tuning (Ouyang et al., 2022; Guo et al., 2025), and
so on. Furthermore, it is the aspiration of many roboticists to program a robot with a task in the evening
and return the following morning to discover it capable of effectively solving the task. Then, offline deep
reinforcement learning (offline DRL) has garnered considerable interest in the community (Gürtler et al.,
2023), primarily on account of its capacity to acquire effective strategies without the need for interaction with
the environment. Such capability is particularly advantageous in scenarios where the cost or risk associated
with real-time environmental engagement is substantial. According to survey compiled by Prudencio et al.,
it can be classified into three primary aspects: (1) model-based algorithms (Luo et al., 2024), (2) model-free
algorithms (Swazinna et al., 2022), (3) trajectory optimizations (Janner et al., 2021; Hu et al., 2024).

Especially, for the third aspect, trajectory optimization approaches reformulate reinforcement learning prob-
lems as sequence modeling tasks, leading to improved performance and generalization. A large proportion
of trajectory-optimization approaches adopt high-capacity large sequence models, which effectively address
several long-standing challenges in conventional reinforcement learning methods, including sample efficiency,
credit assignment, and partial observability. Within this paradigm, Decision Transformer (Chen et al., 2021)
stands as a pioneering contribution. As shown in Figure 1(d), Decision Transformer processes a sequence
that is composed of states, past actions, and desired returns within an autoregressive framework, and sub-
sequently infers actions aimed at achieving the specified return, with the Transformer functioning as the
policy model. Furthermore, following the advancements in large sequence models, adopting more powerful
backbone architectures for sequential decision-making has also drawn increasing attention, as exemplified by
Decision ConvFormer (Kim et al., 2024) and Decision Mamba (Ota, 2024).

Meanwhile, trustworthiness of the agent has also standed as a paramount concern within the community
(Yu et al., 2025). It is widely acknowledged that miscalibrated trust can lead to misuse of agents (Wei et al.,
2025). Therefore, to foster trustworthy and reliable agents, it is imperative to emphasize their calibration.
In the aforementioned taxonomy of offline DRL, the first two categories already have corresponding works
that consider calibration. Calibrated model-based DRL (Malik et al., 2019) demonstrates a method for
endowing agents with a calibrated world model that accurately represents true uncertainty and enhances
planning in high-stakes scenarios. Calibrated Q-learning (Nakamoto et al., 2024) learns conservative value
functions (Kumar et al., 2020) that are calibrated with respect to behavior policy. However, current research
on trajectory optimization has never incorporated calibration considerations, which poses a risk of misuse in
future real-world applications. In this study, we primarily concentrate on offline DRL algorithms with large
sequence models (such as Transformer (Vaswani, 2017), MetaFormer (Yu et al., 2022) and Mamba (Gu &
Dao, 2024)). Therefore, we raise the following question:

Major Question
Can we enhance calibration of offline DRL algorithms that utilize large sequence models
to further bolster their trustworthiness in future real-world applications?

To address this question, it is essential to first define a more accurate metric for agent calibration. Drawing
inspiration from the definition of Expected Calibration Error (Guo et al., 2017) in prior model calibration
literature, we introduce the Expected Agent Calibration Error (EACE) as a rigorous metric to quantitatively
characterize the calibration properties of agents. Nonetheless, implementing measurement in practical as-
sessments is challenging due to safety concerns. Therefore, we further theoretically prove the relationship
between the EACE and the state-action marginal distribution distance: differences in the EACE are bounded
by the total variation distance between the state-action marginal distributions of two agents; and under mild
assumptions, this can be extended to the Wasserstein-1 distance. In other words, a smaller Wasserstein-1
distance between the state-action marginal distributions of two agents indicates a smaller difference in their
EACE values, implying superior agent calibration.

Based on these foreshadowings, we introduce the Calibration Enhanced Decision Maker (CEDM). Unlike
traditional approaches that rely solely on the “number” of returns-to-go as input for the large sequence
model, CEDM incorporates a binning executor to process feature distribution histograms, thereby providing
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Figure 1: (a) Motivation: In real-world applications, especially in high-risk scenarios, trustworthiness
of an agent’s actions is also of great importance. (b) Measurement: We define the Expected Agent
Calibration Error; furthermore, for practical applications, we establish its relationship with the state-action
marginal distribution distance. (c) Methodology: We introduce the Calibration Enhanced Decision Maker
paradigm, which employs a binning executor to process the distribution histograms as inputs to the large
sequence model. (d) Prototype: Decision Transformer has been a groundbreaking approach in offline deep
reinforcement learning that treats decision-making as a sequence modeling problem.

richer “knowledge” for the agent. Intuitively, CEDM enables the agent under training to more accurately
model the state-action marginal distribution represented in the offline dataset. By minimizing the distance of
the distributions, it consequently decreases the differences in the EACE, thereby enhancing agent calibration.
Such paradigm is partially inspired by the previous studies on state-marginal matching (Lee et al., 2019;
Ghasemipour et al., 2020): they conduct a qualitative assessment of distribution matching outcomes within
designated state dimensions (e.g., xy-positions); furthermore, it can be extended to the velocity (e.g., x-
velocity) to obtain richer “knowledge”. Categorical Decision Transformer (Furuta et al., 2022) has shown
the potential of a similar paradigm within the Transformer architecture and has explained its effectiveness
from the perspective of hindsight information matching. Moreover, we demonstrate the applicability of
such paradigm to a wider range of large sequence models, which reduces the distance between state-action
marginal distributions and thereby enhances the agent calibration.

Furthermore, we perform case studies by applying the CEDM paradigm to Decision Transformer (Chen et al.,
2021), Decision ConvFormer (Kim et al., 2024), and Decision Mamba (Ota, 2024). Based on a comprehensive
review of these practical implementations, several conclusions can be drawn. Firstly, the CEDM paradigm
effectively decreases the Wasserstein-1 distance between the state-action marginal distributions of the target
rollout and the agent’s behavior. Secondly, performance of the agent (e.g., final return) can be improved by
utilizing the CEDM paradigm. Finally, application of the CEDM paradigm to ultra-long context sequence
models (e.g., Mamba) may encounter limitations inherent in the offline dataset itself, providing insights for
future efforts to deploy more advanced sequence models in decision-making tasks.

In summary, our contributions are as follows:

• We introduce the agent calibration metric: Expected Agent Calibration Error. Furthermore, to
facilitate practical implementation, we theoretically establish the relationship between the EACE
and the state-action marginal distribution distance.
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• We introduce the Calibration Enhanced Decision Maker paradigm, which utilizes a binning executor
to process distribution histograms as inputs to the large sequence model. This paradigm effectively
reduces the state-action marginal distribution distance, thereby enhancing the agent’s calibration.
To the best of our knowledge, this is the first study on the enhancement of agent calibration in the
field of offline DRL with large sequence models.

• We perform case studies, applying the CEDM paradigm to Decision Transformer, Decision Con-
vFormer, and Decision Mamba. Experimental results demonstrate the effectiveness of CEDM and
provide insights into its future applications in more advanced sequence models.

2 Related Work

2.1 Offline DRL with Large Sequence Models

Decision Transformer (Chen et al., 2021) represents a pioneering stride in reinforcement learning, reframing
the decision-making as sequence modeling using the Transformer architecture to predict optimal actions by
processing trajectories of state, action, and returns-to-go. Such an innovative training paradigm has sparked
a burgeoning trend in leveraging advanced large sequence models to address decision-making tasks. Deci-
sion ConvFormer (Kim et al., 2024) utilizes the architectural framework of MetaFormer (Yu et al., 2022),
employing localized convolutional filtering as the token mixer, adeptly capturing the intrinsic local depen-
dencies within the trajectories. Decision S4 (David et al., 2023) employs an RNN-like S4 (Gu et al., 2022)
architecture for inference, while Decision Mamba (Ota, 2024) directly substitutes the attention mechanism
with Mamba (Gu & Dao, 2024). Furthermore, this paradigm has also been increasingly applied in various
domains, including robotic motion control (Gajewski et al., 2024), autonomous driving (Li et al., 2025), and
large language model fine-tuning (Hu et al., 2023). Despite the highly promising results of these endeavors,
none of them have addressed the issue of agent calibration, thereby posing a significant risk to their reliability
and trustworthiness in further real-world applications.

2.2 Model Calibration

Model calibration refers to the alignment between a model’s predicted probabilities and the true likelihood
of the events (Guo et al., 2017). For example, if the model assigns a 70% confidence level to a prediction,
we would expect the predicted outcome to occur in approximately 70% of instances in practical applica-
tion. Unlike accuracy, calibration emphasizes trustworthiness of confidence, tackling challenges such as
overconfidence. This guarantees probabilistic reliability, which is of paramount importance in high-cost and
high-stakes domains. The concept of calibration has found purchase in a multitude of domains, such as
autonomous driving (Fu et al., 2012), computer vision (Guo et al., 2017), natural language processing (Zhao
et al., 2021), and so on.

In the domain of offline DRL, researchers have also made significant strides in enhancing calibration. In the
survey (Prudencio et al., 2023), offline DRL can be classified into three primary aspects: model-based algo-
rithms, model-free algorithms, and trajectory optimizations. Calibrated model-based reinforcement learning,
as detailed in (Malik et al., 2019), provides agents with a refined world model that accurately reflects in-
herent uncertainty, thereby improving planning in high-stakes scenarios. Calibrated Q-learning (Cal-QL)
(Nakamoto et al., 2024) leverages a modified CQL framework to ensure learned policy Q-values remain
above a lower bound and below upper bounds for suboptimal reference policies, thereby calibrating the
learned Q-values to a reasonable scale. They have shown promising applications of calibration in both
model-based and model-free algorithms; however, there is still a lack of effort to enhance calibration in
trajectory optimizations. In this study, we aim to provide insights into bridging this gap.

4



Published in Transactions on Machine Learning Research (01/2026)

3 Preliminaries

3.1 Offline DRL with Trajectory Optimization

In the scenario of offline DRL, our target is to identify an optimal policy π∗(a|s), maximizing the expected
cumulative reward E[ΣT

t=0rt]. The state st and the action at are dictated by the behavior policy; while the
next state st+1 and the reward rt are determined by the transition dynamics function. This enables the
construction of an offline trajectory dataset τ = {(st, at, st+1, rt)i}, where i presents the timestep in the
episode. Trajectory optimization methods recast the goal as minimizing the action reconstruction loss due
to the lack of interaction with the environment:

Lθ = E(R,s,a)∼τ [ 1
T

ΣT
i=1LMSE/CE(ât; at)], (1)

where ât = π(·|st−K+1:t, Rt−K+1:t, at−K:t−1) donates the reconstruction action; K is context length of
the sequence model; Rt = ΣT

t′=trt′ is the returns-to-go. During the testing phase, a target returns-to-
go is manually predefined to encapsulate the intended performance benchmarks. Trajectories from last
K timesteps are input into the model, which subsequently generates an action for the current timestep.
Based on this, the environment provides the next state and reward, after which the returns-to-go is updated
accordingly. Then, these new elements are also input into the model.

3.2 Expected Calibration Error

Expected Calibration Error (Naeini et al., 2015) has been a common metric for describing the calibration
performance of models, which quantifies the discrepancy between the model’s predicted confidence and its
actual accuracy. A model is deemed as “perfectly calibrated” when there is a precise alignment between its
confidence levels and its empirical performance:

∀p ∈ [0, 1],P(Ŷ = Y |P̂ = p) = p,

where Ŷ is the output of network prediction and P̂ is its associated confidence (i.e. probability of correctness).
Furthermore, the Expected Calibration Error (ECE) is defined as discrepancy between the empirical accuracy
and the corresponding confidence level:

ECE = EP̂

[∣∣∣P(Ŷ = Y |P̂ = p
)

− p
∣∣∣]. (2)

4 Methodology

In this section, we aim to address the challenge of enhancing agent calibration of offline DRL algorithms that
utilize large sequence models, thereby improving their trustworthiness. Firstly, we introduce a metric called
Expected Agent Calibration Error to describe the agent calibration. Furthermore, we theoretically prove that
the difference between Expected Agent Calibration Error is bounded by the total variation distance and the
Wasserstein-1 distance (under mild assumptions) between the learned policy and the hidden policy. Building
upon them, we introduce Calibration Enhanced Decision Maker, which further leverages the distribution
histograms as input for the large sequence model, ultimately yielding the calibration enhanced agent.

4.1 Expected Agent Calibration Error

To address the aforementioned challenge, the first step is to formulate a precise description of agent calibra-
tion. Inspired by the concept of “perfect calibration” and incorporating the inherent mechanisms of offline
DRL, we formally define the concept of “perfect policy calibration” in Definition 1:
Definition 1. Let (Π, d) be a metric space, where Π denotes the space of all stochastic policies, and d :
Π × Π → R≥0 is a policy distance metric. Defining U = I [dis (π1, π2) ≤ δ], where I(·) is the the indicator
function, U = 1 denotes that the distance between policy π1 and policy π2 is smaller than the threshold δ.
Hence, for the agent (model), a perfect calibration (with full confidence) can be expressed as:

∀p ∈ [0, 1],P
(

U = 1|P̂ = p
)

= p. (3)
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Intuitively, “perfect policy calibration” refers to the scenario: two policies are sufficiently similar with the
probability p; and exactly a proportion p of practical predictions are indeed sufficiently similar.

Building upon this and drawing inspiration from ECE (Guo et al., 2017), we define the Expected Agent
Calibration Error in Definition 2. Intuitively, it describes the average discrepancy between the agent’s true
probability p of “U=1” and the stated probability P̂ when it asserts that “I am P̂ confident that U=1”:
Definition 2 (Expected Agent Calibration Error (EACE)). Define the miscalibration of the agent by com-
puting the expectation of calibration error over predicted confidence P̂ :

EACE = EP̂

[
|P(U = 1|P̂ = p) − p|

]
. (4)

Nevertheless, we find that although EACE is theoretically complete and grounded, it is computationally
impractical in real-world applications. Notably, in high-risk scenarios, particularly when the agent’s true
probability p is relatively low, such measurement become exceedingly costly, as the estimation demands a
substantial number of rollouts under the policy.

Furthermore, as illustrated in Figure 1(d), in the context of offline DRL with large sequence models, the
input tokens generally consist of states, actions, and their associated returns-to-go. Therefore, the subsequent
action is essentially determined by the knowledge embedded in the preceding states and the preceding actions.
This further inspires us to delve deeper into the relationship between the EACE and the state-action marginal
distribution distance. Ultimately, we elaborate on this relationship in Theorem 1. Specifically, the differences
in EACE are bounded by the total variation distance between the state-action marginal distributions of two
agents, as formally expressed in Theorem 1.
Theorem 1. Suppose πθ1(a|s) and πθ2(a|s) are separately two policies of two agents, ρπθ1 (s, a) and ρπθ2 (s, a)
are the state-action marginal distributions of the two agents, then:

EACE(πθ1) − EACE(πθ2) ≤ E
[
4 · TV

(
ρπθ1 (s, a), ρπθ2 (s, a)

)]
, (5)

where TV(·) is the total variation distance.

Proof. Before presenting a detailed proof of Theorem 1, we first introduce two lemmas. The derivation of
Lemma 1 primarily utilizes vector transformations and the absolute value inequality; and the derivation of
Lemma 2 primarily relies on the Hölder’s inequality. Their detailed proofs are provided in Appendix A.

Lemma 1. Suppose a, b, c are three vectors, then we have that:

⟨|a − b|, 2b⟩ − ⟨|a − c|, 2c⟩ ≤ ⟨b + c + |a − b| + |a − c| , |b − c|⟩ . (6)

Lemma 2. a and b are two vectors, and each of their terms is nonnegative. Then, we can get:

⟨a, b⟩ ≤ ⟨∥a∥1, ∥b∥∞⟩ , (7)

where ∥a∥1 represents the L1-norm of vector a and ∥b∥∞ represents the L∞-norm of vector b.

We now proceed to the proof of Theorem 1.

For any state-action marginal distribution, we set that P̂ = p = ρπθ (s, a) without loss of generality. As
ρπθ (s, a) = ρπθ (s) ·πθ(a|s); and given policy π, the action is sampled with the policy πθ(a|s). Thus, we have:

EACE(πθ) =EP̂

[∣∣∣P(U = 1|P̂ = p, A = a) − p
∣∣∣]

=Eρπθ (s,a)

[∣∣∣P(U = 1|P̂ = ρπθ (s, a), A = a) − ρπθ (s, a)
∣∣∣]

=E
[∑

ρπθ (s, a)
∣∣∣P(U = 1|P̂ = ρπθ (s, a), A = a) − ρπθ (s, a)

∣∣∣].
(8)

We then abbreviate the conditional distribution P(U = 1|P̂ = ρπθ (s, a), A = a) as ρπ. Then, we have:

EACE(πθ) = E [⟨|ρπ − ρπθ (s, a)| , ρπθ (s, a)⟩] , (9)
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where |ρπ − ρπθ (s, a)| and ρπθ (s, a) are vectors and ⟨|ρπ − ρπθ (s, a)|, ρπθ (s, a)⟩ represents the inner product
of |ρπ − ρπθ (s, a)| and ρπθ (s, a). Further, let’s compare the EACE of two agents θ1, θ2 ∈ Θ:

EACE(πθ1) − EACE(πθ2) = E
[

⟨|ρπ − ρπθ1 (s, a)| , ρπθ1 (s, a)⟩ − ⟨|ρπ − ρπθ2 (s, a)| , ρπθ2 (s, a)⟩
]
. (10)

According to Lemma 1, we can get:

EACE(πθ1) − EACE(πθ2)

≤E
[〈ρπθ1 (s, a) + ρπθ2 (s, a)

2 + |ρπ − ρπθ1 (s, a)| + |ρπ − ρπθ2 (s, a)|
2 , |ρπθ1 (s, a) − ρπθ2 (s, a)|

〉]
.

(11)

According to the Lemma 2, we can have that:

EACE(πθ1) − EACE(πθ2)

≤E
[〈

ρπθ1 (s, a) + ρπθ2 (s, a) + |ρπ(s, a) − ρπθ1 (s, a)| + |ρπ(s, a) − ρπθ2 (s, a)|
2 , |ρπθ1 (s, a) − ρπθ2 (s, a)|

〉]
≤E

[
∥ρπθ1 (s, a) − ρπθ2 (s, a)∥1 ·

∥∥∥∥ρπθ1 (s, a) + ρπθ2 (s, a) + |ρπ(s, a) − ρπθ1 (s, a)| + |ρπ(s, a) − ρπθ2 (s, a)|
2

∥∥∥∥
∞

]
.

(12)

Setting that:

m(πθ1 , πθ2 , π) =
∥∥∥∥ρπθ1 (s, a) + ρπθ2 (s, a) + |ρπ(s, a) − ρπθ1 (s, a)| + |ρπ(s, a) − ρπθ2 (s, a)|

2

∥∥∥∥
∞

.

For the sake that each term of the distributions ρπθ1 (s, a), ρπθ2 (s, a) and ρπ(s, a) are bounded in [0, 1]; hence,
it is evident that m(πθ1 , πθ2 , π) ≤ 2. Therefore, we can get that:

EACE(πθ1) − EACE(πθ2) ≤ E [2 · ∥ρπθ1 (s, a), ρπθ2 (s, a)∥1]
= E [4 · TV (ρπθ1 (s, a), ρπθ2 (s, a))] ,

(13)

which completes the proof.

Moreover, in practical applications, the Wasserstein-1 distance is often considered more applicable than the
total variation distance, as it can better capture geometric properties of the distributions. Therefore, we
extend the total variation distance in Theorem 1 to the Wasserstein-1 distance according to the inequality
between them. Further defining the two policies as the anticipated ideal policy and the current policy, we can
obtain the Proposition 1. It is also worth noting that our analysis is restricted to the discrete-only setting,
under the structural assumption that the finite discrete support admits strictly positive inner point distance
in the underlying metric space.

Proposition 1. Suppose π(a|s) is the anticipated ideal policy, πθ(a|s) is the policy of the agent, ρπ(s, a) is
the state-action marginal distribution of the anticipated ideal agent and ρπθ (s, a) is the state-action marginal
distribution of the current agent, then:

EACE(πθ) − EACE(π) ≤ E
[

4
dmin

· W1
(
ρπθ (s, a), ρπ(s, a)

)]
, (14)

where W1 (ρπθ (s, a), ρπ(s, a)) represents the Wasserstein-1 distance between ρπθ (s, a) and ρπ(s, a); let
ρπθ (s, a) ∈ µ and ρπ(s, a) ∈ ν, setting Ω = supp(µ) ∪ supp(ν), dmin = infρπθ ̸=ρπ∈Ω ∥ρπθ − ρπ∥.

Proof. According to the work (Panaretos & Zemel, 2019), we introduce the following Lemma 3, which
establishes relationship between the TV distance and the Wasserstein-1 distance.

Lemma 3 ((Panaretos & Zemel, 2019)). Setting X, Y are finitely discrete random variables, and they are
bounded; X ∈ µ and Y ∈ ν, Ω = supp(µ) ∪ supp(ν); dmin = infx̸=y∈Ω ∥x − y∥ , then we have that:

TV (X, Y ) ≤ 1
dmin

· W1(X, Y ). (15)
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Herein, let’s consider the proof of Proposition 1:

According to Theorem 1, we have that:

EACE(πθ) − EACE(π) ≤ E [4 · TV(ρπθ (s, a), ρπ(s, a)] .

According to Lemma 3, setting that ρπθ (s, a) ∈ µ, ρπ(s, a) ∈ ν, Ω = supp(µ) ∪ supp(ν), dmin =
infρπθ ̸=ρπ∈Ω ∥ρπθ − ρπ∥, we can derive that:

EACE(πθ) − EACE(π) ≤ E [4 · TV(ρπθ (s, a), ρπ(s, a)]

≤ E
[

4
dmin

· W1 (ρπθ (s, a), ρπ(s, a))
]

,
(16)

which completes the proof.

In summary, under mild assumptions, the EACE discrepancy between the anticipated ideal policy and the
current policy is bounded by the Wasserstein-1 distance between their state-action marginal distributions.
Hence, we can consider minimizing the upper bound, specifically the Wasserstein-1 distance, to reduce their
EACE discrepancy.

4.2 Calibration Enhanced Decision Maker

Based on the comprehensive theoretical analysis presented above, we introduce the Calibration Enhanced
Decision Maker (CEDM) paradigm, which employs categorical state-action marginal distribution histograms
as the input token to the large sequence model. As illustrated in Figure 1(c), a binning executor is utilized
to transform the feature distribution into a categorical approximation of the original continuous distribution.
Previous research has also explored the binning paradigm to enhance input information density: building
upon prior work on the state-marginal matching (Lee et al., 2019; Ghasemipour et al., 2020), the Categorical
Decision Transformer (Furuta et al., 2022) demonstrates the potential of binning distributions, particularly
reward distributions, within the Transformer architecture. Moreover, as demonstrated by our theoretical
analysis, the CEDM paradigm can effectively enhance the agent’s calibration and is applicable to all large
sequence models instead of Transformer only.

Furthermore, as Plato stated, “a good decision is based on knowledge and not on numbers”. The CEDM
paradigm equips the agent with richer “knowledge”, rather than relying solely on the “number” of returns-
to-go. In practical applications, agents can be endowed with different dimensions of “knowledge” according
to the specific requirements of each task. For example, in autonomous driving, the planar velocity (x-
velocity) should be prioritized for consideration; in obstacle-crossing robots, the vertical velocity (z-velocity)
is also crucial; in robotic arms, the joint angular velocity is of primary importance; and in more elaborate
applications, such as missile tracking or space robots, the acceleration should also be considered. The
introduced CEDM paradigm enables further selection of the appropriate state-action marginal distribution
for binning, thereby allowing customization to meet specific practical requirements.

5 Case Studies

This section presents case studies applying the CEDM paradigm to Decision Transformer (Chen et al., 2021),
Decision ConvFormer (Kim et al., 2024), and Decision Mamba (Ota, 2024), with reports on final returns
and the Wasserstein-1 distances between state-action marginal distributions to validate its effectiveness and
enhancement on agent calibration. These three architectures represent three distinct levels of dependence
on historical information within the decision-making process. We focus on the following three questions:

1) Can the CEDM paradigm effectively reduce Wasserstein-1 distances, thereby enhance the agent’s
calibration?

2) Can the CEDM paradigm improve the agent’s return?

3) Would the improvements of the CEDM paradigm be affected by different degrees of dependence on
historical information during the decision-making process?
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Table 1: W1_Dis and return comparison of Calibration Enhanced Decision Transformer (CEDT) and Deci-
sion Transformer (DT). Bolded text indicates that the results of CEDT are superior to those of DT.

CEDT DT

W1_Dis ↓

Med Med-Exp Med-Rep Average Total Med Med-Exp Med-Rep Average Total

HC 0.19±0.01 0.68±0.29 0.31±0.03 0.39 0.20±0.02 1.06±0.34 0.32±0.11 0.53

Hp 0.14±0.02 0.13±0.03 0.26±0.18 0.18 1.19 0.14±0.02 0.13±0.03 0.70±0.18 0.32 1.39

Wk 0.31±0.08 0.08±0.02 1.46±0.80 0.62 0.43±0.11 0.08±0.04 1.12±0.62 0.54

Return ↑

HC 42.77±0.26 86.64±2.30 39.59±0.25 56.33 42.88±0.29 84.05±2.52 39.09±0.39 55.34

Hp 59.85±0.52 78.88±16.25 62.11±17.96 70.96 200.27 57.80±2.41 90.16±11.58 20.34±5.51 56.10 182.11

Wk 73.77±4.28 107.70±0.70 37.48±17.83 72.98 72.87±6.22 107.49±1.11 31.66±14.25 70.67

Table 2: W1_Dis and return comparison of Calibration Enhanced Decision ConvFormer (CEDC) and De-
cision ConvFormer (DC). Bolded text indicates that the results of CEDC are superior to those of DC.

CEDC DC

W1_Dis ↓

Med Med-Exp Med-Rep Average Total Med Med-Exp Med-Rep Average Total

HC 0.20±0.05 0.46±0.25 0.09±0.04 0.25 0.22±0.06 0.50±0.29 0.24±0.06 0.32

Hp 0.13±0.02 0.12±0.04 0.28±0.19 0.18 0.69 0.15±0.03 0.15±0.07 0.93±0.33 0.41 1.16

Wk 0.27±0.10 0.07±0.01 0.45±0.32 0.26 0.46±0.13 0.23±0.31 0.60±0.22 0.43

Return ↑

HC 42.92±0.15 88.51±1.78 41.17±0.53 57.53 42.81±0.22 88.16±2.53 39.69±0.21 56.89

Hp 62.67±1.62 75.06±8.86 75.14±13.39 70.96 204.75 59.13±3.28 76.57±19.08 30.84±24.95 55.51 189.08

Wk 76.09±2.56 108.05±0.76 44.64±19.10 76.26 74.87±2.83 104.36±7.38 50.81±16.34 76.68

5.1 Experimental Setup

In our case studies, experiments are conducted with the OpenAI Gym environment (Brockman et al., 2016),
MuJoCo tasks (Todorov et al., 2012), which serve as the most typical benchmark for reinforcement learning.
Specifically, we utilize the task of HalfCheetah (HC), Hopper (Hp), Walker2d (Wk). In terms of datasets, we
utilize medium (Med), medium-expert (Med-Exp), and medium-replay (Med-Rep) datasets that are from
the D4RL benchmark (Fu et al., 2020).More details are provided in Appendix C. To ensure consistency, we
utilize the distributions of x-velocity throughout our study. Furthermore, to facilitate a unified representation
of returns across tasks, we perform normalization on the scores:

Return = 100 × Score − Random Score
Expert Score − Random Score , (17)

where the terms “Random Score” and “Expert Score” are adopted from the D4RL benchmark. When
selecting the binning executor, we utilize the same binning method as that used in the Categorical Decision
Transformer (Furuta et al., 2022). For each dataset in every task, we identify the best trajectory; and the
results are reported as the “mean ± standard deviation” over five random seeds. Additionally, we calculate
the Average performance for each task across the three corresponding datasets, as well as the Total results
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Table 3: W1_Dis and return comparison of Calibration Enhanced Decision Mamba (CEDMamba) and
Decision Mamba (DMamba). Bolded text indicates that results of CEDMamba are superior to those of
DMamba.

CEDMamba DMamba

W1_Dis ↓

Med Med-Exp Med-Rep Average Total Med Med-Exp Med-Rep Average Total

HC 0.21±0.05 0.89±0.27 0.11±0.04 0.40 0.18±0.04 0.66±0.13 0.31±0.11 0.38

Hp 0.15±0.03 0.10±0.02 0.39±0.23 0.21 0.86 0.14±0.03 0.15±0.02 0.65±0.18 0.31 1.33

Wk 0.30±0.05 0.06±0.02 0.39±0.15 0.25 0.50±0.18 0.88±0.25 0.55±0.27 0.64

Return ↑

HC 42.87±0.23 85.59±2.05 40.86±0.21 56.44 42.97±0.12 86.73±1.29 39.26±0.54 56.32

Hp 59.73±2.28 90.28±9.08 78.19±2.12 76.07 212.94 69.39±7.25 97.47±10.47 41.03±19.03 69.30 196.72

Wk 76.69±2.40 108.05±1.00 56.56±5.12 80.43 70.47±7.21 87.20±5.48 55.63±7.22 71.10

Figure 2: Visualizations of the distribution histograms for the highest-return trajectory of CEDT (left),
CEDC (middle) and CEDMamba (right), presented separately for the three tasks across the three datasets.

of the average values. The training hyperparameters and implementation details are consistent with those
reported in the original paper.

5.2 Comparison Results

In Table 1, Table 2, and Table 3, we present the comparative results of Wasserstein-1 distance and return
by applying the CEDM paradigm to Decision Transformer, Decision ConvFormer, and Decision Mamba,
respectively. Moreover, the three architectures represent distinct levels of dependence on historical infor-
mation within the decision-making process: Decision ConvFormer primarily utilizes local information, while
Decision Mamba emphasizes global information.

Firstly, we analyze the impact of the CEDM paradigm on the agents’ Wasserstein-1 distances to address the
first question. From an overall perspective, specifically in comparison to the “Total” values, it is indicated
that the Calibration Enhanced Decision Makers effectively reduce the Wasserstein-1 distance across all
architectural configurations relative to the baseline methods. To be specific, Table 1 demonstrates that CEDT
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Figure 3: Example rollout (blue) visualizations of CEDC (left) and CEDMamba (right) on the HalfCheetah
medium-expert dataset for the same target (violet).

achieves a reduction of 14.4% in the total Wasserstein-1 distance, decreasing it from 1.39 to 1.19; Table 2
indicates that CEDC attains a reduction of 40.5% in the total Wasserstein-1 distance, lowering it from 1.16 to
0.69; Table 3 reveals that CEDMamba accomplishes a reduction of 35.3% in the total Wasserstein-1 distance,
reducing from 1.33 to 0.86. Consequently, the CEDM paradigm is empirically demonstrated to effectively
reduce the Wasserstein-1 distance between state-action marginal distributions, thereby enhancing the agent
calibration. Furthermore, to facilitate intuitive comprehension, we present representative visualizations of
the distribution histograms for them, as depicted in Figure 2. Overall, the CEDM paradigm exhibits a good
alignment with the distributions from the original dataset, thereby highlighting efficacy of CEDM paradigm.

Secondly, let’s proceed to answer the second question. Although primary motivation of the CEDM paradigm
is to enhance agent calibration, it is also crucial to evaluate its potential impact on the final return. By
comparing the “Total” return values, it is evident that the Calibration Enhanced Decision Makers consistently
outperform the baseline methods, yielding superior final returns across all architectural configurations. To
be specific, Table 1 demonstrates that CEDT achieves an improvement of 10.0% in the total final return,
elevating it from 182.11 to 200.27; Table 2 indicates that CEDC attains an improvement of 8.3% in the
total final return, enhancing it from 189.08 to 204.75; Table 3 reveals that CEDMamba accomplishes an
improvement of 8.2% in the total final return, raising it from 196.72 to 212.94. Notably, we observe that the
improvements achieved by the CEDM paradigm are particularly pronounced on the Hopper-Medium-Replay
dataset: specifically, CEDT exhibits an increase from 20.34 to 62.11; CEDC improves from 30.84 to 75.14;
and CEDMamba demonstrates a rise from 41.03 to 78.19. According to the study (Ajay et al., 2023), the
action trajectories in the Hopper-Medium-Replay dataset exhibit a propensity for diminished smoothness.
Therefore, the CEDM paradigm is still capable of maintaining remarkable efficacy even when implemented
on datasets of relatively lower quality.

Finally, we advance to answer the third question. Within the results, it is observed that the CEDM paradigm
occasionally exhibits instances of failure, particularly in relation to CEDMamba. We argue that this phe-
nomenon is attributable to the inherent ultra-long context capabilities of Mamba. In Figure 3, we present an
example that demonstrates the differences in rollouts between CEDC and CEDMamba for the same target.
For the CEDC, its convolutional architecture endows it with an enhanced capacity to capture local informa-
tion, thereby exhibiting superior fitting performance within high-probability regions. However, CEDMamba
predominantly emphasizes global information, thereby making its modeling of high-probability regions par-
ticularly vulnerable to biases stemming from the dataset. This further highlights two critical considerations
for future real-world applications: firstly, the selection of an appropriate backbone should be tailored to the
specific dataset and task; secondly, the quality of offline datasets plays a crucial role in shaping effectiveness
of the CEDM paradigm.

6 Conclusion, Limitation, and Future Work

In this study, we focus on the crucial challenge of enhancing calibration in offline DRL algorithms that lever-
age large sequence models, with the aim of enhancing their trustworthiness in future real-world applications.
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We begin by introducing the Expected Agent Calibration Error, a metric that describes the agent calibra-
tion. Furthermore, to facilitate practical assessments, we rigorously establish its theoretical relationship with
the state-action marginal distribution distance: the EACE discrepancy between the anticipated ideal policy
and the current policy is bounded by the Wasserstein-1 distance between the agent’s state-action marginal
distributions under the two policies. Subsequently, we introduce the Calibration Enhanced Decision Maker
paradigm, which leverages a binning executor to process distribution histograms as inputs to the large se-
quence model. This paradigm aims at reducing the discrepancy between state-action marginal distributions,
thereby enhancing agent’s calibration. Moreover, we perform case studies, applying the CEDM paradigm
to Decision Transformer, Decision ConvFormer, and Decision Mamba. Experimental results highlight effec-
tiveness of the CEDM paradigm and shed light on its future application in more advanced large sequence
models.

Limitation. Although the CEDM paradigm has demonstrated significant advancements in trustworthiness
and has exhibited promising performance across simulation environments, its effectiveness in real-world
applications necessitates further investigation and exploration.

Future Work. Going forward, efforts in the future could primarily focus on the following three points.
Firstly, the applications of the CEDM paradigm to real-world scenarios warrant further exploration, par-
ticularly in the domains of robotic motion control and autonomous driving. Secondly, it is also worthwhile
to further investigate the applications of diverse physical quantities beyond velocity, such as joint angular
velocity and acceleration, within the CEDM paradigm. Lastly, future research should continue to investigate
approaches in the domain of trajectory optimization that could enhance agent calibration.

Broader Impact Statement

As stated in Section 4.2, the proposed CEDM paradigm allows flexible customization to meet specific practical
requirements. Therefore, it holds great potential for real-world applications and is expected to be further
extended to areas including robotics, autonomous driving, and aerospace engineering.
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A Detailed Proof of Lemma 1 and Lemma 2

Lemma 1. Suppose a, b, c are three vectors, then we have that:

⟨|a − b|, 2b⟩ − ⟨|a − c|, 2c⟩ ≤ ⟨b + c + |a − b| + |a − c| , |b − c|⟩ . (18)

Proof. Consider the following inequation:

⟨|a − c|, b − c − |b − c|⟩ ≤ ⟨|a − b|, c − b + |c − b|⟩ (19)

According to the nature of the absolute value, it is obvious that b− c−|b− c| ≤ 0 and that c− b+ |c− b| ≥ 0,
which shows the constancy of Equation (19) is obvious.
Transform Equation (19), we can get that:

⟨|a − c|, b⟩ + ⟨|a − b|, b − |b − c|⟩ ≤ ⟨|a − c|, c + |b − c|⟩ + ⟨c, |a − b|⟩ (20)

Based on the absolute value inequality, we can get:

|a − b| − |b − c| ≤ |a − c|; |a − c| + |b − c| ≥ |a − b| (21)

Hence, we have that:

⟨|a − b| − |b − c|, b⟩ + ⟨|a − b|, b − |b − c|⟩ ≤ ⟨|a − c|, b⟩ + ⟨|a − b|, b − |b − c|⟩
≤ ⟨|a − c|, c + |b − c|⟩ + ⟨c, |a − b|⟩
≤ ⟨|a − c|, c + |b − c|⟩ + ⟨c, |a − c| + |b − c|⟩

(22)

Combine some items of the same kind:

⟨|a − b| − |b − c|, b⟩ + ⟨|a − b|, b − |b − c|⟩ ≤ ⟨|a − c| + |b − c|, c⟩ + ⟨|a − c|, c + |b − c|⟩ (23)

Thus, we have that:

2 ⟨|a − b|, b⟩ − 2 ⟨|a − c|, c⟩ ≤ ⟨b, |b − c|⟩ + ⟨c, |b − c|⟩ + ⟨|a − b|, |b − c|⟩ + ⟨|a − c|, |b − c|⟩ (24)

Then, we have that:

⟨|a − b|, 2b⟩ − ⟨|a − c|, 2c⟩ ≤ ⟨b + c + |a − b| + |a − c| , |b − c|⟩ , (25)

which completes the proof.

For the proof of Lemma 2, we rely on the following fact, which is also denoted as the Hölder’s inequality.

Fact 1 (Hölder’s inequality). Set p > 1, 1/p + 1/q = 1, if a1, a2...an and b1, b2...bn is nonnegative, then we
have:

n∑
i=1

aibi ≤

(∑
i=1

ap
i

) 1
p
(∑

i=1
bq

i

) 1
q

(26)

Lemma 2. a and b are two vectors, and each of their terms is nonnegative. Then, we can get:

⟨a, b⟩ ≤ ⟨∥a∥1, ∥b∥∞⟩ , (27)

where ∥a∥1 represents the L1-norm of vector a and ∥b∥∞ represents the L∞-norm of vector b.

Proof. Setting p as ∞ and q as 1, then according to the Equation (26) (Hölder’s inequality), we can have:
n∑

i=1
aibi ≤ ∥b∥∞ · ∥a∥1 (28)

Thus, we have that:
⟨a, b⟩ ≤ ⟨∥a∥1, ∥b∥∞⟩ , (29)

which completes the proof.
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B Additional Visualizations of the Distribution Histograms

In this section, we provide more visualizations of the distribution histograms of four additional trajectories.
In each figure, each row represents results on the specific dataset: medium as Med; medium-expert as
Med-Exp; medium-replay as Med-Rep.

CEDT: Figure 4 (HalfCheetah), Figure 5 (Hopper), Figure 6 (Walker2d).

Figure 4: Within the CEDT, for the HalfCheetah task, additional visualizations of distribution histograms
across three datasets.

Figure 5: Within the CEDT, for the Hopper task, additional visualizations of distribution histograms
across three datasets.
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Figure 6: Within the CEDT, for the Walker2d task, additional visualizations of distribution histograms
across three datasets.

CEDC: Figure 7 (HalfCheetah), Figure 8 (Hopper), Figure 9 (Walker2d).

Figure 7: Within the CEDC, for the HalfCheetah task, additional visualizations of distribution histograms
across three datasets.
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Figure 8: Within the CEDC, for the Hopper task, additional visualizations of distribution histograms
across three datasets.

Figure 9: Within the CEDC, for the Walker2d task, additional visualizations of distribution histograms
across three datasets.
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CEDMamba: Figure 10 (HalfCheetah), Figure 11 (Hopper), Figure 12 (Walker2d).

Figure 10: Within the CEDMamba, for the HalfCheetah task, additional visualizations of distribution
histograms across three datasets.

Figure 11: Within the CEDMamba, for the Hopper task, additional visualizations of distribution his-
tograms across three datasets.
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Figure 12: Within the CEDMamba, for the Walker2d task, additional visualizations of distribution
histograms across three datasets.

C Details of Case Studies

C.1 Dataset and Benchmark.

HalfCheetah Hopper Walker2d

Figure 13: In our case studies, we focus on three specific tasks of the MuJoCo environment: HalfCheetah,
Hopper, and Walker2d.
The MuJoCo environment tasks (HalfCheetah, Hopper, Walker2d) (Todorov et al., 2012) have been part of
the D4RL benchmark (Fu et al., 2020), encompassing a series of continuous locomotion tasks characterized
by dense reward signals. Specifically, the three tasks utilized in our case studies are defined as follows:

• HalfCheetah: The HalfCheetah is a two-dimensional robot consisting of nine interconnected body
segments linked by eight joints, including a pair of paws. Its objective is to apply torques to these
joints to drive the cheetah forward (to the right) as quickly as possible. Additionally, the HalfCheetah
task has a 17-dimensional state space and a 6-dimensional action space.

• Hopper: The Hopper is a two-dimensional single-legged robot composed of four primary segments:
the torso at the top, the thigh in the middle, the leg at the bottom, and a single foot on which the
entire body rests. Its objective is to produce forward (rightward) locomotion by driving the three
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joints linking these segments with appropriately applied torques, enabling it to perform continuous
hopping motions. Furthermore, the Hopper task features an 11-dimensional state space and a 3-
dimensional action space.

• Walker2d: The Walker is a two-dimensional bipedal robot composed of seven principal segments: a
single upper torso from which the two legs diverge, a pair of thighs positioned below the torso, a pair
of legs extending from the thighs, and two feet that provide ground support. The task is to make
it walk forward (to the right) by applying torque to the six hinges linking these seven segments.
Moreover, the Walker2d task has a 17-dimensional state space and a 6-dimensional action space.

For each of these, we utilize three different v2 datasets, each representing a different level of data quality:
medium, medium-expert, and medium-replay. The medium dataset is obtained by first training a policy
online with the Soft Actor-Critic algorithm, early-stopping the training process, and then collecting one
million samples from the resulting partially trained policy. The medium-expert dataset is constructed by
mixing equal amounts of expert demonstrations with suboptimal trajectories, where the suboptimal data
is generated either from a partially trained policy or by unrolling a uniform-at-random policy. And the
medium-replay dataset is created by recording every sample accumulated in the replay buffer over the course
of training, up until the point at which the policy reaches the medium level of performance. Overall, MuJoCo
offers an excellent testing ground to investigate how datasets, originating from policies with varying skill
levels, influence learning and performance.

C.2 Baselines.

Various domains, from computer vision (Sun et al., 2025a;b;c;d;e; Luo et al., 2025a;b; Yin et al., 2025;
Fang et al., 2025) to natural language processing (Lv et al., 2025; Qin et al., 2025), increasingly leverage
deep reinforcement learning (Xia et al., 2025) as a core paradigm for model training. Within this broad
research landscape, trajectory optimization methods have emerged as a particularly promising direction. In
our study, we adopt Decision Transformer, Decision ConvFormer, and Decision Mamba as representative
baseline approaches.

Decision Transformer (DT) frames offline reinforcement learning as a sequence modeling problem, and
leveraging the Transformer architecture. Instead of optimizing the value functions or the learning policies
directly, DT treats the trajectories as sequences composed of states, actions, and returns-to-go (the sum of
future rewards from each step). The agent is trained to predict the next action, conditioning on the previous
states, actions, and desired return of the trajectory. At each timestep, input into the Transformer consists of
a tuple: the current state, the previous action, and the target returns-to-go. It then autoregressively predicts
the next action that should be taken to maximize the likelihood of achieving the return. Such an approach
effectively turns policy generation into a sequence generation task, similar to how language models predict
the next word in a sentence.

Decision ConvFormer (DC) serves as a novel offline reinforcement learning predictor that fundamentally
rethinks how sequential dependencies are captured in offline reinforcement learning trajectories. While the
traditional DT models offline reinforcement learning as a sequence modeling problem using the Transformer’s
self-attention mechanism, DT’s reliance on attention can be suboptimal for offline RL tasks. Furthermore,
DC replaces the global attention mechanism with local, causal 1D convolutional filters. Specifically, DC
employs three independent convolutional mixers for states, actions, and returns, each operating over a local
temporal window (e.g., 6 timesteps). This design ensures that predictions are made using only nearby
tokens, effectively capturing the local, Markovian structure of RL data, while also dramatically reducing
model complexity and computational cost.

Decision Mamba (DMamba) further replaces the self-attention mechanism in DT with the Mamba (Gu
& Dao, 2024) block. The architecture comprises token-mixing and channel-mixing layers, with the Mamba
block acting as the primary token-mixing module. By leveraging the structured state space modeling,
DMamba potentially offering greater efficiency and the ability to model longer dependencies.
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C.3 Implementation Details.

To ensure the reproducibility of the experiment, we have included all codes in the supplementary materials.
Herein, we encounter important hyperparameters and implementation details. All experiments are conducted
on a single NVIDIA GeForce RTX 3090 graphics card. Hyperparameters are mainly set with reference to
the Categorical Decision Transformer (Furuta et al., 2022). In Table 4, we list detailed hyperparameters
of the CEDT. In Table 5, we list detailed hyperparameters of the CEDC. In Table 6, we list detailed
hyperparameters of the CEDMamba.

Table 4: Hyperparameters for the CEDT.
Hyperparameters Value
Number of Bins 31

Number of Layers 3
Number of Attention Head 1

Embedding Dimension 128
Batch Size 64

Context Length 20
Dropout 0.1

Learning Rate 1e-4
Grad Norm Clip 0.25

Weight Decay 1e-4
Warmup Steps 10000

Activation Function ReLU
Gamma 1.0

Max Training Iterations 10
Random Seeds 0, 1, 2, 3, 4

Table 5: Hyperparameters for the CEDC.
Hyperparameters Value
Number of Bins 31

Number of Layers 3
Convolution Window Size 6

Embedding Dimension 128
Batch Size 64

Context Length 20
Dropout 0.1

Learning Rate 1e-4
Grad Norm Clip 0.25

Weight Decay 1e-4
Warmup Steps 10000

Activation Function ReLU
Gamma 1.0

Max Training Iterations 10
Random Seeds 0, 1, 2, 3, 4
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Table 6: Hyperparameters for the CEDMamba.
Hyperparameters Value
Number of Bins 31

Number of Layers 3
Embedding Dimension 128

Batch Size 64
Context Length 20

Dropout 0.1
Learning Rate 1e-4

Grad Norm Clip 0.25
Weight Decay 1e-4
Warmup Steps 10000

Activation Function ReLU
Gamma 1.0

Max Training Iterations 10
Random Seeds 0, 1, 2, 3, 4

D Evaluations Grounded in More Metrics

D.1 An implementation of EACE

For a more thorough evaluation, this section introduces a tractable approximation. The EACE is defined as:

EACE = EP̂

[
|P(U = 1|P̂ = p) − p|

]
. (30)

Overall, the primary bottleneck is that the true hidden policy π is inaccessible, and it is difficult to ascertain
whether the discrepancy between the two policies is smaller than δ. Therefore, approximate solutions are
adopted. Firstly, given that the policy π is expressed in terms of its action outputs, we estimate it by
performing rollouts to sample its behavior. Then, the accuracy is practically assessed according to:

U = I(||apred − agt|| < δ). (31)

Furthermore, following standard practices in uncertainty estimation (Kendall & Gal, 2017; LeCun et al.,
2006), we map the action prediction error to the confidence score through an exponential kernel:

p̂ = exp(−α||apred − agt||2). (32)

Then, predictions are assigned to confidence bins Bk = {i|p̂i ∈ [bk, bk+1)}, and within each bin, the mean
confidence score and the corresponding actual accuracy are evaluated by:

pk = 1
|Bk|

∑
i∈Bk

p̂i and acck = 1
|Bk|

∑
i∈Bk

Ui. (33)

Finally, the computation of EACE is conducted as:

EACE =
M∑

k=1

|Bk|
N

· |pk − acck|, (34)

where N is the number of samples. In the subsequent implementation, the hyperparameter settings for the
evaluation are configured as: α = 10, δ = 0.1, and N = 10. The experimental results are presented in
Table 7, Table 8 and Table 9.
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Table 7: EACE comparison of CEDT and DT. Bolded text indicates that the results of CEDT performs
as well as or better than DT.

CEDT DT

EACE ↓

Med Med-Exp Med-Rep Average Total Med Med-Exp Med-Rep Average Total

HC 0.26±0.02 0.22±0.01 0.12±0.01 0.20 0.26±0.01 0.27±0.01 0.13±0.01 0.22

Hp 0.22±0.02 0.18±0.01 0.12±0.00 0.17 0.49 0.21±0.02 0.18±0.01 0.10±0.02 0.16 0.50

Wk 0.16±0.03 0.17±0.02 0.02±0.00 0.12 0.16±0.03 0.16±0.02 0.03±0.00 0.12

Table 8: EACE comparison of CEDC and DC. Bolded text indicates that the results of CEDC performs
as well as or better than DC.

CEDC DC

EACE ↓

Med Med-Exp Med-Rep Average Total Med Med-Exp Med-Rep Average Total

HC 0.12±0.01 0.03±0.00 0.03±0.01 0.06 0.13±0.01 0.10±0.03 0.04±0.01 0.09

Hp 0.04±0.01 0.04±0.01 0.02±0.01 0.03 0.12 0.07±0.01 0.05±0.01 0.02±0.00 0.05 0.17

Wk 0.04±0.01 0.04±0.01 0.00±0.00 0.03 0.05±0.02 0.05±0.01 0.00±0.00 0.03

Table 9: EACE comparison of CEDMamba and DMamba. Bolded text indicates that results of CEDMamba
performs as well as or better than DMamba.

CEDMamba DMamba

EACE ↓

Med Med-Exp Med-Rep Average Total Med Med-Exp Med-Rep Average Total

HC 0.04±0.03 0.02±0.01 0.02±0.01 0.03 0.08±0.01 0.05±0.04 0.02±0.01 0.05

Hp 0.03±0.02 0.05±0.01 0.02±0.00 0.03 0.07 0.05±0.01 0.04±0.01 0.03±0.00 0.04 0.11

Wk 0.01±0.00 0.02±0.01 0.00±0.00 0.01 0.04±0.01 0.03±0.02 0.00±0.00 0.02

D.2 KL Divergence

To further validate the effectiveness of our method, we introduce KL divergence in this section for additional
evaluation. The experimental results are presented in Table 10, Table 11, Table 12.

Table 10: KL divergence comparison of CEDT and DT. Bolded text indicates that the results of CEDT
performs as well as or better than DT.

CEDT DT

KL Divergence ↓

Med Med-Exp Med-Rep Average Total Med Med-Exp Med-Rep Average Total

HC 0.04±0.01 0.19±0.13 0.09±0.01 0.11 0.05±0.01 0.24±0.09 0.16±0.11 0.15

Hp 0.10±0.02 0.10±0.03 0.40±0.38 0.20 0.65 0.14±0.02 0.15±0.08 0.88±0.41 0.39 1.04

Wk 0.18±0.06 0.04±0.01 0.81±0.70 0.34 0.33±0.19 0.57±0.68 0.60±0.29 0.50
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Table 11: KL divergence comparison of CEDC and DC. Bolded text indicates that the results of CEDC
performs as well as or better than DC.

CEDC DC

KL Divergence ↓

Med Med-Exp Med-Rep Average Total Med Med-Exp Med-Rep Average Total

HC 0.04±0.01 0.19±0.27 0.03±0.01 0.09 0.06±0.02 0.19±0.21 0.14±0.09 0.13

Hp 0.11±0.03 0.08±0.03 0.38±0.36 0.19 0.48 0.17±0.02 0.12±0.05 0.89±0.26 0.39 1.02

Wk 0.21±0.14 0.04±0.01 0.35±0.13 0.20 0.33±0.11 0.68±0.60 0.49±0.08 0.50

Table 12: KL divergence comparison of CEDMamba and DMamba. Bolded text indicates that results of
CEDMamba performs as well as or better than DMamba.

CEDMamba DMamba

KL Divergence ↓

Med Med-Exp Med-Rep Average Total Med Med-Exp Med-Rep Average Total

HC 0.04±0.01 0.67±0.30 0.03±0.01 0.25 0.05±0.01 0.46±0.22 0.15±0.07 0.22

Hp 0.10±0.03 0.06±0.01 0.82±0.69 0.33 0.73 0.11±0.03 0.19±0.07 0.95±0.40 0.42 1.19

Wk 0.19±0.05 0.03±0.01 0.23±0.06 0.15 0.35±0.17 0.95±0.64 0.36±0.11 0.55

D.3 TV Divergence

Furthermore, we also conduct additional evaluation with the TV divergence. The experimental results are
shown in Table 13, Table 14 and Table 15.

Table 13: TV divergence comparison of CEDT and DT. Bolded text indicates that the results of CEDT
performs as well as or better than DT.

CEDT DT

TV Divergence ↓

Med Med-Exp Med-Rep Average Total Med Med-Exp Med-Rep Average Total

HC 0.10±0.02 0.25±0.09 0.13±0.01 0.16 0.10±0.01 0.29±0.06 0.16±0.07 0.18

Hp 0.18±0.02 0.15±0.03 0.31±0.14 0.21 0.65 0.19±0.03 0.19±0.07 0.53±0.13 0.30 0.82

Wk 0.24±0.05 0.10±0.02 0.49±0.18 0.28 0.27±0.10 0.33±0.32 0.42±0.13 0.34
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Table 14: TV divergence comparison of CEDC and DC. Bolded text indicates that the results of CEDC
performs as well as or better than DC.

CEDC DC

TV Divergence ↓

Med Med-Exp Med-Rep Average Total Med Med-Exp Med-Rep Average Total

HC 0.10±0.01 0.19±0.11 0.13±0.03 0.12 0.13±0.03 0.23±0.11 0.15±0.04 0.17

Hp 0.17±0.03 0.15±0.03 0.31±0.14 0.21 0.51 0.22±0.02 0.17±0.04 0.51±0.09 0.30 0.82

Wk 0.22±0.08 0.09±0.04 0.24±0.10 0.18 0.28±0.05 0.41±0.30 0.35±0.06 0.35

Table 15: TV divergence comparison of CEDMamba and DMamba. Bolded text indicates that results of
CEDMamba performs as well as or better than DMamba.

CEDMamba DMamba

TV Divergence ↓

Med Med-Exp Med-Rep Average Total Med Med-Exp Med-Rep Average Total

HC 0.11±0.02 0.39±0.12 0.06±0.02 0.19 0.12±0.02 0.35±0.09 0.17±0.08 0.21

Hp 0.17±0.02 0.12±0.01 0.47±0.18 0.25 0.59 0.18±0.03 0.21±0.04 0.54±0.12 0.31 0.88

Wk 0.17±0.06 0.08±0.02 0.21±0.04 0.15 0.27±0.06 0.53±0.16 0.29±0.11 0.36

E Evaluations for Different Number of Bins

To further validate the effectiveness of our proposed approach, this section examines the impact of different
bin counts on the resulting W1_Dis, return, and EACE. All experiments were conducted over five random
seeds. As the main text already includes the results for the setting with 30 bins, we omit this case in
the tables below and present only the results for bin=15, bin=60, and bin=120. The experimental results
averaged over five random seeds are presented in Table 16, Table 17, and Table 18, while the corresponding
standard deviations are reported in Table 19, Table 20, and Table 21.

Table 16: Mean Evaluation of Different Numbers of Bins on CEDT.
HalfCheetah Hopper Walker2d

Med Med-Exp Med-Rep Med Med-Exp Med-Rep Med Med-Exp Med-Rep

W1_Dis
bin=15 0.22 0.76 0.26 0.15 0.18 0.19 0.27 0.09 0.42

bin=60 0.22 0.74 0.24 0.16 0.11 0.16 0.24 0.09 1.12

bin=120 0.24 0.74 0.28 0.14 0.15 0.21 0.31 0.11 0.55

Return
bin=15 42.82 86.65 39.83 56.53 70.38 67.61 76.63 107.57 38.99

bin=60 42.75 86.08 39.76 63.29 91.13 72.11 77.24 107.41 36.10

bin=120 42.91 86.08 39.95 62.91 67.67 73.35 75.29 107.00 39.42

EACE
bin=15 0.27 0.24 0.13 0.20 0.17 0.10 0.15 0.16 0.02

bin=60 0.28 0.21 0.12 0.22 0.17 0.12 0.15 0.15 0.02

bin=120 0.27 0.22 0.19 0.21 0.16 0.11 0.16 0.15 0.02
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Table 17: Mean Evaluation of Different Numbers of Bins on CEDC.
HalfCheetah Hopper Walker2d

Med Med-Exp Med-Rep Med Med-Exp Med-Rep Med Med-Exp Med-Rep

W1_Dis
bin=15 0.24 0.63 0.15 0.11 0.09 0.27 0.27 0.10 0.33

bin=60 0.22 0.50 0.18 0.16 0.10 0.18 0.18 0.11 0.39

bin=120 0.23 0.40 0.15 0.13 0.10 0.18 0.18 0.08 0.50

Return
bin=15 43.07 87.14 40.86 59.98 81.08 67.18 77.02 107.40 45.18

bin=60 42.99 87.97 40.57 62.74 83.75 80.76 76.49 106.95 47.19

bin=120 43.11 88.98 40.49 62.03 84.52 80.41 77.95 107.73 45.44

EACE
bin=15 0.10 0.03 0.03 0.07 0.04 0.03 0.06 0.04 0.00

bin=60 0.10 0.05 0.04 0.05 0.05 0.02 0.04 0.04 0.00

bin=120 0.11 0.06 0.03 0.07 0.05 0.03 0.05 0.04 0.00

Table 18: Mean Evaluation of Different Numbers of Bins on CEDMamba.
HalfCheetah Hopper Walker2d

Med Med-Exp Med-Rep Med Med-Exp Med-Rep Med Med-Exp Med-Rep

W1_Dis
bin=15 0.24 0.78 0.16 0.10 0.12 0.14 0.23 0.12 0.20

bin=60 0.21 0.76 0.13 0.13 0.13 0.40 0.23 0.09 0.59

bin=120 0.21 0.80 0.17 0.15 0.11 0.24 0.18 0.09 0.42

Return
bin=15 42.96 86.85 40.73 64.56 79.67 77.83 78.96 106.68 53.49

bin=60 43.08 86.15 40.87 59.43 89.46 82.57 76.68 107.20 47.03

bin=120 43.01 85.97 40.76 60.99 95.48 73.52 77.35 107.28 56.70

EACE
bin=15 0.03 0.01 0.01 0.03 0.03 0.02 0.01 0.01 0.00

bin=60 0.04 0.01 0.03 0.04 0.04 0.02 0.02 0.01 0.00

bin=120 0.07 0.01 0.03 0.03 0.04 0.02 0.02 0.02 0.00

Table 19: Standard Derivation Evaluation of Different Numbers of Bins on CEDT.
HalfCheetah Hopper Walker2d

Med Med-Exp Med-Rep Med Med-Exp Med-Rep Med Med-Exp Med-Rep

W1_Dis
bin=15 0.04 0.16 0.04 0.04 0.06 0.10 0.10 0.04 0.09

bin=60 0.05 0.04 0.07 0.03 0.02 0.04 0.10 0.04 1.02

bin=120 0.03 0.18 0.03 0.02 0.05 0.10 0.04 0.04 0.16

Return
bin=15 0.24 1.25 0.17 1.51 14.79 16.91 1.44 0.56 16.55

bin=60 0.10 0.75 0.55 2.72 11.36 13.31 1.97 1.09 15.12

bin=120 0.17 1.67 0.20 4.22 15.57 10.51 3.44 0.85 7.50

EACE
bin=15 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.00

bin=60 0.04 0.04 0.01 0.03 0.02 0.01 0.02 0.03 0.01

bin=120 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.00
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Table 20: Standard Derivation Evaluation of Different Numbers of Bins on CEDC.
HalfCheetah Hopper Walker2d

Med Med-Exp Med-Rep Med Med-Exp Med-Rep Med Med-Exp Med-Rep

W1_Dis
bin=15 0.05 0.30 0.05 0.05 0.03 0.22 0.09 0.04 0.15

bin=60 0.04 0.32 0.07 0.04 0.03 0.07 0.07 0.07 0.13

bin=120 0.06 0.13 0.07 0.02 0.03 0.09 0.03 0.03 0.19

Return
bin=15 0.17 2.12 0.31 3.33 19.64 12.74 5.21 0.89 2.80

bin=60 0.21 2.44 0.36 3.79 5.15 8.55 1.78 1.55 9.92

bin=120 0.20 1.41 0.77 1.67 14.08 12.02 0.99 0.55 7.33

EACE
bin=15 0.04 0.01 0.01 0.02 0.01 0.00 0.02 0.02 0.00

bin=60 0.01 0.02 0.02 0.01 0.01 0.00 0.02 0.01 0.00

bin=120 0.03 0.03 0.01 0.02 0.01 0.00 0.02 0.01 0.00

Table 21: Standard Derivation Evaluation of Different Numbers of Bins on CEDMamba.
HalfCheetah Hopper Walker2d

Med Med-Exp Med-Rep Med Med-Exp Med-Rep Med Med-Exp Med-Rep

W1_Dis
bin=15 0.03 0.27 0.02 0.04 0.05 0.09 0.02 0.04 0.10

bin=60 0.06 0.16 0.05 0.03 0.05 0.19 0.06 0.03 0.28

bin=120 0.05 0.22 0.07 0.05 0.02 0.10 0.03 0.02 0.08

Return
bin=15 0.24 1.64 0.22 4.23 13.83 11.52 0.40 0.90 10.93

bin=60 0.11 1.52 0.26 3.00 16.37 5.40 2.31 0.85 5.46

bin=120 0.18 1.91 0.45 3.97 9.71 15.42 3.55 0.48 13.50

EACE
bin=15 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.00

bin=60 0.04 0.04 0.01 0.03 0.02 0.01 0.02 0.03 0.01

bin=120 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.00

F Evaluations for Different Size of Datasets

In this section, we investigate how different dataset sizes influence performance of the method. Specifically,
we construct subsets by sampling 20%, 40%, and 80% of the trajectories from the medium datasets in each
environment. We abandon using medium-expert and medium-replay for this analysis, as the trajectories in
these datasets exhibit large inter-trajectory discrepancies that could confound the evaluation.

29



Published in Transactions on Machine Learning Research (01/2026)

Table 22: Evaluation of Different Size of Datasets on CEDT and DT.
CEDT DT

HalfCheetah Hopper Walker2d HalfCheetah Hopper Walker2d

W1_Dis
20% 0.24±0.06 0.13±0.04 0.23±0.02 0.25±0.04 0.20±0.06 0.23±0.06

40% 0.19±0.04 0.13±0.06 0.32±0.06 0.20±0.07 0.14±0.03 0.31±0.06

80% 0.19±0.04 0.12±0.01 0.26±0.08 0.25±0.03 0.16±0.03 0.34±0.12

Return
20% 42.87±0.49 60.91±3.21 76.35±2.51 42.50±0.59 55.22±6.24 77.55±2.43

40% 42.83±0.59 60.84±6.24 74.20±2.43 42.78±0.39 59.20±5.66 76.80±1.97

80% 42.84±0.23 59.05±2.07 76.37±3.51 42.85±0.17 57.74±4.08 75.69±2.35

Table 23: Evaluation of Different Size of Datasets on CEDC and DC.
CEDC DC

HalfCheetah Hopper Walker2d HalfCheetah Hopper Walker2d

W1_Dis
20% 0.25±0.08 0.13±0.02 0.23±0.04 0.23±0.04 0.19±0.03 0.26±0.04

40% 0.21±0.06 0.13±0.03 0.26±0.06 0.23±0.03 0.15±0.04 0.38±0.15

80% 0.21±0.11 0.13±0.03 0.25±0.05 0.24±0.07 0.14±0.04 0.37±0.10

Return
20% 42.90±0.39 63.95±5.49 79.10±0.31 43.00±0.30 58.69±2.24 77.79±0.83

40% 42.95±0.27 63.34±5.64 77.89±1.90 43.11±0.29 60.95±1.62 77.32±2.53

80% 42.95±0.11 66.32±4.66 77.99±3.03 43.07±0.27 62.17±5.03 78.62±2.25

Table 24: Evaluation of Different Size of Datasets on CEDMamba and DMamba.
CEDMamba DMamba

HalfCheetah Hopper Walker2d HalfCheetah Hopper Walker2d

W1_Dis
20% 0.23±0.07 0.15±0.05 0.26±0.05 0.24±0.04 0.15±0.03 0.38±0.15

40% 0.18±0.01 0.14±0.05 0.22±0.07 0.24±0.03 0.11±0.03 0.36±0.07

80% 0.27±0.03 0.12±0.03 0.24±0.08 0.23±0.05 0.12±0.03 0.56±0.52

Return
20% 42.81±0.33 59.74±6.33 78.31±1.83 42.80±0.37 65.77±4.84 75.49±2.71

40% 42.95±0.23 61.81±4.71 77.64±0.64 42.81±0.25 69.69±2.71 75.73±1.55

80% 43.13±0.26 61.90±3.09 78.23±1.72 43.22±0.16 72.10±8.20 68.78±14.10

G Comparison with Cal-QL and Other Q-learning Methods

To further demonstrate the effectiveness of CEDM, we include comparisons against the offline part of Cal-QL
(Nakamoto et al., 2024), BCQ (Fujimoto et al., 2019), and CQL (Kumar et al., 2020). Specifically, results
of Cal-QL are sourced from Table 5 in its original publication, whereas the results for BCQ and CQL are
obtained from the Table 2 of D4RL (Fu et al., 2020).

30



Published in Transactions on Machine Learning Research (01/2026)

Table 25: Comparison of Return with Cal-QL and Other Q-learning Methods (with Total).
HalfCheetah Hopper Walker2d Total

Med Med-Exp Med-Rep Med Med-Exp Med-Rep Med Med-Exp Med-Rep

CEDT 42.77 86.64 39.59 59.85 78.88 62.11 73.77 107.70 37.48 588.79

CEDC 42.92 88.15 41.17 62.67 75.06 75.14 76.09 108.05 44.64 613.89

CEDMamba 42.87 85.59 40.86 59.73 90.28 78.19 76.69 108.05 56.56 638.82

DT 42.88 84.05 39.09 57.80 90.16 20.34 72.87 107.49 31.66 546.34

DC 42.81 88.16 39.69 59.13 76.57 30.84 74.87 104.36 50.81 567.24

DMamba 42.97 86.73 39.26 69.39 97.47 41.03 70.47 87.20 55.63 590.15

Cal-QL 52 54 51 89 69 76 75 96 52 614

BCQ 40.7 64.7 38.2 54.5 110.9 33.1 53.1 57.5 15.0 467.7

CQL 44.4 62.4 46.2 58.0 98.7 48.6 79.2 111.0 26.7 575.2
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