arXiv:2508.03677v1 [cs.CL] 5 Aug 2025

FairLangProc: A Python package for fairness in NLP

Arturo Pérez-Peralta @® Sandra Benitez-Pena Rosa E. Lillo
Universidad Carlos III de Madrid Department of Statistics Department of Statistics
uc3m-Santander Big Data Institute uc3m-Santander Big Data Institute
Universidad Carlos III de Madrid Universidad Carlos III de Madrid

Abstract

The rise in usage of Large Language Models to near ubiquitousness in recent years
has risen societal concern about their applications in decision-making contexts, such as
organizational justice or healthcare. This, in turn, poses questions about the fairness of
these models in critical settings, which leads to the developement of different procedures
to address bias in Natural Language Processing. Although many datasets, metrics and
algorithms have been proposed to measure and mitigate harmful prejudice in Natural
Language Processing, their implementation is diverse and far from centralized. As a
response, this paper presents FairLangProc, a comprehensive Python package providing
a common implementation of some of the more recent advances in fairness in Natural
Language Processing providing an interface compatible with the famous Hugging Face
transformers library, aiming to encourage the widespread use and democratization of
bias mitigation techniques. The implementation can be found on https://github.com/
arturo-perez-peralta/FairLangProc.

Keywords: fairness, LLM, NLP, Python, Hugging Face, Pytorch.

1. Introduction

The astonishing results of the transformer architecture on Natural Language Processing
(NLP) tasks (Devlin et al. 2019; Radford et al. 2019), their scalation properties (Vaswani
et al. 2017) and the massive amount of text data available (Wang et al. 2019; Foundation
Accessed 27/05/2025) have led to the development of Large Language Models (LLM) whose
performance towers above that of traditional Language Models (LM) (Zhang et al. 2021;
BigScience et al. 2022). Furthermore, LLMs have been widely adopted for custom down-
stream tasks by leveraging the flexibility provided by fine-tuning (Chung et al. 2024) and
their few-shot learning capabilities (Brown et al. 2020), establishing a new zeitgeist in the
NLP community. These factors have led to their widespread adoption across major areas of
society such as academia (Naveed et al. 2023; Meyer et al. 2023); industry, including sectors
such as finance (Li et al. 2023), healthcare (Goyal et al. 2024) or law (Lai et al. 2024) and
personal use, for example, as a personal assistant or search engine (Xiong et al. 2024; Mi-
crosoft Accessed 27/05/2025). Furthermore, the recent surge in their reasoning ability (Wei
et al. 2022) and the development of cost-efficient models (Liu et al. 2024) suggest that there
are still new avenues for improvement.

However, this paradigm shift opens the possibility of societal harm through the perpetuation

https://orcid.org/0009-0007-1613-0634
https://orcid.org/0000-0002-6246-2847
https://orcid.org/0000-0003-0802-4691
https://github.com/arturo-perez-peralta/FairLangProc
https://github.com/arturo-perez-peralta/FairLangProc
https://arxiv.org/abs/2508.03677v1

of existing biases in the training data (O’Connor and Liu 2024). This concern is at the
center of the field of algorithmic fairness, whose community has paid close attention to the
propagation of prejudices against disadvantaged groups through Machine Learning (ML),
measuring discrimination in critical contexts such as finance, healthcare, and organizational
justice (Birzhandi and Cho 2023). These biases can only be mitigated through a proactive
approach, otherwise risking unfair treatment of sensitive groups (Barocas et al. 2023). The
existing methods for debiasing can be classified according to their position on the ML pipeline,
distinguishing between pre-processors, who curate the training dataset; in-processors, which
modify the learning procedure; and post-processors, which affect the outputs of a given model
(Kozodoi, Jacob, and Lessmann 2022).

A myriad of methods have been proposed to debias LLMs, ranging from simply rewriting
their outputs (Vanmassenhove et al. 2021) to projecting the hidden representations of the
model to a bias-free subspace (Liang et al. 2020). However, although numerous algorithms
have been proposed, their practical implementations are frequently inaccessible, with many
never being released publicly, which poses a challenge to practitioners in both academia and
industry.

To address this problem, this paper presents FairLangProc, a Python package that provides
a common implementation of existing fairness datasets, metrics and processors, encouraging
the democratization of these tools in NLP. This work broadly follows Gallegos et al. (2024),
revisiting the literature of bias mitigation in LLMs and showing how to use the implementation
of each method. Concretely, our contributions consists of an interface that permits easy
handling of datasets for bias evaluation and an implementation of a myriad of fairness metrics
and a plethora of debiasing pre-processors, in-processors and intra-processors. Furthermore,
this paper provides a comprehensive review of the implemented method, delving into the
theoretical background of these tools and showcasing the underpinnings of each module by
explaining their parameters and showing usage examples. If this was not enough, the company
repository provides a series of notebooks with all the details of the different examples, and
the documentation page of the package is equipped with in-depth explanations of all the
methods. Finally, we also performed a case study which serves as a rough comparison of the
performance and fairness different debiasing processors.

The paper is structured as follows. In Section 2 we provide a quick tour of the core concepts,
the notation that will be used, and the installation of the package. The next three Sections
will explain the main features of the package, with Section 3 delving on datasets, Section 4
explaining the different metrics that have been implemented and Section 5 going into detail on
the different bias mitigation strategies. The exposition will alternate theoretical explanations
of the chosen methods with code chunks that showcase the use of the package in a real-world
setting. To see how the different blocks fit together, Section 6 features a more complete use
case with numerical results applying most pieces of the package in a single experiment, show-
casing the power of the implementation. Finally, Section 7 concludes with a recapitulation of
the most important points and functionalities of the library.

2. Language models and fairness

This Section introduces both the notation that will be used when debiasing Language Models
and the underlying theoretical framework, followed by a first contact with FairLangProc

explaining its context and how to install it.

Starting with the basics, text corpora composed of multiple words, sentences, or texts will be
denoted using blackboard-bold symbols, S. Individual sentences or texts will be represented
by uppercase letters, S, while lowercase letters, w, will denote individual words. Finally, the
hidden representation vectors will be denoted by boldface letters, h. For simplicity, assume
that the input text has already been tokenized. Therefore, the input space may be represented
by R where L is the maximum sequence length. In this context, a LM, M, generates a vector
representation for the sequences, although sometimes we can also consider an intermediate
layer of said model. Formally, let M : RF — R% where and d,, is the latent dimension of
the model. Given an input sequence S, its embedding or hidden representation is denoted by
h = M (S). Note that this terminology encompasses encoder-only, decoder-only and encoder-
decoder architectures (Jurafsky and Martin 2025).

The hidden representation vector is semantically rich, allowing its use in downstream tasks.
For this purpose, a head, g : R¥» — R% where d, is the number of outputs, must be trained
later. The models are usually trained for classification; that is, each observation S is given
a label y, which the model predictions, § = g(M(S)), must match. The model parameters
are then optimized through gradient descent by specifying a certain loss function, £, which
generally takes the form of the cross-entropy (Jurafsky and Martin 2025),

L==> yrlog i,
k

where the sum is taken over the training instances. Of particular interest is the case of
language modeling, in which the labels are tokens whose probabilities must be assigned.

Finally, sensitive information such as race, gender identity or religion will be represented
through a discrete variable, A, signifying the different social groups arising from it. Following
the previous notation, blackboard-bold, A, will denote corpora of text containing sensitive
information, either at the word or sentence level, and lowercase, a, individual sensitive words
or sentences.

To address the problem of assessing and mitigating bias in LMs we have developed FairLang-
Proc, a Python package incorporating datasets, metrics, and methods that aim to measure,
identify and handle harmful societal prejudice in NLP tasks. To install our package, simply
run:

>>> pip install FairLangProc

The package depends only on mainstream open-source libraries, the minimum tested versions
being:

e Python > 3.10
e numpy > 2.2.4
e pandas > 2.2.3
¢ scikit-learn > 1.6.1

e torch > 2.6.0

transformers > 4.47.1

o datasets > 3.4.1

adapter-transformers > 1.1.0

pytest > 8.4.1

To make sure everything is set up correctly, there is a tests folder in the package’s repository
with a myriad of tests that check the correctness of the implementation. All tests can be run
with the following terminal line:

python -m pytest -v

Finally, FairLangProg comprehensive documentation! with explanations of all the methods
and classes implemented and their parameters, providing usage examples and detailed expo-
sition of their theoretical background.

3. Fairness datasets

The NLP community has created and compiled multiple datasets for bias evaluation with
many different methods and metrics. We will not delve into this topic, those interested in a
comprehensive list and description of existing datasets are refered to Gallegos et al. (2024),
where they introduce a taxonomy based on their structure, distinguishing between those
based on counterfactual inputs and those based on generated text from prompts. In Fair-
LangProc these datasets have to be downloaded from the Fair-LLM-Benchmark? repository,
which should be cloned inside the datasets folder. Once this is done, the datasets can be
accessed through the BiasDataLoader method with the following parameters:

e dataset: str. Name of the dataset. When doing dataset = None a list of available
datasets is printed, which can be found in Table 1.

o config: str. This parameter is used to choose among concrete instances of a given
dataset if there are different versions. For example, imagine a dataset that allows
for prejudice measurement across different societal groups (distinguishing between age,
gender, race,...). The user could then choose which version they are interested with the
config parameter. When setting config = None, a list of all possible values will be
printed.

e format: str. Controls the output type. The available formats are hf for a Hugging
Face dataset dataset, pt for a Pytorch dataset, and raw for raw dictionaries containing
pandas data frames or string lists.

Here is an usage example:

"https://fairlangproc.readthedocs.io/en/latest/
2https://github.com/i-gallegos/Fair-LLM-Benchmark

https://fairlangproc.readthedocs.io/en/latest/
https://github.com/i-gallegos/Fair-LLM-Benchmark

>>> from FairLangProc.datasets import BiasDataloader
>>> data = BiasDataLoader(dataset = "BUG", config = "gold", format = "hf")

This piece of code stores the gold version of the BUG dataset (Levy et al. 2021) inside the

data variable as a Hugging Face dataset.

’ Dataset ‘ Size Reference
BBQ 58,492 Parrish et al. (2022)
BEC-Pro 5,400 Bartl et al. (2020)
BOLD 23,679 Dhamala ef al. (2021)
BUG 108,419 Levy et al. (2021)
Crow-SPairs | 1,508 Nangia et al. (2020)
GAP 8,908 Webster et al. (2018)
HolisticBias | 460,000 Smith et al. (2022)
HONEST 420 Nozza et al. (2021)
StereoSet 16,995 Nadeem et al. (2021)
UnQover 30 Li et al. (2020)
WinoBias+ 1,367 | Vanmassenhove et al. (2021)
WinoBias 3,160 Zhao et al. (2018)
WinoGender 720 Rudinger et al. (2018)

Table 1: Available datasets for bias evaluation

4. Fairness metrics

This section introduces the different fairness metrics that haven been implemented in the
library to measure discrimination in NLP. Broadly, they can be classified into three categories:

1. Embedding metrics: if they measure bias by examining the model’s hidden representa-
tions of input text.

2. Probability metrics: if they measure bias by computing the probabilities of certain
tokens or sentences.

3. Generated text metrics: if they measure bias by examining text generated by the model,
looking for harmful or stereotypical words.

In FairLangProc they can be accessed through the metrics submodule.

4.1. Embedding metrics

Embedding metrics aim to measure bias in the model’s hidden representation vectors opera-
ting under the assumption that a set of similar words or sentences which differ only on their
demographic information should be close in latent space. The most famous embedding metric
is given by Caliskan, Bryson, and Narayanan (2017) in the Word Embedding Association Test
(WEAT), which aims to measure associations between demographic and neutral attributes.
Demographic attributes are usually binary and denoted by Aj, As, signifying two different

societal groups (male and female, christians and atheist,...) and represented by a corpora of
words A; and Ay (he, him, son and she, her, daughter; priest, nun, pope and non-believer,
heretic, sceptic,...). Neutral attributes, on the other hand, are denoted by Wy, Wy and rep-
resent two different stereotypes whose demographic association we are interested in. These
stereotypes are likewise associated with a corresponding corpora of words, Wi, Wy ranging
from the occupational (technical and care work, proffesions and home roles,...) or academic
(mathematics and arts, engineering and social sciences, medicine and nursing,...) to harm and
prejudice (competence and incompetence, insults and praises,..), and their association with
a societal group indicates an existing bias towards said group. Embedding metrics measure
this association through the cosine similarity of the embeddings of words belonging to text
corpora associated with each neutral attribute, W,,

cos(a, wy) cos(a, ws)
s(a, Wi, Wa) = > — 22— — Y — =
w1 €Wy ‘W1| w2 €Wy |W2|

where a represents the embedding of an arbitrary word and s represents its similarity to the
neutral attributes, with a positive score signifying an association with Wi while a negative
score implies a correlation with Ws. In principle the WEAT test can measure the association
of any two concepts A; and A, to the attributes W1 and Ws. In their original paper, Caliskan
et al. (2017) run WEAT on 10 different sets of target words and attributes, resulting in 10
tests, not all of them concerned with societal bias. For example, WEAT 1 measures the
association of bugs and flowers with pleasant and unpleasant words, which has no relation to
prejudice; while WEAT 3 measures the correlation between European American and African
American names to pleasant and unpleasant words, which has a clear implication on group
bias. Nonetheless, we will usually focus on the case where A; and A, represent sensitive
demographic groups.

In any case, WEAT then measures bias through the effect size, which computes the average
similarity between a corpora of text related to each sensitive attribute, A;, and the neutral
parameters,

Dareny Slar, Wi, Wa) /|Ar] — 3, ca, s(az, Wi, wa)/|As|
StdaEAlUAgs(a7 W17 WQ)

WEAT(Ay, Ay, W1, Wh) = .
A large effect size in either direction indicates a strong bias at the semantic level. This test
can be run at the word (Caliskan et al. 2017) or sentence (May et al. 2019) level, and it
can be further generalized to contextualized embeddings (Guo and Caliskan 2021). These
metrics are implemented through the WEAT abstract class that can be found in the metrics
submodule. The most relevant methods of said class are the following:

e WEAT. init__(self, model, tokenizer, device): Initialization of the class. Stores
the encoder, the tokenizer and the device where the model will be ran.

e WEAT.metric(self, Wl_words, W2_words, Al_words, A2_words, n_perm, pval):
Main method to run the association test. The word parameters are lists of words which
play the role of Wy, W5, A1, As. pval is a boolean variable which runs the permutation
test to determine the statistical significance of the measured significance. If pval is set
to true, n_perm is an intenger that represents the number of permutations of the test.

e WEAT._get_embedding(self): Abstract method. The user should specify how the
embeddings of the inputs should be extracted from the output of the model.

Here we show an usage example of how to measure association scores in BERT (Devlin et al.
2019):

>>> from FairLangProc.metrics import WEAT

>>> class BertWEAT (WEAT):
def _get_embedding(self, outputs):
return outputs.last_hidden_state[:, 0, :]
>>> tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
>>> model = AutoModel.from_pretrained('bert-base-uncased')
>>> weatClass = BertWEAT (model = model, tokenizer = tokenizer)

Measure the association of math and art words to binary gender identity
>>> math ['math', 'algebra', 'geometry', 'calculus', 'equations']

>>> arts ['poetry', 'art', 'dance', 'literature', 'novel']

>>> masc = ['male', 'man', 'boy', 'brother', 'he']

>>> femn ['female', 'woman', 'girl', 'sister', 'she']

>>> weatClass.metric(
W1_words = math, W2_words
Al words = masc, A2_words
pval = False
)

arts,
femn,

4.2. Probability metrics

Probability metrics rely on the computation of the probability of masked tokens through a
language model head. A mask is a special token which is used during the training stage of
Language Models to hide another semantically meaningful token. The model is then assigned
the task of guessing which token hides behind the mask using the context of the rest of
the text or just what came before. In any case, probability metrics can be classified into
two categories depending on whether they rely on the probabilities of a single token of the
sentence (masked token methods) or if they mask the whole sentence word by word (pseudo
loglikelihood methods).

Masked token metrics

These methods rely on compute the probability of individual masked tokens. The main
metrics in this regard are the Log-Probability Bias Score (LPBS) (Kurita et al. 2019) and
the Categorical Bias Score (CBS) (Ahn and Oh 2021). Broadly, they rely on predicting the
probability that certain words with demographic connotation appear in the "[X]" spot in
sentences of the form "[X] is [Y]". For example, if "[Y]" is "an engineer" the template now
becomes "[X] is an engineer". We can now use a Language Model to compute the probabilities
that words with demographic information appear in the "[X]" spot to measure the bias the

Language Model has toward associating these demographics with engineering. Following with
the example, if we used "he" and "she" and computed the probabilities of "he is an engineer" and
"she is an engineer", we might obtain that the masculine version of the sentence is more likely,
infering a bias manifested in the association of masculine words and engineering. Moreover,
if the feminine version was more likely we could infer a bias in the opposite direction.

On the one hand, LPBS measures bias for a binary demographic group. It computes the
predicted probability for a token a, p,, using the template "[MASK] is [NEUTRAL AT-
TRIBUTE]"; and normalizes it by computing the model’s prior probability, ps prior, based on
the template "[MASK] is [MASK]". The score is computed as the difference of the logarithms
of the normalized probabilities,

LPBS = log — 2L —1og 22
Pprior,1 Pprior,2

On the other hand, CBS provides a generalization of LPBS for non-binary demographic
attributes like religion or race by using the variance over all the protected attribute words, A:

Pa

'prior,a

CBS = Vargey log

Their implementation is provided by the LPBS, CBS methods in the metrics submodule.
Their use is nearly identical: they use very similar parameters, the only difference being if
the demographic words are given in pairs or n—tuples. The full list of parameters is given by:

model, torch.nn.Module: Model used to compute the probabilities.

o tokenizer, TokenizerType: Tokenizer associated with the model.
e sentences, list[str]: List of masked sentences.

e target_ words, list [tuple[str]]: List of words with demographic information. When
using LPBS the tuples should store pairs of words, while CBS allows for tuples with mul-
tiple words.

o fill__words, list[str]: List of words of neutral attributes.

« mask_ indices, 1ist [int]: List of integers (either 0 or 1) which represent the position
of the mask of the target word (0 if it is the first mask, 1 if it is the second one).

A small example can help clarifying their usage:

>>> from transformers import AutoTokenizer, AutoModelForMaskedLM
>>> from FairLangProc.metrics import LPBS, CBS

>>> gsentences = [
"[MASK] is a [MASK].",
"[MASK] is a [MASK].",
.. "The [MASK] was a [MASK]."
]

>>> target_words = [

("John", "Mary"),

("He", "She"),

.. ("man", "woman")
.

>>> fill words = [

"engineer",

"nurse",

.. "doctor"

R |

>>> mask_indices = [0, 0, 1]

>>> model = AutoModelForMaskedLM.from_pretrained('bert-base-uncased')

>>> tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')

>>> LPBSscore = LPBS(
model

model,

tokenizer = tokenizer,
sentences = sentences,
target_words = target_words,
fill words = fill_words,
mask_indices = mask_indices

>>> target_words = [
("John", "Mamadouk", "Liu"),
("white", "black", "asian"),
.. ("white", "black", "asian")
.]
>>> sentences = [
"[MASK] is a [MASK]",
"The [MASK] kid got [MASK] results",
.. "The [MASK] kid wanted to be a [MASK]"
|
>>> fill words = [
"engineer"”,
"outstanding",
.. "doctor"
oo]
>>> mask_indices = [0, 1, 1]
>>> CBSscore = CBS(
model = model,
tokenizer = tokenizer,
sentences = sentences,
target_words = target_words,
fill words = fill_words,
mask_indices = mask_indices

Stereotyping Antistereotyping

The black kid was problematic at school The white kid was problematic at school
Sentence Score
The black kid was problematic at school — 2521
Mask words l l l l] Aggregate
[MASK] black kid was problematic at school —_— 80.1
The black [MASK] was problematic at school — 192
The black kid was problematic at [MASK] —> 352

Compute scores

Figure 1: Computation of the CPS score: each word of the sentence is progressively masked.
Then we compute the logarithm of the probability that said word occupies its corresponding
place. Finally, all scores are aggregated by their sum.

Pseudo-loglikelihood metrics

These methods leverage the pseudo-loglikelihood (PLL) (Salazar et al. 2020) of generating a
token given other words in a sentence, S. The PLL of a sentence is given by

PLL(S) = Z log P(s]S\s),
sesS

where S\, represents sentence S with token s masked. The idea of PLL based methods is
to approximate the probability of a token conditioned on the rest of the sentence by using
a score function f that leverages PLL. This score can then be used to identify bias in the
sentence by presenting two variations of the same sentence, S1, S5, which only differ on the
demographic label, and checking which version is more likely:

bian(S) = l(f(Sl) > f(S2))v

where 1 represents the indicator function. These two sentences are usually stereotyping
(reinforcing existing societal biases) and anti-stereotyping (using a privileged group instead).
This framework encompasses the two PLL metrics that will be covered.

The first one is given by the CrowS-Pairs Score (CPS) (Nangia et al. 2020), which uses
sentence pairs which coincide in a series of unmodified tokens, U, and only differ on words
containing demographic information, A. The score is given by

CPS(S) = Z log P(u|U\,, A),

uelU

that is, we compute the pseudo-loglikelihood resulting from progessively masking every token
but the sensitive ones. This process is illustrated in Figure 4.2.2.

10

On the other hand, All Unmasked Likelihood (AUL) (Kaneko and Bollegala 2022) predicts
the probability of all tokens in the sentence without masking to prevent selection bias,

1
AUL(S) = T > logP(s|S),
| | seS
although there is the possibility of leveraging attention weights to account for different token
importance.

The implementation of these metrics is given by the CPS and AUL methods, which have very
similar implementations:

e model, torch.nn.Module: Model used to compute the probabilities.
o tokenizer, TokenizerType: Tokenizer associated with the model.

e sentences, list[str]: List of sentences.
Aditionally, CPS uses one additional parameter:

o target_ words, list[str]: List of words (one per sentence) which should not be
masked during the computation of the PLL.

A simple demonstration is found below:

>>> from transformers import AutoModelForMaskedLM, AutoTokenizer
>>> from FairLangProc.metrics import CPS, AUL

>>> model = AutoModelForMaskedLM.from_pretrained("bert-base-uncased")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> sentences = [

'The actor did a terrible job',

'The actress did a terrible job',

'The doctor was an exemplary man',

'The doctor was an exemplary woman'

.

>>> target_words = [
'actor',
'actress',
'man’',
. 'woman '
.]

>>> CPSscore = CPS(
model = model,
tokenizer = tokenizer,
sentences = sentences,
target_words = target_words

11

L)

>>> AULScore = AUL(
model = model,
tokenizer = tokenizer,
sentences = sentences

4.3. Generated text metrics

These metrics evaluate bias by inspecting text generated by a LM, checking the presence or
frequency of certain words. They can be classified into two different groups: Distribution
metrics, which compute the distribution of words with demographic information to evaluate
the representation of certain societal gropus; and lexicon metrics, which check the presence
of hurtful language in the generated responses.

Distribution metrics

These metrics measure bias by comparing the distribution of tokens with demographic infor-
mation. In particular, we have decided to implement Demographic Representation (DR) and
Stereotypical Associations (ST) (Liang et al. 2022), which each computes the frequency of
certain words with demographic information in a set of sentences.

Given a corpus of sequences of generated text Y, for each societal group a with associated
words A its demographic representation is given by

DR(a) = 3 3 Cw;, V),

w; EA YGY

where C'(w,Y") denotes the count of how many times word w appears in text Y. The vector of
counts, DR = (DR(a))q=1,...n, normalized to a probability distribution can then be compared
to a given reference (e.g. the uniform distribution) with a distribution metric to measure the
distance from said reference.

Stereotypical associations, on the other hand, measures bias associated with a specific term
w:

ST(w)a = > Y C(a;, V)1(C(w,Y) > 0),
a; €AY Y

likewise, the vector ST(w) = (ST(w))sea can be normalized and compared to a reference
distribution.

Both metrics have a similar implementation in FairLangProc given by the DemRep and StereoAsoc
methods, which require similar parameters:

e sentences, list[str]: List of sentences.

e demWords, dict[str, list[str]]: Dictionary whose keys represent the demographic
attributes and whose values store lists of words associated with said attribute.

12

Aditionally, ST requires an additional parameter:

o targetWords, list[str]: List of words whose stereotypical association we want to
compute.

A simple usage example is shown below:
>>> from FairLangProc.metrics import DemRep, StereoAsoc

>>> gendered_words = {

'male': ['he', 'him', 'his'],

.. 'female': ['she', 'her', 'actress', 'hers']
.3

These sentences should be generated from a LLM

>>> sentences = [

'She is such a good match to him.',

'"He is trying way too hard to be an actor.’',

'"Her mother is trying to make ends meet.'

'My aunt is baking, do you want to try?'

>>> DR = DemRep(
sentences = sentences,
demWords = gendered_words

>>> target_words = ['mother', 'baking']
>>> ST = StereoAsoc(
sentences = sentences,
demWords = gendered_words,
targetWords = target_words

Lexicon metrics

These metrics perform a word-level analysis of the generated output, comparing them to a
pre-compiled list of hurtful lexicon, Yj,+. Nozza et al. (2021) propose the HONEST metric
which measures how many of the top k& completions of a given model, Yk, contain harmful
words measured by

— Zf/kéﬁf(k Zgjeffk 1(@ € Yhurt)
[k

HONEST implementation in the metrics submodule is given by the HONEST method which
has the following parameters:

HONEST(Y)

e completions, 1ist[1list[str]]: List storing the top k£ completions given by a LM.

13

e hurtLex, 1ist[str]: List of words of the hurt lexicon.
An usage example is shown below:

>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from FairLangProc.metrics import HONEST

>>> tokenizer = AutoTokenizer.from_pretrained('gpt2')
>>> model = AutoModelForCausalLM.from_pretrained('gpt2')

>>> corpus = [
'I cannot believe she did that, she is so',
'TI cannot believe he did that, he is so',
'She tries and she tries to no avail. She is such a',
.. 'He tries and she tries to no avail. He is such a',
-]
>>> completions = []
>>> for prompt in corpus:
input_ids = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(
input_ids,
max_length=30,
num_return_sequences=3,
do_sample=True,
early_stopping=True
)
completions.append ([
tokenizer.decode (output, skip_special_tokens=True)
for output in outputs
D)
>>> hurtLex = ['fool', 'bitch', 'stupid', 'incompetent', 'idiot', 'dumb']

>>> honestScore = HONEST(
completions = completions,
hurtlLex = hurtLex

5. Fairness processors

This Section explores the different algorithms that have been implemented to mitigate bias
in LLMs. They can be classified depending on their position on the ML pipeline:

1. Pre-processors: Fairness processors that modify the model inputs.

2. In-processors: Fairness processors that modify the training process.

14

3. Intra-processors: Fairness processors that modify the model’s behavior without further
training. In essence, very similar to traditional post-processors.

This Section will delve into each category, providing an overview of a handful of processors in
each one of them and showcasing examples on how to use them through their implementation
in FairLangProc. All examples can be found in the DemoProcessors. ipynb notebook, which
showcases the methods through a toy example using the imdb dataset. First, we show the
relevant imports:

Standard libraries

>>> import sys

>>> import os

Pytorch

>>> import torch

>>> import torch.nn as nn

>>> from torch.utils.data import Dataloader

>>> from torch.optim import AdamW

Hugging face

>>> from transformers import (
BertForSequenceClassification,
AutoTokenizer,
Trainer,
TrainingArguments,

)

>>> from datasets import (
load_dataset,
Dataset

As well as the necessary setup:

Use GPU is available
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> print(device)

Load BERT
>>> def get_bert():
return BertForSequenceClassification.from_pretrained(
"bert-base-uncased", num_labels=2
)
>>> TOKENIZER = AutoTokenizer.from_pretrained('bert-base-uncased')
>>> BERT = get_bert ()
>>> HIDDEN_DIM_BERT = BERT.config.hidden_size

Download data set, tokenize

>>> imdb = load_dataset ("imdb")
>>> def tokenize_function(example) :

15

return TOKENIZER(
example["text"],
padding="max_length",
truncation=True,
max_length=128
)
>>> dataset = imdb.map(tokenize_function, batched=True)
>>> dataset.set_format (
type="torch", columns=["input_ids", "attention_mask", "label"]

)

Train test split
>>> train_dataset = dataset["train"]
>>> val_dataset = dataset["test"]

Trainer configuration

>>> training_args = TrainingArguments (
output_dir="./results",
eval_strategy="epoch",
save_strategy="epoch",
learning rate=1e-5,
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
num_train_epochs=1,
fpl6=True,
save_safetensors=False,
weight_decay=0.1,
logging dir="./logs",
logging steps=10,

Training BERT

>>> trainer = Trainer(

model=BERT,

args=training args,

train_dataset=train_dataset,

eval_dataset=val_dataset,

optimizers=(
AdamW (BERT.parameters (), lr=1le-5, weight_decay=0.1),
None

..)

)

>>> trainer.train()

>>> results = trainer.evaluate()

>>> print(results)

16

5.1. Pre-processing

Pre-processing broadly encompasses those algorithms that only affect the model inputs and do
not change its parameters in any way. They can be found in the algorithms.preprocessors
submodule.

Data Augmentation

Data augmentation is the process of curating or upsampling the dataset to obtain a more
representative distribution to train the model on. In particular, Counterfactual Data Aug-
mentation (CDA) consists of flipping words with demographic information while preserving
semantic correctness (Lu et al. 2020), see Figure 2. This procedure can be one-sided and
discard the original sentence or two-sided to consider both the original and its augmented
version (Webster et al. 2020).

One-sided

T EEEEEm—_——— ~ R L L L T R L L L o Y
The jester sang for the king, he was delighted. :—’:\ The jester sang for the queen, she was delighted. j
e —————————— — — — - N i ————————————
O e e N e —————— ~
: Johanna, his mother, is dissapointed. : : Johannes, her father, is dissapointed. :
e —————————— — — — - ’ N —————— —— ————— - - s

1
1
: The jester sang for the king, he was delighted. : M e N S
Ve ———— - : The jester sang for the king, he was delighted. :
N o o e e ”
e ~
fmm———————— e ——————— . : Johanna, his mother, is dissapointed. :
: Johanna, his mother, is dissapointed. : y========-==-=-===-==-=s-==s-==-====f
N e ittt i : Johannes, her father, is dissapointed. :
N ————————————————————— - - s

Figure 2: One-sided and two-sided CDA. The one-sided version deletes the original sentence
while the two-sided procedure preserves both the original and its augmented version.

The CDA implementation can be found in the CDA function with parameters:

e batch, dict: The dataset to be augmented.
e pairs, dict[str, str]: Dictionary storing the counterfactual pairs.

e columns, list[str], default = None: list of columns of the dataset on which we
want to perform the augmentation. If columns = None it performs CDA on all columns.

e bidirectional, bool, default = True: Boolean parameter that controls whether to
perform two-sided CDA (if True) or one-sided CDA (if False).

A simple usage example shows how to augment a dataset:

17

>>> from FairLangProc.algorithms.preprocessors import CDA
>>> gendered_pairs = [
('he', 'she'),
('him', 'her'),
('his', 'hers'),
('actor', 'actress'),
('priest', 'nun'),
('father', 'mother'),
('dad', 'mom'),
('daddy', 'mommy'),
('waiter', 'waitress'),
.. ('James', 'Jane')

-]
>>> cda_train = Dataset.from_dict(

CDA(imdb['train'][:], pairs = dict(gendered_pairs))
)
>>> train_CDA = cda_train.map(tokenize_function, batched=True)
>>> train_CDA.set_format (
type="torch", columns=["input_ids", "attention_mask", "label"]

cee)
Check differences
>>> print(f'Lenght of original train data set: {len(train_dataset['text'])}')
>>> print (f'Lenght of CDA augmented train data set: {len(cda_train['text'])}')

The new datasets can now be used to train the model on a less biased source:

>>> (CDAModel = get_bert()
>>> trainer = Trainer(
model=CDAModel,
args=training_args,
train_dataset=train_CDA,
eval_dataset=val_dataset,
optimizers=(
AdamW (CDAModel . parameters (), lr=2e-5, weight_decay=0.01),
None
)
)
>>> trainer.train()
>>> results = trainer.evaluate()
>>> print(results)

Projection-based debiasing

The rationale behind projection-based debiasing methods is similar to that of embedding met-
rics. They operate in latent space, aiming to identify a bias subspace given by an orthogonal
basis, {v;};2%. Then, the hidden representation of any input can be debiased by removing

18

its projection onto this space, formally
Nbpias
hproj =h— Z <h, Ui> V;.
i=1

This process is illustrated in Figure 3. This can be done either at the word (Bolukbasi

bias direction

actor)
king bias-free

subspace

S Y

actress

Figure 3: Projection of gendered words onto the debiased subspace.

et al. 2016) or sentence (Liang et al. 2020) level. In either case the bias subspace is generally
identified through PCA, and usually its dimension is one, resulting in the construction of a
bias direction.

The implementation of projection-based debiasing is done through the SentDebias abstract
class which requires the construction of the _get_embedding method to compute the hidden
representation of the input. The resulting model then requires the following parameters for
its initialization:

e model, torch.nn.Module: Language Model.

e tokenizer, TokenizerType: Tokenizer for the previous model.

e word__pairs, list[tuple[str]]: List of counterfactual pairs.

e n__components, int: Number of components of the bias subspace.

e config, Optional, dict: Configuration of the Language Model.

Aditionally, when using the SentDebiasForSequenceClassification abstract class requires
one last parameter:

e n_ labels, int: Number of labels for the classification task.

An usage example can be seen below:

19

>>> from FairLangProc.algorithms.preprocessors\
import SentDebiasForSequenceClassification
>>> gendered_pairs = [('he', 'she'), ('his', 'hers'), ('monk', 'nun')]
>>> model = get_bert()
>>> class SentDebiasBert (SentDebiasForSequenceClassification):
def _get_embedding(
self,
input_ids,
attention_mask = None,
token_type_ids = None
):
return self.model.bert(
input_ids,
attention_mask = attention_mask,
token_type_ids = token_type_ids
...).last_hidden_state[:,0, :]
>>> EmbedModel = SentDebiasBert(
model = model,

config = None,
tokenizer = TOKENIZER,
word_pairs = gendered_pairs,
n_components = 1,
n_labels = 2
)
>>> trainer = Trainer(
model=EmbedModel,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
optimizers=(
AdamW (EmbedModel . parameters (), lr=1e-5, weight_decay=0.1),
None
)
)
>>> trainer.train()
>>> results = trainer.evaluate()
>>> print(results)

BLIND debiasing

Orgad and Belinkov (2023) propose Bias removal wlth No Demographics (BLIND), a debi-
asing procedure based on a complementary classifier gp : R~ — R with parameters 0p,
that takes the hidden representation vector as inputs and outputs the success probability of
the model head for the downstream task. This probability is then used as a weight for said
observation whose magnitude is controlled through a hyper-parameter v > 0,

20

Lprinp = (1 — 0o (g5(h;08)))" L1*(5,y).

The term o(gp(h;0p)) represents the model success probability for the downstream task: the
bigger it is the less weight the observation has, while the smaller it is the more weight it
carries. This forces the model to pay special attention to observations with low probability
of success during training. Note that when v = 0 the original loss function is restored, while
v >> 1 exacerbates the effect of the reweighting.

The implementation of BLIND debiasing is done through the abstract class BLINDTrainer
which requires the implementation of the _get_embedding method to compute the hidden
representations of the input tokens. This class extends the Trainer class from Hugging
Face’s transformers, providing a similar implementation. The parameters required for its
initialization are:

e blind__model, torch.nn.Module: BLIND classifier, i.e., gp using the previous nota-
tion.

e blind_ optimizer, torch.0Optimizer: Optimizer used to train the BLIND model.

e temperature, float: hyper-parameter, temperature of the softmax function of the
BLIND classifier.

o alpha, float: hyper-parameter, strength of the BLIND loss.
e gamma, float: hyper-parameter, exponent of the BLIND loss.
e model, torch.nn.Module: Language Model.

e Trainer class kwargs.
A simple example is shown below:

>>> from FairLangProc.algorithms.preprocessors import BLINDTrainer
>>> BLINDModel = get_bert ()
>>> BLINDClassifier = nn.Sequential(
nn.Linear (HIDDEN DIM_BERT, HIDDEN DIM_BERT),
nn.ReLUQ),
. nn.Linear (HIDDEN_DIM BERT, 2)
cee)
>>> class BLINDBERTTrainer (BLINDTrainer):
def _get_embedding(self, inputs):
return self.model.bert(
input_ids = inputs.get("input_ids"),
attention_mask = inputs.get("attention_mask"),
token_type_ids = inputs.get("token_type_ids")
-).last_hidden_state[:,0, :]
>>> trainer = BLINDBERTTrainer (
blind_model = BLINDClassifier,
blind_optimizer = lambda x: AdamW(x, lr=1e-5, weight_decay=0.1),

21

temperature = 1.0,

gamma = 2.0,
alpha = 1.0,
model = BLINDModel,

args = training_args,
train_dataset = train_dataset,
eval_dataset = val_dataset,
optimizers=(

AdamW (BLINDModel . parameters(), lr=1e-5, weight_decay=0.1),

None
.)

)

>>> trainer.train()
>>> results = trainer.evaluate()
>>> print(results)

5.2. In-processing

In-processors modify the training process in order to reduce bias. Popular in-processor meth-
ods include modifying the loss function, changing the training scheduler for the model pa-
rameters or introducing new layers in the architecture.

Adapter Based Debiasing

Lauscher et al. (2021) propose the Adapter-based DEbiasing of LanguagE models (ADELE)
procedure based on the adapter framework. They adopt the architecture shown in Strubell,
Ganesh, and McCallum (2019) in which a single adapter module is included to each trans-
former layer after the feed-forward sub-layer, where the outputs are compressed to a bottle-
neck dimension m and then decompressed back to the hidden size of the transformer, dy.
The adapter module itself consists of a two-layer feed-forward network,

Adapter(h,r) =U - g(D -h) +r,

where h and r are the hidden state and residual of the corresponding transformer layer, g is
an activation function and D € R™*9L_[J € R4*™ represent the projection matrices. The
idea behind the adapter layer is to introduce an information bottleneck which compresses the
latent representation of the inputs, forcing the model to discard all irrelevant information.
This mechanism is represented in Figure 4. Compounding this with techniques such as CDA,
we force the model to discard the sensitive attribute as every social group appears in the same
proportion, hence providing no additional information.

FairLangProc implements ADELE through the DebiasAdapter class which uses the adapter-
transformers library to apply an adapter to a given model. Then, training can continue as
normal with the AdapterTrainer. The parameters of DebiasAdapter are:

e model, torch.nn.Module: A Language Model.

« adapter_ config, Union[str, dict]: Configuration of the adapter model. ADELE
uses the seq_bn bottleneck configuration.

22

Second MLP

Adapter layer
Information bottleneck

First MLP

Figure 4: The adapter layer compresses the hidden representations.

A simple usage example is found below:

>>>
>>>
>>>

>>>
>>>

)

>>>
>>>
>>>

from adapters import AdapterTrainer
from FairLangProc.algorithms.inprocessors import DebiasAdapter
DebiasAdapter = DebiasAdapter(
model = get_bert(),
adapter_config = "seq_bn"
)
AdeleModel = DebiasAdapter.get_model ()
trainer = AdapterTrainer(
model=AdeleModel,
args=training args,
train_dataset=train_CDA,
eval_dataset=val_dataset,
optimizers=(
AdamW (AdeleModel .parameters(),lr=1e-5, weight_decay=0.1),
None

)

trainer.train()
results = trainer.evaluate()
print(results)

Regularizers

The use of regularizers is well known in the Machine Learning literature (Cortes, Mohri, and
Rostamizadeh 2009; Kukacka, Golkov, and Cremers 2017; Tian and Zhang 2022) as a way of
taking into account alternative objectives to the original task by modifying the loss function.
Formally,

[£red — Etask: +\R.

FairLangProc implements two regularizers based on different concepts.

The first one by Liu et al. (2020) is based on the distance between the embeddings of coun-
terfactual pairs given by A,

23

R= > |IM(a)— M(aj)|2.
(a;,a;)€A

The idea is similar to that of embedding based metrics and pre-processing. Its implementation
relies on the EmbeddingBasedRegularizer abstract class which requires the implementation
of the _get_embedding abstract method. Once this aspect is taken care of, the parameters
required for its initialization are as follows:

e model, torch.nn.Module: A Language Model.
o tokenizer, TokenizerType: Tokenizer of the Language Model.
e word_ pairs, list [tuple[str]]: List of counterfactual pairs.

e ear_reg_strength, float: Regularization strength.

On the other hand, Attanasio et al. (2022) propose Entropy Attention Regularization (EAR),
which tries to maximize the entropy of the attention weights to encourage attention to the
broader context of the input,

L

R=-— Z entropy;(A),
=1

where entropy,(-) denotes the entropy of the [-th layer.

These methods are implemented through the EARModel class with initialization parameters:

e model, torch.nn.Module: A Language Model.

o ear_reg_strength, float: Regularization strength.
We show usage example below:

>>> from FairLangProc.algorithms.inprocessors import EARModel
>>> model = get_bert()
>>> EARRegularizer = EARModel(
model = model,
. ear_reg_strength = 0.01
)
>>> trainer = Trainer(
model=EARRegularizer,
args=training args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
optimizers=(
AdamW (EARRegularizer.parameters(), lr=le-5, weight_decay=0.1),
None

)

24

)
>>> trainer.train()
>>> results = trainer.evaluate()
>>> print(results)

Selective parameter updating

Fine-tuning on a curated dataset can reduce bias in the model outputs. However, this can
lead to catastrophic forgetting (Kirkpatrick et al. 2017). One way of circumventing this issue
is to freeze a big amount of the model parameters, which also helps lessening computational
expenses. Gira, Zhang, and Lee (2022) freeze over 99% of the model’s parameters, only
updating layer norm parameters or word position embeddings, while Ranaldi et al. (2024)
only update the attention matrices.

In FairLangProc this is performed through the selective_unfreezing function, which freezes
all the model layers with the exception of those specified by the user. The parameters of this
method are:

e« model, torch.nn.Module: A Language Model.

e substrings, 1ist[str]: List of layers that must remain unfrozen.

In the example below all model parameters are frozen with the exception of the attention
layers:

>>> from FairLangProc.algorithms.inprocessors import selective_unfreezing
>>> FrozenBert = get_bert ()
>>> selective_unfreezing (FrozenBert, ["attention.self", "attention.output"])
>>> trainer = Trainer(
model=FrozenBert,
args=training_args,
train_dataset=train_CDA,
eval_dataset=val_dataset,
optimizers=(

AdamW (FrozenBert.parameters(), lr=1e-5, weight_decay=0.1),

None
.)

)
>>> trainer.train()
>>> results = trainer.evaluate()
>>> print(results)

5.3. Intra-processing

Adopting the definition by Savani, White, and Govindarajulu (2020), intra-processors are
those fairness methods that modify a model’s behavior without further training or fine-tuning.

25

These procedures might involve the training of a complementary model but the original
parameters remain unchanged.

Modular debias with Diff prunning

Hauzenberger et al. (2023) explore Modular Debiasing with Diff Subnetworks (MoDDiffy) to
create many sparse subnetworks to address bias for different attributes (gender, religion,...)
through the idea of Diff prunning (Guo, Rush, and Kim 2021). Basically, they freeze the
model parameters, 6, and train another network with parameters d, with a loss function that
promotes accuracy, sparsity and debiasing. The final debiased model results from considering
the parameters 6 + §. One can train many such networks for each prejudice dimension,
resulting in a set of subnetworks d1, ..., 9, such that one can choose the subnetworks needed
for the bias attributes of interest.

The way of training this network is the following: Suppose a LM, M(-;60), with a head
intended for a specific downstream task, g(-;#), such that the outputs of the encoder for a
given input S, h = E(S;0), are then fed to the head to generate logits for the task at hand,
g = g(h;0). Then, for a given bias attribute p the model parameters 6 are frozen and a new
set of parameters, J,, are trained instead. To do this, we consider the outputs resulting from
considering the addition of the new parameters to the old model:

hy = M(x;0 +9,), Up = g(hp; 0 +9,).
These new outputs are then trained with the loss function
__ ptask 0,0 debias pdebi
Ep — Ep(ls +)\pﬁp +)\pe zasEpe 1(187

where Effwk represents the original loss of the downstream task with the new parameters, Lg
is a term that promotes sparsity and ﬁgebias represents a regularizer to debias the outputs
with respect to p.

In more concrete terms the loss of the downstream task is computed as

Etpask — Etask (?jpa y)

The sparsity loss is given by a smooth approximation to the Lo norm of ¢, that is, Zy:”(‘) 1(6,, #
0). This approximation is performed by a decomposition of the parameters, d,, into the
element-wise multiplication of two new set of parameters, m, and w,, resulting in J, =
m, ® w,. In this situation, w, represents the magnitude of the parameters while m, is a
mask that takes the binary values 0 or 1 to promote sparsity. This mask is characterized by
the Hard-Concrete distribution (Jang, Gu, and Poole 2016) with parameters (loga,, 1) and
hyper-parameters v < 0,(> 1:

19|

L’g = izzla (log ap,; — log (—Z)) .

Finally, let us define the debiasing loss. In general, any of the debiasing regularizers described
in the literature suffice. In particular, Hauzenberger et al. (2023) suggest two different debias-
ing losses: one based on adversarial debiasing and another one based on mutual information.

26

We have opted for an implementation of the latter, which is similar to embedding-based reg-
ularization. This loss is expressed as the squared difference of the average of the embeddings
of two different groups of inputs, X f and X f ,

Edebias _ ZIAGX;;" ¢(M($A)) ZIBGX;B ¢(M(.TUB)) 2
. X B X7 ’

where ¢ is a transformation kernel.

The final loss function for the bias attribute p is

6,1
L, = EtaSk(g(Zp; 0+6,),y)+)\2 Z o <log api — log (—Z))
=1
+)\debias (ZerXf;‘ ¢(M($A’ 0+ 6P)) _ ZxBEXpB ¢(M(va 0+ 6,0)))2 '
P | X | X7

Finally, given a set of b bias attributes {p;}?_; we can train b different subnetworks {d;}%_,
and choose each time we use the model which bias attributes i1, ...,7, to handle by simply
adding the corresponding bias subnetworks: 6 + 6;, + ... +9;,,.

The differential prunning framework is carried through the abstract class DiffPrunDebiasing
which requires the implementation of a _forward method representing the computation of the
embedding of the inputs, similar to the _get_embedding method of previous implementations.
This class heavily relies on the existing implementation by Hauzenberger et al. (2023)3. The
initialization parameters are listed below:

e head, torch.nn.Module: Head attached to the Language Model.
e model, torch.nn.Module: Encoder of the Language Model.

e input_ids_ A, torch.Tensor: Input ids of the A group; that is, X;f‘ using the above
notation.

e input__ids_ B, torch.Tensor: Input ids of the A group; that is, Xf using the above
notation.

e lambda_ sparse, float: Regularization strength of the sparse loss; that is,)\2 using
the above notation.

e lambda_ bias, float: Regularization strength of the debias loss; that is,)\gd’ms using
the above notation.

e bias_ kernel, Callabe: Kernel used in the computation of the debiasing loss; that is,
¢ using the above notation.

o fixmask__ init, bool: If True, applies a mask m to promote sparsity.

3https://github.com/CPJKU/ModularizedDebiasing

27

o alpha_ init, float: Hyper-parameter representing the initialization value of the « in
the hard-concrete distribution.

o structured_ diff prunning, bool: If True adds a common structure, ayg,oup, to the
« parameters of the hard-concrete distribution. Concretely, each parameter «; is sub-
stituted by &; = agroup + -

e upper, float: Hyper-parameter representing the upper bound of the hard-concrete
distribution; that is, v using the above notation.

e lower, float: Hyper-parameter representing the lower bound of the hard-concrete
distribution; that is, ¢ using the above notation.

Furthermore, in the example below we have defined a bias kernel to compute the debiasing
loss, although if this field is left blank it defaults to using the identity:

>>> from FairLangProc.algorithms.intraprocessors import DiffPrunBERT
>>> gendered_pairs = [

("manager", "manageress"),
("nephew", "niece"),

("prince", "princess"),
("baron", '"baroness'),
("father", "mother"),
("stepsons", "stepdaughters"),
("boyfriend", "girlfriend"),
("fiances", '"fiancees"),
("shepherd", "shepherdess"),
("beau", "belle"),

("males", '"females"),
("hunter", "huntress"),
("grandfathers", "grandmothers"),
("daddies", "mummies"),
("step-son", "step-daughter"),
("masters", "mistresses"),
("nephews", "nieces"),

n n n 5 n

("brother", "sister"),
("grandfather", "grandmother"),
.. ("priest", "priestess")

.
>>> tokens_male = [words[0] for words in gendered_pairs]
>>> tokens_female = [words[1] for words in gendered_pairs]
>>> inputs_male = TOKENIZER(

tokens_male, padding = True, return_tensors = "pt"
cee)
>>> inputs_female = TOKENIZER(
tokens_female, padding = True, return_tensors = "pt"
)

28

>>> def normalize_by_column(x: torch.Tensor, eps: float = 1le-8):
mean = x.mean(dim=0, keepdim=True)
std = x.std(dim=0, keepdim=True)
. return (x - mean) / (std + eps)
>>> original_model = get_bert()
>>> ModularDebiasingBERT = DiffPrunBERT(
head = original_model.classifier,
encoder = original_model.bert,
loss_fn = torch.nn.CrossEntropyLoss(),
input_ids_A = inputs_male,
input_ids_B
bias_kernel

inputs_female,

normalize_by_column,
upper = 10,
lower = -0.001,
lambda_bias = 0.5,
lambda_sparse = 0.00001
)
>>> trainer = Trainer(
model=ModularDebiasingBERT,
args=training args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
optimizers=(
AdamW (ModularDebiasingBERT.parameters(), lr=le-5, weight_decay=0.1),
None
)
)
>>> trainer.train()
>>> results = trainer.evaluate()
>>> print (results)

Entropy-based Attention Temperature scaling

Zayed et al. (2023) propose the use of Entropy-based Attention Temperature (EAT) scaling in
order to modify the distribution of the attention scores with a temperature-related parameter,
B € [0,00):

Attentiong(Q, K, V) = softmax <6QK> V.

Vdy,

The idea is that when § >> 1, the head attends only to the tokens with biggest scores, while
B = 0 forces the head to attend equally to all tokens. When § = 1, the attention head remains
unmodified.

The scaling procedure is implemented through the add_EAT_hook, which attaches a hook to
the attention heads of the model. Its parameters are as follows.

e« model, torch.nn.Module: A Language Model.

29

e beta, float: Temperature parameter.

An example is shown below. Note that, in contrast with previous methods, EAT does not
require training:

>>> from FairLangProc.algorithms.intraprocessors import add_EAT hook
>>> EATBert = BERT
>>> beta = 1.5
>>> add_EAT_hook (model=EATBert, beta=beta)
>>> trainer = Trainer(
model=EATBert,
args=training args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
optimizers=(
AdamW (EATBert .parameters(), lr=1e-5, weight_decay=0.1),
None
..)
.)
>>> results = trainer.evaluate()
>>> print(results)

6. Case study: debiasing BERT

This section showcases the results of using FairLangProc to debias a LM in a setting closer to
reality. The idea is to apply all debiasing methods on the BERT model (Devlin et al. 2019)
during fine-tuning on a given dataset, and measure both their performance and bias to check
the available trade-offs and get a rough idea of the level of prejudice mitigation they provide.

The methods were tested on the General Language Understanding Evaluation (GLUE) dataset
(Wang et al. 2018), which consists of a set of 9 tasks (8 classification tasks, 1 regression),
aimed at testing the language understanding of a LM. A brief summary of the different tasks
is provided below. Unless stated otherwise, the task consists of classification and the metric
used is accuracy score.

o Corpus of Linguistic Acceptability (CoLA) (Warstadt et al. 2019), consists of se-
quence of words annotated with whether it is a grammaticaly correct English sentence.
The metric used is the Matthews correlation coefficient.

» Stanford Sentiment Treebank (SST-2) (Socher et al. 2013), is comprised of sentences
from movie reviews and human annotations of their sentiment.

» Microsoft Research Paraphrase Corpus (MRPC) (Dolan and Brockett 2005), is a
collection of sentence pairs with labels indicating whether the sentences in the pair are
equivalent. The metric used is F1 score.

e Quora Question Pairs (QQP), compiles pairs of questions with the task of identifying
whether or not both questions are semantically equivalent. The metric used is F1 score.

30

o Sematic Textual Similarity Benchmark (STS-B) (Cer et al. 2017), consists of sen-
tence pairs drawn from news headlines, video and image captions, and natural language
inference data; each pair is annotated with a similarity score from 1 to 5 and the task
is to predict these scores. This is the only regression task and the metric used is the
Spearman correlation.

o Multi-Genre Natural Language Inference Corpus (MNLI) (Williams et al. 2018),
is comprised of sentence pairs with the task of textual entailment. That is, each sentence
pair consists of a premise and a hypothesis and the goal is to indicate whether the
premise entails the hypothesis, contradicts it, or neither.

o Standford Question Answering Dataset (QNLI) (Rajpurkar et al. 2016), provides
sentence pairs consisting of a context and a question, with the task of determining
whether the context sentence contains the answer to the question.

o Recognizing Textual Entailment (RTE), is a compilation of textual entailment
sentence pairs.

o Winograd Schema Challenge (WNLI) (Levesque et al. 2012), is a collection of sen-
tence pairs which differ only on an ambiguous pronoun, with the objective of determining
whether the sentence with the pronoun substituted is entailed by the original sentence.

To fine-tune BERT on each task a head is attached after the last layer of the model as
described in Section 2.

Bias was evaluated using WEAT 7 by Caliskan et al. (2017), which measures the association
of gender with mathematics and arts, meaning that a positive score is related with the stereo-
typical association (i.e. men with maths, women with arts) while a negative score shows an
anti-stereotypical association (i.e. women with maths, men with arts). Concretely, we used
the following set of words:

Math: math, algebra, geometry, calculus, equations, computation, numbers, addition.

Arts: poetry, art, dance, literature, novel, symphony, drama, sculpture.

Male terms: male, man, boy, brother, he, him, his, son.

Female terms: female, woman, girl, sister, she, her, hers, daughter.

The models were trained for 3 epochs with a batch size of 16. The Adam optimizer (Kingma
and Ba 2014) was used with hyper-parameters 8; = 0.9, 82 = 0.999 and weight decay 0.1, and
the learning rate was set to 2e — 5. All experiments were performed on an NVIDIA Tesla T4
GPU with 16GB of VRAM. The system was running NVIDIA driver version 565.57.01 and
CUDA 12.7.

Experiments were implemented using Python and executed via virtual environments under
PyTorch and associated machine learning libraries. The details of the implementation can be
found in the DemoDebiasing.ipynb notebook, inside the notebooks folder.

The results of the experiment are shown in Tables 2 and 3. It seems like performance is
consistent across all tasks, with most methods achieving similar results for GLUE tasks,

31

Debias [CoLA [SST-2 | MRPC | STS-B [QQP [MNLI [QNLI | RTE [WNLI | Average
none | 557 | 924 | 882 [87.9 | 87.2 |84.1/84.7 | 914 | 63.9 | 38.0 774
- CDA | 557 | 925 | 884 | 880 | 87.5 [84.3/84.3| 91.3 | 66.1 | 36.6 775
BLIND | 552 | 913 | 86.0 - 81.8 | 81.2/81.6 | 89.7 | 63.9 | 56.3 76.3
emb 56.3 | 92.7 | 875 | 554 | 87.6 | 84.4/84.1 | 91.3 | 632 | 43.7 74.6
EAR | 56.0 | 925 | 830 | 834 | 87.0 |84.4/84.4 | 915 | 625 | 53.5 78.8
ADELE | 562 | 925 | 87.6 | 878 | 85.7 |83.9/845 | 91.3 | 63.5 | 33.8 76.7
sel 48.8 | 91.7 | 86.7 | 81.6 | 842 |83.0/83.0 | 90.0 | 61.7 | 56.3 76.7
EAT | 451 | 923 | 854 | 87.3 | 852 |83.1/83.3 | 89.4 | 62.8 | 338 74.8
diff 58.0 | 929 | 89.7 | 604 | 87.7 | 84.3/84.8 | 915 | 65.0 | 50.7 76.5

Table 2: Performance of the different model on GLUE tasks for the validation set. F1
scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks.

Debias | CoLA [SST-2 [MRPC [STS-B | QQP [MNLI [QNLI | RTE | WNLI | Average
none | 0.005 | 0.149 | 0.045 | 0.164 | 0.704 | 0.098 | 0.379 | 0.470 | 0.181 | 0.244
" CDA [-0.088 | 0.309 | 0.115 | 0.337 | -0.018 | 0.024 | 0.361 | 0.057 | 0.050 | 0.127
BLIND | -0.054 | 0.238 | 0.007 - 0.134 | -0.017 | 0.209 | 0.071 | -0.006 | 0.073
emb | -0.207 | 0.219 | 0.114 | 0.037 | -0.085 | -0.095 | 0.296 | 0.657 | 0.118 | 0.117
EAR | 0.180 | 0.349 | 0.142 | 0.296 | -0.098 | -0.762 | 0.124 | 0.241 | -0.033 | 0.049
ADELE | -0.058 | 0.222 | 0.046 | 0.153 | -0.399 | 0.013 | 0.378 | 0.553 | 0.181 | 0.121
sel -0.092 | 0.056 | 0.108 | 0.122 | 0.010 | -0.096 | 0.098 | 0.167 | 0.026 | 0.044
EAT 0.230 | 0.253 | 0.138 | 0.311 | -0.232 | -0.059 | 0.412 | -0.048 | -0.153 | 0.095
diff -0.004 | 0.489 | 0.034 | -0.221 | -0.175 | -0.135 | 0.426 | 0.377 | 0.033 | 0.092

Table 3: WEAT 7 test for the debiasing methods.

although there are some exceptions on both directions, the most striking underperformers
being found in EAT in CoLA and embedding methods in STS-B, while BLIND, selective
unfreezing and EAR achieve better results than the benchmark in WNLI while reducing
representation bias. Looking at the aggregation score of all tasks it is clear that the use
of a debiasing method compromises accuracy, which is a phenomenon well recorded in the
literature known as the accuracy-fairness trade-off. The two exceptions to this rule are found
in CDA and EAR regularization which actually improve the average results with respect to
BERT.

Taking a look at the association scores, it is clear that although some processors such as EAR
in CoLLA or BLIND in SST-2 exacerbate prejudice, debiasing methods reduce the association
score in general. This can be verified by taking a look at the average WEAT score which
is lower than that of BERT without debiasing for all methods. Moreover, some algorithms
flip the sign of the WEAT score, indicating that the stereotypical association is reversed.
This is the case for CDA in QQP or BLIND in MNLI. Furthermore, the increased WEAT
score find easy explanations. For example, methods like CDA can can fail due to a lack of
enough gendered sentences in the training dataset, while the shortcomings of embedding-based
debiasing are already known in the literature (Gallegos et al. 2024). In general, pre-processors
and in-processors seem to achieve the best results both in terms of fairness and performance,
with EAR providing a very appealing alternative to standard NLP for those concerned with
gendered bias in text processing.

In any case, this experiment is simply a proof of concept and can be easily expanded upon.

32

In order to derive a more sound conclusion more tests are necessary with a more thorough
and exhaustive hyper-parameter search, and considering different random states with an
aggregation strategy in order to remove randomness. In any case, it is clear that the use of
FairLangProc allows for easy application and comparison between fairness methods.

7. Conclusion

The FairLangProc package has been introduced as a comprehensive, user-friendly framework
compatible with the popular Hugging Face libraries. The main contributions of the package
are threefold. First, the datasets submodule implements the BiasDataLoader method,
which allows for easy handling of the different datasets proposed in the literature for bias
evaluation and mitigation. The different parameters allow the user to navigate the available
data and configurations in the format they prefer. Second, the metrics submodule provides
a myriad of metrics based on embeddings, probabilities and generated text. This encourages
a multidimensional approach to fairness which should not be restricted by the limitations of
one single metric, allowing decision-makers to check the different biases a model might incur
in. Finally, the algorithms submodule compiles a plethora of pre-processors, in-processors
and post-processors which require minimal input from the user to function, allowing their
use in a production environment. The different usage examples illustrates the ease of use of
the package, and the final case study showcases how it can be used in a real-world setting,
providing satisfactory bias-mitigation and performance on a well-known NLP dataset.

The FairLangProc package encourages the democratization of fairness tools for Language
Models and the inclusion of new methods resulting from collaborative efforts from the com-
munity. Furthermore, the ease of access of the algorithms and metrics facilitate their inclusion
in bigger, more complex pipelines and projects, which is necessary if fairness methods are to
become widespread among NLP practisioners.

Future development of FairLangProc will focus on expanding its capabilities, providing new
methods as they are exposed to the NLP community, and potentially including the imple-
mentation of debiasing methods outside the Hugging Face environment, providing effective
means of prejudice removal on LLMs outside its scope. We believe that FairLangProc is a
valuable addition to the fairness landscape by facilitating the broader application of prejudice
removal methods in both academia and industry.

8. Acknowledgements

We thank Victor Agullé for his input on many different questions that arose during the making
of the package and for his contributions to the BiasDataLoader method.

This work was partially supported by the Spanish Ministry of Science and Innovation
(MCIN/AEI/10.13039/501100011033) under grants PID2022-1372430B-100 and PID2022-
1378180B-100. This work also received support from the European Union’s Recovery, Trans-
formation and Resilience Plan — NextGenerationEU, through the INCIBE ANTICIPA grant
and the ENIA 2022 programme for university—industry Al chairs (AImpulsa: UC3M-Universia).

References

33

Ahn J, Oh A (2021). “Mitigating Language-Dependent Ethnic Bias in BERT.” In MF Moens,
X Huang, L Specia, SWt Yih (eds.), Proceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 533-549. Association for Computational Linguis-
tics, Online and Punta Cana, Dominican Republic. doi:10.18653/v1/2021.emnlp-main.
42. URL https://aclanthology.org/2021.emnlp-main.42/.

Attanasio G, et al. (2022). “Entropy-based Attention Regularization Frees Unintended Bias
Mitigation from Lists.” In S Muresan, P Nakov, A Villavicencio (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2022, pp. 1105-1119. Association for Com-
putational Linguistics, Dublin, Ireland. doi:10.18653/v1/2022.findings-acl.88. URL
https://aclanthology.org/2022.findings-acl.88/.

Barocas S, et al. (2023). Fairness and Machine Learning: Limitations and Opportunities.
MIT Press.

Bartl M, et al. (2020). “Unmasking Contextual Stereotypes: Measuring and Mitigating
BERT’s Gender Bias.” In MR Costa-jussa, C Hardmeier, W Radford, K Webster (eds.),
Proceedings of the Second Workshop on Gender Bias in Natural Language Processing,
pp. 1-16. Association for Computational Linguistics, Barcelona, Spain (Online). URL
https://aclanthology.org/2020.gebnlp-1.1/.

BigScience, et al. (2022). “Bloom: A 176b-parameter open-access multilingual language
model.” arXiv preprint arXiv:2211.05100.

Birzhandi P, Cho YS (2023). “Application of fairness to healthcare, organizational justice,
and finance: A survey.” Ezxpert Systems with Applications, 216, 119465.

Bolukbasi T, et al. (2016). “Man is to computer programmer as woman is to homemaker?
debiasing word embeddings.” Advances in neural information processing systems, 29.

Brown T, et al. (2020). “Language models are few-shot learners.” Advances in neural infor-
mation processing systems, 33, 1877-1901.

Caliskan A, Bryson JJ, Narayanan A (2017). “Semantics derived automatically from language
corpora contain human-like biases.” Science, 356(6334), 183-186.

Cer D, et al. (2017). “SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and
Crosslingual Focused Evaluation.” In S Bethard, M Carpuat, M Apidianaki, SM Moham-
mad, D Cer, D Jurgens (eds.), Proceedings of the 11th International Workshop on Semantic
Evaluation (SemFEval-2017), pp. 1-14. Association for Computational Linguistics, Vancou-
ver, Canada. doi:10.18653/v1/S17-2001. URL https://aclanthology.org/S17-2001/.

Chung HW, et al. (2024). “Scaling instruction-finetuned language models.” Journal of Ma-
chine Learning Research, 25(70), 1-53.

Cortes C, Mohri M, Rostamizadeh A (2009). “L2 regularization for learning kernels.” In
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI
09, p. 109-116. AUAI Press, Arlington, Virginia, USA. ISBN 9780974903958.

Devlin J, et al. (2019). “Bert: Pre-training of deep bidirectional transformers for language
understanding.” In Proceedings of the 2019 conference of the North American chapter of

34

https://doi.org/10.18653/v1/2021.emnlp-main.42
https://doi.org/10.18653/v1/2021.emnlp-main.42
https://aclanthology.org/2021.emnlp-main.42/
https://doi.org/10.18653/v1/2022.findings-acl.88
https://aclanthology.org/2022.findings-acl.88/
https://aclanthology.org/2020.gebnlp-1.1/
https://doi.org/10.18653/v1/S17-2001
https://aclanthology.org/S17-2001/

the association for computational linguistics: human language technologies, volume 1 (long
and short papers), pp. 4171-4186.

Dhamala J, et al. (2021). “Bold: Dataset and metrics for measuring biases in open-ended lan-
guage generation.” In Proceedings of the 2021 ACM conference on fairness, accountability,
and transparency, pp. 862-872.

Dolan WB, Brockett C (2005). “Automatically Constructing a Corpus of Sentential Para-
phrases.” In Proceedings of the Third International Workshop on Paraphrasing (IWP2005).
URL https://aclanthology.org/I05-5002/.

Foundation CC (Accessed 27/05/2025). “Common Crawl Dataset” URL https://

commoncrawl. org.

Gallegos 10, et al. (2024). “Bias and fairness in large language models: A survey.” Compu-
tational Linguistics, 50(3), 1097-1179.

Gira M, Zhang R, Lee K (2022). “Debiasing pre-trained language models via efficient fine-
tuning.” In Proceedings of the second workshop on language technology for equality, diversity
and inclusion, pp. 59—69.

Goyal S, et al. (2024). “Healai: A healthcare llm for effective medical documentation.” In
Proceedings of the 17th ACM International Conference on Web Search and Data Mining,
pp- 1167-1168.

Guo D, Rush A, Kim Y (2021). “Parameter-Efficient Transfer Learning with Diff Pruning.”
In C Zong, F Xia, W Li, R Navigli (eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 4884-4896. Association for
Computational Linguistics, Online. doi:10.18653/v1/2021.acl-1long.378. URL https:
//aclanthology.org/2021.acl-long.378/.

Guo W, Caliskan A (2021). “Detecting emergent intersectional biases: Contextualized
word embeddings contain a distribution of human-like biases.” In Proceedings of the 2021
AAAI/ACM Conference on Al, Ethics, and Society, pp. 122-133.

Hauzenberger L, et al. (2023). “Modular and On-demand Bias Mitigation with Attribute-
Removal Subnetworks.” In A Rogers, J Boyd-Graber, N Okazaki (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2023, pp. 6192-6214. Association for Compu-
tational Linguistics, Toronto, Canada. doi:10.18653/v1/2023.findings-acl.386. URL
https://aclanthology.org/2023.findings-acl.386/.

Jang E, Gu S, Poole B (2016). “Categorical reparameterization with gumbel-softmax.” arXiv
preprint arXiv:1611.01144.

Jurafsky D, Martin JH (2025). Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition
with Language Models. 3rd edition. Online manuscript released January 12, 2025.
https://web.stanford.edu/ jurafsky/slp3.

35

https://aclanthology.org/I05-5002/
https://commoncrawl.org
https://commoncrawl.org
https://doi.org/10.18653/v1/2021.acl-long.378
https://aclanthology.org/2021.acl-long.378/
https://aclanthology.org/2021.acl-long.378/
https://doi.org/10.18653/v1/2023.findings-acl.386
https://aclanthology.org/2023.findings-acl.386/

Kaneko M, Bollegala D (2022). “Unmasking the mask—evaluating social biases in masked lan-
guage models.” In Proceedings of the AAAI conference on artificial intelligence, volume 36,
pp. 11954-11962.

Kingma DP, Ba J (2014). “Adam: A method for stochastic optimization.” arXiv preprint
arXiw:1412.6980.

Kirkpatrick J, et al. (2017). “Overcoming catastrophic forgetting in neural networks.” Pro-
ceedings of the national academy of sciences, 114(13), 3521-3526.

Kozodoi N, Jacob J, Lessmann S (2022). “Fairness in credit scoring: Assessment, imple-
mentation and profit implications.” FEuropean Journal of Operational Research, 297(3),
1083-1094.

Kukacka J, Golkov V, Cremers D (2017). “Regularization for deep learning: A taxonomy.”
arXiw preprint arXiv:1710.10686.

Kurita K, et al. (2019). “Measuring Bias in Contextualized Word Representations.” In
MR Costa-jussa, C Hardmeier, W Radford, K Webster (eds.), Proceedings of the First
Workshop on Gender Bias in Natural Language Processing, pp. 166-172. Association for
Computational Linguistics, Florence, Italy. doi:10.18653/v1/W19-3823. URL https:
//aclanthology.org/W19-3823/.

Lai J, et al. (2024). “Large language models in law: A survey.” AI Open, 5, 181-196.
ISSN 2666-6510. doi:https://doi.org/10.1016/j.aiopen.2024.09.002. URL https:
//www.sciencedirect.com/science/article/pii/S2666651024000172.

Lauscher A, et al. (2021). “Sustainable Modular Debiasing of Language Models.” In
MF Moens, X Huang, L Specia, SWt Yih (eds.), Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pp. 4782-4797. Association for Computational Linguis-
tics, Punta Cana, Dominican Republic. doi:10.18653/v1/2021.findings-emnlp.411.
URL https://aclanthology.org/2021.findings-emnlp.411/.

Levesque HJ, et al. (2012). “The Winograd schema challenge.” KR, 2012(13th), 3.

Levy S, et al. (2021). “Collecting a Large-Scale Gender Bias Dataset for Coreference
Resolution and Machine Translation.” In MF Moens, X Huang, L Specia, SWt Yih
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2021, pp.
2470-2480. Association for Computational Linguistics, Punta Cana, Dominican Repub-
lic. doi:10.18653/v1/2021.findings-emnlp.211. URL https://aclanthology.org/
2021.findings-emnlp.211/.

Li T, et al. (2020). “UNQOVERIing Stereotyping Biases via Underspecified Questions.” In
T Cohn, Y He, Y Liu (eds.), Findings of the Association for Computational Linguis-
tics: EMNLP 2020, pp. 3475-3489. Association for Computational Linguistics, Online.
doi:10.18653/v1/2020.findings-emnlp.311. URL https://aclanthology.org/2020.
findings-emnlp.311/.

LiY, et al. (2023). “Large language models in finance: A survey.” In Proceedings of the fourth
ACM international conference on Al in finance, pp. 374-382.

36

https://doi.org/10.18653/v1/W19-3823
https://aclanthology.org/W19-3823/
https://aclanthology.org/W19-3823/
https://doi.org/https://doi.org/10.1016/j.aiopen.2024.09.002
https://www.sciencedirect.com/science/article/pii/S2666651024000172
https://www.sciencedirect.com/science/article/pii/S2666651024000172
https://doi.org/10.18653/v1/2021.findings-emnlp.411
https://aclanthology.org/2021.findings-emnlp.411/
https://doi.org/10.18653/v1/2021.findings-emnlp.211
https://aclanthology.org/2021.findings-emnlp.211/
https://aclanthology.org/2021.findings-emnlp.211/
https://doi.org/10.18653/v1/2020.findings-emnlp.311
https://aclanthology.org/2020.findings-emnlp.311/
https://aclanthology.org/2020.findings-emnlp.311/

Liang P, et al. (2022). “Holistic evaluation of language models” arXiv preprint
arXiw:2211.09110.

Liang PP, et al. (2020). “Towards Debiasing Sentence Representations.” In D Jurafsky, J Chai,
N Schluter, J Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 5502-5515. Association for Computational Linguistics,
Online. doi:10.18653/v1/2020.acl-main.488. URL https://aclanthology.org/2020.
acl-main.488/.

Liu A, et al. (2024). “Deepseek-v3 technical report.” arXiv preprint arXiv:2412.19437.

Liu H, et al. (2020). “Does Gender Matter? Towards Fairness in Dialogue Systems.” In
D Scott, N Bel, C Zong (eds.), Proceedings of the 28th International Conference on Com-
putational Linguistics, pp. 4403-4416. International Committee on Computational Lin-
guistics, Barcelona, Spain (Online). doi:10.18653/v1/2020.coling-main.390. URL
https://aclanthology.org/2020.coling-main.390/.

Lu K, et al. (2020). “Gender bias in neural natural language processing.” Logic, language,
and security: essays dedicated to Andre Scedrov on the occasion of his 65th birthday, pp.
189-202.

May C, et al. (2019). “On Measuring Social Biases in Sentence Encoders.” In J Burstein,
C Doran, T Solorio (eds.), Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 622-628. Association for Computa-
tional Linguistics, Minneapolis, Minnesota. doi:10.18653/v1/N19-1063. URL https:
//aclanthology.org/N19-1063/.

Meyer JG, et al. (2023). “ChatGPT and large language models in academia: opportunities
and challenges.” BioData mining, 16(1), 20.

Microsoft (Accessed 27/05/2025). “Announcing Microsoft Copilot, your every-
day Al companion.” URL https://blogs.microsoft.com/blog/2023/09/21/
announcing-microsoft-copilot-your-everyday-ai-companion/.

Nadeem M, et al. (2021). “StereoSet: Measuring stereotypical bias in pretrained language
models.” In C Zong, F Xia, W Li, R Navigli (eds.), Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 5356-5371. Association for
Computational Linguistics, Online. doi:10.18653/v1/2021.acl-1long.416. URL https:
//aclanthology.org/2021.acl-long.416/.

Nangia N, et al. (2020). “CrowS-Pairs: A Challenge Dataset for Measuring Social Biases
in Masked Language Models.” In B Webber, T Cohn, Y He, Y Liu (eds.), Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
1953-1967. Association for Computational Linguistics, Online. doi:10.18653/v1/2020.
emnlp-main.154. URL https://aclanthology.org/2020.emnlp-main.154/.

Naveed H, et al. (2023). “A comprehensive overview of large language models.” ACM Trans-
actions on Intelligent Systems and Technology.

37

https://doi.org/10.18653/v1/2020.acl-main.488
https://aclanthology.org/2020.acl-main.488/
https://aclanthology.org/2020.acl-main.488/
https://doi.org/10.18653/v1/2020.coling-main.390
https://aclanthology.org/2020.coling-main.390/
https://doi.org/10.18653/v1/N19-1063
https://aclanthology.org/N19-1063/
https://aclanthology.org/N19-1063/
https://blogs.microsoft.com/blog/2023/09/21/announcing-microsoft-copilot-your-everyday-ai-companion/
https://blogs.microsoft.com/blog/2023/09/21/announcing-microsoft-copilot-your-everyday-ai-companion/
https://doi.org/10.18653/v1/2021.acl-long.416
https://aclanthology.org/2021.acl-long.416/
https://aclanthology.org/2021.acl-long.416/
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://aclanthology.org/2020.emnlp-main.154/

Nozza D, et al. (2021). “HONEST: Measuring hurtful sentence completion in language mod-
els”” In Proceedings of the 2021 conference of the North American chapter of the association
for computational linguistics: Human language technologies. Association for Computational
Linguistics.

Orgad H, Belinkov Y (2023). “BLIND: Bias Removal With No Demographics.” In A Rogers,
J Boyd-Graber, N Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pp. 8801-8821. Association
for Computational Linguistics, Toronto, Canada. doi:10.18653/v1/2023.acl-1long.490.
URL https://aclanthology.org/2023.acl-long.490/.

O’Connor S, Liu H (2024). “Gender bias perpetuation and mitigation in Al technologies:
challenges and opportunities.” AI & SOCIETY, 39(4), 2045-2057.

Parrish A, et al. (2022). “BBQ: A hand-built bias benchmark for question answering.” In
S Muresan, P Nakov, A Villavicencio (eds.), Findings of the Association for Computational
Linguistics: ACL 2022, pp. 2086-2105. Association for Computational Linguistics, Dublin,
Ireland. doi:10.18653/v1/2022.findings-acl.165. URL https://aclanthology.org/
2022.findings-acl.165/.

Radford A, et al. (2019). “Language models are unsupervised multitask learners.” OpenAl
blog, 1(8), 9.

Rajpurkar P, et al. (2016). “SQuAD: 100,000+ Questions for Machine Comprehension of
Text.” In J Su, K Duh, X Carreras (eds.), Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2383-2392. Association for Computational
Linguistics, Austin, Texas. doi:10.18653/v1/D16-1264. URL https://aclanthology.
org/D16-1264/.

Ranaldi L, et al. (2024). “A Trip Towards Fairness: Bias and De-Biasing in Large Language
Models.” In D Bollegala, V Shwartz (eds.), Proceedings of the 13th Joint Conference on
Lexical and Computational Semantics (*SEM 2024), pp. 372-384. Association for Compu-
tational Linguistics, Mexico City, Mexico. doi:10.18653/v1/2024.starsem-1.30. URL
https://aclanthology.org/2024.starsem-1.30/.

Rudinger R, et al. (2018). “Gender Bias in Coreference Resolution.” In M Walker, H Ji, A Stent
(eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers),
pp- 8-14. Association for Computational Linguistics, New Orleans, Louisiana. doi:10.
18653/v1/N18-2002. URL https://aclanthology.org/N18-2002/.

Salazar J, et al. (2020). “Masked Language Model Scoring.” In D Jurafsky, J Chai, N Schluter,
J Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 2699-2712. Association for Computational Linguistics, Online. doi:
10.18653/v1/2020.acl-main.240. URL https://aclanthology.org/2020.acl-main.
240/.

Savani Y, White C, Govindarajulu NS (2020). “Post-Hoc Methods for Debiasing Neural
Networks.” CoRR, abs/2006.08564. 2006.08564, URL https://arxiv.org/abs/2006.
08564.

38

https://doi.org/10.18653/v1/2023.acl-long.490
https://aclanthology.org/2023.acl-long.490/
https://doi.org/10.18653/v1/2022.findings-acl.165
https://aclanthology.org/2022.findings-acl.165/
https://aclanthology.org/2022.findings-acl.165/
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/D16-1264/
https://aclanthology.org/D16-1264/
https://doi.org/10.18653/v1/2024.starsem-1.30
https://aclanthology.org/2024.starsem-1.30/
https://doi.org/10.18653/v1/N18-2002
https://doi.org/10.18653/v1/N18-2002
https://aclanthology.org/N18-2002/
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://aclanthology.org/2020.acl-main.240/
https://aclanthology.org/2020.acl-main.240/
2006.08564
https://arxiv.org/abs/2006.08564
https://arxiv.org/abs/2006.08564

Smith EM, et al. (2022). ““I'm sorry to hear that”: Finding New Biases in Language Mod-
els with a Holistic Descriptor Dataset.” In Y Goldberg, Z Kozareva, Y Zhang (eds.),
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Process-
ing, pp- 9180-9211. Association for Computational Linguistics, Abu Dhabi, United Arab
Emirates. doi:10.18653/v1/2022.emnlp-main.625. URL https://aclanthology.org/
2022.emnlp-main.625/.

Socher R, et al. (2013). “Recursive Deep Models for Semantic Compositionality Over a
Sentiment Treebank.” In D Yarowsky, T Baldwin, A Korhonen, K Livescu, S Bethard (eds.),
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pp- 1631-1642. Association for Computational Linguistics, Seattle, Washington, USA. URL
https://aclanthology.org/D13-1170/.

Strubell E, Ganesh A, McCallum A (2019). “Energy and Policy Considerations for Deep
Learning in NLP.” In A Korhonen, D Traum, L. Marquez (eds.), Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pp. 3645-3650. Associ-
ation for Computational Linguistics, Florence, Italy. doi:10.18653/v1/P19-1355. URL
https://aclanthology.org/P19-1355/.

Tian Y, Zhang Y (2022). “A comprehensive survey on regularization strategies in machine
learning.” Information Fusion, 80, 146—166.

Vanmassenhove E; et al. (2021). “NeuTral Rewriter: A Rule-Based and Neural Approach to
Automatic Rewriting into Gender Neutral Alternatives.” In MF Moens, X Huang, L Spe-
cia, SWt Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 8940-8948. Association for Computational Linguistics, Online
and Punta Cana, Dominican Republic. doi:10.18653/v1/2021.emnlp-main.704. URL
https://aclanthology.org/2021.emnlp-main.704/.

Vaswani A, et al. (2017). “Attention is all you need.” Advances in neural information pro-
cessing systems, 30.

Wang A, et al. (2018). “GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding.” In T Linzen, G Chrupala, A Alishahi (eds.), Proceedings of
the 2018 EMNLP Workshop BlackborNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 353-355. Association for Computational Linguistics, Brussels, Belgium. doi:
10.18653/v1/W18-5446. URL https://aclanthology.org/W18-5446/.

Wang A, et al. (2019). “Superglue: A stickier benchmark for general-purpose language un-
derstanding systems.” Advances in neural information processing systems, 32.

Warstadt A, et al. (2019). “Neural network acceptability judgments.” Transactions of the
Association for Computational Linguistics, 7, 625—641.

Webster K, et al. (2018). “Mind the GAP: A Balanced Corpus of Gendered Ambiguous
Pronouns.” Transactions of the Association for Computational Linguistics, 6, 605—617.
doi:10.1162/tacl_a_00240. URL https://aclanthology.org/Q18-1042/.

Webster K, et al. (2020). “Measuring and reducing gendered correlations in pre-trained
models.” arXiv preprint arXiv:2010.06052.

39

https://doi.org/10.18653/v1/2022.emnlp-main.625
https://aclanthology.org/2022.emnlp-main.625/
https://aclanthology.org/2022.emnlp-main.625/
https://aclanthology.org/D13-1170/
https://doi.org/10.18653/v1/P19-1355
https://aclanthology.org/P19-1355/
https://doi.org/10.18653/v1/2021.emnlp-main.704
https://aclanthology.org/2021.emnlp-main.704/
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://aclanthology.org/W18-5446/
https://doi.org/10.1162/tacl_a_00240
https://aclanthology.org/Q18-1042/

Wei J, et al. (2022). “Chain-of-thought prompting elicits reasoning in large language models.”
Advances in neural information processing systems, 35, 24824—-24837.

Williams A, et al. (2018). “A Broad-Coverage Challenge Corpus for Sentence Understanding
through Inference” In M Walker, H Ji, A Stent (eds.), Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pp. 1112-1122. Association for
Computational Linguistics, New Orleans, Louisiana. doi:10.18653/v1/N18-1101. URL
https://aclanthology.org/N18-1101/.

Xiong H, et al. (2024). “When search engine services meet large language models: visions
and challenges.” IEEE Transactions on Services Computing.

Zayed A, et al. (2023). “Should we attend more or less? modulating attention for fairness.”
arXiv preprint arXiv:2305.13088.

Zhang Z, et al. (2021). “CPM-2: Large-scale cost-effective pre-trained language mod-
els” AI Open, 2, 216-224. ISSN 2666-6510. doi:https://doi.org/10.1016/j.
aiopen.2021.12.003. URL https://www.sciencedirect.com/science/article/pii/
S52666651021000310.

Zhao J, et al. (2018). “Gender Bias in Coreference Resolution: Evaluation and Debias-
ing Methods.” In M Walker, H Ji, A Stent (eds.), Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Papers), pp. 15-20. Association for Com-
putational Linguistics, New Orleans, Louisiana. doi:10.18653/v1/N18-2003. URL
https://aclanthology.org/N18-2003/.

40

https://doi.org/10.18653/v1/N18-1101
https://aclanthology.org/N18-1101/
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.12.003
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.12.003
https://www.sciencedirect.com/science/article/pii/S2666651021000310
https://www.sciencedirect.com/science/article/pii/S2666651021000310
https://doi.org/10.18653/v1/N18-2003
https://aclanthology.org/N18-2003/

	Introduction
	Language models and fairness
	Fairness datasets
	Fairness metrics
	Embedding metrics
	Probability metrics
	Masked token metrics
	Pseudo-loglikelihood metrics

	Generated text metrics
	Distribution metrics
	Lexicon metrics

	Fairness processors
	Pre-processing
	Data Augmentation
	Projection-based debiasing
	BLIND debiasing

	In-processing
	Adapter Based Debiasing
	Regularizers
	Selective parameter updating

	Intra-processing
	Modular debias with Diff prunning
	Entropy-based Attention Temperature scaling

	Case study: debiasing BERT
	Conclusion
	Acknowledgements

