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Abstract

Reinforcement Learning from Human Feedback (RLHF) is widely used to align
Language Models (LMs) with human preferences. However, existing approaches
often neglect individual user preferences, leading to suboptimal personalization.
We present the Preference Pretrained Transformer (PPT), a novel approach for
adaptive personalization using online user feedback. PPT leverages the in-context
learning capabilities of transformers to dynamically adapt to individual prefer-
ences. Our approach consists of two phases: (1) an offline phase where we train
a single policy model using a history-dependent loss function, and (2) an online
phase where the model adapts to user preferences through in-context learning.
We demonstrate PPT’s effectiveness in a contextual bandit setting, showing that it
achieves personalized adaptation superior to existing methods while significantly
reducing the computational costs. Our results suggest the potential of in-context
learning for scalable and efficient personalization in large language models.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful technique for
aligning large language models (LLMs) with human preferences, enabling them to generate higher-
quality and more desirable outputs [1, 2, 3, 4]. However, standard RLHF aims to learn a general
policy optimized for the entire population, often neglecting the diversity of individual preferences
and potentially marginalizing specific groups [5, 6, 7, 8, 9]. This limitation can lead to suboptimal
experiences for users whose preferences deviate from the majority.

Several approaches have been proposed to account for the diverse preferences of different popu-
lations. One strategy is to use multi-objective reinforcement learning [10, 11] techniques to train
multiple interpolated proxy rewards and their corresponding optimal policies during the training
phase. Then, they choose the policy that maximizes each new user’s reward as it becomes known
during the selection phase [12, 13]. However, as mentioned in Ramé et al. [6], those approaches
require maintaining a large set of networks, potentially one for each possible preference profile. To
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Figure 1: Preference Pretrained Transformer: (i) In the offline phase, we train a single policy to predict the
preferred answers given the history of previous responses. (ii) In the online phase, the pretrained model interacts
with the user, appends the interaction history to its context and generates more personalized responses.

address this issue, Ramé et al. [6] and Jang et al. [7] propose ”rewarded soups” and ”personalized
soups,” respectively, which learn separate reward and policy models for each preference criterion
and aggregate the learned rewards or policies for new users. While effective, these approaches can
be computationally expensive, particularly when the number of criteria is large, and may require re-
training an entire model for every new criterion. Moreover, these methods often rely on a separate
selection phase to identify user’s relevant reward/policy model (e.g., by optimizing the interpolating
coefficients of the trained models), which translates to an extra computation step for every new user.

To address these challenges, we introduce a novel framework for online personalized adaptation
without the need for training separate models of each preference criterion. Our intuition is that
a history-dependent policy should be able to identify the preference profile of new users after a
few interactions with them. To learn such history-dependent policies, we leverage the in-context
learning capabilities of transformer architectures [14, 15, 16], which has been recently proved to
be effective in reinforcement learning and bandit problems by methods like Decision Pretrained
Transformers (DPT) [17]. We call our model Preference Pretrained Transformer or PPT for short.
PPT is two-fold: (i) During the offline phase, we employ a history-dependent loss function to train
a single policy model that predicts the preferred responses given the history of responses within
each preference criterion. In particular, we follow a direct preference optimization (DPO) approach
to avoid learning a separate reward model [18]. (ii) During the online inference phase, for each
new user, we follow an in-context learning approach by generating two potential responses for each
prompt the user gives and asking the user to rank them. We then append those interactions to the
trained model’s context and continue the inference. This procedure allows the model to dynamically
adapt to individual user preferences as the interaction progresses, rather than relying on a distinct
validation set for model selection, as in prior work. See Figure 1 for an illustration of PPT.

We demonstrate the effectiveness of our approach in a contextual bandit setting, considering each
user prompt as a unique context. The model’s task is to generate a preferred response, which acts as
the optimal action dependent on both the context and the user’s preference group. This framework
aligns with the contextual bandit setting, where an agent must choose the best action based on the
current context to maximize the expected reward. We show its ability to achieve personalized in-
context learning by outperforming the Personalized Soups baseline while reducing the computation
cost by only learning one policy model. Our results suggest the potential of in-context learning for
scalable and efficient personalization in LLMs.

2 Preference Pretrained Transformer

Consider a multi-preference learning setting, with a set of questions (prompts or contexts) X , po-
tential responses A, and preference groups (or preference criteria) denoted by G = {1, 2, . . . ,K}
for K number of groups. For each group g ∈ G, assume an unknown function rg : X × A → R,
which assigns a reward value rg(a | x) to a potential response a given a question x and a preference
group g. Moreover, assume there exist noisily rational annotators corresponding to different prefer-
ence groups. An annotator from preference group g, prefers a response aw over al for a question x
following a Bradley–Terry model [19, 20]:

P(aw, al | x ; g) =
exp{rg(aw | x)}

exp{rg(aw | x)}+ exp{rg(al | x)}
,

where in our notation, given an option between aw and al, aw was chosen by the user. Finally, we
do not directly observe the reward values but only the offline preference data as a proxy:
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Offline preference data. We assume the given offline datasets are stratified by the preference
groups, i.e.,

Dpre =
{
D(g)

pre ≜
(
x
(g)
1 , a

(g)
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(g)
l,1 , x

(g)
2 , a

(g)
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(g)
l,2 , . . . , x

(g)
N , a

(g)
w,N , a

(g)
l,N

)}K

g=1
.

In this notation, each superscript (g) corresponds to a fixed preference group g ∈ G, and each
subscript i refers to a different question xi and its preference data aw,i, al,i for N questions. 2

User preference profile. As discussed, we assume separate offline preference data for each pref-
erence group. However, we also allow for any preference profile induced by rewards in the convex
hull of the true reward models of each preference group. Concretely, we denote a user prefer-
ence profile by z = (α1, α2, . . . , αK) for α1, . . . , αK ≥ 0 and

∑K
g=1 αg = 1. Then, the cor-

responding reward function is defined as a linear combination of multiple reward functions, i.e.,
rz(a | x) =

∑K
g=1 αi · rg(a | x). We denote the set of all user preference profiles by ∆(G).

Online phase. Given the offline datasets Dpre ∈ D, our goal is to train an in-context learning model
M : X ×D → ∆(A) that can generate personalized responses during the online deployment phase.
The model interacts with a fixed user z⋆ ∈ ∆(G), which is unknown to the model, for iterations
j = 1, 2, . . . as follows:

1. The user (with profile z⋆) asks a question xj from the model.
2. The model generates two potential responses given the question and the history of inter-

actions, i.e., aw,j , al,j ∼ M(xj ; x1, aw,1, al,1, . . . , xj−1, aw,j−1, al,j−1) or aw,j , al,j ∼
M(xj) if j = 1.

3. The user prefers aw,j over al,j based on P(aw,j , al,j | xj ; z
⋆).

Preference Pretrained Transformer. Here, we present and motivate our proposed approach. We
assume the questions in the offline and online datasets come from an unknown distribution DX .
Given a model Mθ and a preference profile z⋆, denote a history of interactions between the model
and the user up to time h as Hh = (xj , aw,j , al,j)

h
j=1 with H0 = ∅. The joint distribution of the

history is given as follows:

DH(Hh ; Mθ, z
⋆) =

h∏
j=1

DX (xj) ·Mθ(xj ; Hj−1) (aw,j) ·Mθ(xj ; Hj−1) (al,j) · P(aw,j , al,j | xj ; z
⋆) .

We define the notion of optimal in-context learning models as the ones maximizing the following:

max
Mθ

Ex∼DX ,H∼DH(· ;Mθ,z⋆),a∼Mθ(x ;H)[rz⋆(a | x)]− β ·KL (Mθ(x ; H) ∥ πref(· | x)) . (1)

This objective function trades off between exploration and exploitation by maximizing the reward of
the generated responses while allowing the model full control over the previously generated answers
in history. Moreover, β is a parameter controlling the deviation from some reference policy πref :
X → ∆(A). However, exact optimization of the objective function (1) is challenging since (i) the
history (in-context data) H in the expectation also depends on the learnable model Mθ, and (ii) z⋆
is unknown. Here, we propose an approximation to this objective in two ways. First, we replace
the model Mθ with the reference policy πref in the history distribution DH . Such approximation is
reasonable since the Lagrangian in (1) already requires the learned model Mθ to be within a KL-ball
from the reference policy. Second, we assume a uniform distribution Unif(K) for z⋆ over different
preference groups, i.e., P(z⋆ = g) = 1

K for all g ∈ G. While this assumption does not consider the
users inside the reward convex hull, our empirical results demonstrate competitive performance for
such users. Applying these two approximations, we get the following objective function:

max
Mθ

Ex∼DX ,z⋆∼Unif(K),H∼DH(· ;πref,z⋆),a∼Mθ(x ;H)[rz⋆(a | x)]− β ·KL (Mθ(x ; H) ∥ πref(· | x)) .

Noting that D(g)
pre ∼ DH(· ; πref, g), the above can be simplified as

max
Mθ

1

K

K∑
g=1

(
E
x∼DX ,H∼D

(g)
pre ,a∼Mθ(x ;H)

[rg(a | x)]− βKL (Mθ(x ; H) (a) ∥ πref(a | x))
)
.

2The setting is similar to a contextual bandit rather than a Markov decision process.
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Instead of learning a reward model and optimizing the above objective, we follow a direct preference
optimization (DPO) approach that results in the following loss function [18]:

L(θ) = − 1

K

K∑
g=1

E{(x,aw,al),H}∼D
(g)
pre

[
log σ

(
β log

Mθ(x ; H) (aw)

πref(aw | x) − β log
Mθ(x ; H) (al)

πref(al | x)

)]
. (2)

3 Experiments

LLMs can be thought of as a contextual bandit, where the prompt can be represented as the context x.
Then, each response corresponds to an arm of the bandit a ∈ A. The reward for each response then
is a function of both the prompt x as well as the chosen arm a. For group z let this reward function
be represented as rz(a, x). The preferences between arms are generates through the Bradley-Terry
model as described before [19, 20]. In this preliminary version, we use this framework to run proof-
of-concept experiments for our algorithm.

3.1 Experimental Setup

We consider a simplified scenario involving three subpopulations, where each context vector x rep-
resents a question and each action a ∈ {0, 1, 2, 3} represents one of four possible responses. To
create the preference dataset, we uniformly sample Nc context vectors from the unit hypercube
[0, 1]3. All the contexts are annotated by users from the first subpopulation, 80% are annotated by
users from the second subpopulation, and 60% by users from the third subpopulation. For the anno-
tation process, we generate two candidate actions a′, a′′ from a uniformly random reference policy
πSFT = ( 14 ,

1
4 ,

1
4 ,

1
4 ) and rank the two actions using the subpopulation-specific reward models. The

reward model is formulated as a linear function, similar to the linear contextual bandit setup:

rz(a, x) = fϕ(x)
⊤θz(a) +N (0, σ)

where fϕ : R3 → R4 is a context encoding function, θz is a reward matrix for subpopulation z and
N (0, σ) is a Gaussian noise with mean 0 and standard deviation σ = 0.01. We define θz such that
each column θz(j) corresponds to the rewards obtained by selecting action j for a user from group z.
We have θi(j) = [θi1(j), θi2(j), θi3(j), θi4(j)], where θi1(j) = θi2(j) = θi3(j) = θi4(j) = rij for
any group i and action j, we choose rij ∈ {1, 3, 5, 7} to ensure that the reward model is deterministic
and contrasting (i.e., there is a unique ranking of actions for each group.) We choose the context
encoding function fϕ to be a linear function. We then train a simple transformer using history-
dependent DPO on D̃pre = {(xt, at, āt)}Tj=1 where T = 15, with the loss function (2). For our
baseline Personalized Soups (PS) [7], we trained 3 transformers, one for each subpopulation, using
standard DPO on data specific to each subpopulation. In both cases, the transformers consist of 6
layers, 4 attention heads, and a hidden dimension of 256.

3.2 Results

We sample L = 50 test contexts {xtest
i }50i=1 from the training set and evaluate the rewards ob-

tained at each turn for T = 15 turns, for users from each group and for a user that has mixed
reward function rz̃(a, x) = λλλ⊤r(a, x) where λλλ ∈ R3 is sampled randomly from the 3-simplex and
r(a, x) = [r1(a, x), r2(a, x), r3(a, x)].

We evaluate PPT against the baseline which is Personalized Soups (PS) [7]. For PS, we begin
by constructing 100 interpolated models by performing weighted linear interpolation of the three
pretrained transformers. We initialize the best model M⋆ by randomly sampling one from 100 in-
terpolated models. For each turn t, we evaluate the mean accuracy of M⋆ in predicting the preferred
action given {xtest

i }Li=1. We then sample a random context xval
j and generate two actions a′, a′′ from

a uniform reference policy. Then we select the winning action denoted aw based on the test user’s
preferences. For each interpolated model, we compute the log-probability of aw for the context xval

and add to the model’s cumulative score. M⋆ is then updated based on the accumulated score.

For our model, we maintain a history of interactions H for T turns. We use the same set of
validation contexts {xval

j }Tj=1 and test contexts {xtest
i }Li=1. For each turn t, we sample responses

from Mθ(·|xtest
i , H) and similarly evaluate the accuracy of Mθ in predicting the preferred action on

4



{xtest
i }Li=1. We then generate two actions a′, a′′ from Mθ(·|xval

j , H) and select aw based on the test
user’s preferences. The history is then updated with H ← H ∪ {(xval

j , aj , āj)}.
Figure 2 shows that our method consistently outperforms PS across all user groups. The rewards
increase with the number of turns. In contrast, PS shows some fluctuations in rewards even with the
large number of interpolated models and turns. This highlights the advantage of our approach in not
requiring separate models for each subpopulation; instead, we train a single model capable of adapt-
ing to any user preference. Furthermore, the consistent improvement in rewards across different
groups, including users with mixed preferences, demonstrates the robustness of our method. As the
number of turns grows, our model becomes increasingly accurate in predicting the user’s preferred
actions, even if it does not perform optimally in the initial iterations. This behavior underscores
PPT’s ability to effectively learn in-context, dynamically adapting without the need for retraining or
complex model selection procedures.

(a) Rewards vs Turns (Nc = 500)

(b) Rewards vs Turns (Nc = 1000)

Figure 2: Comparison of rewards between PPT (ours) and the Personalized Soups (PS) over 15 interaction
turns for different user groups. Figure 2a and Figure 2b show results with Nc = 500 and Nc = 1000 context
vectors, respectively. Each subplot corresponds to tests with users from one of the three subpopulations and a
user with mixed preferences. The results demonstrate that PPT consistently outperforms the PS baseline across
all groups. The increase in rewards for our method as the number of turns grows indicates effective in-context
learning and dynamic adaptation to user preferences.

4 Conclusion

In this paper, we introduced the Preference Pretrained Transformer (PPT), a novel framework for
online personalized adaptation of language models to user preferences. PPT addresses the limita-
tions of existing RLHF approaches by leveraging the in-context learning capabilities of transformers
to dynamically adapt to individual user preferences. We demonstrated the effectiveness of PPT in a
contextual bandit setting, showing that our model achieves personalized adaptation superior to the
Personalized Soups baseline while significantly reducing computational costs. By training a single
policy model instead of multiple preference-specific models, PPT offers a more scalable and effi-
cient solution for LM personalization. A key limitation of this work is the lack of experiments with
large language models, which will be crucial for validating the approach’s scalability and real-world
applicability. Future work should explore the application of PPT to more complex language tasks
and investigate its performance with larger language models and diverse user populations.
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