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ABSTRACT

We consider solving the low-rank matrix sensing problem in the over-
parameterized setting, where the specified rank is larger than the true rank. Pre-
cisely, our main objective is to recover a matrix X* € R™*"2 with rank r,
using an over-parameterized form LR, where L € R™*", R € R"2*" and
min{ni,ne} > r > r, with the true rank r, being unknown. The commonly used
methods tackling such a problem such as Factorized Gradient Descent (FGD) can
only demonstrate sub-linear convergence behavior, and their performance could
significantly deteriorate when the matrix condition number is relatively large. To
address this issue, we propose the alternating preconditioned gradient descent
(APGD) method that an inexpensive right preconditioner with a constant damping
parameter is applied to the original gradient. We prove that even starting from a
random initialization, APGD can recover the target matrix at a linear convergence
rate in the over-parameterized situation, independent of the condition number. No-
tably, unlike previous FGD-based methods, APGD alternates between updating
the two factor matrices, which eliminates the reliance on a small step size, thereby
enabling faster convergence. Through a series of experiments, we demonstrate
that APGD achieves the fastest convergence speed compared to other methods,
and further possesses strong robustness with respect to step size, condition num-
ber and other parameters.

1 INTRODUCTION

Low-rank matrix sensing is a fundamental problem encountered in various fields, including image
processing (Candes et al., 20115 |L1 et al.l 2019; [Arora et al., 2019)), phase retrieval (Vaswani et al.,
2017;|Nayer & Vaswani, 2021)), quantum tomography (Rambach et al.,|2021), etc. The primary ob-
jective is to recover a rank 7, matrix X, € R™*"2(r, <« min{ny,ns}) from linear measurements
{(yi, A;) Y of the form

Yi = <Ai>X*>7i:11“'7m' (])

This model can be concisely expressed as y =  A(X)), where A(X,) =

[(A1, XY, (A2, X)), -+, (Am,X,)] is the so-called measurement operator. A prevalent
method for recovering a low-rank matrix X € R"*"2 involves solving the following problem:

arg minrank(X) s.t. y = A(X). (2)

However, such an optimization problem is NP-hard due to the nonconvex rank constraint. To address
this challenge, researchers have proposed relaxing the rank constraint to a convex nuclear norm
constraint (Recht et al.l [2010; |Candes & Planl [2011; |Candes & Recht, 2012} |(Candes & Tao, [2010).
Although this kind of convex relaxation approach provides a tractable solution, it fails to fully exploit
the low-rankness of X, and as a result, the computational cost significantly increases as the matrix
size grows. To mitigate the computational overhead, a common approach is to decompose the matrix
X into a factorized form LR, where I € R™M>" R € R"2X" and r is the estimated rank, also
known as the Burer-Monteiro method (Burer & Monteiro, 2003 2005), and then solve

1
argmin f(L, R) = §||A(LRT) — yH% 3)
L,R
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This problem can be efficiently solved by the widely used factorized gradient descent method (Tu
et al.,[2016j |Zhuo et al., [2021} Jin et al., 2023} Xiong et al., |[2024).

Livy =L —nVif(Ly, Ry), Riy1 = Ry —nVef(Ly, Ry),n denotes the step-size .

However, the following challenges remain in practice:

¢ ill-conditioning It is well known that gradient methods are susceptible to the condition
number x of a matrix, defined as the ratio of the largest to the smallest singular value.
The number of gradient descent iterations increases at least linearly with the condition
number (Zheng & Lafferty, 2015). Unfortunately, most practical datasets exhibit very large
condition numbers, e.g., (Cloninger et al.| 2014) notes that certain applications of matrix
sensing have condition numbers as high as x = 10%°.

* Over-parameterization A major challenge is the lack of prior information about the true
rank r,. Therefore, in the Burer-Monteiro method, we typically set r, < r < min{ny,na},
a scenario referred to as over-parameterization. However, recent studies (Zhuo et al., 2021}
Zhang et al.,[202 1} |Xiong et al.L[2024) have shown that in the case of over-parameterization,
the convergence behavior of factorized gradient methods can be significantly affected.

« Initialization For factorized gradient descent method, obtaining an initial point is the first
step. Many previous studies (Zhuo et al.,[2021}; [Tong et al., 2021; Zhang et al., 2021) rely
on spectral initialization to obtain a good initial point that is close to the true solution X,.
However, recent researches (Stoger & Soltanolkotabi, [2021; [Lee & Stoger;, 2023} Xiong
et al.l 2024) have shown that small random initialization can achieve similar results to
spectral initialization. Nevertheless, small initialization typically requires a larger number
of iterations and is less practical in some big data applications.

Given these challenges, the main goal of this work is to address the following question: Can
one develop an efficient and robust method for solving ill-conditioned matrix sensing in the
over-parameterized setting at a linear convergence rate with a proper random initialization ?

1.1 OUR CONTRIBUTION

To answer the aforementioned question, we consider using an alternating preconditioned gradient
descent (APGD) method to solve the over-parameterized matrix sensing problem. Preconditioning
is a commonly used method to address issues related to uneven distributions of matrix singular val-
ues (Nocedal & Wright, [1999; (Carr et al., 2021; Zheng et al., |2021)). Recently, this approach has
also been applied to matrix sensing problems (Tong et al.||2021; Zhang et al., 2021} Xu et al.|[2023).
However, existing preconditioned gradient descent methods are mostly tailored for symmetric posi-
tive definite matrices, which is not a very practical assumption.

To this end, we consider in this work recovering arbitrary matrices. After decomposing the non-
symmetric matrix into two factor matrices, a natural idea is to update these two matrices alternately
(Tanner & Weil, 2016} [Ward & Kolda, 2023} [Jia et al., [2024). Compared to the vanilla gradient
descent, the advantage of alternating gradient descent is that it allows for larger step sizes, thus
speeding up convergence. As a result, we developed the alternating preconditioned gradient descent

Algorithm 1 Solving (3) by alternating preconditioned gradient descent (APGD)

Input: Observation {y;,.A;}™, step size 1), estimated rank r, initialization scale ¢;, damping pa-
rameter «

Initialization: Let Ly = ﬁfo € RmX" Ry = 3\/%1/‘{70 € R™2*" where the entries of

Lo, Ry are i.i.d. Gaussian entries with distribution N (0, 1)
1: fort =0toT — 1do
2 Lizi =L —nVirf(Li, Ry) - (R/ R+ )™}
3 Rip1 =Ry —VRrf(Lit1, Re) - (L1 Loga +al) ™
4: end for
5. return: X7 = L+ R},
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algorithm for solving (3), as shown in Algorithm[I] APGD starts from a randomly initialized point
that is not too small and alternately updates the two factor matrices L; and R;. In each iteration,
APGD applies a right preconditioner to the original gradient, thereby accelerating the convergence.
Moreover, initialization is a critical aspect of optimization algorithms. Previous methods largely
relied on spectral initialization or extremely small random initialization. We are the first to prove that
with an easy-to-use random initialization, APGD can solve the asymmetric over-parameterization
matrix sensing problem at a linear convergence rate.

Theorem 1. (Informal) In the over-parameterization (v > 1) situation, under some mild assump-
tions, starting from a random initialization which is not too small, APGD achieves a € accuracy
minima, i.e. |LiR; — X,||r < ¢ with Q(log £) iterations.

We summarize our contributions as follows:

» Firstly, we propose a preconditioned alternating gradient descent algorithm, which can con-
verge from a random initial point to the true solution at a linear rate. Even in cases with a
large condition number and severe rank overestimation, APGD achieves the fastest conver-
gence. Compared to previous methods, APGD maintains convergence even with large step
sizes, offering a faster convergence rate. Moreover, unlike other globally convergent algo-
rithms, APGD does not rely on extremely small initialization, thus reducing the number of
iterations.

* Secondly, we develop a two-phase analytical framework that divides the convergence of
APGD into an initial phase and a local convergence phase. Using this framework, we ana-
lyze the convergence rate of APGD under over-parameterization and random initialization,
demonstrating that APGD exhibits linear convergence. We believe this framework can also
be extended to other tasks such as matrix completion, one-bit matrix sensing, and phase
retrieval.

* Thirdly, we conduct a series of experiments, showing that APGD achieves the fastest con-
vergence speed compared to other methods. Additionally, we perform sensitivity tests on
APGD’s parameters, such as step size, and damping parameter, initialization scale, demon-
strating that APGD exhibits strong robustness to parameter variations.

Table 1: Comparison of related works. The second column indicates whether the over-rank case is
considered. In the third column, ’local’ refers to initial points very close to the ground truth, *small
random’ refers to initial values with a very small scale, and 'random’ refers to initial values with a
scale comparable to the ground truth. The fourth column shows the number of iterations required
for the algorithm to converge to an e-global minima, where « represents the condition number. The
fifth column indicates whether the asymmetric factorization is considered.

methods over rank init. iteration complexity asymmetry
(Tong et al.;2021) X local log % v
(Zhuo et al., 2021) v local 1 X
(Zhang et al.; 2021) v local log % X
7St6ger & Soltanolkotabi, [2021)) v small random K% 4 K% log(52) X
B (Xu et al[[2023) v small random log k - log(kn) + log % X
(iiong et ai., 2024) v small random log k + log == v
(Lee & Stoger, [2023) X random logn + log % v
ours v random log * v

2 RELATED WORK

In recent years, a major research direction in the field of matrix sensing has been the development of
fast and efficient non-convex algorithms, with the factorized gradient descent algorithm, particularly
the Burer-Monteiro (BM) factorization (Tu et al., 2016; Zhuo et al., 2021; [Chen & Wainwright,
2015; [Sun & Luo, [2016)), being a representative example. Despite the significant progress made
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in the study of the FGD algorithm, it still performs poorly in cases of ill-conditioning and over-
parameterization, which has led to extensive research efforts addressing these issues. Additionally,
the initialization of FGD has become another prominent research focus. We present a comparison
of several works most relevant to our approach in Table 1.

ill-conditioning

Gradient-based methods are highly sensitive to the condition number of matrices, and the iter-
ation complexity of the FGD algorithm grows linearly with the matrix condition number, i.e.
O(rlog1/e), as the condition number increases, the convergence rate of FGD significantly slows
downZheng & Lafferty| (2015);/Zhang et al.|(2023)). In recent years, there has been a series of studies
focused on addressing this problem using preconditioning methods (Mishra et al.| 2012} |Wei et al.,
2016; [Mishra & Sepulchre, 2016; Tanner & Weil 2016; [Tong et al., 2021} |[Zhang et al.| 2021;2023;
2022; |Bian et al.| |2023)). Most of these works rely on a good initial point and only conduct local
convergence analysis.

Over-parameterization In earlier years, a series of works (Tu et al., 2016} Tong et al.,[2021;/Chen &
Wainwright| [2015; |Li et al.| [2018) demonstrated that under the exact rank assumption, the factorized
gradient descent method could converge to the ground truth at a linear rate. However, since it is
difficult to obtain the rank of the matrix to be recovered in practice, recent research has focused
on matrix recovery in the overestimated rank setting (Zhuo et al.|, 2021} [Li et al.| 2018} [Stoger &
Soltanolkotabil 2021} [Soltanolkotabi et al., 2023). However, over-parameterization exacerbates the
ill-conditioning of the problem, leading to slower convergence rates. Studies by [Zhang et al.| (2021}
2023)); Xu et al.| (2023)); |Cheng & Zhao| (2024) have investigated the issue of slow convergence in
over-parameterized settings.

Initialization

Early methods demonstrated that, starting from an initial point obtained through spectral initializa-
tion (Chen & Wainwright, 2015} |Sun & Luo, |2016)), which is close to the ground truth, the factoriza-
tion gradient descent algorithm can converge to the optimal solution. In the past two to three years,
some studies (Bhojanapalli et al., [2016; Zhang et al.,[2019; |Ge et al.,|2016; |2017; | Zhu et al.| 2021)
have shown that, under certain conditions, all local minima of the low-rank matrix sensing problem
are also global minima. Consequently, global convergence with random initialization has become a
research focus |Jin et al.|(2023)); Ding et al.| (2022); Jiang et al.| (2023)); [Soltanolkotabi et al.| (2023);
Chen et al.. (Stoger & Soltanolkotabi, 2021) revealed that in the noiseless case, gradient descent
with small random initialization performs similarly to spectral initialization.

3  MAIN RESULTS

3.1 PRELIMINARIES

Notations Singular values of a rank-r matrix X are donated as || X || = 01(X) > 09(X) > --- >
o,(X) > 0. We denote the condition number of X as k(X ) = 01(X) /0, (X).

Definition 3.1. (Restricted Isometry Property) The linear map A is said to satisfies Restricted Isom-
etry Property (RIP) with parameters (1, 8,.) if there exits constants 0 < §,. < 1 and m > 0 such that
for every rank-r matrix M, it holds that

(1 =3I M|[E < AM)IZ < (1 +6,:) | M]3

Lemma 1. If all the entries of the measurement matrices { A; Y., are (sub-)gaussian random vari-
ables with zero mean and variance 1/m and m > D(ny + no)r, then the linear map A satisfies the
restricted isometry property of order r with constant 8, > 0 with probability exceeding 1 — Ce™4™
for fixed constants D, d > 0 (Candes & Plan, |2011).

Assumption 1. (Assumption of initialization) Suppose that we sample EB € Rmxk ﬁ € Rn2xk
with i.i.d. N(0,01(X,)) entries. Then we take Ly = 5\/7[/0 and Ry = 3\/7]%0 with ¢c; >
Cinit-

Under this initialization, we only need to know the dimensions nq, no of the target matrix X,
and an overestimated rank r > r,; the true rank r, of the matrix is not required. Similar random

initialization methods have also been adopted in other works (Jiang et al., [2022), and it holds with
high probability as proved in Appendix
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Assumption 2. (Assumption of the linear map A) The linear map A satisfies the rank-2r RIP with
parameter 82, < \/2 — 1.

RIP is a commonly used condition in the field of compressed sensing, which states that the operator
A(-) approximately preserves the distances between low-rank matrices. It serves as a bridge between
fully observed and partially observed data. We can first analyze the population case and then extend
the results to the sample case using the RIP. Assumption 2 ensures that op,in (L;) and omin (Ry)
exhibit a linear convergence rate in the initial phase.

3.2 MAIN THEOREM

2
1+627‘ ’

Theorem 2. Assume that we have the assumption 1 and assumption 2 hold, and 0 < n <
a = O(€?), then solving matrix sensing problem (El) with algorithm 1 leads to:

S(Ls1, Regr) < (1—n0)* f(Le, Ry),
and
T 1 + 521“

|Lr Ry — Xillr < (1 —1e)
1— 6o,

ILoRy — X.|lr

with e = n(1 — 2(1 + 0o, )nup), pp = =22=.

Remark 3.1. Iferation complexity From Theorem 2, it is clear that the iteration complexity of
APGD is independent of the condition number k. Second, APGD is capable of larger step sizes, and
the maximum step size is related to the RIP constant do,., the smaller the do.., the larger the range of
step size.
Remark 3.2. Robustness to step size It is worth noting that the step size constraint here is 0 < n <
%627»’ which is quite a loose bound. This shows that our method is able to iterate with a larger
step size and thus converge faster. Other gradient descent-based methods typically require much
smaller step sizes, resulting in slower convergence. In|Zhang et al.|(2021), the step size is restricted
asn < ﬁ; in |Tong et al|(2021), the step size is restricted as 0 < n < 2/3; in
, the step size is set as 1 = ﬁ; in\Xu et al.|(2023), the step size is restricted as 0 < n < ¢,
where ¢, is some sufficiently small constant.

Remark 3.3. Robustness to damping parameter Note that we only require the damping parameter
a = O(e?), which is a quite loose upper bound. This makes APGD highly robust to the damping
parameter. In contrast, other methods impose stricter requirements on_the range of values for the
damping parameter. For example, the PrecGD algorithm (IZhang et al.l |202] |) requires Cpp|| Ly R —
XillF € ay < Cwl|LiR;] — X.||F and necessitates dynamic updates of oy during iterations.

Similarly, the ScaledGD(\) method proposed by 2023) requires 0.01c,02; (X,) < a <
ca02. (X)) with some sufficiently small c,, which is also a relatively strict constraint.

min

4 PROOF SKETCH

4.1 SUB-LINEAR CONVERGENCE OF (ALTERNATING) GRADIENT DESCENT

It’s proved by [Zhang et al.| (2021}; [2023)) that vanilla gradient descent convergence at a sub-linear
rate of

F(Xiq1) < (1= nomin(Xe)) f(Xt), omin(Xe) = 00(X¢), r = rank(X;)
when solving the over-parameterized matrix sensing problem. As X converges to Xy, omin(X)
approaches 0, leading to a severe decrease in the rate of convergence.

As for the alternating gradient descent, it would be similarly affected. By direct algebraic calcula-
tions coupled with the (2r, d2,.)-RIP condition, we get

1
f(Liy1, Re) = §|\A(Lt+1RtT - X3

= SIA(L ~ V25 (Lo RORT — X0l @
< f(Ley Ry) + 0502 | AV L f(Les RO)RD |3 — VL f(Le, Be) || %
< (L, Re) =0 [2 = n(1 + 62,)07 (Re)] (1 = 62r) i (Re) f (L, Re).
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Similarly, we have

S(Leg1, Rer) < f(Liga, Re) =1 [2 = (1 + 827)07 (Leg1)] (1 = 62r)0mmin (Les1) f(Legr, Re).
(5)
It can be observed that, similar to the vanilla gradient descent, as the X converges to X, omin(R)
and o (L) approach 0, leading to the sub-linear convergence.

To solve this problem, our approach is to add the right preconditioners to the original gradient,
which acts as a sort of Newton’s method. However, unlike Newton’s method, instead of computing
the inverse of the huge-sized Hessian matrix (which is of the size (ny + n2)r x (ny + n2)r), we
only need to compute the inverse of two r X r matrices, which greatly reduces the computational
overhead. In the following, we will present how our method works, mainly by making the lower
bound of the gradient’s Frobenius norm independent of o, (L) and omin (R) via the preconditioner.

4.2 CONVERGENCE ANALYSIS

To begin with our analysis, we first rewrite equation (@) updated by APGD. Then we get the follow-
ing lemma.

Lemma 2. Suppose that the linear map A(-) satisfy the RIP with parameters (21, d2,), considering
the APGD in Algorithm[I} then we have

(L1, Re) < f(Lg, Ry) — (1 — g(l + 02V L f (Lo, Re) (R Ry + o)~V |I3

f(Lt+17 Rt+1) < f(Lt+17 Rt) - 77(1 - g(l + 52r))||va(Lt+17 Rt)(L;LlLHl + a[)_l/QH%

Next we need to obtain an upper bound on the preconditioned gradient as
IV L F (L, Re) (B Re + o)™ 2|7 > pp f(Lt, Re)
IV RS (Lers Re)(Lisr Lisa + D) 72|13 2 pp f(Lisa, Re),

where pp is constant independent of o (L) and omin (R), then we can obtain linear convergence

F(Lests Resa) € (L= f(Le Ro), me = (1= 2(1+05,)ap ™

(6)

Based on the recovery error, we divide the convergence analysis of APGD into two stages, : initial
stage, where || L, R] — X,||r > po,, (X,) and local convergence stage where ||L; R/ — X,||r <
por, (X).

4.2.1 STAGE 1

In the initial stage, the recovery error is relatively large and L L;, R, R; are non singular, which in-
dicate the damping parameter o can be infinitesimal. Specifically, we can bound the preconditioned
gradient as
VL f (L Re) (B Ry + o)™ 2|7 = AT A(L R — X)Ry(RY Ry + o) 72|
> (1= 020)0 2 (Ru(RT By + al)™/2) | LRT = X.|
2(1 — da)
=5 5/ (L, Re),
T+ afod, (! o)
®)
where A* denotes the adjoint operator of A. And ||V g f(Lis+1, Re) (L), Ly1 + o) "1/2||% can be
bounded similarly.
2(1—62,)

1+a/o2, (R:) >
following lemma bounding the preconditoned gradient.

Lemma 3. Assume that we have assumption 1 holds with ¢1 > Cinit = /W and the
linear map A satisfies the rank-2r RIP condition with 83, < /2 — 1, and then take o = O(€?),

If we take a infinitesimal «, then we have (1 — J2,). Based on this, we give the
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where € denotes the final recovery error, then we have
IV Lf(Le, Ro)(R) Ry + al) ™ 2|5 > (1= 85,) (L, Re)
IV af(Ligr, R) (L Ly + al) 725 > (1= 62,) f (Liyr, Re).
for all t such that | LR — X,||r > po,, (Xs)

€))

Remark 4.1. (Intuition of initialization) Suppose that we take infinitesimal initialization, i.e., c; —
0, then we have o2,;,(R;) — 0. If we take o < 02, (Ry), i.e, o — 0, this would lead to

min

the singularization of (R, Ry + oI). And if we take o > o2, (Ry), this would slow down the
convergence. In contrast to near-zero initialization, we emphasize that the initialization scale c;
must have a lower bound c; ;4. This lower bound ensures that, in the first stage, APGD can converge

stably and rapidly to a point that is very close to the ground truth.

However, as LthTl_ converges to X, min(omiy(Rt), omin(Lt)) converges to 0, leading to the sin-

gularization of R, R;. Therefore, inequality (8) would be loose for bounding the preconditoned
gradient. When || L; R} — X, ||r < po,, (X,), we enter the stage 2.

4.2.2 STAGE 2

In this stage, since min(omin (Rt), omin(L¢)) is relatively small, inequality (8) would be impossible
to lower bound the preconditioned gradient. As a result, a new approach has been adopted in this
phase. First, we introduce a lemma to lower bound the original gradient.

Lemma 4. Suppose that the linear map A satisfies the RIP with parameters (21, 6a,.), and || LR} —
Xillr < por, (Xy) with 0 < p < 1, then we have

IVLf(Le, Re)llp > | LiR] — X ||pl|YY R, || p(cos 6 — 6ay) (10)
where . T
cosf = Ll —XoViB) V1—p? (11)

LR — Xl p VAR e —
and Y1 is a corresponding maximizer for satisfies ||Y*||r = 1. And we also have

IVLf(Lesr, R)lF > |Ler1 B — Xul|pl|Les1 Y5 |[ 7 (cos B — 82,) (12)

where
(LiyiR = Xo, LinYy')

[Ler1 R = Xl Pl Lenr s [l
and Y5 is a corresponding maximizer for satisfies ||Y3 || = 1.
Remark 4.2. This lemma shows that |V 1 f(Ls, Ry)||r is highly related to cos® and ||Y1R/ || F,
while cos 0 captures the alignment between the row space of LiR,; — X, and R/ . As LR is close
to X, we have cos® > +/1 — p2, which indicates the error matrix LtR;r — X, is well aligned
with the row space of R;. However, Ry can be ill-conditioned since R; is over-parameterized,
error matrix LyR] — X, is well aligned with an ill-conditioned space, leading to || YR/ ||F >
or(R)| Y || p. Obviously, o,.(Ry;) can cause the sub-linear convergence. So what we have to do is

find a well-conditioned subspace of the row space of R;. (Here we have only analyzed Ry, in fact it
is similar to Ly.)

cosff = 1—p? (13)

Since L;, R, contain ill-conditioned singular values, a straightforward idea is to exclude the effect
of these ill-conditioned singular values so that L; Ry — X, can align towards the well-conditioned
directions. Assume that L; contains k large and well conditioned singular values and r — k poor-

conditioned singular values (near zero). Let L = UFSEVE T7 R =URS RVRT be the SVD of
L, R, and we denote

Ly =ULSEVET Ry = URSEVET.
Then we rewrite inequalities (T0) and (T2)) as

IVLf(Le, Re)lle 2 IRy — Xullpl|Y7 Rey, || 7 (cos O — 8ar) (14)
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where
LR — X, , 1R,
cos Oy, = < tT t 1 tkT> (15)
[L:Ry — Xol[FlIY1Reg |7
and
IVRf(Lis1, R > | LR — Xullpll Leg1, Y5 || (cos By — d2,) (16)
where
L T X, L Y,r
cos B = —Len By = X Lisa¥y ) (17)

|Les1 RS — Xl Pl Leg1, Y5 lp

Motivated by (Zhang et al.| |2021; 2023)), we introduced two local norms and corresponding dual
norms

def * def — def
Al ro € AP 2 p, A0 € IAPLY 5, Pra € RTR+al .
def

1/2 def def
IAlLa = AP 2N R, ANl o < =

= ”APEi/QHFv PL,a = LTL+aI

With these two local norms, we can give a lemma based on equations (15-18), bounding the precon-
ditioned gradient with well-conditioned direction.

Lemma 5. Suppose that the linear map A satisfies the RIP with parameters (2r, 02, ), then we have

(cos Oy, — 0a;.)

max ———
ke{1,2,...r} /1 + a/a,%(Rt)

IVLf (L, Ri)l[ e = ILeR) — Xl

where
LiR] — X, 1R,}
cosfy — — e “‘T> , R, = URSRYVRT R, = URSEVE' (19
[L:Ry — Xol[FlY1Reg || 7
and
(cos B — day) T
Vef(Lit1, Ri)||7, > max Li R — X, ||F,
IVl (oo ROl > o LR~ Xl
where
LR — X, LY,
COS/Bk; — < t4+14; *y Lt+1492 > Lt+1 — ULSLVLT, Lt+1k — U%sévL;r? (20)

|Lis1 Ry — Xl pl| Lo Yy |7

Remark 4.3. From Lemma 5, it is evident that as long as cos 0, cos By, is sufficiently large and an
appropriate damping parameter o is chosen, a stable lower bound for the preconditioned gradient
can be achieved, ensuring linear convergence. In the following, we will demonstrate that when the
distance between Ly R, and X, is sufficiently small, cos 0}, and cos By, will be large, indicating that
they are well-aligned.

Lemma 6. Suppose that the linear map A satisfies the RIP with parameters (21, 02, ) with 09, <
V2 =1, and ||LiR] — X, ||F < por, (Xs), p= (1_726”), then we have

1_627~ « 71/2 T
VoL RG> —2 (14— O LiRT — X, |,
IV ke Rlie > 552 (1 e ) Wl = Xl
IV (Lo, Bl = 222 (14 o R - X
R t+1, L La = 2\/5 5||Lt+1R2— —X*H%—‘ t+14 * || F's

where ¢4 and cs are constants.

Remark 4.4. From Lemma 6, it can be seen that by selecting an proper damping parameter «,
we can obtain a p,, that depends only on RIP constant §5,. Combining this with the first stage, it
becomes clear that APGD, starting from the initial point, can consistently converge at a linear rate.
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5 EXPERIMENTS

In this section, we conduct simulation experiments to empirically validate our theoretical results.
Our experiments demonstrate that with random initialization, APGD exhibits condition number-
independent linear convergence rates in matrix factorization and matrix sensing problems, even in
over-parameterized settings. We compared our method with the vanilla gradient descent, alternating
gradient descent, ScaledGD(\) and PrecGD, and showed that our approach achieves the fastest
convergence rate. Furthermore, compared to ScaledGD()), our method is more robust to the choice
of preconditioner damping parameters o and step size 7).

Introduction of comparison methods Firstly, we provide a brief introduction to the compari-
son methods. The methods under comparison include three FGD based methods: ScaledGD()\)
(Xu et al., 2023), PrecGD (Zhang et al.| [2021} 2024), and vanilla GD, along with a variant of
FGD method, namely alternating gradient descent. ScaledGD()), is a preconditioning method that
achieves linear convergence from very small random initializations using a constant, very small
damping parameter. PrecGD is another preconditioning algorithm that starts from spectral initial-
ization and then leverages an exponentially decaying damping parameter to effectively recover X,
from noisy observations. Alternating GD is a modified version of vanilla GD that alternately updates
the two factor matrices.
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Figure 1: Comparison of the four methods in four different cases with ny = ne = 20, r, = 5,
m = 10ny7,. And the step size of APGD, Alternating GD is 0.9, and the step size of ScaledGD(\)
is set to be 0.6 for the best results. (a) exact rank (r, = r) and well condition (x(X,) = 1) case. (b)
over rank (r = 2r,) and well condition (x(X,) = 1) case. (c) exact rank (r, = r) and ill-condition
(k(Xy4) = 100) case. (d) over rank (r = 2r,) and ill-condition (k(X,) = 100) case.

Experimental setup The entries of the sensing matrix A; are sampled i.i.d with distribution

N(0, %) And the target rank-r, matrix X, € R™*"2 with condition number ~ is generated

by U*EVJ, where U, and V, are both orthogonal matrix and X is a diagonal matrix with condition
number k.

Comparison with several existing methods We compared the performance of these five methods
under four different scenarios with vanilla GD serves as the baseline, as shown in Figure 1. For
PrecGD, we utilized the spectral initialization as described in the original work, while for the re-
maining four methods, we used random initialization with ¢; = 0.1. From Figure 1, we can draw
the following conclusions:

* From Figure 1(a), we can observe that under well-conditioned and exact rank settings, the
convergence rates of APGD and alternating GD are similar, while ScaledGD(\), PrecGD,
and GD exhibit comparable convergence rates. Alternating methods converges significantly
faster than non-alternating methods, highlighting the advantages of alternating methods.

* Over-parameterization and ill-conditioning have a pronounced impact on both alternating
GD and GD, whereas their effects on ScaledGD(\), PrecGD, and APGD are less sig-
nificant. Among these, APGD demonstrates a noticeably faster convergence rate than
ScaledGD(\).

* The effect of over-parameterization on ScaledGD()), PrecGD, and APGD is greater than
that of ill-conditioning, which aligns with theoretical results.



Under review as a conference paper at ICLR 2025

Verify the initialization scale We investigated the impact of initialization scale on APGD and
ScaledGD(\). As shown in Figure 2, when the initialization scale is sufficiently small, ScaledGD(\)
first exhibits divergence, with the extent of divergence increasing as the scale decreases, thereby
slowing down the convergence rate. This phenomenon has also been observed by
(2024). For APGD, the convergence is similarly affected by the initialization scale, where a smaller
¢ leads to slower convergence.

(07
10 S0 o =1 o7| [ [SSealeaib (), o = Ie_oof]
Ours, ¢ = 0.001 | ScaledGD(A),
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Figure 2: Validating the effect of initialization scale on APGD and ScaledGD(\). We set ny =
ne =20, r, =5, k=10, x =100, m = 10n174.
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Figure 3: Comparison of the sensitivity of APGD and ScaledGD(\) to different parameters (damp-
ing parameter «, step size 7). We set n; = no = 20, 7, = 5, k = 10, k = 100, m = 10n17,.

Verify the robustness of the choice of hyper-parameters Here, we evaluate the sensitivity of
APGD and ScaledGD(\) to the damping parameter and step size. As shown in Figure 3, APGD
demonstrates strong robustness to both parameters, while ScaledGD(\) is more sensitive to them.
Additionally, APGD allows for larger step sizes, enabling faster convergence.

6 CONCLUSION

We propose the APGD algorithm, to solve the low-rank asymmetric matrix sensing problem in the
over-parameterized setting, where the true rank is unknown and overestimated. We theoretically
and empirically demonstrate that APGD exhibits a faster convergence rate compared to previous
FGD algorithms and preconditioning methods, and also possesses of great robustness to parame-
ter sensitivity. Specifically, We develop a new two-stage analytical framework to investigate the
global convergence behavior of APGD, proving that it can converge to the global optimum from the
universal random initialization at a linear rate. We believe the developed framework can be natu-
rally extended to analyze other related problems, such as 1-bit matrix sensing and low-rank matrix
completion, which will be part of our future work.

10
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Reproducibility Statement First, all the lemmas and theorems in the main text are provided with
corresponding proofs in the appendix. Additionally, for the experiments mentioned in the paper, we
have included the relevant code in the supplementary materials.
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The appendix contains five chapters on the additional experiments, the proof of initialization,
the proof of the first stage, the proof of the second stage, and the proof of Theorem 2.

A ADDITIONAL EXPERIMENTS

A.1 EXPERIMENTS IN THE NOISY SETTING

In this section, we present additional experiments in the noisy settings. Although our theoretical
analysis only covers the noiseless case, APGD also converges quickly in the presence of Gaus-
sian noise. We compared our method with two others, including ScaledGD(\) and a preconditioned
method PrecGD Zhang et al.|(2024) via spectral initialization. As shown in Figure 3, APGD achieves
the fastest convergence in both the exact rank and over rank settings, while achieving the same re-
covery error as the other two methods. Additionally, PrecGD using spectral initialization converges
faster than the randomly initialized ScaledGD(\).
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Figure 4: Comparison of the three methods: APGD, ScaledGD()) and PrecGD in the noisy setting
with gaussian noise of different variance: le-2, le-3, le-4. APGD and ScaledGD(\) use the random
initialization, while PrecGD use the spectral initialization. We set n; = ny = 20, r, = 5, m =
10nq7r4, & = 100. The step size of APGD is 1, while step size of other two methods is 0.5. (a):
exact rank case; (b): over rank case with » = 2r, = 10.

The PrecGD we refer to is the preconditioned gradient descent method proposed by [Zhang et al.
(2024), which is based on spectral initialization and utilizes an exponentially decaying damping
parameter. The iterative process of their algorithm is as follows:

Xip1 = X — VA X)X, Xo + BD)7E B = BB

Our primary focus is on comparing the sensitivity of APGD and PrecGD to the damping parameter
under noisy conditions. As shown in Figure 4, both APGD and PrecGD demonstrate robustness
to the damping parameter in the presence of noise. However, APGD exhibits a significantly faster
convergence rate than PrecGD, despite PrecGD using spectral initialization to obtain a closer initial
point.

A.2 EXPERIMENTS WITH REGULARIZATION

As done in the work of (Tu et al. |2016), adding a regularization term is a method for solving the
asymmetric matrix recovery problem. Here, we validate the feasibility of combining preconditioning
with a regularization term. The objective function with the added regularization term becomes

. 1
argmin f(L, R) = SIMAELRT) = yllz + A|LTL — RTR|%,
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Figure 5: Comparison of the sensitivity of APGD and PrecGD to damping parameter. APGD use the
random initialization, while PrecGD use the spectral initialization. We set ny = no = 20, r, = 5,
m = 10ny7ry, & = 100, » = 2r, = 10. The step size of APGD is 1, while step size of PrecGD
is 0.5. (a): Examine the sensitivity of PrecGD to the damping parameter [y, while also verifying
the sensitivity of APGD to the damping parameter «; (b): Examine the sensitivity of PrecGD to the
damping parameter 3, while also verifying the sensitivity of APGD to the damping parameter a;.

where ) is the regularization coefficient. Accordingly, we have the improved APGD algorithm

Livi =L —nVipf(L, Ry) - (R Ry + oI)™' —nALy(L] Ly — R Ry)
Riv1 = Ry —nVrf(Lit1, Re) - (L1 Liwr + o)™ —nARy(R] Ry — L/ Ly41) (for APGD)
2D
and the ScaledGD(\) algorithm
Liy1 =L =V f(Le, Ry) - (R Ry + oI) ™" = pALy(L{ Ly — R/ Ry)
Riy1 = R —Vrf(Li, Ry) - (L Ly + o) ™" —nARy(R/ Ry — L L;) (for ScaledGD()))
(22)
We conducted experiments comparing the performance of the original algorithms with the ones that

include the regularization term. The experimental results, shown in Figure 6, indicate that adding
the regularization term helps accelerate convergence for both APGD and ScaledGD(\).
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Figure 6: Evaluate the effect of the regularization term on APGD and ScaledGD(\). APGD and
ScaledGD(\) use the random initialization with ¢; = 0.1; We set ny = no = 20, r, = 1 = 5,
m = 3n17,, K = 100. The step size of all algorithms are 0.1. The value of the regularization is 1.
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B COMPARISON WITH OTHER WORKS

Comparison with Xu et al.|(2023) The work most closely related to ours is|Xu et al.[(2023), which
proposed a ScaledGD(\) algorithm that can converge to the global minimum from a sufficiently
small initialization at a linear rate. Our approach differs from theirs in several ways. First, they
focus on the recovery of symmetric positive semidefinite matrices, which is not practical, whereas
we focus on the recovery of arbitrary matrices. Second, while they employ a preconditioned gradient
method, we use an alternating preconditioned gradient method, which is more robust to step sizes
and converges faster. Third, their method relies on an extremely small initialization, adding an extra
term log k - log(kn) to the iteration complexity, whereas our method does not require such small
initial values, thereby reducing the number of iterations needed.

Comparision with Zhang et al.| (20215 2023) In the second stage, our analytical approach is similar
to that of Zhang et al.|[ (2021} [2023), but have significant differences. One major difference is that
Zhang et al| (2021} 2023) used a preconditioned gradient descent method, and their analysis relies
on a good choice of damping parameter a.. Specifically, the convergence of preconditioned gradient
descent is (1 — %). Thus, in their analysis, ; should be lower bounded, while / needs to be upper
bounded and these two bounds are highly related to damping parameter «, leads to the upper bound
and lower bound of « in each iteration, i.e. Oy || LiR] — X, ||Fr < oy < C’ubHLthT — X

However, in our analysis only the lower bound of p is related to «, and the upper bound of [ is only
related to RIP constant d2,.. And this is what the alternating gradient method gives us. Therefore,
we can take o < O(|| LR} — X, ||%) for all t < T iterations.

C PROOF OF INITIALIZATION

Lemma 7. Let A be an ny x ny matrix with i.i.d Gaussian entries with distribution N (0, 1). Then
there exists an universal constant C such that

IA|l < 3v/n1 + n2

711+n2

with probability at least 1 — 2 exp —

Lemma 8. Suppose that we sample Ly € R™*" Ry € R"™*" with i.i.d. N(0,01(Xy)) entries.
For any fixed c; > 0, if we take Ly = BWLO and Ry = 3\/WRO’ then with probability at

ni+r no+r
5 —92¢ 2, we have

o1(Lo) < c1v/01(Xy), 01(Ro) < c1v/01(Xy)
1 1 1
SILoR] = Xul} < G20} (X.), Oy = et + 5ru + Virach.

least 1 — 2e

Proof. By Lemma([7] we have
01([/0) S C1 Ul(X*) and O'l(Ro) S C1 O'l(X*)

nytr no+r

holds with probability at least (1 —2e~ 2z —2e~ 2z ).

Then we have

1
ILoRy — Xulf < 5

<5 (Lo Ry I + IXul7 + 20l Lo Rq 1[I Xl )
(Pl LoRg II” + re | Xull* + 2/7r| LoRg ||| X-1)
(

IN

(23)
refot(Xy) + o (X,) + 2V rkciod (X )
ref + V) ot (X.).

ov(Lo) > _acp o1 +(Ro) > C1CpyA/T1
6+/n1(n1 +T no(21 + 1)

holds with probability at least p, = (1—(Cc,, )™~ 7“+1—e—"1/6)(1—(cc,,2)"2—r+1—e—”2/6). O

IN

And we have
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D PROOF OF STAGE 1

In begin with stage 1, we first analyze the relationship between f(L:11, Ry1) and f(L:, Ry).
D.0.1 PROOF OF LEMMA 2

Lemma 9. (Rewrite Lemma 2) Suppose that the linear map A(-) satisfy the do,.-RIP, considering
the APGD in [#38), we have

F(Lus Bi) < F(Lo, R) = (1 = J(1 4+ 02,) [Vef (L R)(R] By + o)™ 2]

F(Lesr, Rest) < f(Lesa, B) =01 = 30+ 82) IV f (Less, R) (L Lo +aD) ™2
(24)

Proof.
1
F(Las R = SIALRT = X3
1
= 5 H‘A ([Lt - nVLf(Ltv Rt)(RtTRt + aI)il] R;r - X*) H;

1 2
= SR = X3+ | A(VLf (L R)R] B+ aD) RO, @25)

(a) (b)
—n(ALR] — X.), A(VLf(Le, R)(R] Ry + o) 'R]))

(c)

For (b), we have

) = T A (Tof (Lo R)(R] Ra+aD) R

(i) n?

< T (14 02) VL (Le Re)(R] Ba + aD) 'R I3

g (26)
(ii) 2

< 5 (1462 IVLF (Lo R)R] Re+ al) IR Ry + al) 2R3

(i4i) p2

< L0+ 8)IVLF (Lo BB Ry +al)™ |

where (i) using the assumption that the linear map .A(-) satisfy the d2,-RIP and
rank(Vr f(Ls, Re)(Rf Ry + of)7'R]) < rank(R;); (ii) using the fact that |AB|r <

Al || B||2: (ii%) using the fact that oy |(R) Ry + al) 3R] = % <1

For (c), we have
() = = (ALR = X.), A(VLf(Le, Re) (R Ry + o) T'R]))
= —(A"A(LR] = X.), VL f(Le, Re)(R{ Ry + o) ' R])
= (A AL R = X.)Re, Vi f(Le, Re)(R] Ry +al)™") 27)
Vi f(L¢,Re)
= —n|Vif(Le, Re)(R] Ry + oI) 2.
Combining equations (25)), and (27), we have
f(Leyr, Re) < f(Les Re) — (1 — g(l + 02))IVLf (Le, Re) (R Ry + o) 71/ 3. (28)
By a similar approach, we can prove to obtain
f(Lig1, Riyq) < f(Lt+1aRt)*’?(lfg(1+52r))HVRf(LtHvRt)(L:+1Lt+1+OJ)71/2H%' (29)
Thereby, we complete the proof of Lemma[9] [
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Then, we want to lower bound oin (Lt), omin(R:). We first start from the low-rank matrix factor-
ization problem, and then extend the results to the low-rank matrix sensing problem with the help of
RIP condition.

D.1 PROOF OF LOW-RANK MATRIX FACTORIZATION

In order to lower bound o in(Lt), 0min(R:), we first considering the low-rank matrix factorization
problem

1
min &(L, R) = §||LRT — X,||% subject to L € R™*k R ¢ R"2Xk, (30)

where rank(X,) = r < k. We consider to solve this problem by Alternating Scaled Gradient
Descent (APGD):

Ly =Ly =V ®(Le, Ry) - (R Ry + o)™

: B e
Rt+1 = Rt - HVR‘I)(Lt+1, Rt) . (Lt+1Lt+1 + CYI) .
Lemma 10. Consider the APGD in (31), then we have
®(Ligr, Be) < (L, Ry) — (1 — g)HVL‘I’(Lt’Rt)(RtTRt +al) 2%,
(32)

D(Lesr, Reer) < D(Lesr Be) = (L= DIVR®(Lr R (L Lier + D).

Proof. According to the APGD, we have
1
O(Litr1, Re) = §||X* — LR/ |7
1 _
= §||X* — [Le =9V ®(Ls, Ry) - (R Ry + aD) ] R ||2

1 n? _
= SIXe = LRI 5+ IV L®(Ly, Be) - (R Re+ D) 'R E - (33)

(a) (©]
_ T
e { (LR~ X,) [V1@(Li, Re) - (R Re +oD) ' R]] T

(c)
For (b), we have

2
() = LIV (L, ) - (R R+ o) ] |

2
< TIVL@(Le Re) - (R] Re+al) "5} (BT R+ aD) RT3 (34)
@ 712 T —-12
S S IVL®(Le, Be) - (By Be + )2 |7,
where (i) using the fact that oyay [(R] Ry + o) 2R] ] = \/%% <1

For (¢), we have

(€) = —ntr {(LthT — X,) [Vo®(Ls, Ry) - (R Ry + af)—le]T}

.
= —ntr{ (LR} — X)Ry-(R] Ry + aI)~/2 [VL<I>(Lt, R:)- (R} Ry + al)~1/? (35)
N—————
Vi®(L¢,Ry)

= |V ®(Ls, Ry) - (R Ry + al) 2|2

18



Under review as a conference paper at ICLR 2025

Combining equations (33), and (35]), we have
n?
®(Liy1, Ry) < ®(Ly, Ry) — (77 - ) IVL®(Ly, Ry) - (R} Ry + )7 2. (36)

By a similar approach, we can prove to obtain

2
O(Liy1, Rig1) < O(Lisr, Be) — (0 — %)”VR(I)(LH-LRt)(L75T+1Lt+1 +al) V2|5 (3D
Thereby, we complete the proof of Lemma 0] O

Lemma 11. By choosing a sufficiently small o < min{o2; (L), 02, (R}, we have

min ( mlIl (

IVL®(Le, Re)(R) Ry + )72 |3 = ©(Ly, Ry),

(38)
IVR®(Lig1, R) (L Ly + )72 |5 > ®(Liga, Ry).
Proof. We have
IVL®(Le, Re) (R Ry + al) 2|3 = (LR — X\)Ri(R] Ry + od) /2|3
> 0% (Ri(BT Ry + al)™2) | LRT = X.I%
) (39)
SR —CY A
¥ oo (R e )
Z (I)(Lt;Rt)a

where the last inequality follows from the choice of o : o < min{o? (L:),02,,(R:)}_;. By a
similar approach, we can prove to obtain

IVR®(Lig1, R) (L Ly + o) 725 > ®(Liga, Ry). (40)
Thereby, we complete the proof of Lemma|[T1] O

Lemma 12. Assume we have Lemma[8|holds, and 0 < n < 2, then for any t < T, where T is the
last iteration that | L7 R} — X.||r > po(X,), we have

o (Les1) = (1= 7)o (Le), 02(Ret1) = (1= )07 (Ry)
where 0 <y < 0., and ., = n — 0.5n°.
Proof. Note that we have the APGD:
Liv1 = Ly + (X, — LiR] )Ry(R} Ry + oI)™*

Pr

Rt+1 = Rt + T](X* — Lt+1R;r)TLt+1(L;+1Lt+1 + Oé[)il

Pgr

t

Define an auxiliary matrix M, and Mg, as

My, = (I+Fp,) L] LI+ Fy,), Fr, = (L] L) 'L} P,
Mg, = (I + Fg,)" R} Ri(I + Fr,), Fr, = (R} R)"'R/ P, @b
Below, we provide the analysis of L, ;. The analysis for R;; is analogous to that of L;;; and is
thus omitted for brevity. It’s easy to verify that

Ll Liy1 — My, = P (I - L(L{ L) 'L} )Py, = 0. (42)

Therefore, if we want to lower bound (L, +1L¢11), we can lower bound A, (Mp,). In order to
lower bound A\ (M7, ), we introduce an auxiliary lemma (Eisenstat & Ipsen |19953).
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Lemma 13. Let A € R%%4 pe g symmetric matrix with eigenvalues Ay > Ao > -+ > Ag. Moreover,

suppose B is a non-singular matrix. Let D = BT AB with eigenvalues Xl > )\Ag > > ):d. Then
we have .
IAi — Xi| < |\||lI = BT B, for all i.

By this lemma, we have

Ae(Mp,) >

Then we need to prove that || Fr, + F} + Fr,F} || < 1. Firstly we assume that || Fp,|| < 1, then
we have

SnllLeR) — X.||
O'k(Lt)O'k(Rt) =+ aUk(Lt)/Uk(Rt)

We use induction to prove that || Fr, + FLTt + FLtFLTt || <+ < 1. Fort =0, we have

I|Fr, + Ff, + Fr, Ff | < 3||Fy,| <

3nllLoRg — X, _ esnlcion(X,) +01(XL))

Fr +F' +F Fl| < S
H Lo Lo Lo LUH Uk(LO)Uk(RO) Uk(LO)Uk(RO)

(44)

By the initialization assumption, we have
L ) clcph/ ) Clcpgw/
0 >
GW na(ng + T)
By taking c,1 = 6+/n1(n1 + 1), cp2 = 64/n2(ne + 1), we have

|FL, + Fr, + Fr Fi |l < 1,

2
ﬁ%—s—l) and ¢3 = 1+ 1/cf. Then there exits 0 < v < 1 such that ||Fp, + F/ +

Fr,F} || <~. Then we assume that

if we take n <

3| LR — Xk
Uk(Lt)Uk(Rt)

|FL, + F[, + FL, F[,| < <~

and prove that
T T
||FLt+1 + FLt+1 + FLt+1FLt+1 || <7.

For ||Fr,,, + Ff,,, + Fr,.,F/ |, wehave

Sl Lo Ry — Xolle _ 30(1 = ne )| LB — X, ||

Fr, +F +F, F |< < <7,
Wt B iV 20 0 o Be) = A= onloon®)

(45)
where the last inequality we use the assumption that 7., > ~. O

D.2 PROOF OF LOW-RANK MATRIX SENSING

Based on the results obtained in the matrix factorization problem, we further consider the lower
bound of o, (R;) and o, (L;) in the matrix sensing problem.

Lemma 14. Assume we have the same setting as Theorem 1, and 1. > =, then we have

o2(Lyy) > ,020'3* (XQ*)UE(LO)7 02(Rry) > p2ag* (X;)Uz(RO), (46)
where HLTlR;1 — Xil|lF > pomin(Xy) and ||LT1+1R£+1 — XullF < pomin(Xy)-
Proof. We consider the low-rank matrix sensing problem
min f(L¢, Ry) = fIIA(Lth - X3, (47)
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where A : R"1*"2 — R™ denotes the linear map. This problem ca be solved by APGD:
Liy1 = Ly — A" A(LR] — X,)R, - (R[ Ry + o) ™!

(48)
Rt+1 = Rt — T]A*A(LtJrlR;r — X*)TLt . (L;rJrlLtJrl + OéI>_1.

Note that we have the APGD:
Liv1 = L +9(Xy — LiR])Ry(R/ Ry + o) ™' + Py,

L
P, =(mA*A(X, — LiRIR, - (R Ry + o)™ — (X, — LR} )R,(R] Ry + aI)™})
Rt+1 = Rt -+ 7}(X* — Lt+1R:)TLt+1(L2—+1Lt+1 + OéI)il +PRt

Rin
Pr, =(MA*A(Xy — Lt R)) "Lisr - (L Lewr + o)™ = (Xy — Lisi R ) " Lo (L Leyr +al)7h).
Define an auxiliary matrix M, and Mg, as
I, P - T =T~ T
It’s easy to verify that
T T N
Ly Liyr —Mp, = Pp, (I = Lega(Lig1r Liy1)” Leyr )Pr, = 0. (50
Therefore, if we want to lower bound A, (L, L41), we can lower bound X, (M, ).

Similar to the matrix factorization case, we need to bound ||F, + F, 4+ Fr, F} ||. Note that we

have
3nllPull _ 3nvoarl| LR, — X, ||
or(Lit1) VI—=0.(Lt)or(Ry)

due to the rank-2r RIP condition with constant d,,.. We then use induction to prove that

|FL, + Fr, + Fr, Fy, || <3||Fr,|| < (51)

|Fp, + F[, + Fp, Fy, || <.
For ¢t = 0, if we take d2,, < 1 — v and combining the result in Lemma 12, then we have
1Fr, + Fry + Fr, Fr | <.

Assume we have ||FL, + Fj| + Fi,F] || < ~, then we proceed to prove |Fr,,, + FLTtH +
FLHIFLTt+1 || <~. We have

1402,
3l Prolle V0 T (L=1e) |L,RT — X, s
Fr,. +F +F, F |< L . ¢ ,
” Ly Liiq Ly Lt+1|| O-T(Lt+2) (1_7)3/2 UT(Lt)UT(Rt)

(52)

Since we have §o, < /2 — 1, then we have 0o ( %fgz:) <1—mn.and n. > , then we can directly
use the result of Lemmall2] i.e.,

|FL, + Fr, + FL, F/ || <.

Then we have

0r(Liy1Ler) > op(My,) > (1 — W)Ur(ftjr/letjr/ﬁ > (1= (L/ L) (53)
As for 0. (Ry), it can be proved in a similar way, so we omit its proof and given the result directly:
or(Rl 1 Ri1) 2 (1= )00 (R Ry) (54)
Then for stage 1, we have
f(Lig1, Liga) < (1 =ne) f(Le, Re), ne = n(1 — g(l + G2r)) (1 = b2r). (55)
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Let Ty be the last iteration that ||Lr, R, — X.|lr > poy, (X.), then | Ly, 1R}, 4 — Xi|lF <
por, (X4). We have

IL7y Ry, — Xullp < V14 020(1 = 1) (Vred +v/r)o1(X) < por, (Xa), (56
where 77 = Q(log(x7)). Then we can establish the lower bound for o,.(Lr) and o,.(Rr).
o7 (Lr1) 2 (1= 7)®a?(Lo) 2 (1 —n.)* Vo7 (Lo)

MERRE = Xl o) o (oL
- 1+ 6o 2 (57)
o2 (Rry) > (1= 7)®™a}(Ro) > (1 - ne)*™ o2 (Ry)
T 2 2
> ||LT1~?7—;i 52TX*|FU7%(RO) > p? Or, (X;)UT(RO).
Therefore, by taking o = O(e) and ¢; > cinit = 2“” , we have
a < min{c? (LT1), o2(Rrq)}.
O]

D.3 PROOF OF LEMMA 3

Lemma 15. (Recall Lemma 3) Suppose that the linear map A(-) satisfy the §2,-RIP, then by choos-
ing a infinitesimal o < min{o2; (L), 02, (R)}E 1, we have
IV L (L, R)(R] Ry + o)™ 20 > (1= 020) f (Ly, R),

IVRf(Lis1, R)(L{ 1 Ly + o) 72|15 > (1= 62,) f(Legr, Ry).

’ mln (

(58)

Proof.
IVLf(Le, Re) (R Ry + al) V2|3 = ||A*A(LtRT — XO)Ry(R] Ry + o)1 ?|%

> 0% (Ru(R] Re+al)™2) | A" A(LR] - X.) .

(59)
For ||A* A(L:R] — X,)| r, we have
* T _ * T _
| A ACLRT = Xl = max (A ALR] = X.),Y)
_ T —
= Hrgﬁ>F<<1<A(Lth X), AY))
60)
Q E LAE)|I2 (
> (A(E}), A =
WUEAGET) = TTEls

Y VA AE]:,

where in (i) we denote L; R} — X, as E; for convenience and construct a specific Y = ”EEﬁ; (i)

using the fact that || Ey||» < ﬁHA(Et)HQ.

Therefore, we have
VL f(Le, Rt)(RTRt +al)” 1/2||2 > 2‘7mm (Rt(Rf,TRt + 041)71/2) (1 —02,) f(Ly, Ry)
2

= m(l — 02r) f(Lt, Ryt) 61)

(L —02r) f(Lt, Re),
Inln(Lt)703ni11(Rt)}?:1'

V=

where () due to the choice of @ : o < min{o

By a similar approach, we can prove to obtain

IV R f(Liyr, R)(LL Legr + o)™ V2 1% > (1= 69,) f(Liga, Re).- (62)
Thereby, we complete the proof of Lemma [T3] [
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E PROOF OF STAGE 2

E.1 PROOF OF LEMMA[4]

Lemma 16. (Rewrite Lemmad)) Suppose that the linear map A satisfies the RIP with parameters
(27, 69,), and || Li R} — X, ||F < po,, (X,) with0 < p < 1/2, then we have

IVLf(Le, R)llp 2 LR — Xl plIYY R || p(cos 6 — b2,) (63)
where . .
COSQ — <Lth - X*;YlRt > > m (64)

ILeRE = XllpIYViRS p
and Y{* is a corresponding maximizer for satisfies ||Y7*||p = 1. And we also have
IVLf(Levr, Be)llp 2 1Lera R = Xu|[pl| Lesa Yy 7 (cos B — dar) (65)

where
(Lipi R — X, L Yy')

ILei RS = Xl pll Lo Y5 T le
and Y5 is a corresponding maximizer for satisfies || Y5 || p = 1.

cos 3 = 1— p? (66)

Proof. In order to prove lemmald] we should rewrite the Frobenius norm of gradient via the defini-
tion of Frobenius norm and RIP condition, which is Lemma [T7}

Lemma 17. Suppose that the linear map A satisfies the RIP with parameters (21, b2, ), then we have

IVLf(Le, R)llp > max (LR] — Xo, ViR ) — 62, ||Li R — Xu||pIIVAR] |7

IY1]| <1
IVrRf(Lty1, Re)|lr > H}PhaX<1<Lt+1RtT = Xo, Lis1Yy') = S| Lisa R — Xu|l el Les1 Yy || p-
2(|F>

(67)

Proof. This lemma is an extension of Lemma 14 in Zhang et al.| (2021). The proof of this lemma
can be obtained from the proof of Lemma 14 with simple modifications. O

With Lemma we need to prove the lower bounds of cosé and cos /3. We start from upper
bounding sin § and sin 3, then use the relationship between cos 6 and sin € to bound cos 8 and cos .
We have the following upper bounds for sin # and sin f3.

Lemma 18. Let L = ULSEVE " and R = URSRVE pe the SVD of L and R, respectively, and
UkL and U,f denote the matrix of first k columns of UY and U correspondingly. Suppose that
ILRT — X,||r < po,,(X,). Then forallr >k > r,, we have

T) T)

I - UgUg )Xlle _ 1 X = UFUE )|r

, < p. 68
LR —X.r -7 IR - X ' (©8)

This lemma is an extension of Lemma 6 in|Cheng & Zhao| (2024). The proof of this lemma can be
obtained from the proof of Lemma 6 with simple modifications. Then we have

, LR — X,)(I —URURT
sinf = IRy ||Lt]€§—(X*F il < p—cosl>/1—p2

I —ULUL YL RT — X,
sing = WU U2 el = Xolle ), 55> JT= 7,
L1 R, — Xi||F

(69)

completing the proof. [
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E.2 PROOF OF LEMMA [3]

As we establish the lower bound for the original gradient, using this result, we then proceed the
proof of the lower bound for the gradient under the new local norms.

Lemma 19. (Rewrite Lemma [3)) Suppose that the linear map A satisfies the RIP with parameters
(2r, d2,.), then we have

cos 0, — 0oy
IVl (Lo R > max S0 =020) ypopr ey

ke{1.2,..r} /1 + o/ o} (Ry)

where
L,R] — X, 1R,
cos b, = < tTt 1 tkT> , Ry =URSRVET (R, = URSEVR,,  (70)
IL:Ry — Xul[FlIY1Reg || 7
nd (cos B — 02r)
* COS Pg — 02p T
Verf(Lit1, R o > max Li1 R, — Xi||F,
IVaf (Lo Rl 2 x| — Lo R = X
where
LigiR] — X,, LY,
cos B = (Ley1 Ry t41Y5 ) ’Lt+1:ULSLVLT’ (Ltﬂ)k:UkLSkLsz7 1)

|Lev1 R — Xl pl|Lis1 Yy || P

Proof. By the definition of local norm, we have

IVLf(Lt, Re)l| R = Hyrﬁlaxq@tRf — X YiR/)) = 8o | LR — Xu[lp VAR |,
1R, a S

= |LiR] — X, ||p|[YT (R )il (cos Ok — day).

For || Y7 (R, )|, we have

1

* (DT * _ T —1/2 * _
Y7 (R, Jklle = on(B) YT (|7 = on(Re(R, Re + o)™ /7)Y |[ra = ool )
leading to
(cos Oy — o)

max - =7 L RT _X*
ke{1,2,...,r} ]__A'_a/o_]%(Rt)H tLl ||F

IVLf(Lt, Re)l e =

Similarly, we have

cos B — 0
‘o> max 2) L, R — X

T ke{1.2,my /1 + /02 (Lit1)

IVRf(Liy1, Ryt)l

E.3 PROOF OF LEMMA [

Lemma 20. Suppose that the linear map A satisfies the RIP with parameters (2r,0s,), and
LR — X, ||F < por, (X,), then we have

IV (Lo Ri)llre o 1= o (Ha 1 (Xo)(r = 1) )‘”Q
LRI - Xlr = 2 (=0 2ILR - X3

IVif(Lisr, Ri)llpa o L= cro1 (X.)(r = r2) )‘1/2

> 1+«
|Les1RI — Xolp 2 ( (1= 02:)2| Lo 1 R — X, |13

Proof. We set p = 1*25” with 8o, < v/2 — 1. We first start from the exact rank case (r=ry). By

Weyl’s inequality, we have
or, (LiR[) = 0, (Xs + iR} — X.,)
> 0p (X2) = LR — Xullp 2 (V2/(1 = 820)) | Le R — Xl F-

(72)
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And then we want to establish a relationship between cos 6y and o1 (L; RtT ). Note that we have

I - UFUE ) X, IX.(I = UFUED)|p
LR —X.lr =P LR X 73
from lemma[I8] Then we have
in? g = MR = X)T VRO I3 o (= K)oy, (LRT)
LR — X.|% ILR; — X% o
in g2 = WU = ULUE D Eei R =Xl _ o (0= K)ok (L RY)

|Leya R — X, |3

Then we establish the relationship as following.

L R — X.||%

Lemma 21. Suppose that we have ||L,R] — X, ||3 < p*02 (X,), p = % with 6o < V2 —1,
then we have
ore (RO k) (L= 80 _ (14 05,)°
LR — X[ 4 -4

— cos? 0.

Proof. This lemma is a variant version of Lemma 27 in[Zhang et al.| (2023). By setting L = do, + 1,
and u = 1 — Jo,., the proof of this lemma can be generalized from the proof of Lemma 27 [Zhang
et al.| (2023). O

We start from k = 7. From equation[73] we have

|L:R] — X.||F (75)

1
o (R)> —— =
( t) 1+w/20501(X*)

If cos0,, > 1%‘5’”, then substituting l| into Lemma we have

Li,R)|ga _ 1= oy 1— 8o 1+ /ceo1(X,))?
Hva(Tb t)”R, > 2 (1 + a/gk(Rt)Q)—l/Q > 2 (1 + a( + EGUl( 3) )—1/2.
IL:R; — Xillp 2 2 ILeR; — Xl

(76)
If cosb,, < %, we can use an induction method. First we consider the base case k = r,, we

have cos 0, < 1%62”, We can use equation to bound o1 (Ry) as:
Ok+1 (LpRI) S 1 \/ 1-— (5%7 (77)
IL:R] — Xullr — Vr — s 2
If cos Oy 1 > 1+T52“‘, then substituting into Lemma@gets

||va(Lt;Rt)||R,a > 1-— 52T (1+ « —1/2 > 1-— (527« (1 +a CeUl(X*)(r — 7“*) )‘1/2
|L:Rf — Xillp — 2 or1(R7) -2 (1= 02,2 LR — X, |17
(78)

If cosOp1 < 1+T52", then we repeat with k < k + 1 until kK = r. When r = k, we have
cos b, > 1+T‘52", since
s (LR —K) (40P
LR — X, ||% 4
Therefore, we have two bounds and (78), leading to the final bound

—cos? 0, <0. (79)

L, R _ 1— 0 X)(r—rs 1/
ST o e B (R S s A1 o0
tily — Ax||F — 02r tily T AxIFE
Similarly, we have
IVLf(Ley1, Be)llpe 1 — 2 cro1 (X)) (r —74) e
- > 1+a L _ - 81)
L1 Ry — Xol[p 2 (1= 020)?[| Lo Ry — Xillfo
L]
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F PROOF OF THE MAIN THEOREM

The proof of Theorem 2 is a direct combination of results in Lemmas 2-6. Due to the assumptions
of Theorem 2, we have that lemmas 2-6 hold. Therefore, we have

f(Liyr, Re) < f(Lg, Re) — (1 — g(l + IV L f(Le, Re) (R Ry + o)V |13,

f(Liy1, Rey1) < f(Lggr, Be) — (1 — Q(l + OS2IV Rf (Lis1, Re)(Liyy Lo + o) 2|3
2
(82)
with
IVLf(Le, R)(RY Ry + o)™ 2|[2 > pp f(Ls, Ry) 3

IVrf(Lis1, R) (L Loy + D)2 |5 > pp f(Lisr, Ry),

where Ly = m]n{l — 627", 1—22r} — 1—227‘

since & = O(€?), then we can obtain linear convergence

)

f(Lig1, Rig1) < (1=ne)*f(Le, Ry), ne = n( 5

As for the recovery error, we have

1 1
LRy — Xi||p < \/ V2f(Lr, Rr) < (1 - Uc)T\/ ——/2f (Lo, Ro)
1-— 627“ 1- 527“

(14 82)) pep- (84)

1+ 6

<(1-n)" “ILoR) — X,

<(1-n) 1_®J|d% |F (85)
1+ 0oy

<1 =mn)" 1_52(v7ﬁ-%VT00NX;)

S (1 - nc)TC\/;

1462,
1—62,

T = Q(log(r/e€)) iterations to obtain a e-accuracy point for APGD.

where C' = (c? + 1) and assume o1 (X,) = 1 without loss generality. Therefore, it takes
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