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ABSTRACT

How can we assess the reliability of a dataset without access to ground truth? We
introduce the problem of reliability scoring for datasets collected from potentially
strategic sources. The true data are unobserved, but we see outcomes of an un-
known statistical experiment that depends on them. To benchmark reliability, we
define ground-truth–based orderings that capture how much reported data deviate
from the truth. We then propose the Gram determinant score, which measures
the volume spanned by vectors describing the empirical distribution of the ob-
served data and experiment outcomes. We show that this score preserves several
ground-truth-based reliability orderings and, uniquely up to scaling, yields the
same reliability ranking of datasets regardless of the experiment – a property we
term experiment agnosticism. Experiments on synthetic noise models, CIFAR-10
embeddings, and real employment data demonstrate that the Gram determinant
score effectively captures data quality across diverse observation processes.

1 INTRODUCTION

Reliable data can effectively inform decision-making. For example, vehicle condition and driving
behavior data help insurance companies set policies; investor’s positions guide regulators in adjust-
ing financial market rules; and during the COVID-19 pandemic, case numbers were used by gov-
ernments to allocate medical resources. Yet, such data are typically reported by people. They can be
noisy, and more importantly, strategically or maliciously distorted. Direct verification is often im-
possible or impractical. This raises a central question: how can we tell whether a dataset is reliable?
Answering this would greatly enhance the value of data-driven methods for decision-making.

Without further knowledge, this question is unresolvable. But in practice, we often have access to
data that are related to the private data in question. For instance, insurance company may use telem-
atic devices–albeit imperfect–to estimate vehicle condition; regulators can observe trading volumes
correlated with investors’ positions; and governments track COVID mortality numbers linked to true
case counts through disease fatality rates. Such auxiliary observations can provide useful informa-
tion to assess how well the reported data are consistent with the unobservable ground truth.

In this paper, we initiate the study of reliability scoring for datasets collected from potentially strate-
gic or noisy sources. Although the underlying truth remains unknown, we assume access to out-
comes of unknown statistical experiments that depend on it. Our contributions include:

• We formalize the problem of reliability scoring from observations generated by unknown exper-
iments. (Section 2)

• We introduce ground-truth-based dataset reliability orderings as benchmarks for evaluating reli-
ability scores. (Section 2.3)

• We propose a novel reliability measure, the Gram Determinant Score, along with its kernel
variant, which preserves several ground-truth-based dataset reliability orderings under certain
conditions. Moreover, we show that the Gram Determinant Score is, up to scaling, the unique
reliability score that produces the same dataset ranking for all experiments – a property we term
experiment agnosticism. (Section 4)

• We analyze the limitations of reliability scoring and show that the conditions under which the
Gram Determinant Score preserves reliability orderings are nearly tight. (Section 3)

• We empirically validated the Gram Determinant Score using synthetic data, CIFAR-10 image
dataset, and employment data. (Section 5)
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The Gram Determinant Score admits a geometric interpretation: it measures the volume of the
parallelepiped spanned by the joint distribution of the reported data and the experiment outcomes.
As the reported data deviate further from the truth, this volume decreases. (Figure 1)

1.1 RELATED WORK

Early frameworks categorize data reliability into intrinsic, contextual, accessibility, and represen-
tational dimensions. (Wang & Strong, 1996; Priestley et al., 2023) Our work focuses on intrinsic
reliability—the extent to which reported data match the true data—using auxiliary observations.

Our approach is inspired by information elicitation, which designs scoring mechanisms that in-
centivize truthful reporting. A key distinction is our emphasis on preserving ordinal relationships:
assigning higher scores to more reliable data. Traditional elicitation instead focuses solely on en-
suring that truthful reporting is strictly optimal among alternatives. Information elicitation has two
main settings (1) when the scoring mechanism can access the ground truth, e.g., proper scoring rules
for predictions of future observable events (Gneiting & Raftery, 2007; Osband, 1985; Lambert et al.,
2008; Frongillo & Kash, 2015; Liu & Chen, 2018); and (2) peer prediction mechanisms, which do
not have access to ground truth but rely on multiple agents’ reports (Miller et al., 2005; Dasgupta
& Ghosh, 2013). The most relevant work is Kong (2024), which introduces determinant mutual
information and inspires our Gram Determinant Score. We provide a more detailed comparison
with Kong (2024) in the Appendix. A recent works use Shannon (pointwise) mutual information to
evaluate dataset and introduce Blackwell ordering to compare reported dataset. (Zheng et al., 2025)

Traditional statistical approaches (Huber, 2004; Meeker et al., 2021) often assess reliability under
distributional assumptions. In contrast, our method evaluates reliability agnostic to the underlying
distribution. There are several general-purpose score that measures the stochastic relationship be-
tween random variables, e.g., KL-divergence (Kullback & Leibler, 1951), f -divergence (Csiszár,
1972), determinant (Zou & Adams, 2012; Xu et al., 2019), PCA (Amiri et al., 2022). But they often
lack clear connections to standard, interpretable criteria such as accuracy or data integrity. On the
other hand, one line of data valuation focus on task-dependent utility—quantifying the value of a
dataset or individual sample with respect to a specific objective. Examples include value of informa-
tion in decision theory (Howard, 2007; Chen & Waggoner, 2016), influence-based valuation (Cook
& Weisberg, 1980; Koh & Liang, 2017), and data Shapley (Ghorbani & Zou, 2019). In contrast, our
reliability scoring aims to evaluate datasets in a task-agnostic and experiment-agnostic manner.

Other related areas include learning with noisy labels (Natarajan et al., 2013), which typically as-
sumes that reports are corrupted by independent noise. Some works (e.g., (Liu & Guo, 2020)) relax
this by allowing unknown noise, but our setting is more general: auxiliary observations may lie in
an entirely different space. Anomaly detection (Chandola et al., 2009) addresses distribution shifts,
but focuses on adaptive detection rather than reliability scoring. Finally, reliability theory primarily
studies system robustness to failure (Gnedenko et al., 2014), a concept distinct from data reliability.

2 MODEL

In this section, we introduce the problem of designing data reliability scores to assess how much a
dataset deviates from its inaccessible ground truth. To benchmark reliability, we propose ground-
truth-based reliability orderings—partial orders over datasets that compare their relative deviations
from the same true dataset. The ideal goal of a reliability score is to preserve these orderings,
assigning higher scores to datasets that more faithfully reflect the true data.

2.1 BASIC SETUP

There is a single data source (an agent) who has access to a set of true data x = (x1, . . . , xN ) of
size N .1 The agent provides reported data x̂ = (x̂1, . . . , x̂N ), which can potentially be different
from x. Let X = [d] be the set of d possible data values. Thus, xn ∈ X and x̂n ∈ X for all n.

Our goal is to evaluate how reliably the reported data x̂ reflects the true data x. Although x is unob-
served, we have access to additional observable data y = (y1, . . . , yN ), called observations, which

1x is non-time-series data. Hence, the order of the data within the set is not important.
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are indirectly related to x. The observation space Y may differ from X . We model the relationship
between y and x as an unknown, statistical experiment, represented by a column-stochastic matrix
P = (Px)x∈X , where each column Px is a distribution over Y . Given true data x = (x1, . . . , xN ),
observations are generated according to P with yn ∼ Pxn

independently for all n ∈ [N ]. We denote
this generation as y ∼ P (x).

For instance, x may represent patients’ true disease state (having or not having the disease), x̂ the
diagnoses reported by a hospital to an insurance database for reimbursement, and y the results of
inexpensive blood tests or imaging biomarkers correlated with the disease. As another example, in
an image-labeling dataset, x denotes the true image labels, while x̂ are the reported labels. The
observations y may come from encoder representations, such as those produced from contrastive
learning methods (Zbontar et al., 2021).

Having access to y and knowing that y are generated by unknown experiment P , we want to
design a reliability score S : XN × YN → R such that, if a dataset x̂ aligns with x more
than a dataset x̂′ does, dataset x̂ receives a higher reliability score in expectation than dataset x̂′:
Ey∼P (x)[S(x̂,y)] > Ey∼P (x)[S(x̂

′,y)]. However, to formalize this goal, we will first need met-
rics to quantify how much reported data align with the true data. In Section 2.2, we describe how to
use a misreport matrix to represent the relationship between reported data and true data. Then, we
introduce four notions of ground-truth-based reliability ordering of reported datasets in Section 2.3
before returning to define the ideal goal of reliability scoring in Section 2.4.

2.2 REPRESENTATION OF DATASET RELATIONSHIPS

The relationship between the true dataset x and a reported dataset x̂ can be summarized by the size
of the datasets N and a d × d-dimension misreport matrix Q where each entry Q(i, j) represents
the frequency of misreporting true value i in x for value j in x̂:

Q(i, j) =
1

N

N∑
n=1

1[xn = i, x̂n = j].

Q is the joint frequency of true data and reported data. It can be further decomposed into
marginal frequency and conditional frequency. Let qx(i) = 1

N

∑N
n=1 1[xn = i] and qx̂(i) =

1
N

∑N
n=1 1[x̂n = i] ∀i ∈ X , the marginal frequency matrices are defined as d × d diagonal

matrices Qx,Qx̂ with qx and qx̂ respectively as diagonal and zeros everywhere else. We then
define column-stochastic matrices Qx̂|x,Qx|x̂ for conditional frequency, where for all i, j ∈ X ,

Qx̂|x(i, j) =
∑

n 1[xn=j,x̂n=i]∑
n 1[xn=j]

and Qx|x̂(i, j) =
∑

n 1[xn=i,x̂n=j]∑
n 1[x̂n=j]

. Hence,

Q = (Qx̂|xQx)
⊺ and Q = Qx|x̂Qx̂. (1)

These frequency matrices exist for any pairs of x and x̂, but Q, Qx, Qx|x̂, and Qx̂|x are not
observed because x is unknown. We introduce them to help us quantify a x̂’s deviation from x. In
this paper, we use Q to denote a set of misreporting matrices, and also, abusing the notation, use Q
to refer pairs of x, x̂ so that the associated misreport matrix is in Q.

Given a statistical experiment P , the matrix product PQ is a |Y|× |X | matrix representing the joint
distribution of observations and reported data, with element at (k, i) being Pr(y = k, x̂ = i). The
matrix product PQx is a |Y| × |X | matrix representing the joint distribution of observations and
true data, with element at (k, i) be Pr(y = k, x = i). While both PQ and PQx are unknown, x̂
and y are samples from distribution PQ, which are all that we can leverage in reliability scoring.

2.3 RELIABILITY ORDERINGS OF DATASETS

To compare the reliability of reported datasets relative to the true data x, some preference on relative
dataset reliability is needed. While the preference may depend on applications, we suggest three
natural strict partial orderings of reported datasets, each defined with respect to true data x.

1. Exact Match Ordering: x̂ ≻x
EXACT x̂′ if x̂ = x but x̂′ ̸= x. Equivalently, Q′

x̂|x ̸= I and
Qx̂|x = I. This ordering picks up only complete agreement with the true data, and does
not differentiate any pair of reported datasets if neither agrees with the true data. This order
captures the notion of data integrity. (Kim & Spafford, 1994)

3
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2. Blackwell dominant ordering: x̂ ≻x
Blackwell x̂

′ if Q and Q′ are both invertible and (row)
diagonally maximized (i.e. Q(i, j) ≤ Q(i, i) and Q′(i, j) ≤ Q′(i, i) for all i and j) and
there exists a (column) stochastic matrix T ̸= I so that TQx̂|x = Q′

x̂|x (equivalently,
Q′ = QT ⊺ by Eq. (1)). This ordering captures that post-processing that transforms x̂
into x̂′ only reduces the reliability or informativeness of the data. (Blackwell, 1953). In
particular, this ordering ensures that the true data ranks the highest, and uninformative
random reports ranks the lowest.

3. dist ordering: Given a distance function dist : X × X → R so that dist(x, x′) =
dist(x′, x), dist(x, x) = 0 and dist(x, x′) > 0 if x ̸= x′,2 we say x̂ ≻x

dist x̂′ if∑N
n=1 dist(x̂n, xn) <

∑N
n=1 dist(x̂

′
n, xn). This ordering captures the coordinate-wise

difference between true and reported data. We may also consider a weaker notion, α-
dist ordering with some α ∈ (0, 1]. We say x̂ ≻x

dist,α x̂′ if
∑N
n=1 dist(x̂n, xn) <

α
∑N
n=1 dist(x̂

′
n, xn). In other words, the distance between x̂ and x is at least a factor

of α smaller than that of x̂′ and x, in order to rank x̂ and x̂′.

A special case of dist ordering is Hamming ordering, when dist is the discrete metric
dist(i, j) = 1[i ̸= j] for all i, j ∈ X . We say x̂ ≻x

Hamming x̂′ if
∑N
n=1 1[x̂n ̸= xn] <∑N

n=1 1[x̂
′
n ̸= xn] or, equivalently, Tr(Q) > Tr(Q′). Hamming ordering counts the

number of disagreements between the true data and the reported data. (Hamming, 1950)

Blackwell dominant ordering is intentionally defined for a subset of misreport matrices: Q,Q′ ∈
Qreg, which is the collection of invertible and (row) diagonally maximal matrices so that Q(i, j) ≤
Q(i, i) for all i and j. Intuitively, diagonally maximal requires the true data values dominate any
misreport in a reported dataset. Restriction to Qreg is necessary for Blackwell dominant ordering
to be a strict partial ordering. In Appendix B, we formally prove that all above orderings are strict
partial orders. In particular, the Blackwell ordering fails to be strict if either invertibility or diagonal
maximal of Q and Q′ is not enforced.3

These orderings reflect different ways of measuring the extent of misreporting, with some providing
finer distinctions between datasets than others. Formally, given a set of misreport matrices Q, partial
ordering ≻·

1 refines partial ordering ≻·
2 on Q if ∀x, x̂, x̂′ with associated misreport matrices Q,Q′ ∈

Q, x̂ ≻x
2 x̂′ ⇒ x̂ ≻x

1 x̂′. The following proposition shows that Blackwell dominant ordering refines
exact-match ordering, and Hamming ordering refines Blackwell dominant ordering. The proofs are
in Appendix B
Proposition 2.1 (Refinement). The reliability orderings have the following relationships:

1. Blackwell dominant ordering refines the exact match ordering on Qreg.

2. Hamming ordering refines the Blackwell dominant ordering on Qreg.

3. For all α ≥ α′ and distance function dist, α-dist ordering refines α′-dist ordering.

2.4 RELIABILITY SCORING

We now return to formally define the ideal goals of reliability scoring.
Definition 2.2. Given a reliability ordering ≻· over XN , a reliability score S : XN × YN → R
preserves partial ordering ≻· under experiment P , if for all x, x̂, x̂′ ∈ XN with x̂ ≻x x̂′ we have

Ey∼P (x)[S(x̂,y)] > Ey∼P (x)[S(x̂
′,y)]. (2)

Given a set of experiments P , a set of misreport matrices Q, and a minimum size of reported datasets
N0 ∈ N, we say that a reliability score preserves ≻· under P,Q and N0 if Eq. (2) holds for all

2Any metric, e.g., ℓ2-norm, satisfies the above three conditions. Additionally, a function with these proper-
ties is often referred to as a semimetric.

3Instead of Qreg, we can alternatively require (a) Q and Q′ are invertible and (b) T is not a permutation
matrix (i.e. QT ⊺ is not a permutation of columns of Q) to ensure that Blackwell dominant ordering is strict.
However, this set of conditions does not support the result in Proposition 2.1 that Hamming ordering refines the
Blackwell dominant ordering.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

P ∈ P and tuples x, x̂, x̂′ of size at least N0 with x̂ ≻x x̂′ and Q,Q′ ∈ Q. We further call S
asymptotically preserves ≻· under P,Q, if for all P ∈ P and Q,Q′ ∈ Q there exists N0 so that S
preserve ≻· under P for all x, x̂, x̂′ of size at least N0 with x̂ ≻x x̂′ and misreport matrices Q,Q′.

In the remainder of the paper, we study the problem of designing reliability score S(x̂,y) that
preserves partial orderings of interest. We refer to this as the detail-free setting, since scoring does
not rely on knowledge of Q or P . For the analysis, however, we also consider a partial-knowledge
setting, where the score can take the joint distribution PQ as input, S(PQ). This setting serves as
a technical tool: it allows us to establish impossibility results (Section 3) and to illustrate the core
ideas underlying our approach to detail-free scoring (Section 4).

3 IMPOSSIBILITY RESULTS FOR RELIABILITY SCORING

We explore innate limitations of reliability scoring. These impossibility results form a foundation
for charting the feasible combinations of P and Q for reliability scoring and motivate Section 4.

This section focuses on the partial knowledge setting, where the joint distribution of observations
and reported data, PQ, is assumed to be known, and provided as input to the score. Impossibility
results in this setting extend to the detail-free setting for reliability scores that rely on estimates of
PQ. In particular, the impossibility results apply to the Gram determinant score that we’ll introduce
in Section 4. We provide a more detailed discussion in Appendix C.

We first introduce the class of independent experiments and a few classes of misreport matrices
that’ll be used in this paper.

• Pindep: the set of linearly independent experiments, where P ∈ Pindep if and only if all
columns of P are linearly independent.

• Qnonperm: the set of misreport matrices Q so that the associated Qx̂|x is neither a permuta-
tion matrix nor an identity matrix.

• Qreg: the set of invertible and diagonally maximal misreport matrices where Q(i, j) ≤
Q(i, i) for all i and j. This was also defined earlier in Section 2.3.

• Qdom: the set of (row) diagonally dominant misreport matrices where
∑
j:j ̸=i |Q(i, j)| ≤

|Q(i, i)| for all i.4

• QL,δ: the set of (row) diagonally dominant misreport matrices where the true data are L
balanced and the Hamming distance is bounded above by Nδ. True data x is L-balanced
if qx(x) ≤ Lqx(x

′) for all x, x′ ∈ X . We use QL := QL,1 to denote the set of (row) diag-
onally dominant misreport matrices where the true data are L balanced, with no restriction
on Hamming distance.

We note that QL,δ ⊆ QL ⊂ Qdom ⊂ Qreg ⊂ Qnonperm for all L and δ.
Proposition 3.1. In the partial-knowledge setting, it is sometimes impossible for any reliability
score to preserve reliability orderings. In particular,

1. Exact match ordering: There exists a P so that no score preserves the exact match ordering
under P and Qnonperm. Additionally, for all Q ⊋ Qnonperm, no score preserves the exact
match ordering on Pindep and Q.

2. Blackwell dominant ordering: For any P , if there exists P ∈ P and a rational vector
v ̸= 0 so that Pv = 0, no score preserves the Blackwell ordering on P and Qreg.

3. Hamming and dist orderings: No score preserves the Hamming ordering under Pindep and
Qdom. Additionally, no score preserves the dist ordering under Pindep and Qdom for any
dist.

The first part of Proposition 3.1 establishes that no score can respect the exact-match reliability
ordering across all experiment sets. The non-permutation condition is needed here to exclude de-
generate cases such as label permutations. By Proposition 2.1, these impossibility results also extend

4Note that diagonally dominant matrices are invertible by Gershgorin circle theorem.
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to the other orderings. The second part further shows that even a single linearly dependent experi-
ment is enough to make preservation of the Blackwell ordering impossible. We therefore focus on
the class of linearly independent experiments, Pindep. Finally, the third part shows that no reliabil-
ity score can preserve the Hamming or any other dist ordering, even under diagonally dominant
misreport matrices Qdom. In Section 4, we thus further restrict our attention to QL,δ .

4 GRAM DETERMINANT RELIABILITY SCORE

Our idea for measuring data reliability is to leverage the diversity of observations. We formalize
this idea with the Gram determinant score—the determinant of a Gram matrix of the observation
distributions conditional on reported labels.

Definition 4.1. Given finite sets X = [d] and Y , and an experiment P , we define Gram matrix of
labels as G = P ⊺P ∈ R|X |×|X| where G(x, x′) = ⟨Px, Px′⟩ = Pry∼Px,y′∼Px′ [y = y′]. Moreover,
given x and x̂, we define the Gram matrix of reports x̂ as Ĝ = (PQ)⊺(PQ) ∈ R|X |×|X| where
Ĝ(x, x′) := 1

N2

∑
n,n′:x̂n=x,x̂n′=x′⟨Pxn

, Pxn′ ⟩. The Gram determinant score is

Γ := det
(
Ĝ
)
=

∑
σ∈symm(d)

sgn(σ)

d∏
i=1

Ĝ(i, σ(i)). (3)

where symm(d) is the set of all permutations on [d] and sgn the sign function of permutations. We
further denote Γ(PQ) := Γ to highlight that the Gram determinant score takes PQ as input.

Figure 1: Gram determinant scores and
parallelepipeds. 5

Before proving properties of the Gram determinant score,
we first present some intuitions. G(x, x′) corresponds
to the probability that true data x and x′ have the same
observation. The Gram matrix of reports

Ĝ = Q⊺P ⊺PQ = Q⊺GQ. (4)

Moreover, det(Ĝ) = det((PQ)⊺PQ) is the Gram
determinant of PQ ∈ R|Y|×|X| which is the square
of the volume of the parallelepiped spanned by the
column vectors of PQ (Horn & Johnson, 2012), as
illustrated in Fig. 1. The Gram determinant score
of true data, Γ(PQx), is the squared volume of
the blue parallelepiped spanned by column vectors in
PQx, vol(PQx)

2. As Γ(PQ) = Γ(PQxQ
⊺
x̂|x) =

Γ(PQxQx̂|x), the Gram determinant score of reported
data is the squared volume of the red parallelepiped,
vol(PQxQx̂|x)

2, which is smaller than that of the true
data because Qx̂|x is column stochastic and each col-
umn of PQxQx̂|x is a convex combination of columns

of PQx. A symbolic example is presented in Appendix D.1.

In the remainder of this section, we first show that the Gram determinant score preserves several reli-
ability orderings and is invariant under experiments (Section 4.1). We then introduce two estimators
of the Gram determinant score for the detail-free setting (Section 4.2). Finally, we introduce kernels
to generalize Gram determinant score to handle non-finite observation spaces Y (Section 4.3).

4.1 PRESERVING RELIABILITY ORDERINGS AND INVARIANCE

We show that Gram determinant reliability score preserves the exact, the Blackwell dominant, and
the approximated Hamming (or dist) ordering.

5Figure 1 uses P =

0.1 0.1 0.7
0.9 0.1 0.2
0 0.8 0.1

, Qx =

0.3 0 0
0 0.3 0
0 0 0.4

, and Qx̂|x =

0.1 0.1 0.7
0.9 0.1 0.2
0 0.8 0.1

.
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Theorem 4.2. Given X = [d], a finite set Y , and L ≥ 1, the Gram determinant score in Defini-
tion 4.1 preserves

1. exact match ordering under Pindep and Qnonperm,

2. Blackwell ordering under Pindep and Qreg, and

3. 1
4L∆ -dist ordering under Pindep and QL,1/64L2d2 for all dist with ∆ =

maxx,x′∈X dist(x,x′)

minx ̸=x′∈X dist(x,x′) .

Theorem 4.2 covers any linearly independent experiment—required by the impossibilities in Sec-
tion 3—and places minimal assumptions on misreports, nearly matching our impossibility results.
In particular, Propositions 2.1 and 3.1 show: 1) no score preserves exact ordering for any superset
of Qnonperm; 2) the Blackwell relation is only a strict partial order on Qreg; and 3) no score preserves
Hamming ordering or any other dist ordering on Qdom. The third part of Theorem 4.2 implies the
score preserves 1

4L -Hamming ordering, because the aspect ratio for Hamming distance is ∆ = 1.

The key idea of the proof is that the determinant has the multiplicative property and Eq. (4),
Γ(PQ) = det(Q⊺P ⊺PQ) = det(Q⊺) det(P ⊺P ) det(Q) = det(P ⊺P ) det(Q)2

because Q and P ⊺P are squared matrices. Hence, we can decouple the misreport matrix Q from the
quality of the experiment P . In particular, it is sufficient to focus on misreport matrices as the Gram
matrix of labels is positive definite P ⊺P , det(P ⊺P ) > 0, for all P ∈ Pindep. This observation
may provide a recipe for considering other reliability orderings in the Gram determinant score. The
formal proof is deferred to Appendix D.2.

We now establish an invariance principle: the induced ranking of datasets should be invariant to
the unknown experiment, to relabelings, and to priors. The latter two are straightforward by the
multiplicative property of Gram determinant. For the first one, we show that the Gram determinant
is experiment-agnostic so that the reliability ranking of a dataset x̂ should depend only on x̂ and
the true data x (defined in Eq. (5)). Thus the choice of experiment does not affect which reported
dataset is deemed more reliable. Moreover, we show that the Gram determinant score is the unique
experiment agnostic score up to scaling under mild coherence assumption.
Proposition 4.3. Given X = [d] and a finite set Y , the Gram determinant score in Definition 4.1 is
experiment agnostic so that for all Q,Q′ ∈ GLd general linear group and P ∈ Pindep,

Γ(Q) ≥ Γ(Q′) ⇔ Γ(PQ) ≥ Γ(PQ′). (5)

Moreover, if there exists a continuous function S : GLd → R>0 with a continuous c : R>0 → R>0

so that for all Q,Q′,P ∈ GLd, and t > 0, Eq. (5) holds and S(tQ) = c(t)S(Q), there exists
α > 0, β ̸= 0 so that S(Q) = α det(Q⊺Q)β .

As discussed above, the first part follows directly from multiplicative property of determinant,
Γ(PQ) = det(P ⊺P ) det(Q)2 = det(P ⊺P )Γ(Q). We deter the proof for the second part to Ap-
pendix D.3. Finally, since GLd ⊂ Pindep, the second part of Proposition 4.3 implies that even
when we restrict to settings where the observation space has the same dimension as the data space
|Y| = |X |, the Gram determinant score remains unique up to scaling.

4.2 ESTIMATORS FOR GRAM DETERMINANT SCORES

We introduce two estimators for the Gram determinant score in the detail-free setting: plug-in and
stratified matching estimator. The second estimator and proofs are deferred to Appendix E.
Definition 4.4 (plug-in Gram determinant reliability score). Given x̂ and y of size N , define Ḡ ∈
Rd×d so that for all x, x′ ∈ X Ḡ(x, x′) = 1

N2

∑
n,n′∈[N ]:x̂n=x,x̂n′=x′ 1[yn = yn′ ]. The plug-in

Gram determinant reliability score is then defined as S̄(x̂,y) = det(Ḡ).

The plug-in estimator first estimates Ĝ using empirical distribution between reports x̂ and obser-
vations y and computes the determinants of Ĝ. Note that the probability of yn = yn′ is simply
the inner product of Pxn

and Pxn′ if n ̸= n′. Proposition 4.5 shows that the plug-in estimator
asymptotically preserves all reliability orderings in Theorem 4.2.
Proposition 4.5. Given X = [d], finite set Y and L ≥ 1, the plug-in Gram determinant score in
Definition 4.4 asymptotically preserves reliability orderings in Theorem 4.2.
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4.3 GRAM DETERMINANT SCORE WITH KERNELS

The Gram determinant score in Definition 4.1 has two limitations. First, it cannot handle continuous
or general observation space Y . Second, it ignores any intrinsic structure in the observation space,
e.g., prediction or feature embedding. We extend the Gram determinant score with kernels. We
provide examples of different kernels that can be used in practice, together with a reliability-ordering
result analogous to Theorem 4.2 in Appendix F.
Definition 4.6 (kernelized Gram determinant score). Given a finite set X , an experiment P , and
Y with a kernel K : Y × Y → R, we define Gram matrix of labels as GK ∈ Rd×d where for all
x, x′ ∈ X , GK(x, x′) = ⟨Px, Px′⟩K := Ey∼Px,y′∼Px′ [K(y, y′)]. Given x and x̂, we define the
Gram matrix of reports as ĜK ∈ Rd×d where ĜK(x, x′) = 1

N2

∑
n,n′:x̂n=x,x̂n′=x′⟨Pxn

, Pxn′ ⟩K .

Finally, we define the Gram determinant score with kernel K as ΓK := det
(
ĜK

)
.

5 EXPERIMENTS

We evaluate the Gram determinant score in three parts: (Exp. 1) synthetic categorical data with
six label-manipulation policies; (Exp. 2) real image data (CIFAR-10 embeddings) with the same
six manipulations using the kernelized score; (Exp. 3) real employment data, treating CES vintage
revisions as naturally occurring manipulations.

Experiment 1: Gram Determinant Score on Synthetic Data In this experiment, we evaluate
how well the Gram determinant score captures label reliability under categorical observations, as
summarized in Figs. 2 and 2d. Specifically, we first generate a ground-truth dataset (x,y) of size
N = 4000 with d = 5. Each label xk is drawn uniformly from 1, . . . , d for k ∈ [N ], and each
outcome yk is sampled from the distribution P (· | xk), where the experiment distribution matrix
P ∈ [0, 1]d×d is constructed by sampling P (i, j) ∼ Uniform(0, 1) independently and normalizing
rows to be stochastic. The ground-truth dataset (x,y) is fixed across all trials. To model varying
reliability, for each p ∈ {0.00, 0.05, . . . , 0.50} we corrupt the labels according to

x̂k =

{
xk, with probability 1− p,

Zk, with probability p,
(6)

where Zk ∼ π(· | xk) is independently drawn from a corruption policy π; in our experiments, π is
instantiated by one of the six manipulations below.

• Uniformly random: Zk ∼ Uniform{1, . . . , d}.
• Asym neighbor: with probability 0.85 set Zk = min{xk + 1, d}, otherwise sample Zk

uniformly from {1, . . . , d} \ {xk}.

• Row-sim 2nd: Zk = argmaxj ̸=xk

⟨Pxk,·,Pj,·⟩
∥Pxk,·∥ ∥Pj,·∥ , the label with closest observation distri-

bution.
• Merge 0/1 → 0: if xk ∈ {1, 2} then set Zk = 1; otherwise Zk = xk.
• Group up/down: Zk = min{xk + 1, d} with probability 1/2, or Zk = max{xk − 1, 1}

otherwise.
• Mixed: sample Zk ∼ πmixed(·|xk) where each row πmixed(i, ·) is drawn from
Dirichlet

(
αi(1), . . . , αi(d)

)
with

αi(j) = αoff+αdiag1{j = i}+λloc exp
(
−distring(i, j)

)
+λup exp

(
γ(j−i)

)
+λdef1{j = j0},

distring(i, j) = min(|i− j|, d− |i− j|), and j0 a salient default label; rows are normalized
to be stochastic, where αoff = 0.2, αdiag = 6, λloc = 1.0, λup = 0.4, γ = 0.5, λdef =
0.6, j0 = 1. This policy mimics human labeling: diagonal dominance (keep i), locality on
the ring (near-class confusions), mild upcoding (asymmetric mistakes), and a default-label
bias—yielding structured, non-uniform noise beyond uniform corruption.

Fix a ground-truth dataset (x,y). For each manipulation and corruption level p ∈
{0.0, 0.1, . . . , 0.5}, in Figs. 2a to 2c, we run M = 100 independent trials, producing corrupted
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reports x̂m. In every trial, we compute 1) the plug-in Gram determinant reliability score in Def-
inition 4.4, 2) the Hamming error

∑N
n=1 1[xn ̸= x̂mn ], and 3) the ℓ2 error ∥x − x̂m∥2. We then

report the mean and standard deviation of each metric across the M trials. In Fig. 2a, the plug-in
Gram-determinant score falls steadily as the corruption probability p increases. Figures 2b and 2c
show that higher scores correspond to lower Hamming error and smaller ℓ2 deviation, respectively,
demonstrating a clear negative correlation between our score and these conventional error measures
regardless of the manipulation policy (i.e., across all corruption schemes considered).

(a) score vs. p (b) Hamming vs. score (c) ℓ2 norm vs. score (d) Kendall–tau distance

Figure 2: Gram determinant reliability score on categorical synthetic data.

In Fig. 2d, we vary data sizes N ∈ {250, 500, . . . , 8000} and generate 1000 datasets for each N . In
each dataset and corruption level p ∈ {0.0, 0.1, . . . , 0.5}, we use the uniform random manipulation
strategy, and compute the plug-in Gram determinant, Hamming-distance error, and ℓ2 error, then
rank the six corrupted reports. We report the average Kendall–tau distance between the reversed
Gram–determinant ranking and the orderings induced by p, the Hamming distance, and the ℓ2 error.
As shown in Figure 2d, the fraction of correctly recovered rankings increases with the sample size,
confirming that the Gram–determinant score is a consistent indicator of true-label reliability.

Experiment 2: Gram Determinant Score with Kernels on Image Data We evaluate the Gram
determinant score with continuous observations by using image embeddings. We train a SimCLR
model (Chen et al., 2020) with a ResNet-18 backbone and an 8-dimensional projection head on
CIFAR-10 (Krizhevsky et al., 2009). The model is optimized for 60 epochs using the InfoNCE loss
with batch size B = 256, temperature τ = 0.5, and the Adam optimizer at learning rate 5 × 10−3.
After training, we extract normalized projections yn ∈ R8 for each of the N = 10000 test images,
denote the true labels by x ∈ {0, . . . , 9}N , and the embeddings by y ∈ RN×8.

To simulate corrupted reports, we use the same six corruption policies with p ∈
{0.00, 0.04, . . . , 0.40}. As Y = R8 is continuous, we use plug-in Gram determinant with kernel
K(y, y′) = ⟨y, y′⟩ as the score. For each p and policy we repeat the procedure over M = 100
random trials to obtain the mean and standard error. As shown in Figs. 3a to 3c, the score increases
monotonically with p across all six manipulations, and higher score is associated with lower Ham-
ming error and smaller ℓ2 deviation, mirroring the trends observed in categorical setting.

(a) score vs. p (b) Hamming vs. score (c) ℓ2 norm vs. score (d) Employment data

Figure 3: Gram determinant reliability for image–label experiments under six manipulation policies

Experiment 3: Gram Determinant Score on Real-World Employment Data We evaluate three
vintages of the CES total nonfarm employment series (not seasonally adjusted) from Oct 2005–Feb
2023, using the CES vintage dataset (U.S. Bureau of Labor Statistics, 2025), and take as external
y the monthly changes in Withheld Income & Employment Taxes from Treasury deposits (U.S.
Department of the Treasury, Bureau of the Fiscal Service, 2025). For each month we use: 1) first
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release: initial estimate, published the next month; 2) one-month revision: first revision, one month
later; and 3) final value: last available vintage including benchmark revisions. We discretize month-
to-month differences into four quantile buckets as x and y with N = 209 and compute Gram
determinant scores with the plug-in estimator. Figure 3d shows that revisions substantially improve
reliability according to our score, with the final series most aligned with fiscal benchmarks.

6 CONCLUSION

We introduce the Gram determinant score — a metric that intuitively measures the volume of class-
conditional observation distributions. Under mild independence assumptions, it exactly preserves
exact-match and Blackwell orderings and closely approximates Hamming orderings. We develop
plug-in and stratified-matching estimators with finite-sample guarantees and extend the method to
continuous or structured spaces via kernel embeddings. Experiments on synthetic data, CIFAR-10
embeddings, and employment data demonstrated its effectiveness.

Looking ahead, it’s interesting to design scalable estimators for high-dimensional or continuous
label domains using dimensionality-reduction (e.g., PCA, DPP sampling) and learned encoders.
Moreover, we conjecture that other singular-value–based criteria can also serve as reliability scores.
Appendix G briefly discusses additional candidates beyond the Gram determinant score and reports
synthetic-data experiments evaluating them. However, formal guarantees remain to be established;
each candidate will require tailored analysis to show it preserves the relevant reliability orderings.
In real-world settings, the Gram determinant score is applicable wherever labels are noisy or ma-
nipulated – for example, by detecting incoherent star ratings in product reviews – and could help
platforms like Amazon and Yelp enhance consumer protection.
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