

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DATA RELIABILITY SCORING

Anonymous authors

Paper under double-blind review

ABSTRACT

How can we assess the reliability of a dataset without access to ground truth? We introduce the problem of *reliability scoring* for datasets collected from potentially strategic sources. The true data are unobserved, but we see outcomes of an unknown statistical experiment that depends on them. To benchmark reliability, we define ground-truth-based orderings that capture how much reported data deviate from the truth. We then propose the *Gram determinant score*, which measures the volume spanned by vectors describing the empirical distribution of the observed data and experiment outcomes. We show that this score preserves several ground-truth-based reliability orderings and, uniquely up to scaling, yields the same reliability ranking of datasets regardless of the experiment – a property we term experiment agnosticism. Experiments on synthetic noise models, CIFAR-10 embeddings, and real employment data demonstrate that the Gram determinant score effectively captures data quality across diverse observation processes.

1 INTRODUCTION

Reliable data can effectively inform decision-making. For example, vehicle condition and driving behavior data help insurance companies set policies; investor’s positions guide regulators in adjusting financial market rules; and during the COVID-19 pandemic, case numbers were used by governments to allocate medical resources. Yet, such data are typically reported by people. They can be noisy, and more importantly, strategically or maliciously distorted. Direct verification is often impossible or impractical. This raises a central question: how can we tell whether a dataset is reliable? Answering this would greatly enhance the value of data-driven methods for decision-making.

Without further knowledge, this question is unresolvable. But in practice, we often have access to data that are related to the private data in question. For instance, insurance company may use telematic devices—albeit imperfect—to estimate vehicle condition; regulators can observe trading volumes correlated with investors’ positions; and governments track COVID mortality numbers linked to true case counts through disease fatality rates. Such auxiliary observations can provide useful information to assess how well the reported data are consistent with the unobservable ground truth.

In this paper, we initiate the study of reliability scoring for datasets collected from potentially strategic or noisy sources. Although the underlying truth remains unknown, we assume access to outcomes of unknown statistical experiments that depend on it. Our contributions include:

- We formalize the problem of reliability scoring from observations generated by unknown experiments. (Section 2)
- We introduce ground-truth-based dataset reliability orderings as benchmarks for evaluating reliability scores. (Section 2.3)
- We propose a novel reliability measure, the *Gram Determinant Score*, along with its kernel variant, which preserves several ground-truth-based dataset reliability orderings under certain conditions. Moreover, we show that the Gram Determinant Score is, up to scaling, the unique reliability score that produces the same dataset ranking for all experiments – a property we term *experiment agnosticism*. (Section 4)
- We analyze the limitations of reliability scoring and show that the conditions under which the Gram Determinant Score preserves reliability orderings are nearly tight. (Section 3)
- We empirically validated the Gram Determinant Score using synthetic data, CIFAR-10 image dataset, and employment data. (Section 5)

054 The Gram Determinant Score admits a geometric interpretation: it measures the volume of the
 055 parallelepiped spanned by the joint distribution of the reported data and the experiment outcomes.
 056 As the reported data deviate further from the truth, this volume decreases. (Figure 1)

058 **1.1 RELATED WORK**

060 Early frameworks categorize data reliability into intrinsic, contextual, accessibility, and represen-
 061 tational dimensions. (Wang & Strong, 1996; Priestley et al., 2023) Our work focuses on intrinsic
 062 reliability—the extent to which reported data match the true data—using auxiliary observations.

063 Our approach is inspired by information elicitation, which designs scoring mechanisms that in-
 064 centivize truthful reporting. A key distinction is our emphasis on preserving ordinal relationships:
 065 assigning higher scores to more reliable data. Traditional elicitation instead focuses solely on en-
 066 suring that truthful reporting is strictly optimal among alternatives. Information elicitation has two
 067 main settings (1) when the scoring mechanism can access the ground truth, e.g., proper scoring rules
 068 for predictions of future observable events (Gneiting & Raftery, 2007; Osband, 1985; Lambert et al.,
 069 2008; Frongillo & Kash, 2015; Liu & Chen, 2018); and (2) peer prediction mechanisms, which do
 070 not have access to ground truth but rely on multiple agents’ reports (Miller et al., 2005; Dasgupta
 071 & Ghosh, 2013). The most relevant work is Kong (2024), which introduces determinant mutual
 072 information and inspires our Gram Determinant Score. We provide a more detailed comparison
 073 with Kong (2024) in the Appendix. [A recent works use Shannon \(pointwise\) mutual information to evaluate dataset and introduce Blackwell ordering to compare reported dataset. \(Zheng et al., 2025\)](#)

074 Traditional statistical approaches (Huber, 2004; Meeker et al., 2021) often assess reliability under
 075 distributional assumptions. In contrast, our method evaluates reliability agnostic to the underlying
 076 distribution. There are several general-purpose score that measures the stochastic relationship be-
 077 tween random variables, e.g., KL-divergence (Kullback & Leibler, 1951), f -divergence (Csiszár,
 078 1972), determinant (Zou & Adams, 2012; Xu et al., 2019), PCA (Amiri et al., 2022). But they often
 079 lack clear connections to standard, interpretable criteria such as accuracy or data integrity. [On the other hand, one line of data valuation focus on task-dependent utility—quantifying the value of a dataset or individual sample with respect to a specific objective. Examples include value of information in decision theory \(Howard, 2007; Chen & Waggoner, 2016\), influence-based valuation \(Cook & Weisberg, 1980; Koh & Liang, 2017\), and data Shapley \(Ghorbani & Zou, 2019\). In contrast, our reliability scoring aims to evaluate datasets in a task-agnostic and experiment-agnostic manner.](#)

080 Other related areas include learning with noisy labels (Natarajan et al., 2013), which typically as-
 081 sumes that reports are corrupted by independent noise. Some works (e.g., (Liu & Guo, 2020)) relax
 082 this by allowing unknown noise, but our setting is more general: auxiliary observations may lie in
 083 an entirely different space. Anomaly detection (Chandola et al., 2009) addresses distribution shifts,
 084 but focuses on adaptive detection rather than reliability scoring. Finally, reliability theory primarily
 085 studies system robustness to failure (Gnedenko et al., 2014), a concept distinct from data reliability.

092 **2 MODEL**

094 In this section, we introduce the problem of designing data reliability scores to assess how much a
 095 dataset deviates from its inaccessible ground truth. To benchmark reliability, we propose ground-
 096 truth-based reliability orderings—partial orders over datasets that compare their relative deviations
 097 from the same true dataset. The ideal goal of a reliability score is to preserve these orderings,
 098 assigning higher scores to datasets that more faithfully reflect the true data.

100 **2.1 BASIC SETUP**

101 There is a single data source (an agent) who has access to a set of *true data* $\mathbf{x} = (x_1, \dots, x_N)$ of
 102 size N .¹ The agent provides *reported data* $\hat{\mathbf{x}} = (\hat{x}_1, \dots, \hat{x}_N)$, which can potentially be different
 103 from \mathbf{x} . Let $\mathcal{X} = [d]$ be the set of d possible data values. Thus, $x_n \in \mathcal{X}$ and $\hat{x}_n \in \mathcal{X}$ for all n .

104 Our goal is to evaluate how reliably the reported data $\hat{\mathbf{x}}$ reflects the true data \mathbf{x} . Although \mathbf{x} is unob-
 105 served, we have access to additional observable data $\mathbf{y} = (y_1, \dots, y_N)$, called *observations*, which

1 \mathbf{x} is non-time-series data. Hence, the order of the data within the set is not important.

108 are indirectly related to \mathbf{x} . The observation space \mathcal{Y} may differ from \mathcal{X} . We model the relationship
 109 between \mathbf{y} and \mathbf{x} as an unknown, statistical *experiment*, represented by a column-stochastic matrix
 110 $\mathbf{P} = (P_x)_{x \in \mathcal{X}}$, where each column P_x is a distribution over \mathcal{Y} . Given true data $\mathbf{x} = (x_1, \dots, x_N)$,
 111 observations are generated according to \mathbf{P} with $y_n \sim P_{x_n}$ independently for all $n \in [N]$. We denote
 112 this generation as $\mathbf{y} \sim \mathbf{P}(\mathbf{x})$.

113 For instance, \mathbf{x} may represent patients' true disease state (having or not having the disease), $\hat{\mathbf{x}}$ the
 114 diagnoses reported by a hospital to an insurance database for reimbursement, and \mathbf{y} the results of
 115 inexpensive blood tests or imaging biomarkers correlated with the disease. As another example, in
 116 an image-labeling dataset, \mathbf{x} denotes the true image labels, while $\hat{\mathbf{x}}$ are the reported labels. The
 117 observations \mathbf{y} may come from encoder representations, such as those produced from contrastive
 118 learning methods (Zbontar et al., 2021).

119 Having access to \mathbf{y} and knowing that \mathbf{y} are generated by unknown experiment \mathbf{P} , we want to
 120 design a *reliability score* $S : \mathcal{X}^N \times \mathcal{Y}^N \rightarrow \mathbb{R}$ such that, if a dataset $\hat{\mathbf{x}}$ aligns with \mathbf{x} more
 121 than a dataset $\hat{\mathbf{x}}'$ does, dataset $\hat{\mathbf{x}}$ receives a higher reliability score in expectation than dataset $\hat{\mathbf{x}}'$:
 122 $\mathbb{E}_{\mathbf{y} \sim \mathbf{P}(\mathbf{x})}[S(\hat{\mathbf{x}}, \mathbf{y})] > \mathbb{E}_{\mathbf{y} \sim \mathbf{P}(\mathbf{x})}[S(\hat{\mathbf{x}}', \mathbf{y})]$. However, to formalize this goal, we will first need met-
 123 rics to quantify how much reported data align with the true data. In Section 2.2, we describe how to
 124 use a misreport matrix to represent the relationship between reported data and true data. Then, we
 125 introduce four notions of ground-truth-based reliability ordering of reported datasets in Section 2.3
 126 before returning to define the ideal goal of reliability scoring in Section 2.4.

2.2 REPRESENTATION OF DATASET RELATIONSHIPS

130 The relationship between the true dataset \mathbf{x} and a reported dataset $\hat{\mathbf{x}}$ can be summarized by the size
 131 of the datasets N and a $d \times d$ -dimension *misreport matrix* \mathbf{Q} where each entry $\mathbf{Q}(i, j)$ represents
 132 the frequency of misreporting true value i in \mathbf{x} for value j in $\hat{\mathbf{x}}$:

$$133 \quad \mathbf{Q}(i, j) = \frac{1}{N} \sum_{n=1}^N \mathbf{1}[x_n = i, \hat{x}_n = j].$$

135 \mathbf{Q} is the joint frequency of true data and reported data. It can be further decomposed into
 136 marginal frequency and conditional frequency. Let $\mathbf{q}_{\mathbf{x}}(i) = \frac{1}{N} \sum_{n=1}^N \mathbf{1}[x_n = i]$ and $\mathbf{q}_{\hat{\mathbf{x}}}(i) =$
 137 $\frac{1}{N} \sum_{n=1}^N \mathbf{1}[\hat{x}_n = i] \forall i \in \mathcal{X}$, the marginal frequency matrices are defined as $d \times d$ diagonal
 138 matrices $\mathbf{Q}_{\mathbf{x}}, \mathbf{Q}_{\hat{\mathbf{x}}}$ with $\mathbf{q}_{\mathbf{x}}$ and $\mathbf{q}_{\hat{\mathbf{x}}}$ respectively as diagonal and zeros everywhere else. We then
 139 define column-stochastic matrices $\mathbf{Q}_{\hat{\mathbf{x}}|\mathbf{x}}, \mathbf{Q}_{\mathbf{x}|\hat{\mathbf{x}}}$ for conditional frequency, where for all $i, j \in \mathcal{X}$,
 140 $\mathbf{Q}_{\hat{\mathbf{x}}|\mathbf{x}}(i, j) = \frac{\sum_n \mathbf{1}[x_n = j, \hat{x}_n = i]}{\sum_n \mathbf{1}[x_n = j]}$ and $\mathbf{Q}_{\mathbf{x}|\hat{\mathbf{x}}}(i, j) = \frac{\sum_n \mathbf{1}[x_n = i, \hat{x}_n = j]}{\sum_n \mathbf{1}[\hat{x}_n = j]}$. Hence,

$$141 \quad \mathbf{Q} = (\mathbf{Q}_{\hat{\mathbf{x}}|\mathbf{x}} \mathbf{Q}_{\mathbf{x}})^{\top} \text{ and } \mathbf{Q} = \mathbf{Q}_{\mathbf{x}|\hat{\mathbf{x}}} \mathbf{Q}_{\hat{\mathbf{x}}}. \quad (1)$$

144 These frequency matrices exist for any pairs of \mathbf{x} and $\hat{\mathbf{x}}$, but \mathbf{Q} , $\mathbf{Q}_{\mathbf{x}}$, $\mathbf{Q}_{\mathbf{x}|\hat{\mathbf{x}}}$, and $\mathbf{Q}_{\hat{\mathbf{x}}|\mathbf{x}}$ are not
 145 observed because \mathbf{x} is unknown. We introduce them to help us quantify a $\hat{\mathbf{x}}$'s deviation from \mathbf{x} . In
 146 this paper, we use \mathcal{Q} to denote a set of misreporting matrices, and also, abusing the notation, use \mathcal{Q}
 147 to refer pairs of $\mathbf{x}, \hat{\mathbf{x}}$ so that the associated misreport matrix is in \mathcal{Q} .

148 Given a statistical experiment \mathbf{P} , the matrix product \mathbf{PQ} is a $|\mathcal{Y}| \times |\mathcal{X}|$ matrix representing the joint
 149 distribution of observations and reported data, with element at (k, i) being $\Pr(y = k, \hat{x} = i)$. The
 150 matrix product $\mathbf{PQ}_{\mathbf{x}}$ is a $|\mathcal{Y}| \times |\mathcal{X}|$ matrix representing the joint distribution of observations and
 151 true data, with element at (k, i) be $\Pr(y = k, x = i)$. While both \mathbf{PQ} and $\mathbf{PQ}_{\mathbf{x}}$ are unknown, $\hat{\mathbf{x}}$
 152 and \mathbf{y} are samples from distribution \mathbf{PQ} , which are all that we can leverage in reliability scoring.

2.3 RELIABILITY ORDERINGS OF DATASETS

155 To compare the reliability of reported datasets relative to the true data \mathbf{x} , some preference on relative
 156 dataset reliability is needed. While the preference may depend on applications, we suggest three
 157 natural strict partial orderings of reported datasets, each defined with respect to true data \mathbf{x} .

158 1. **Exact Match Ordering:** $\hat{\mathbf{x}} \succ_{\text{EXACT}}^{\mathbf{x}} \hat{\mathbf{x}}'$ if $\hat{\mathbf{x}} = \mathbf{x}$ but $\hat{\mathbf{x}}' \neq \mathbf{x}$. Equivalently, $\mathbf{Q}'_{\hat{\mathbf{x}}|\mathbf{x}} \neq \mathbb{I}$ and
 159 $\mathbf{Q}_{\hat{\mathbf{x}}|\mathbf{x}} = \mathbb{I}$. This ordering picks up only complete agreement with the true data, and does
 160 not differentiate any pair of reported datasets if neither agrees with the true data. This order
 161 captures the notion of data integrity. (Kim & Spafford, 1994)

162 2. **Blackwell dominant ordering:** $\hat{\mathbf{x}} \succ_{\text{Blackwell}}^{\mathbf{x}} \hat{\mathbf{x}}'$ if \mathbf{Q} and \mathbf{Q}' are both invertible and (row)
 163 diagonally maximized (i.e. $\mathbf{Q}(i, j) \leq \mathbf{Q}(i, i)$ and $\mathbf{Q}'(i, j) \leq \mathbf{Q}'(i, i)$ for all i and j) and
 164 there exists a (column) stochastic matrix $\mathbf{T} \neq \mathbb{I}$ so that $\mathbf{T}\mathbf{Q}_{\hat{\mathbf{x}}|\mathbf{x}} = \mathbf{Q}'_{\hat{\mathbf{x}}|\mathbf{x}}$ (equivalently,
 165 $\mathbf{Q}' = \mathbf{Q}\mathbf{T}^\top$ by Eq. (1)). This ordering captures that post-processing that transforms $\hat{\mathbf{x}}$
 166 into $\hat{\mathbf{x}}'$ only reduces the reliability or informativeness of the data. (Blackwell, 1953). In
 167 particular, this ordering ensures that the true data ranks the highest, and uninformative
 168 random reports ranks the lowest.

169 3. **dist ordering:** Given a distance function $\text{dist} : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ so that $\text{dist}(\mathbf{x}, \mathbf{x}') =$
 170 $\text{dist}(\mathbf{x}', \mathbf{x})$, $\text{dist}(\mathbf{x}, \mathbf{x}) = 0$ and $\text{dist}(\mathbf{x}, \mathbf{x}') > 0$ if $\mathbf{x} \neq \mathbf{x}'$,² we say $\hat{\mathbf{x}} \succ_{\text{dist}}^{\mathbf{x}} \hat{\mathbf{x}}'$ if
 171 $\sum_{n=1}^N \text{dist}(\hat{x}_n, x_n) < \sum_{n=1}^N \text{dist}(\hat{x}'_n, x_n)$. This ordering captures the coordinate-wise
 172 difference between true and reported data. We may also consider a weaker notion, α -
 173 dist ordering with some $\alpha \in (0, 1]$. We say $\hat{\mathbf{x}} \succ_{\text{dist}, \alpha}^{\mathbf{x}} \hat{\mathbf{x}}'$ if $\sum_{n=1}^N \text{dist}(\hat{x}_n, x_n) <$
 174 $\alpha \sum_{n=1}^N \text{dist}(\hat{x}'_n, x_n)$. In other words, the distance between $\hat{\mathbf{x}}$ and \mathbf{x} is at least a factor
 175 of α smaller than that of $\hat{\mathbf{x}}'$ and \mathbf{x} , in order to rank $\hat{\mathbf{x}}$ and $\hat{\mathbf{x}}'$.

177 A special case of dist ordering is **Hamming ordering**, when dist is the discrete metric
 178 $\text{dist}(i, j) = \mathbf{1}[i \neq j]$ for all $i, j \in \mathcal{X}$. We say $\hat{\mathbf{x}} \succ_{\text{Hamming}}^{\mathbf{x}} \hat{\mathbf{x}}'$ if $\sum_{n=1}^N \mathbf{1}[\hat{x}_n \neq x_n] <$
 179 $\sum_{n=1}^N \mathbf{1}[\hat{x}'_n \neq x_n]$ or, equivalently, $\text{Tr}(\mathbf{Q}) > \text{Tr}(\mathbf{Q}')$. Hamming ordering counts the
 180 number of disagreements between the true data and the reported data. (Hamming, 1950)

182 Blackwell dominant ordering is intentionally defined for a subset of misreport matrices: $\mathbf{Q}, \mathbf{Q}' \in$
 183 \mathcal{Q}_{reg} , which is the collection of invertible and (row) diagonally maximal matrices so that $\mathbf{Q}(i, j) \leq$
 184 $\mathbf{Q}(i, i)$ for all i and j . Intuitively, diagonally maximal requires the true data values dominate any
 185 misreport in a reported dataset. Restriction to \mathcal{Q}_{reg} is necessary for Blackwell dominant ordering
 186 to be a strict partial ordering. In Appendix B, we formally prove that all above orderings are strict
 187 partial orders. In particular, the Blackwell ordering fails to be strict if either invertibility or diagonal
 188 maximal of \mathbf{Q} and \mathbf{Q}' is not enforced.³

189 These orderings reflect different ways of measuring the extent of misreporting, with some providing
 190 finer distinctions between datasets than others. Formally, given a set of misreport matrices \mathcal{Q} , partial
 191 ordering \succ_1 refines partial ordering \succ_2 on \mathcal{Q} if $\forall \mathbf{x}, \hat{\mathbf{x}}, \hat{\mathbf{x}}'$ with associated misreport matrices $\mathbf{Q}, \mathbf{Q}' \in$
 192 \mathcal{Q} , $\hat{\mathbf{x}} \succ_1^{\mathbf{x}} \hat{\mathbf{x}}' \Rightarrow \hat{\mathbf{x}} \succ_2^{\mathbf{x}} \hat{\mathbf{x}}'$. The following proposition shows that Blackwell dominant ordering refines
 193 exact-match ordering, and Hamming ordering refines Blackwell dominant ordering. [The proofs are in Appendix B](#)

194 **Proposition 2.1** (Refinement). *The reliability orderings have the following relationships:*

196 1. *Blackwell dominant ordering refines the exact match ordering on \mathcal{Q}_{reg} .*
 197 2. *Hamming ordering refines the Blackwell dominant ordering on \mathcal{Q}_{reg} .*
 198 3. *For all $\alpha \geq \alpha'$ and distance function dist, α -dist ordering refines α' -dist ordering.*

2.4 RELIABILITY SCORING

203 We now return to formally define the ideal goals of reliability scoring.

204 **Definition 2.2.** *Given a reliability ordering \succ over \mathcal{X}^N , a reliability score $S : \mathcal{X}^N \times \mathcal{Y}^N \rightarrow \mathbb{R}$
 205 preserves partial ordering \succ under experiment \mathbf{P} , if for all $\mathbf{x}, \hat{\mathbf{x}}, \hat{\mathbf{x}}' \in \mathcal{X}^N$ with $\hat{\mathbf{x}} \succ^{\mathbf{x}} \hat{\mathbf{x}}'$ we have*

$$\mathbb{E}_{\mathbf{y} \sim P(\mathbf{x})}[S(\hat{\mathbf{x}}, \mathbf{y})] > \mathbb{E}_{\mathbf{y} \sim P(\mathbf{x})}[S(\hat{\mathbf{x}}', \mathbf{y})]. \quad (2)$$

209 Given a set of experiments \mathcal{P} , a set of misreport matrices \mathcal{Q} , and a minimum size of reported datasets
 210 $N_0 \in \mathbb{N}$, we say that a reliability score preserves \succ under \mathcal{P} , \mathcal{Q} and N_0 if Eq. (2) holds for all

211 ² Any metric, e.g., ℓ_2 -norm, satisfies the above three conditions. Additionally, a function with these properties is often referred to as a semimetric.

213 ³ Instead of \mathcal{Q}_{reg} , we can alternatively require (a) \mathbf{Q} and \mathbf{Q}' are invertible and (b) \mathbf{T} is not a permutation
 214 matrix (i.e. $\mathbf{Q}\mathbf{T}^\top$ is not a permutation of columns of \mathbf{Q}) to ensure that Blackwell dominant ordering is strict.
 215 However, this set of conditions does not support the result in Proposition 2.1 that Hamming ordering refines the
 Blackwell dominant ordering.

216 $\mathbf{P} \in \mathcal{P}$ and tuples $\mathbf{x}, \hat{\mathbf{x}}, \hat{\mathbf{x}}'$ of size at least N_0 with $\hat{\mathbf{x}} \succ^{\mathbf{x}} \hat{\mathbf{x}}'$ and $\mathbf{Q}, \mathbf{Q}' \in \mathcal{Q}$. We further call S
 217 *asymptotically* preserves \succ^{\cdot} under \mathcal{P}, \mathcal{Q} , if for all $\mathbf{P} \in \mathcal{P}$ and $\mathbf{Q}, \mathbf{Q}' \in \mathcal{Q}$ there exists N_0 so that S
 218 preserve \succ^{\cdot} under \mathbf{P} for all $\mathbf{x}, \hat{\mathbf{x}}, \hat{\mathbf{x}}'$ of size at least N_0 with $\hat{\mathbf{x}} \succ^{\mathbf{x}} \hat{\mathbf{x}}'$ and misreport matrices \mathbf{Q}, \mathbf{Q}' .
 219

220 In the remainder of the paper, we study the problem of designing reliability score $S(\hat{\mathbf{x}}, \mathbf{y})$ that
 221 preserves partial orderings of interest. We refer to this as the detail-free setting, since scoring does
 222 not rely on knowledge of \mathbf{Q} or \mathbf{P} . For the analysis, however, we also consider a partial-knowledge
 223 setting, where the score can take the joint distribution \mathbf{PQ} as input, $S(\mathbf{PQ})$. This setting serves as
 224 a technical tool: it allows us to establish impossibility results (Section 3) and to illustrate the core
 225 ideas underlying our approach to detail-free scoring (Section 4).
 226

3 IMPOSSIBILITY RESULTS FOR RELIABILITY SCORING

228 We explore innate limitations of reliability scoring. These impossibility results form a foundation
 229 for charting the feasible combinations of \mathcal{P} and \mathcal{Q} for reliability scoring and motivate Section 4.
 230

231 This section focuses on the partial knowledge setting, where the joint distribution of observations
 232 and reported data, \mathbf{PQ} , is assumed to be known, and provided as input to the score. Impossibility
 233 results in this setting extend to the detail-free setting for reliability scores that rely on estimates of
 234 \mathbf{PQ} . In particular, the impossibility results apply to the Gram determinant score that we'll introduce
 235 in Section 4. We provide a more detailed discussion in Appendix C.
 236

237 We first introduce the class of independent experiments and a few classes of misreport matrices
 238 that'll be used in this paper.
 239

- $\mathcal{P}_{\text{indep}}$: the set of linearly independent experiments, where $\mathbf{P} \in \mathcal{P}_{\text{indep}}$ if and only if all
 240 columns of \mathbf{P} are linearly independent.
- $\mathcal{Q}_{\text{nonperm}}$: the set of misreport matrices \mathbf{Q} so that the associated $\mathbf{Q}_{\hat{\mathbf{x}}|\mathbf{x}}$ is neither a permuta-
 241 tion matrix nor an identity matrix.
- \mathcal{Q}_{reg} : the set of invertible and diagonally maximal misreport matrices where $\mathbf{Q}(i, j) \leq$
 242 $\mathbf{Q}(i, i)$ for all i and j . This was also defined earlier in Section 2.3.
- \mathcal{Q}_{dom} : the set of (row) diagonally dominant misreport matrices where $\sum_{j:j \neq i} |\mathbf{Q}(i, j)| \leq$
 243 $|\mathbf{Q}(i, i)|$ for all i .⁴
- $\mathcal{Q}_{L,\delta}$: the set of (row) diagonally dominant misreport matrices where the true data are L
 244 balanced and the Hamming distance is bounded above by $N\delta$. True data \mathbf{x} is L -balanced
 245 if $\mathbf{q}_{\mathbf{x}}(\mathbf{x}) \leq L\mathbf{q}_{\mathbf{x}}(\mathbf{x}')$ for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$. We use $\mathcal{Q}_L := \mathcal{Q}_{L,1}$ to denote the set of (row) diag-
 246 onally dominant misreport matrices where the true data are L balanced, with no restriction
 247 on Hamming distance.

252 We note that $\mathcal{Q}_{L,\delta} \subseteq \mathcal{Q}_L \subset \mathcal{Q}_{\text{dom}} \subset \mathcal{Q}_{\text{reg}} \subset \mathcal{Q}_{\text{nonperm}}$ for all L and δ .
 253

254 **Proposition 3.1.** *In the partial-knowledge setting, it is sometimes impossible for any reliability
 255 score to preserve reliability orderings. In particular,*

1. **Exact match ordering:** *There exists a \mathcal{P} so that no score preserves the exact match ordering
 256 under \mathcal{P} and $\mathcal{Q}_{\text{nonperm}}$. Additionally, for all $\mathcal{Q} \supsetneq \mathcal{Q}_{\text{nonperm}}$, no score preserves the exact
 257 match ordering on $\mathcal{P}_{\text{indep}}$ and \mathcal{Q} .*
2. **Blackwell dominant ordering:** *For any \mathcal{P} , if there exists $\mathbf{P} \in \mathcal{P}$ and a rational vector
 258 $\mathbf{v} \neq \mathbf{0}$ so that $\mathbf{P}\mathbf{v} = \mathbf{0}$, no score preserves the Blackwell ordering on \mathcal{P} and \mathcal{Q}_{reg} .*
3. **Hamming and dist orderings:** *No score preserves the Hamming ordering under $\mathcal{P}_{\text{indep}}$ and
 259 \mathcal{Q}_{dom} . Additionally, no score preserves the dist ordering under $\mathcal{P}_{\text{indep}}$ and \mathcal{Q}_{dom} for any
 260 dist.*

261 The first part of Proposition 3.1 establishes that no score can respect the exact-match reliability
 262 ordering across all experiment sets. The non-permutation condition is needed here to exclude de-
 263 generate cases such as label permutations. By Proposition 2.1, these impossibility results also extend
 264

265
 266 ⁴Note that diagonally dominant matrices are invertible by Gershgorin circle theorem.
 267

270 to the other orderings. The second part further shows that even a single linearly dependent experiment
 271 is enough to make preservation of the Blackwell ordering impossible. We therefore focus on
 272 the class of linearly independent experiments, $\mathcal{P}_{\text{indep}}$. Finally, the third part shows that no reliabil-
 273 ity score can preserve the Hamming or any other dist ordering, even under diagonally dominant
 274 misreport matrices \mathcal{Q}_{dom} . In Section 4, we thus further restrict our attention to $\mathcal{Q}_{L,\delta}$.
 275

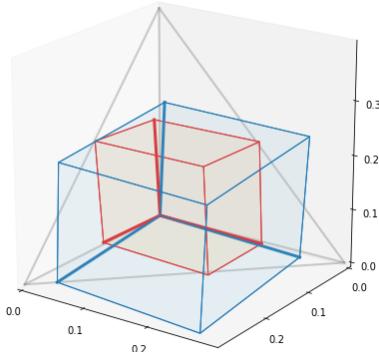
276 4 GRAM DETERMINANT RELIABILITY SCORE

277 Our idea for measuring data reliability is to leverage the diversity of observations. We formalize
 278 this idea with the Gram determinant score—the determinant of a Gram matrix of the observation
 279 distributions conditional on reported labels.
 280

281 **Definition 4.1.** *Given finite sets $\mathcal{X} = [d]$ and \mathcal{Y} , and an experiment \mathbf{P} , we define Gram matrix of
 282 labels as $\mathbf{G} = \mathbf{P}^\top \mathbf{P} \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{X}|}$ where $\mathbf{G}(x, x') = \langle P_x, P_{x'} \rangle = \Pr_{y \sim P_x, y' \sim P_{x'}}[y = y']$. Moreover,
 283 given \mathbf{x} and $\hat{\mathbf{x}}$, we define the Gram matrix of reports $\hat{\mathbf{x}}$ as $\hat{\mathbf{G}} = (\mathbf{PQ})^\top (\mathbf{PQ}) \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{X}|}$ where
 284 $\hat{\mathbf{G}}(x, x') := \frac{1}{N^2} \sum_{n, n': \hat{x}_n = x, \hat{x}_{n'} = x'} \langle P_{x_n}, P_{x_{n'}} \rangle$. The **Gram determinant score** is*
 285

$$286 \Gamma := \det(\hat{\mathbf{G}}) = \sum_{\sigma \in \text{symm}(d)} \text{sgn}(\sigma) \prod_{i=1}^d \hat{\mathbf{G}}(i, \sigma(i)). \quad (3)$$

287 where $\text{symm}(d)$ is the set of all permutations on $[d]$ and sgn the sign function of permutations. We
 288 further denote $\Gamma(\mathbf{PQ}) := \Gamma$ to highlight that the Gram determinant score takes \mathbf{PQ} as input.
 289



308 Figure 1: Gram determinant scores and
 309 parallelepipeds.⁵

310 of \mathbf{PQ}_x . A symbolic example is presented in Appendix D.1.

311 In the remainder of this section, we first show that the Gram determinant score preserves several reli-
 312 ability orderings and is invariant under experiments (Section 4.1). We then introduce two estimators
 313 of the Gram determinant score for the detail-free setting (Section 4.2). Finally, we introduce kernels
 314 to generalize Gram determinant score to handle non-finite observation spaces \mathcal{Y} (Section 4.3).
 315

316 4.1 PRESERVING RELIABILITY ORDERINGS AND INVARIANCE

317 We show that Gram determinant reliability score preserves the exact, the Blackwell dominant, and
 318 the approximated Hamming (or dist) ordering.
 319

320 ⁵Figure 1 uses $\mathbf{P} = \begin{pmatrix} 0.1 & 0.1 & 0.7 \\ 0.9 & 0.1 & 0.2 \\ 0 & 0.8 & 0.1 \end{pmatrix}$, $\mathbf{Q}_x = \begin{pmatrix} 0.3 & 0 & 0 \\ 0 & 0.3 & 0 \\ 0 & 0 & 0.4 \end{pmatrix}$, and $\mathbf{Q}_{\hat{x}|x} = \begin{pmatrix} 0.1 & 0.1 & 0.7 \\ 0.9 & 0.1 & 0.2 \\ 0 & 0.8 & 0.1 \end{pmatrix}$.
 321

324 **Theorem 4.2.** *Given $\mathcal{X} = [d]$, a finite set \mathcal{Y} , and $L \geq 1$, the Gram determinant score in Definition 325 4.1 preserves*

327 1. exact match ordering under $\mathcal{P}_{\text{indep}}$ and $\mathcal{Q}_{\text{nonperm}}$,
 328 2. Blackwell ordering under $\mathcal{P}_{\text{indep}}$ and \mathcal{Q}_{reg} , and
 329 3. $\frac{1}{4L\Delta}$ -dist ordering under $\mathcal{P}_{\text{indep}}$ and $\mathcal{Q}_{L,1/64L^2d^2}$ for all dist with $\Delta = \frac{\max_{x,x' \in \mathcal{X}} \text{dist}(x,x')}{\min_{x \neq x' \in \mathcal{X}} \text{dist}(x,x')}$.

330 Theorem 4.2 covers any linearly independent experiment—required by the impossibilities in Section 331 3—*and places minimal assumptions on misreports, nearly matching our impossibility results.* In particular, Propositions 2.1 and 3.1 show: 1) no score preserves exact ordering for any superset 332 of $\mathcal{Q}_{\text{nonperm}}$; 2) the Blackwell relation is only a strict partial order on \mathcal{Q}_{reg} ; and 3) no score preserves 333 Hamming ordering or any other dist ordering on \mathcal{Q}_{dom} . The third part of Theorem 4.2 implies the 334 score preserves $\frac{1}{4L}$ -Hamming ordering, because the aspect ratio for Hamming distance is $\Delta = 1$.
 335

336 The key idea of the proof is that the determinant has the multiplicative property and Eq. (4),
 337

$$\Gamma(\mathbf{P}\mathbf{Q}) = \det(\mathbf{Q}^\top \mathbf{P}^\top \mathbf{P}\mathbf{Q}) = \det(\mathbf{Q}^\top) \det(\mathbf{P}^\top \mathbf{P}) \det(\mathbf{Q}) = \det(\mathbf{P}^\top \mathbf{P}) \det(\mathbf{Q})^2$$

338 because \mathbf{Q} and $\mathbf{P}^\top \mathbf{P}$ are squared matrices. Hence, we can decouple the misreport matrix \mathbf{Q} from the 339 quality of the experiment \mathbf{P} . In particular, it is sufficient to focus on misreport matrices as the Gram 340 matrix of labels is positive definite $\mathbf{P}^\top \mathbf{P}$, $\det(\mathbf{P}^\top \mathbf{P}) > 0$, for all $\mathbf{P} \in \mathcal{P}_{\text{indep}}$. This observation 341 may provide a recipe for considering other reliability orderings in the Gram determinant score. The 342 formal proof is deferred to Appendix D.2.
 343

344 We now establish an invariance principle: the induced ranking of datasets should be invariant to 345 the unknown experiment, to relabelings, and to priors. The latter two are straightforward by the 346 multiplicative property of Gram determinant. For the first one, we show that the Gram determinant 347 is *experiment-agnostic* so that the reliability ranking of a dataset $\hat{\mathbf{x}}$ should depend only on $\hat{\mathbf{x}}$ and 348 the true data \mathbf{x} (defined in Eq. (5)). Thus the choice of experiment does not affect which reported 349 dataset is deemed more reliable. Moreover, we show that the Gram determinant score is the unique 350 experiment agnostic score up to scaling under mild coherence assumption.
 351

352 **Proposition 4.3.** *Given $\mathcal{X} = [d]$ and a finite set \mathcal{Y} , the Gram determinant score in Definition 4.1 is 353 experiment agnostic so that for all $\mathbf{Q}, \mathbf{Q}' \in GL_d$ general linear group and $\mathbf{P} \in \mathcal{P}_{\text{indep}}$,*

$$\Gamma(\mathbf{Q}) \geq \Gamma(\mathbf{Q}') \Leftrightarrow \Gamma(\mathbf{P}\mathbf{Q}) \geq \Gamma(\mathbf{P}\mathbf{Q}'). \quad (5)$$

354 Moreover, if there exists a continuous function $S : GL_d \rightarrow \mathbb{R}_{>0}$ with a continuous $c : \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ 355 so that for all $\mathbf{Q}, \mathbf{Q}' \in GL_d$, and $t > 0$, Eq. (5) holds and $S(t\mathbf{Q}) = c(t)S(\mathbf{Q})$, there exists 356 $\alpha > 0, \beta \neq 0$ so that $S(\mathbf{Q}) = \alpha \det(\mathbf{Q}^\top \mathbf{Q})^\beta$.
 357

358 As discussed above, the first part follows directly from multiplicative property of determinant, 359 $\Gamma(\mathbf{P}\mathbf{Q}) = \det(\mathbf{P}^\top \mathbf{P}) \det(\mathbf{Q})^2 = \det(\mathbf{P}^\top \mathbf{P})\Gamma(\mathbf{Q})$. We defer the proof for the second part to 360 Appendix D.3. Finally, since $GL_d \subset \mathcal{P}_{\text{indep}}$, the second part of Proposition 4.3 implies that even 361 when we restrict to settings where the observation space has the same dimension as the data space 362 $|\mathcal{Y}| = |\mathcal{X}|$, the Gram determinant score remains unique up to scaling.
 363

364 4.2 ESTIMATORS FOR GRAM DETERMINANT SCORES

365 We introduce two estimators for the Gram determinant score in the detail-free setting: plug-in and 366 stratified matching estimator. The second estimator and proofs are deferred to Appendix E.
 367

368 **Definition 4.4** (plug-in Gram determinant reliability score). *Given $\hat{\mathbf{x}}$ and \mathbf{y} of size N , define $\bar{\mathbf{G}} \in \mathbb{R}^{d \times d}$ 369 so that for all $x, x' \in \mathcal{X}$ $\bar{\mathbf{G}}(x, x') = \frac{1}{N^2} \sum_{n, n' \in [N]: \hat{x}_n = x, \hat{x}_{n'} = x'} \mathbf{1}[y_n = y_{n'}]$. The plug-in 370 Gram determinant reliability score is then defined as $\bar{S}(\hat{\mathbf{x}}, \mathbf{y}) = \det(\bar{\mathbf{G}})$.*
 371

372 The plug-in estimator first estimates $\hat{\mathbf{G}}$ using empirical distribution between reports $\hat{\mathbf{x}}$ and observations \mathbf{y} and computes the determinants of $\hat{\mathbf{G}}$. Note that the probability of $y_n = y_{n'}$ is simply 373 the inner product of P_{x_n} and $P_{x_{n'}}$ if $n \neq n'$. Proposition 4.5 shows that the plug-in estimator 374 asymptotically preserves all reliability orderings in Theorem 4.2.
 375

376 **Proposition 4.5.** *Given $\mathcal{X} = [d]$, finite set \mathcal{Y} and $L \geq 1$, the plug-in Gram determinant score in 377 Definition 4.4 asymptotically preserves reliability orderings in Theorem 4.2.*

378 4.3 GRAM DETERMINANT SCORE WITH KERNELS
379380 The Gram determinant score in Definition 4.1 has two limitations. First, it cannot handle continuous
381 or general observation space \mathcal{Y} . Second, it ignores any intrinsic structure in the observation space,
382 e.g., prediction or feature embedding. We extend the Gram determinant score with kernels. We
383 provide examples of different kernels that can be used in practice, together with a reliability-ordering
384 result analogous to Theorem 4.2 in Appendix F.385 **Definition 4.6** (kernelized Gram determinant score). *Given a finite set \mathcal{X} , an experiment \mathbf{P} , and*
386 *\mathcal{Y} with a kernel $K : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$, we define Gram matrix of labels as $\mathbf{G}_K \in \mathbb{R}^{d \times d}$ where for all*
387 *$x, x' \in \mathcal{X}$, $\mathbf{G}_K(x, x') = \langle P_x, P_{x'} \rangle_K := \mathbb{E}_{y \sim P_x, y' \sim P_{x'}}[K(y, y')]$. Given \mathbf{x} and $\hat{\mathbf{x}}$, we define the*
388 *Gram matrix of reports as $\hat{\mathbf{G}}_K \in \mathbb{R}^{d \times d}$ where $\hat{\mathbf{G}}_K(x, x') = \frac{1}{N^2} \sum_{n, n': \hat{x}_n = x, \hat{x}_{n'} = x'} \langle P_{x_n}, P_{x_{n'}} \rangle_K$.*
389 *Finally, we define the Gram determinant score with kernel K as $\Gamma_K := \det(\hat{\mathbf{G}}_K)$.*390 5 EXPERIMENTS
391392 We evaluate the Gram determinant score in three parts: (Exp. 1) synthetic categorical data with
393 six label-manipulation policies; (Exp. 2) real image data (CIFAR-10 embeddings) with the same
394 six manipulations using the kernelized score; (Exp. 3) real employment data, treating CES vintage
395 revisions as naturally occurring manipulations.396 **Experiment 1: Gram Determinant Score on Synthetic Data** In this experiment, we evaluate
397 how well the Gram determinant score captures label reliability under categorical observations, as
398 summarized in Figs. 2 and 2d. Specifically, we first generate a ground-truth dataset (\mathbf{x}, \mathbf{y}) of size
399 $N = 4000$ with $d = 5$. Each label x_k is drawn uniformly from $1, \dots, d$ for $k \in [N]$, and each
400 outcome y_k is sampled from the distribution $\mathbf{P}(\cdot | x_k)$, where the experiment distribution matrix
401 $\mathbf{P} \in [0, 1]^{d \times d}$ is constructed by sampling $\mathbf{P}(i, j) \sim \text{Uniform}(0, 1)$ independently and normalizing
402 rows to be stochastic. The ground-truth dataset (\mathbf{x}, \mathbf{y}) is fixed across all trials. To model varying
403 reliability, for each $p \in \{0.00, 0.05, \dots, 0.50\}$ we corrupt the labels according to
404

405
$$\hat{x}_k = \begin{cases} x_k, & \text{with probability } 1 - p, \\ Z_k, & \text{with probability } p, \end{cases} \quad (6)$$

406 where $Z_k \sim \pi(\cdot | x_k)$ is independently drawn from a corruption policy π ; in our experiments, π is
407 instantiated by one of the six manipulations below.408

- 409 • Uniformly random: $Z_k \sim \text{Uniform}\{1, \dots, d\}$.
- 410 • Asym neighbor: with probability 0.85 set $Z_k = \min\{x_k + 1, d\}$, otherwise sample Z_k
411 uniformly from $\{1, \dots, d\} \setminus \{x_k\}$.
- 412 • Row-sim 2nd: $Z_k = \arg \max_{j \neq x_k} \frac{\langle \mathbf{P}_{x_k, \cdot}, \mathbf{P}_{j, \cdot} \rangle}{\|\mathbf{P}_{x_k, \cdot}\| \|\mathbf{P}_{j, \cdot}\|}$, the label with closest observation distribution.
- 413 • Merge 0/1 \rightarrow 0: if $x_k \in \{1, 2\}$ then set $Z_k = 1$; otherwise $Z_k = x_k$.
- 414 • Group up/down: $Z_k = \min\{x_k + 1, d\}$ with probability 1/2, or $Z_k = \max\{x_k - 1, 1\}$
415 otherwise.
- 416 • Mixed: sample $Z_k \sim \pi_{\text{mixed}}(\cdot | x_k)$ where each row $\pi_{\text{mixed}}(i, \cdot)$ is drawn from
417 Dirichlet($\alpha_i(1), \dots, \alpha_i(d)$) with

418
$$\alpha_i(j) = \alpha_{\text{off}} + \alpha_{\text{diag}} \mathbf{1}\{j = i\} + \lambda_{\text{loc}} \exp(-\text{dist}_{\text{ring}}(i, j)) + \lambda_{\text{up}} \exp(\gamma(j - i)) + \lambda_{\text{def}} \mathbf{1}\{j = j_0\},$$

419
$$\text{dist}_{\text{ring}}(i, j) = \min(|i - j|, d - |i - j|)$$
, and j_0 a salient default label; rows are normalized
420 to be stochastic, where $\alpha_{\text{off}} = 0.2$, $\alpha_{\text{diag}} = 6$, $\lambda_{\text{loc}} = 1.0$, $\lambda_{\text{up}} = 0.4$, $\gamma = 0.5$, $\lambda_{\text{def}} =$
421 0.6 , $j_0 = 1$. This policy mimics human labeling: diagonal dominance (keep i), locality on
422 the ring (near-class confusions), mild upcoding (asymmetric mistakes), and a default-label
423 bias—yielding structured, non-uniform noise beyond uniform corruption.

424 Fix a ground-truth dataset (\mathbf{x}, \mathbf{y}) . For each manipulation and corruption level $p \in$
425 $\{0.0, 0.1, \dots, 0.5\}$, in Figs. 2a to 2c, we run $M = 100$ independent trials, producing corrupted

432 reports \hat{x}^m . In every trial, we compute 1) the plug-in Gram determinant reliability score in Definition 4.4, 2) the Hamming error $\sum_{n=1}^N \mathbf{1}[x_n \neq \hat{x}_n^m]$, and 3) the ℓ_2 error $\|\mathbf{x} - \hat{\mathbf{x}}^m\|_2$. We then report the mean and standard deviation of each metric across the M trials. In Fig. 2a, the plug-in Gram-determinant score falls steadily as the corruption probability p increases. Figures 2b and 2c show that higher scores correspond to lower Hamming error and smaller ℓ_2 deviation, respectively, demonstrating a clear negative correlation between our score and these conventional error measures regardless of the manipulation policy (i.e., across all corruption schemes considered).

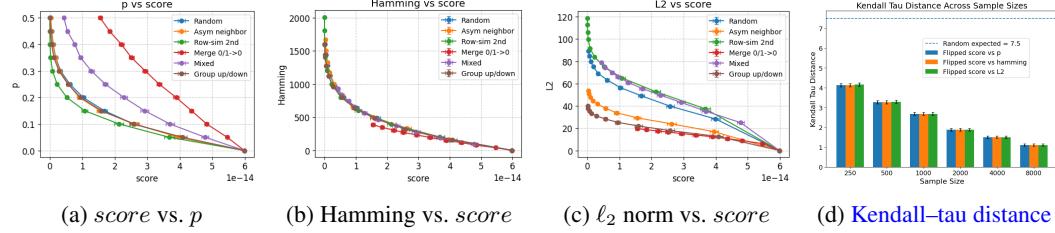


Figure 2: Gram determinant reliability score on categorical synthetic data.

450 In Fig. 2d, we vary data sizes $N \in \{250, 500, \dots, 8000\}$ and generate 1000 datasets for each N . In
451 each dataset and corruption level $p \in \{0.0, 0.1, \dots, 0.5\}$, we use the uniform random manipulation
452 strategy, and compute the plug-in Gram determinant, Hamming-distance error, and ℓ_2 error, then
453 rank the six corrupted reports. We report the average Kendall-tau distance between the reversed
454 Gram-determinant ranking and the orderings induced by p , the Hamming distance, and the ℓ_2 error.
455 As shown in Figure 2d, the fraction of correctly recovered rankings increases with the sample size,
456 confirming that the Gram-determinant score is a consistent indicator of true-label reliability.

457 **Experiment 2: Gram Determinant Score with Kernels on Image Data** We evaluate the Gram
458 determinant score with continuous observations by using image embeddings. We train a SimCLR
459 model (Chen et al., 2020) with a ResNet-18 backbone and an 8-dimensional projection head on
460 CIFAR-10 (Krizhevsky et al., 2009). The model is optimized for 60 epochs using the InfoNCE loss
461 with batch size $B = 256$, temperature $\tau = 0.5$, and the Adam optimizer at learning rate 5×10^{-3} .
462 After training, we extract normalized projections $\mathbf{y}_n \in \mathbb{R}^8$ for each of the $N = 10000$ test images,
463 denote the true labels by $\mathbf{x} \in \{0, \dots, 9\}^N$, and the embeddings by $\mathbf{y} \in \mathbb{R}^{N \times 8}$.

464 To simulate corrupted reports, we use the same six corruption policies with $p \in$
465 $\{0.00, 0.04, \dots, 0.40\}$. As $\mathcal{Y} = \mathbb{R}^8$ is continuous, we use plug-in Gram determinant with kernel
466 $K(\mathbf{y}, \mathbf{y}') = \langle \mathbf{y}, \mathbf{y}' \rangle$ as the score. For each p and policy we repeat the procedure over $M = 100$
467 random trials to obtain the mean and standard error. As shown in Figs. 3a to 3c, the score increases
468 monotonically with p across all six manipulations, and higher score is associated with lower Ham-
469 ming error and smaller ℓ_2 deviation, mirroring the trends observed in categorical setting.

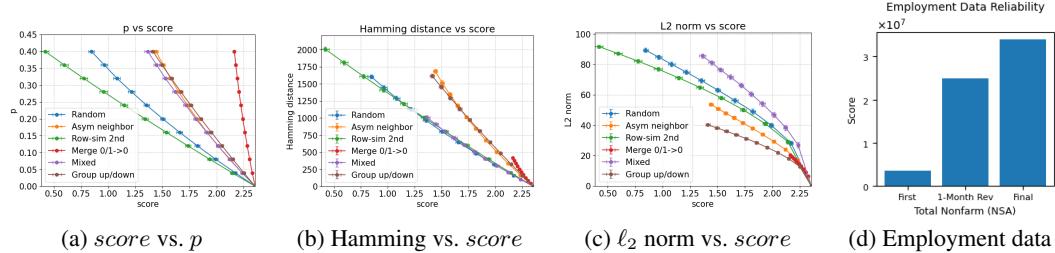


Figure 3: Gram determinant reliability for image-label experiments under six manipulation policies

482 **Experiment 3: Gram Determinant Score on Real-World Employment Data** We evaluate three
483 vintages of the CES total nonfarm employment series (not seasonally adjusted) from Oct 2005–Feb
484 2023, using the CES vintage dataset (U.S. Bureau of Labor Statistics, 2025), and take as external
485 \mathbf{y} the monthly changes in Withheld Income & Employment Taxes from Treasury deposits (U.S.
486 Department of the Treasury, Bureau of the Fiscal Service, 2025). For each month we use: 1) first

486 release: initial estimate, published the next month; 2) one-month revision: first revision, one month
 487 later; and 3) final value: last available vintage including benchmark revisions. We discretize month-
 488 to-month differences **into four quantile buckets as x and y with $N = 209$** and compute Gram
 489 determinant scores with the plug-in estimator. Figure 3d shows that revisions substantially improve
 490 reliability according to our score, with the final series most aligned with fiscal benchmarks.
 491

492 6 CONCLUSION

493 We introduce the Gram determinant score — a metric that intuitively measures the volume of class-
 494 conditional observation distributions. Under mild independence assumptions, it exactly preserves
 495 exact-match and Blackwell orderings and closely approximates Hamming orderings. We develop
 496 plug-in and stratified-matching estimators with finite-sample guarantees and extend the method to
 497 continuous or structured spaces via kernel embeddings. Experiments on synthetic data, CIFAR-10
 498 embeddings, and employment data demonstrated its effectiveness.
 499

500 Looking ahead, it's interesting to design scalable estimators for high-dimensional or continuous
 501 label domains using dimensionality-reduction (e.g., PCA, DPP sampling) and learned encoders.
 502 Moreover, we conjecture that other singular-value–based criteria can also serve as reliability scores.
 503 Appendix G briefly discusses additional candidates beyond the Gram determinant score and reports
 504 synthetic-data experiments evaluating them. However, formal guarantees remain to be established;
 505 each candidate will require tailored analysis to show it preserves the relevant reliability orderings.
 506 In real-world settings, the Gram determinant score is applicable wherever labels are noisy or ma-
 507 nipulated – for example, by detecting incoherent star ratings in product reviews – and could help
 508 platforms like Amazon and Yelp enhance consumer protection.
 509

510 REFERENCES

511 Syed Mumtaz Ali and Samuel D Silvey. A general class of coefficients of divergence of one distri-
 512 bution from another. *Journal of the Royal Statistical Society: Series B (Methodological)*, 28(1):
 513 131–142, 1966.

515 Mohammad Mohammadi Amiri, Frederic Berdoz, and Ramesh Raskar. Fundamentals of task-
 516 agnostic data valuation, 2022. URL <https://arxiv.org/abs/2208.12354>.

517 Nachman Aronszajn. Theory of reproducing kernels. *Transactions of the American mathematical
 518 society*, 68(3):337–404, 1950.

520 Alain Berlinet and Christine Thomas-Agnan. *Reproducing kernel Hilbert spaces in probability and
 521 statistics*. Springer Science & Business Media, 2011.

522 David Blackwell. Equivalent comparisons of experiments. *The annals of mathematical statistics*,
 523 pp. 265–272, 1953.

525 Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. *ACM com-
 526 puting surveys (CSUR)*, 41(3):1–58, 2009.

527 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 528 contrastive learning of visual representations. In *International conference on machine learning*,
 529 pp. 1597–1607. PMLR, 2020.

530 Yiling Chen and Bo Waggoner. Informational substitutes. In *2016 IEEE 57th Annual Symposium
 531 on Foundations of Computer Science (FOCS)*, pp. 239–247, 2016. doi: 10.1109/FOCS.2016.33.

533 R. Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for
 534 detecting influential cases in regression. *Technometrics*, 22(4):495–508, 1980. ISSN 00401706.
 535 URL <http://www.jstor.org/stable/1268187>.

536 Imre Csiszár. Eine informationstheoretische ungleichung und ihre anwendung auf beweis der er-
 537 godizitaet von markoffschen ketten. *Magyer Tud. Akad. Mat. Kutato Int. Kozl.*, 8:85–108, 1964.

538 Imre Csiszár. A class of measures of informativity of observation channels. *Periodica Mathematica
 539 Hungarica*, 2(1-4):191–213, 1972.

540 Anirban Dasgupta and Arpita Ghosh. Crowdsourced judgement elicitation with endogenous profi-
 541 ciency. In Daniel Schwabe, Virgílio A. F. Almeida, Hartmut Glaser, Ricardo Baeza-Yates, and
 542 Sue B. Moon (eds.), *22nd International World Wide Web Conference, WWW '13, Rio de Janeiro,*
 543 *Brazil, May 13-17, 2013*, pp. 319–330. International World Wide Web Conferences Steering Com-
 544 mittee / ACM, 2013. doi: 10.1145/2488388.2488417. URL <https://doi.org/10.1145/2488388.2488417>.

545

546 Rafael Frongillo and Ian A Kash. Vector-valued property elicitation. In *Conference on Learning*
 547 *Theory*, pp. 710–727. PMLR, 2015.

548

549 Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
 550 In *International conference on machine learning*, pp. 2242–2251. PMLR, 2019.

551

552 Boris Vladimirovich Gnedenko, Yu K Belyayev, and Aleksandr Dmitrievič Solov'yev. *Mathematical*
 553 *methods of reliability theory*. Academic Press, 2014.

554

555 Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
 556 *Journal of the American statistical Association*, 102(477):359–378, 2007.

557

558 Richard W Hamming. Error detecting and error correcting codes. *The Bell system technical journal*,
 29(2):147–160, 1950.

559

560 Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.

561

562 Ronald A Howard. Information value theory. *IEEE Transactions on systems science and cybernetics*,
 2(1):22–26, 2007.

563

564 Angina Seng (https://math.stackexchange.com/users/436618/angina_seng). When
 565 are the inverses of stochastic matrices also stochastic matrices? Mathematics
 566 Stack Exchange. URL <https://math.stackexchange.com/q/2392982>.
 567 URL:<https://math.stackexchange.com/q/2392982> (version: 2017-08-14).

568

569 Peter J Huber. *Robust statistics*, volume 523. John Wiley & Sons, 2004.

570

571 Ilse C. F. Ipsen and Dean J. Lee. Determinant approximations, 2011. URL <https://arxiv.org/abs/1105.0437>.

572

573 Ilse C. F. Ipsen and Rizwana Rehman. Perturbation bounds for determinants and characteristic
 574 polynomials. *SIAM Journal on Matrix Analysis and Applications*, 30(2):762–776, 2008. doi:
 10.1137/070704770. URL <https://doi.org/10.1137/070704770>.

575

576 Robert E Kass and Larry Wasserman. The selection of prior distributions by formal rules. *Journal*
 577 *of the American statistical Association*, 91(435):1343–1370, 1996.

578

579 Gene H. Kim and Eugene H. Spafford. The design and implementation of tripwire: a file system
 580 integrity checker. In *Proceedings of the 2nd ACM Conference on Computer and Communications*
 581 *Security, CCS '94*, pp. 18–29, New York, NY, USA, 1994. Association for Computing Machinery.
 582 ISBN 0897917324. doi: 10.1145/191177.191183. URL <https://doi.org/10.1145/191177.191183>.

583

584 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 585 Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on*
 586 *Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 1885–1894.
 587 PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/koh17a.html>.

588

589 Yuqing Kong. Dominantly truthful multi-task peer prediction with a constant number of tasks. In
 590 *Proceedings of the fourteenth annual acm-siam symposium on discrete algorithms*, pp. 2398–
 591 2411. SIAM, 2020.

592

593 Yuqing Kong. Dominantly truthful peer prediction mechanisms with a finite number of tasks. *J.*
 594 *ACM*, 71(2), April 2024. ISSN 0004-5411. doi: 10.1145/3638239. URL <https://doi.org/10.1145/3638239>.

594 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 595 2009.

596

597 Solomon Kullback and Richard A Leibler. On information and sufficiency. *The annals of mathe-*
 598 *matical statistics*, 22(1):79–86, 1951.

599

600 Nicolas S Lambert, David M Pennock, and Yoav Shoham. Eliciting properties of probability dis-
 601 tributions. In *Proceedings of the 9th ACM Conference on Electronic Commerce*, pp. 129–138,
 602 2008.

603

604 Yang Liu and Yiling Chen. Surrogate scoring rules and a dominant truth serum for information
 elicitation. *CoRR*, abs/1802.09158, 2018. URL <http://arxiv.org/abs/1802.09158>.

605

606 Yang Liu and Hongyi Guo. Peer loss functions: Learning from noisy labels without knowing noise
 607 rates. In *International conference on machine learning*, pp. 6226–6236. PMLR, 2020.

608

609 William Q Meeker, Luis A Escobar, and Francis G Pascual. *Statistical methods for reliability data*.
 610 John Wiley & Sons, 2021.

611

612 N. Miller, P. Resnick, and R. Zeckhauser. Eliciting informative feedback: The peer-prediction
 613 method. *Management Science*, pp. 1359–1373, 2005.

614

615 Tetsuzo Morimoto. Markov processes and the h-theorem. *Journal of the Physical Society of Japan*,
 18(3):328–331, 1963. doi: 10.1143/JPSJ.18.328. URL <https://doi.org/10.1143/JPSJ.18.328>.

616

617 Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with
 618 noisy labels. *Advances in neural information processing systems*, 26, 2013.

619

620 Kent Harold Osband. *Providing Incentives for Better Cost Forecasting (Prediction, Uncertainty
 621 Elicitation)*. University of California, Berkeley, 1985.

622

623 Iosif Pinelis. Optimum bounds for the distributions of martingales in banach spaces. *The Annals of
 Probability*, pp. 1679–1706, 1994.

624

625 Maria Priestley, Fionntán O’donnell, and Elena Simperl. A survey of data quality requirements that
 626 matter in ml development pipelines. *ACM Journal of Data and Information Quality*, 15(2):1–39,
 2023.

627

628 U.S. Bureau of Labor Statistics. CES Vintage Data Information, March 2025. URL <https://www.bls.gov/web/empsit/cesvininfo.htm>. Current Employment Statistics (CES).
 629 Last modified March 7, 2025.

630

631 U.S. Department of the Treasury, Bureau of the Fiscal Service. Daily Treasury Statement
 632 (DTS): Federal Tax Deposits, August 2025. URL <https://fiscaldata.treasury.gov/datasets/daily-treasury-statement/federal-tax-deposits>. Dataset
 633 page on U.S. Treasury Fiscal Data. Last updated August 18, 2025. As of Feb. 14, 2023, “Federal
 634 Tax Deposits (Table IV)” was renamed to “Inter-agency Tax Transfers (Table IV)”; subsequent
 635 data appear in “Deposits and Withdrawals of Operating Cash (Table II).”

636

637 user856. Is the determinant the only group homomorphism from $GL_n(\mathbb{R})$ to \mathbb{R}^\times ? Mathematics
 638 Stack Exchange. URL <https://math.stackexchange.com/q/727050>.
 639 URL: <https://math.stackexchange.com/q/727050> (version: 2017-04-13).

640

641 Richard Y Wang and Diane M Strong. Beyond accuracy: What data quality means to data con-
 642 sumers. *Journal of management information systems*, 12(4):5–33, 1996.

643

644 Yilun Xu, Peng Cao, Yuqing Kong, and Yizhou Wang. L_{dmi} : A novel information-theoretic loss
 645 function for training deep nets robust to label noise. *Advances in neural information processing
 646 systems*, 32, 2019.

647 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
 648 learning via redundancy reduction, 2021. URL <https://arxiv.org/abs/2103.03230>.

648 Shuran Zheng, Fang-Yi Yu, and Yiling Chen. The limits of multi-task peer prediction. *CoRR*,
649 abs/2106.03176, 2021. URL <https://arxiv.org/abs/2106.03176>.

650

651 Shuran Zheng, Xuan Qi, Rui Ray Chen, Yongchan Kwon, and James Zou. Proper dataset valuation
652 by pointwise mutual information, 2025. URL <https://arxiv.org/abs/2405.18253>.

653 Johanna Ziegel, David Ginsbourger, and Lutz Dümbgen. Characteristic kernels on hilbert spaces,
654 banach spaces, and on sets of measures, 2022. URL <https://arxiv.org/abs/2206.07588>.

655

656 James Y. Zou and Ryan P. Adams. Priors for diversity in generative latent variable models. In
657 *Proceedings of the 26th International Conference on Neural Information Processing Systems -*
658 *Volume 2*, NIPS'12, pp. 2996–3004, Red Hook, NY, USA, 2012. Curran Associates Inc.

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701