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ABSTRACT

How can we assess the reliability of a dataset without access to ground truth? We
introduce the problem of reliability scoring for datasets collected from potentially
strategic sources. The true data are unobserved, but we see outcomes of an un-
known statistical experiment that depends on them. To benchmark reliability, we
define ground-truth—based orderings that capture how much reported data deviate
from the truth. We then propose the Gram determinant score, which measures
the volume spanned by vectors describing the empirical distribution of the ob-
served data and experiment outcomes. We show that this score preserves several
ground-truth-based reliability orderings and, uniquely up to scaling, yields the
same reliability ranking of datasets regardless of the experiment — a property we
term experiment agnosticism. Experiments on synthetic noise models, CIFAR-10
embeddings, and real employment data demonstrate that the Gram determinant
score effectively captures data quality across diverse observation processes.

1 INTRODUCTION

Reliable data can effectively inform decision-making. For example, vehicle condition and driving
behavior data help insurance companies set policies; investor’s positions guide regulators in adjust-
ing financial market rules; and during the COVID-19 pandemic, case numbers were used by gov-
ernments to allocate medical resources. Yet, such data are typically reported by people. They can be
noisy, and more importantly, strategically or maliciously distorted. Direct verification is often im-
possible or impractical. This raises a central question: how can we tell whether a dataset is reliable?
Answering this would greatly enhance the value of data-driven methods for decision-making.

Without further knowledge, this question is unresolvable. But in practice, we often have access to
data that are related to the private data in question. For instance, insurance company may use telem-
atic devices—albeit imperfect—to estimate vehicle condition; regulators can observe trading volumes
correlated with investors’ positions; and governments track COVID mortality numbers linked to true
case counts through disease fatality rates. Such auxiliary observations can provide useful informa-
tion to assess how well the reported data are consistent with the unobservable ground truth.

In this paper, we initiate the study of reliability scoring for datasets collected from potentially strate-
gic or noisy sources. Although the underlying truth remains unknown, we assume access to out-
comes of unknown statistical experiments that depend on it. Our contributions include:

e We formalize the problem of reliability scoring from observations generated by unknown exper-
iments. (section[2))

o We introduce ground-truth-based dataset reliability orderings as benchmarks for evaluating reli-
ability scores. (section[2.3))

e We propose a novel reliability measure, the Gram Determinant Score, along with its kernel
variant, which preserves several ground-truth-based dataset reliability orderings under certain
conditions. Moreover, we show that the Gram Determinant Score is, up to scaling, the unique
reliability score that produces the same dataset ranking for all experiments — a property we term
experiment agnosticism. (section )

e We analyze the limitations of reliability scoring and show that the conditions under which the
Gram Determinant Score preserves reliability orderings are nearly tight. (section

e We empirically validated the Gram Determinant Score using synthetic data, CIFAR-10 image
dataset, and employment data. (section [3))
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The Gram Determinant Score admits a geometric interpretation: it measures the volume of the
parallelepiped spanned by the joint distribution of the reported data and the experiment outcomes.
As the reported data deviate further from the truth, this volume decreases. (Figure|[T))

1.1 RELATED WORK

Early frameworks categorize data reliability into intrinsic, contextual, accessibility, and represen-
tational dimensions. (Wang & Strong, |1996}, [Priestley et al., [2023)) Our work focuses on intrinsic
reliability—the extent to which reported data match the true data—using auxiliary observations.

Our approach is inspired by information elicitation, which designs scoring mechanisms that in-
centivize truthful reporting. A key distinction is our emphasis on preserving ordinal relationships:
assigning higher scores to more reliable data. Traditional elicitation instead focuses solely on en-
suring that truthful reporting is strictly optimal among alternatives. Information elicitation has two
main settings (1) when the scoring mechanism can access the ground truth, e.g., proper scoring rules
for predictions of future observable events (Gneiting & Raftery, 2007;|Osband, 1985} |Lambert et al.}
2008 [Frongillo & Kash, 2015} |Liu & Chen, [2018); and (2) peer prediction mechanisms, which do
not have access to ground truth but rely on multiple agents’ reports (Miller et al., 2005; |Dasgupta
& Ghoshl 2013). The most relevant work is |Kong| (2024), which introduces determinant mutual in-
formation and inspires our Gram Determinant Score. We provide a more detailed comparison with
Kong| (2024) in the Appendix.

Traditional statistical approaches (Huber, [2004; [Meeker et al [2021) often assess reliability under
distributional assumptions. In contrast, our method evaluates reliability agnostic to the underlying
distribution. There are several general-purpose score that measures the stochastic relationship be-
tween random variables, e.g., K L-divergence (Kullback & Leibler, [1951), f-divergence (Csiszar,
1972), determinant (Zou & Adams| 2012} |Xu et al., 2019).But they often lack clear connections to
standard, interpretable criteria such as accuracy or data integrity.

Other related areas include learning with noisy labels (Natarajan et al.l [2013)), which typically as-
sumes that reports are corrupted by independent noise. Some works (e.g., (Liu & Guo, [2020)) relax
this by allowing unknown noise, but our setting is more general: auxiliary observations may lie in
an entirely different space. Anomaly detection (Chandola et al.,[2009) addresses distribution shifts,
but focuses on adaptive detection rather than reliability scoring. Finally, reliability theory primarily
studies system robustness to failure (Gnedenko et al.,2014]), a concept distinct from data reliability.

2 MODEL

In this section, we introduce the problem of designing data reliability scores to assess how much a
dataset deviates from its inaccessible ground truth. To benchmark reliability, we propose ground-
truth-based reliability orderings—partial orders over datasets that compare their relative deviations
from the same true dataset. The ideal goal of a reliability score is to preserve these orderings,
assigning higher scores to datasets that more faithfully reflect the true data.

2.1 BASIC SETUP

There is a single data source (an agent) who has access to a set of frue data * = (x1,...,xN) of
size N'| The agent provides reported data & = (Z1,...,%n), which can potentially be different
from x. Let X’ = [d] be the set of d possible data values. Thus, 2, € X and &,, € X for all n.

Our goal is to evaluate how reliably the reported data & reflects the true data a. Although x is unob-
served, we have access to additional observable data y = (y1, ..., yn), called observations, which
are indirectly related to «. The observation space ) may differ from &X'. We model the relationship
between y and x as an unknown, statistical experiment, represented by a column-stochastic matrix
P = (P,).cx, where each column P, is a distribution over ). Given true data ¢ = (x1,...,2n),
observations are generated according to P with y,, ~ P, independently for all n € [N]. We denote
this generation as y ~ P(x).

"2 is non-time-series data. Hence, the order of the data within the set is not important.
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For instance,  may represent patients’ true disease state (having or not having the disease), & the
diagnoses reported by a hospital to an insurance database for reimbursement, and y the results of
inexpensive blood tests or imaging biomarkers correlated with the disease. As another example, in
an image-labeling dataset, « denotes the true image labels, while & are the reported labels. The
observations y may come from encoder representations, such as those produced from contrastive
learning methods (Zbontar et al., 2021).

Having access to y and knowing that y are generated by unknown experiment P, we want to
design a reliability score S : XN x YN — R such that, if a dataset & aligns with & more
than a dataset &’ does, dataset & receives a higher reliability score in expectation than dataset &'
Ey~p@)[S(Z,y)] > Eyp@)[S(2,y)]. However, to formalize this goal, we will first need met-
rics to quantify how much reported data align with the true data. In section we describe how to
use a misreport matrix to represent the relationship between reported data and true data. Then, we
introduce four notions of ground-truth-based reliability ordering of reported datasets in section [2.3]
before returning to define the ideal goal of reliability scoring in section

2.2 REPRESENTATION OF DATASET RELATIONSHIPS

The relationship between the true dataset « and a reported dataset & can be summarized by the size
of the datasets N and a d x d-dimension misreport matrix Q where each entry Q(i, j) represents
the frequency of misreporting true value ¢ in « for value j in &:

1 N
Q(Zvj)zi 1[33n:7:75€n:j]-
v

Q@ is the joint frequency of true data and reported data. It can be further decomposed into

marginal frequency and conditional frequency. Let g (i) = + 22;1 1[x, = i] and qz(i) =

+ ZnNzl 1[Z, = i] Vi € X, the marginal frequency matrices are defined as d x d diagonal
matrices Q, Qs with g, and gz respectively as diagonal and zeros everywhere else. We then
define column-stochastic matrices Q 4|4, Q«|z for conditional frequency, where for all ¢,j € X,

Qoo (i, ) = 242522 and Qs (i, ) = 25522 Hence,

Q = (Q32Q)" and Q = Q3 Qs- (1)

These frequency matrices exist for any pairs of  and @, but Q, Qu, Q4|s, and Qz|, are not
observed because x is unknown. We introduce them to help us quantify a &’s deviation from x. In
this paper, we use Q to denote a set of misreporting matrices, and also, abusing the notation, use Q
to refer pairs of , & so that the associated misreport matrix is in Q.

Given a statistical experiment P, the matrix product PQ is a || x | X'| matrix representing the joint
distribution of observations and reported data, with element at (k, %) being Pr(y = k,Z = 4). The
matrix product PQ, is a || x |X| matrix representing the joint distribution of observations and
true data, with element at (k, ) be Pr(y = k,x = ¢). While both PQ and PQ, are unknown, &
and y are samples from distribution PQ), which are all that we can leverage in reliability scoring.

2.3 RELIABILITY ORDERINGS OF DATASETS

To compare the reliability of reported datasets relative to the true data o, some preference on relative
dataset reliability is needed. While the preference may depend on applications, we suggest three
natural strict partial orderings of reported datasets, each defined with respect to true data x.

1. Exact Match Ordering: & ~Fx, cp ' if € = @ but &' # x. Equivalently, Q, x 7 I and
Q3> = 1. This ordering picks up only complete agreement with the true data, and does not
differentiate any pair of reported datasets if neither agrees with the true data. This order captures
the notion of data integrity. (Kim & Spafford, [1994)

2. Blackwell dominant ordering: & >%,. .1 € if Q and Q' are both invertible and (row)
diagonally maximized (i.e. Q(7,7) < Q(i,%) and Q' (7, 7) < Q’(4,4%) for all ¢ and j) and there
exists a (column) stochastic matrix T' # I so that TQ 3|, = Q;am (equivalently, Q" = QT'T by
eq. ). This ordering captures that post-processing that transforms & into &’ only reduces the
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reliability or informativeness of the data. (Blackwell, |1953). In particular, this ordering ensures
that the true data ranks the highest, and uninformative random reports ranks the lowest.

3. dist ordering: Given a distance function dist : X x X — R so that dist(z, z’) = dist(z’, z),
dist(z,z) = 0 and dist(z,2") > 0if x # x’ we say & >5, & if 25:1 dist(Zn,, zn) <
ZnN:1 dist(#],, z,,). This ordering captures the coordinate-wise difference between true and
reported data. We may also consider a weaker notion, a-dist ordering with some « € (0, 1]. We
say & =i o, & if Zle dist(Zn, ) < @ 22;1 dist(Z],, ). In other words, the distance
between & and z is at least a factor of o smaller than that of ' and «, in order to rank & and &’.

A special case of dist ordering is Hamming ordering, when dist is the discrete metric
dist(i,j) = 1[i # j] forall i,j € X. We say & >F,ming @ if SN 1, # @] <
ZN 1[Z], # x,] or, equivalently, Tr(Q) > Tr(Q’). Hamming ordering counts the number of

n=1
disagreements between the true data and the reported data. (Hamming), [1950)

Blackwell dominant ordering is intentionally defined for a subset of misreport matrices: Q,Q’ €
Oreg» Which is the collection of invertible and (row) diagonally maximal matrices so that Q(%, j) <
Q(i,4) for all 7 and j. Intuitively, diagonally maximal requires the true data values dominate any
misreport in a reported dataset. Restriction to O, is necessary for Blackwell dominant ordering
to be a strict partial ordering. In appendix |B} we formally prove that all above orderings are strict
partial orders. In particular, the Blackwell ordering fails to be strict if either invertibility or diagonal
maximal of @ and Q’ is not enforced

These orderings reflect different ways of measuring the extent of misreporting, with some providing
finer distinctions between datasets than others. Formally, given a set of misreport matrices Q, partial
ordering > refines partial ordering >, on Q if Va, &, &' with associated misreport matrices Q, Q' €
Q,& +% &' = & =T &'. The following proposition shows that Blackwell dominant ordering refines
exact-match ordering, and Hamming ordering refines Blackwell dominant ordering.

Proposition 2.1 (Refinement). The reliability orderings have the following relationships:

1. Blackwell dominant ordering refines the exact match ordering on Q.
2. Hamming ordering refines the Blackwell dominant ordering on Q.
3. Forall a > o' and distance function dist, a-dist ordering refines o/ -dist ordering.

2.4 RELIABILITY SCORING

We now return to formally define the ideal goals of reliability scoring.

Definition 2.2. Given a reliability ordering = over XN, a reliability score S : XN x YV — R
preserves partial ordering = under experiment P, if for all x, &, 2’ € XN with & = &' we have

]EyNP(:v) [S(:&,y)] > Epr(w)[S(iﬁ/,y)} 2)

Given a set of experiments P, a set of misreport matrices 9, and a minimum size of reported datasets
Ny € N, we say that a reliability score preserves > under P, Q and Ny if eq. (Z) holds for all
P € P and tuples x, &, &’ of size at least Ny with & =* ' and Q, Q' € Q. We further call S
asymptotically preserves > under P, Q, if for all P € P and Q, Q' € Q there exists Ny so that S
preserve = under P for all x, &, &’ of size at least Ny with & = &’ and misreport matrices Q, Q’.

In the remainder of the paper, we study the problem of designing reliability score S(&,y) that
preserves partial orderings of interest. We refer to this as the detail-free setting, since scoring does
not rely on knowledge of @ or P. For the analysis, however, we also consider a partial-knowledge
setting, where the score can take the joint distribution PQ as input, S(PQ). This setting serves as
a technical tool: it allows us to establish impossibility results (section [3)) and to illustrate the core
ideas underlying our approach to detail-free scoring (section 4.

2 Any metric, e.g., fo-norm, satisfies the above three conditions. Additionally, a function with these proper-
ties is often referred to as a semimetric.

*Instead of Oreg, We can alternatively require (a) Q and Q' are invertible and (b) T is not a permutation
matrix (i.e. QT'T is not a permutation of columns of Q) to ensure that Blackwell dominant ordering is strict.
However, this set of conditions does not support the result in proposition 2.I|that Hamming ordering refines the
Blackwell dominant ordering.
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3 IMPOSSIBILITY RESULTS FOR RELIABILITY SCORING

We explore innate limitations of reliability scoring. These impossibility results form a foundation
for charting the feasible combinations of P and Q for reliability scoring and motivate section 4]

This section focuses on the partial knowledge setting, where the joint distribution of observations
and reported data, PQ, is assumed to be known, and provided as input to the score. Impossibility
results in this setting extend to the detail-free setting for reliability scores that rely on estimates of
PQ. In particular, the impossibility results apply to the Gram determinant score that we’ll introduce
in sectiond] We provide a more detailed discussion in the appendix.

We first introduce the class of independent experiments and a few classes of misreport matrices
that’ll be used in this paper.

® Pingep: the set of linearly independent experiments, where P € Pijngep if and only if all columns
of P are linearly independent.

® Qnonperm: the set of misreport matrices @ so that the associated Q| is neither a permutation
matrix nor an identity matrix.

e O, the set of invertible and diagonally maximal misreport matrices where Q(i, j) < Q(i,1%)
for all ¢ and j. This was also defined earlier in section 2.3]

® Qqom: the set of (row) diagonally dominant misreport matrices where 3. ., [Q(¢, j)| <
|Q(i,14)| for all 4.

e QO s: the set of (row) diagonally dominant misreport matrices where the true data are L balanced
and the Hamming distance is bounded above by N¢. True data « is L-balanced if g, (z) <
Lgg(x') forall z,2’ € X. Weuse Qp, := Q1 to denote the set of (row) diagonally dominant
misreport matrices where the true data are L balanced, with no restriction on Hamming distance.

We note that Q7,5 € Qr, C Qdom C Preg C Qnonperm for all L and 6.

Proposition 3.1. In the partial-knowledge setting, it is sometimes impossible for any reliability
score to preserve reliability orderings. In particular,

1. Exact match ordering: There exists a P so that no score preserves the exact match ordering
under P and Qyonperm. Additionally, for all Q 2 Q,onperm, N0 score preserves the exact match
ordering on Pingep and Q.

2. Blackwell dominant ordering: For any P, if there exists P € P and a rational vector v # 0 so
that Pv = 0, no score preserves the Blackwell ordering on P and Q.

3. Hamming and dist orderings: No score preserves the Hamming ordering under Pinqep and Qgom.
Additionally, no score preserves the dist ordering under Pinqep and Qgom for any dist.

The first part of proposition[3.T|establishes that no score can respect the exact-match reliability order-
ing across all experiment sets. The non-permutation condition is needed here to exclude degenerate
cases such as label permutations. By proposition [2.1] these impossibility results also extend to the
other orderings. The second part further shows that even a single linearly dependent experiment is
enough to make preservation of the Blackwell ordering impossible. We therefore focus on the class
of linearly independent experiments, Pindep. Finally, the third part shows that no reliability score
can preserve the Hamming or any other dist ordering, even under diagonally dominant misreport
matrices Qgom. In section E], we thus further restrict our attention to Q5.

4 GRAM DETERMINANT RELIABILITY SCORE

Our idea for measuring data reliability is to leverage the diversity of observations. If two reports
share the same true labels, their corresponding observations come from the same distribution. Using
this idea, we introduce the Gram determinant score.

Definition 4.1 (Gram determinant score). Given finite sets X = [d] and ), and an experiment
P, we define Gram matrix of labels as G = PTP € RIXXIXl where G(x,2') = (P,, Py) =
Pry~p, y~p, [y = y'|. Moreover, given x and x, we define the Gram matrix of reports & as

G = (PQ)T(PQ) € RI¥XIXl where G(x,2') := = > nmtiin =i, =z P P,/ ). The Gram
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determinant score is

T':=det (é) = Z sgn(o ﬁ é (i,0( 3)

cesymm(d)

where symm/(d) is the set of all permutations on [d] and sgn the sign function of permutations. We
further denote T'(PQ) := T to highlight that the Gram determinant score takes PQ as input.

Before proving properties of the Gram determinant score, we first
present some intuitions. G(z, z') corresponds to the probability that
true data  and x’ have the same observation. The Gram matrix of
reports
B G=Q"PTPQ =Q'GQ. (4)
||, Moreover, det(G) = det((PQ)TPQ) is the Gram determinant of
SN PQ < RPI¥I¥I which is the square of the volume of the paral-
lelepiped spanned by the column vectors of PQ (Horn & John-
sonl 2012), as illustrated in fig. The Gram determinant score
of true data, I'(PQ), is the squared volume of the blue paral-
lelepiped spanned by column vectors in PQg, vol(PQgz)?. As
IN'PQ) = T(PQx m‘m) = I'(PQxQ4|s), the Gram determi-
nant score of reported data is the squared volume of the red par-
allelepiped, vol(PQQO|m) which is smaller than that of the true data because Q|4 is column
stochastic and each column of PQme|m is a convex combination of columns of PQ,. A symbolic
example is presented in appendix [D.1]

Figure 1: Gram determinant
scores and parallelepipeds.

In the remainder of this section, we first show that the Gram determinant score preserves several reli-
ability orderings and is invariant under experiments (section4.I). We then introduce two estimators
of the Gram determinant score for the detail-free setting (section4.2). Finally, we introduce kernels
to generalize Gram determinant score to handle non-finite observation spaces ) (section4.3)).

4.1 PRESERVING RELIABILITY ORDERINGS AND INVARIANCE

We show that Gram determinant reliability score preserves the exact, the Blackwell dominant, and
the approximated Hamming (or dist) ordering.

Theorem 4.2. Given X = [d), a finite set ), and L > 1, the Gram determinant score in deﬁnition
preserves

1. exact match ordering under Pingep and Quonperms
2. Blackwell ordering under Pi,qep and Qe and

max, /¢y dist(z,z)

3. 4LA -dist ordering under Pinaep and Qy, 1 /641,242 for all dist with A =

ming /¢ » dist(z,2’)"

Theorem [4.2] covers any linearly independent experiment—required by the impossibilities in sec-
tion [3l—and places minimal assumptions on misreports, nearly matching our impossibility results.
In particular, propositions and show: 1) no score preserves exact ordering for any superset
of Qnonperm; 2) the Blackwell relation is only a strict partial order on Qyeg; and 3) no score preserves
Hamming ordering or any other dist ordering on Qgoy. The third part of theorem implies the
score preserves ﬁ—Hamming ordering, because the aspect ratio for Hamming distance is A = 1.

The key idea of the proof is that the determinant has the multiplicative property and eq. (4) then
allows us to decouple the misreport matrix @ from the quality of the experiment P. Hence, we
only need to focus on misreport matrices as the Gram matrix of labels is positive definite PTP,
det(PTP) > 0, for all P € Pinqep. This observation may provide a recipe for considering other
reliability orderings in the Gram determinant score. The formal proof is deferred to the appendix.

0.1 0.1 0.7 03 0 0 0.1 0.1 0.7
*Figure(ljluses P= (0.9 0.1 02],Qs=| 0 03 0 |,and Qz= (09 01 02].
0 08 0.1 0 0 04 0 08 0.1
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We now establish an invariance principle: the induced ranking of datasets should be invariant to
the unknown experiment, to relabelings, and to priors. The latter two are straightforward by the
multiplicative property of Gram determinant. For the first one, we show that the Gram determinant
is experiment-agnostic so that the reliability ranking of a dataset & should depend only on & and
the true data = (defined in eq. (5)). Thus the choice of experiment does not affect which reported
dataset is deemed more reliable. Moreover, we show that the Gram determinant score is the unique
experiment agnostic score up to scaling under mild coherence assumption.

Proposition 4.3. Given X = [d] and a finite set ), the Gram determinant score in definition 4.1|is
experiment agnostic so that for all Q, Q' € GLq general linear group and P € Piygep,

I(Q) > I(Q) = I(PQ) > I(PQ). 5)

Moreover, if there exists a continuous function S : GLg — R with a continuous ¢ : R~y — R+
so that for all Q,Q', P € GLgy, andt > 0, eq. holds and S(tQ) = ¢(t)S(Q), there exists
a>0,3+#0sothat S(Q) = adet(QTQ).

4.2 ESTIMATORS FOR GRAM DETERMINANT SCORES

We introduce two estimators for the Gram determinant score in the detail-free setting: plug-in and
stratified matching estimator. We defer the second estimator and proofs to the appendix.

Definition 4.4 (plug-in Gram determinant reliability score). Given & and y of size N, define G c
R4 5o that for all x,7’ € X G(z,2") = ﬁ don €[N, s’ 1y, = yn]. The plug-in

Gram determinant reliability score is then defined as S(&,y) = det(G).

The plug-in estimator first estimates G using empirical distribution between reports & and obser-
vations y and computes the determinants of G. Note that the probability of y,, = vy, is simply
the inner product of P, and P, , if n # n'. Propositio shows that the plug-in estimator
asymptotically preserves all reliability orderings in theorem 4.2

Proposition 4.5. Given X = [d|, finite set ) and L > 1, the plug-in Gram determinant score in
definition d.4) asymptotically preserves reliability orderings in theorem .2}

4.3 GRAM DETERMINANT SCORE WITH KERNELS

The Gram determinant score in definition [f.1] has two limitations. First, it cannot handle continuous
or general observation space ). Second, it ignores any intrinsic structure in the observation space,
e.g., prediction or feature embedding. We extend the Gram determinant score with kernels. We
provide examples of different kernels that can be used in practice, together with a reliability-ordering
result analogous to theorem[4.2] in appendix [F

Definition 4.6 (kernelized Gram determinant score). Given a finite set X, an experiment P, and
Y with a kernel K :' Y x Y — R, we define Gram matrix of labels as G € Raxd where for all
r,2' € X, Gg(x,2") = (Py, Pu)k = Byp, y~pr, [K(y,y')]. Given x and &, we define the

Gram matrix of reports as Gg € R where G (x,2') = 7= Donntiineig s —pt \Lons P, ) K

Finally, we define the Gram determinant score with kernel K as ' := det (G’ K).

5 EXPERIMENTS

We evaluate the Gram determinant score in three parts: (Exp. 1) synthetic categorical data with
six label-manipulation policies; (Exp. 2) real image data (CIFAR-10 embeddings) with the same
six manipulations using the kernelized score; (Exp. 3) real employment data, treating CES vintage
revisions as naturally occurring manipulations.

Experiment 1: Gram Determinant Score on Synthetic Data In this experiment, we evaluate
how well the Gram determinant score captures label reliability under categorical observations, as
summarized in fig.[2| Specifically, we first generate a ground-truth dataset (x, y) of size N = 4000
with d = 5. Each label x, is drawn uniformly from 1,...,d for k& € [N], and each outcome yj, is
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sampled from the distribution P(- | x;,), where the experiment distribution matrix P € [0, 1]4*4
is constructed by sampling P(i,j) ~ Uniform(0, 1) independently and normalizing rows to be
stochastic. The ground-truth dataset (x, y) is fixed across all trials. To model varying reliability, for
each p € {0.00,0.05,...,0.50} we corrupt the labels according to

T

_ with probability 1 — p,
k:{mk with probability 1 — p ©)

Zy, with probability p,

where Zy, ~ (- | x1) is independently drawn from a corruption policy 7; in our experiments, 7 is
instantiated by one of the six manipulations below.

e Uniformly random: Z;, ~ Uniform{1,...,d}.
e Asym neighbor: with probability 0.85 set Z;, = min{xy+1, d}, otherwise sample Zj, uniformly
from {1,...,d} \ {zx}.

. (Pz, ., Pj.)
e Row-sim 2nd: 7). = arg max; e
k= A MKz TE, TR,

the label with closest observation distribution.
e Merge 0/1 — 0: if z, € {1, 2} then set Z;, = 1; otherwise Zy, = x.
e Group up/down: Z;, = min{xy+1, d} with probability 1/2, or Z, = max{x;—1, 1} otherwise.

e Mixed: sample Z; ~  Tmixed(:|zr) where each row mpixeda(i,:) is drawn from
Dirichlet(a;(1), ..., o;(d)) with

az(j) = aoff+adiag1{j = Z‘}‘i’)\loc €xp (7diString(ivj)) +)\up exp (7(3 71)) +)‘def1{j = jO}v

diStying (¢, j) = min(|¢ — j|, d — |i — j]), and jo a salient default label; rows are normalized to
be stochastic, where aofr = 0.2, ogiag = 6, Aloc = 1.0, Ayp = 0.4, = 0.5, Ager = 0.6, jo = 1.

Fix a ground-truth dataset (x,y). For each manipulation and corruption level p €
{0.0,0.1,...,0.5}, in figs. [24] to we run M = 100 independent trials, producing corrupted
reports ™. In every trial, we compute 1) the plug-in Gram determinant reliability score in def-
inition 2) the Hamming error ZnN:1 1z, # 217], and 3) the {5 error || — £™||2. We then
report the mean and standard deviation of each metric across the M trials. In fig. 2a] the plug-in
Gram-determinant score falls steadily as the corruption probability p increases. Figures [2b]and
show that higher scores correspond to lower Hamming error and smaller /5 deviation, respectively,
demonstrating a clear negative correlation between our score and these conventional error measures
regardless of the manipulation policy (i.e., across all corruption schemes considered).

In fig. we vary data sizes N € {250,500, ...,4000} and generate 1000 datasets for each N.
In each dataset and corruption level p € {0.0,0.1,...,0.5}, we use the uniform random manipu-
lation strategy, and compute the plug-in Gram determinant, Hamming-distance error, and ¢ error,
then rank the six corrupted reports. We report the proportion of datasets in which the reversed
Gram determinant ranking matches the orderings induced by p, Hamming distance, and the ¢5 er-
rorE| Figure [2d| shows that the fraction of rankings rises as the sample size grows, confirming the
Gram-determinant score being a consistent indicator of true label reliability.

Accuracy Across Sample Sizes

p vs score Hamming vs score L2 vs score

= p vs Flipped Scores I
m= Hamming vs Flipped Scores
W12 vs Flipped Scores

05 ~+®~ Random

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 250 500 1000 2000 4000
score le-14 score le-14 score le-14 sample Size (N)

(a) score vs. p (b) Hamming vs. score (c) £ norm vs. score (d) matched rankings

Figure 2: Gram determinant reliability score on categorical synthetic data.

Under random guessing, any ranking has probability 1/6! ~ 0.00139 of agreement. See appendix for
details.
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Experiment 2: Gram Determinant Score with Kernels on Image Data We evaluate the Gram
determinant score with continuous observations by using image embeddings. We train a SimCLR
model (Chen et al., 2020) with a ResNet-18 backbone and an 8-dimensional projection head on
CIFAR-10 (Krizhevsky et al.l 2009). The model is optimized for 60 epochs using the InfoNCE loss
with batch size B = 256, temperature 7 = 0.5, and the Adam optimizer at learning rate 5 x 1073,
After training, we extract normalized projections z;, € R® for each of the N = 10000 test images,
denote the true labels by = € {0,...,9}", and the embeddings by y € RV 8,

To simulate corrupted reports, we use the same six corruption policies with p €
{0.00,0.04,...,0.40}. As Y = R® is continuous, we use plug-in Gram determinant with kernel
K(y,y") = (y,y’) as the score. For each p and policy we repeat the procedure over M = 100
random trials to obtain the mean and standard error. As shown in figs. [3a]to[3c] the score increases
monotonically with p across all six manipulations, and higher score is associated with lower Ham-
ming error and smaller 5 deviation, mirroring the trends observed in categorical setting.

Employment Data Reliability

7
Hamming distance vs score L2 norm vs score x10

ous p vs score 100
040 2000 \\'\ "
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Figure 3: Gram determinant reliability results: (a)—(c) image—label experiments under six manipu-
lation policies; (d) reliability of employment data vintages relative to monthly change withheld tax
series.

Experiment 3: Gram Determinant Score on Real-World Employment Data We evaluate three
vintages of the CES total nonfarm employment series (not seasonally adjusted) from Oct 2005-Feb
2023, using the CES vintage dataset (U.S. Bureau of Labor Statistics| [2025), and take as external
y the monthly changes in Withheld Income & Employment Taxes from Treasury deposits (U.S.
Department of the Treasury, Bureau of the Fiscal Service, [2025)). For each month we use: 1) first
release: initial estimate, published the next month; 2) one-month revision: first revision, one month
later; 3) final value: last available vintage including benchmark revisions. We discretize month-to-
month differences of x,y into 4 quantile buckets and compute Gram determinant scores with the
plug-in estimator. Figure [3d|shows that revisions substantially improve reliability according to our
score, with the final series most aligned with fiscal benchmarks.

6 CONCLUSION

We introduce the Gram determinant score — a metric that intuitively measures the volume of class-
conditional observation distributions. Under mild independence assumptions, it exactly preserves
exact-match and Blackwell orderings and closely approximates Hamming orderings. We develop
plug-in and stratified-matching estimators with finite-sample guarantees and extend the method to
continuous or structured spaces via kernel embeddings. Experiments on synthetic data, CIFAR-10
embeddings, and employment data demonstrated its effectiveness.

Looking ahead, it’s interesting to design scalable estimators for high-dimensional or continuous
label domains using dimensionality-reduction (e.g., PCA, DPP sampling) and learned encoders.
Moreover, we conjecture that other singular-value—based criteria can also serve as reliability scores.
Appendix [H]briefly discusses additional candidates beyond the Gram determinant score and reports
synthetic-data experiments evaluating them. However, formal guarantees remain to be established;
each candidate will require tailored analysis to show it preserves the relevant reliability orderings.
In real-world settings, the Gram determinant score is applicable wherever labels are noisy or ma-
nipulated — for example, by detecting incoherent star ratings in product reviews — and could help
platforms like Amazon and Yelp enhance consumer protection.
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