Under review as a conference paper at ICLR 2026

NoT ALL BITS ARE EQUAL: HOW MODEL SCALE
CHANGES MEMORY-OPTIMAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

While 4-bit quantization has emerged as a memory-optimal choice for non-
reasoning models and zero-shot tasks across scales, we show that this universal
prescription fails for reasoning models, where KV cache rather than model size
can dominate memory. Through systematic experiments on mathematical, code
generation, and knowledge-intensive reasoning tasks, we find a scale-dependent
trade-off: models with an effective size below 8-bit 4B parameters achieve bet-
ter accuracy by allocating memory to larger weights, rather than longer genera-
tion, while larger models benefit from the opposite strategy. This scale thresh-
old also determines when parallel scaling becomes memory-efficient and whether
KV cache eviction outperforms KV quantization. Our findings show that mem-
ory optimization for LLMs cannot be scale-agnostic, while providing principled
guidelines: for small reasoning models, prioritize model capacity over test-time
compute, while for large ones, maximize test-time compute. Our results suggest
that optimizing reasoning models for deployment requires fundamentally different
strategies than those established for non-reasoning ones.

AIME25 — Total Memory vs. Accuracy (Qwen3)

328 i
e A f i

701

8B A
4B

1.7B
0.6B

60 1

(%3
(=}
L

N
=1
L

16-bit
8-bit
4-bit

H>e

Accuracy (%)

e 2k tokens
. 30k tokens

%)
=1
L

i 5 10 50
Total Memory (Weight + KV Cache) [GB]

Figure 1: Memory vs. Accuracy for serial test-time scaling on AIME25. The plot illustrates the
trade-off between pass@1 accuracy and total memory (weight + KV cache) for the Qwen3 family.
Model weights are quantized to 8-/4-bit using GPTQ. Along each curve, the KV cache grows as
the generation length is increased via budget forcing. For models effectively smaller than an 8-bit
4B, increasing the token budget to saturation is memory-inefficient. Furthermore, for mathematical
reasoning, higher weight precision (16-/8-bit) proves more memory-efficient than 4-bit.

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Prior memory—performance trade-off studies on Large Language Models (LLMs) for non-reasoning
models have focused mostly on compressing model weights, since the model weight generally con-
sumes far more GPU memory than the Key-Value (KV) cache memory (Dettmers & Zettlemoyer,
2023} [Frantar et al. 2022} [Lin et al.,|2024). Modern reasoning models, however, generate substan-
tially more tokens, causing the proportionally increasing KV cache to become a significant bottle-
neck. For instance, a Qwen3-4B model at 4-bit weights occupies 2.49 GB, but its KV cache for a
32k-token generation requires 4.42 GB (=~ 1.8 the weights). With the KV cache becoming a dom-
inant component of memory, it is unclear whether the results established for non-reasoning models
still hold for long-generation reasoning tasks.

In this work, we aim to investigate the general principles of memory compression for reasoning
models. In addition to the conventional factors of model size and weight precision, our analysis in-
corporates three other factors that distinctly affect memory—accuracy trade-offs to reasoning models:
generation length, parallel scaling, and KV cache compression. Overall, we ask the question:

Under a fixed memory budget, how should one navigate the trade-offs between model size, weight
precision, token budget, sample size for parallel scaling, and KV cache compression
to maximize performance for reasoning models?

We conduct an empirical study mainly focusing on the Qwen3 model family (0.6B to 32B) (Yang
et al.| [2025) across four benchmarks: AIME25, GPQA-Diamond, LiveCodeBench, and MATHS500.
Furthermore, we evaluate the DeepSeek-R1-Distill (Guo et al. |2025) and OpenReasoning-
Nemotron (Majumdar et al.l |2025) reasoning model families to verify that our main findings
from Qwen3 generalize beyond a single model family. Our investigation spans over 1,700 dif-
ferent scenarios, exploring 4-bit and 8-bit GPTQ weight quantization (Frantar et al., [2022), rea-
soning token budgets from 2k to 30k, parallel scaling via majority voting with up to 16 sam-
ples, and two approaches to KV cache compression: eviction, using R-KV (Cai et al.| [2025) and
StreamingLLM (Xiao et al.,|2023b)), and quantization with HQQ (Badri & Shaji, [2023)). While our
findings do not provide specific prescriptions for all tasks or models, we provide general principles
to consider for memory-efficient reasoning models with minimal loss of accuracy.

Our contributions. In Section[d] we investigate how to allocate memory between model weights
and the KV cache under serial test-time scaling. For example, which will achieve higher accuracy:
a 32B 8-bit LLM with less KV cache (i.e., less test-time compute), or a 32B 4-bit LLM with more
KV cache? We find that there is no optimal strategy that is universal across scale: for models with
effective size (parameters X bits per weight) below 8-bit 4B, allocating more memory to model
weights yields larger gains, whereas above this threshold, memory is better spent increasing the
test-time budget until performance saturates.

We also discover that the choice of weight precision depends on the nature of the task. For
knowledge-intensive reasoning, 4-bit weight quantization is broadly memory-optimal, consistent
with established findings on the effectiveness of 4-bit or lower precision for zero-shot, non-reasoning
models (Dettmers & Zettlemoyer, 2023} [Frantar et al., 2022} (Chee et al., [2023). For mathematical
reasoning and code generation tasks, however, the higher fidelity of 8 or 16-bit model weights with
smaller KV cache often provides stronger performance, suggesting that intricate computational tasks
are more sensitive to loss in precision.

Orthogonal to longer generations, increasing the number of generations can yield substantial
gains (Brown et al., 2024), yet its memory efficiency remains under-explored. Parallel scaling via
majority voting on top of serial scaling introduces another trade-off: a larger KV cache propor-
tional to group size for higher accuracy. This strategy is only more memory-efficient than serial
scaling for models with an effective size at or above 8-bit 4B. Interestingly, for such models, the
memory-optimal group size also increases with the total memory budget. Moreover, we show that
using an external verifier such as Process Reward Model (PRM) is memory-inefficient compared to
self-contained majority voting.

In Section[5] we investigate how KV cache compression affects the memory—accuracy trade-off by
considering both KV cache eviction and quantization methods. Across model sizes and weight pre-
cisions, both eviction and quantization advance their Pareto frontiers beyond the baseline without

Under review as a conference paper at ICLR 2026

cache compression. The choice of compression method should be dictated by effective size: evic-
tion offers a better memory trade-off for small models (effective size below 8-bit 4B), while both
strategies are competitive for larger models.

Overall, the memory-optimal strategy for reasoning models is not universal, but is instead mainly
governed by the model’s effective size. We summarize our main empirical findings as follows:

1. For models effectively smaller than 8-bit 4B, it is more memory-efficient to allocate mem-
ory to larger weights than to longer generations, while larger models benefit more from
longer generations.

2. 4-bit weights are broadly memory-optimal for knowledge-intensive tasks, while 8-bit or
16-bit weights are more memory-efficient for mathematical reasoning and code generation.

3. Parallel scaling only improves the memory—accuracy trade-off for models effectively larger
than 8-bit 4B. The memory-optimal group size increases with the memory budget.

4. Weight quantization alone is not sufficient for memory-optimal reasoning; compressing the
KV cache leads to more memory-efficient reasoning.

5. KV cache eviction provides a better memory—accuracy trade-off than KV cache quantiza-
tion for models with an effective size smaller than an 8-bit 4B model.

2 BACKGROUND

Weight-only quantization. Weight-only post-training quantization replaces full-precision
weights with low-bit representations without retraining, reducing memory usage. Weight-only quan-
tization allows lower bit-widths compared with weight activation quantization, as it is more robust
to quantization error (Yao et al.| 2023)). However, weight-only quantization requires dequantization
before multiplying with activations, so it does not reduce computational cost during inference. Any
speed-up instead comes from reduced memory movement. In this work, we adopt GPTQ (Frantar
et al.,[2022)), a weight-only quantization method that minimizes layer-wise quantization error using a
small calibration set, updating weights using inverse-Hessian information. We additionally replicate
key experiments using AWQ (Lin et al., 2024) and FP8 (Micikevicius et al.,[2022) to verify that our
conclusions do not depend on a specific quantization scheme.

KYV cache quantization. KV cache quantization stores key and value tensors at reduced precision
to lower memory footprint and memory bandwidth during decoding. Unlike weight-only quantiza-
tion, KV quantization is applied online at inference. During prefill, the KV tensors for the entire
input context are quantized and cached in low precision. During decode, the cached tensors are
dequantized on the fly for attention computations. Prior works conventionally maintain a small
full-precision buffer for the most recent tokens, appending new key and value tensors to this buffer
during decoding. In this work, we use per-channel symmetric quantization of both keys and values
with an HQQ backend (Badri & Shayji, 2023). HQQ is a fast, calibration-free quantization method,
making it particularly well-suited for online KV cache quantization.

KYV cache eviction. On the other hand, KV cache eviction has also emerged as a critical optimiza-
tion strategy, reducing KV cache size and the cost of attention computation. Specifically for reason-
ing models, we consider dynamic eviction policies that continuously update the KV cache during
decoding. Early work, such as Streamingl.LM (Xiao et al.,|2023b), employs a sliding-window mech-
anism that preserves the most recent key and value tensors, in addition to the initial sequence tokens
known as the attention sink. More recently, R-KV (Cai et al.| [2025) proposes redundancy-aware
selection for reasoning models: it estimates token importance and redundancy during decoding and
jointly selects non-redundant, informative tokens to retain, reporting near-baseline accuracy with a
small fraction of the KV cache. In Section [5] we study how these eviction policies, together with
KV cache quantization, shift the trade-off frontiers.

Test-time scaling. We scope this work to test-time scaling methods that do not rely on exter-
nal models such as verifiers or process reward models. Reasoning models are typically trained to
produce extended chain-of-thought, continuing generation with planning and reflection to improve
performance (Guo et al.l 2025} [Jaech et al., 2024; |Yang et al., 2025). We refer to this as serial

Under review as a conference paper at ICLR 2026

scaling. Muennighoff et al.| (2025)) introduces budget forcing to scale serial responses beyond the
model’s natural length for higher accuracy. When the model attempts to stop, a short cue is appended
to continue decoding to a specified token budget. Another line of work, parallel scaling, generates
multiple independent reasoning trajectories (Brown et al.| 2024). In its simplest form, without any
external model, majority voting selects the final answer as the most frequent among the indepen-
dently sampled outputs (Wang et al.,[2022). Further related work is discussed in Appendix [Al

3 EXPERIMENTAL SETUP

Given the practical challenge of balancing performance against memory usage, we now formalize
the problem of selecting an optimal configuration under a fixed memory budget. Specifically, we
solve the following selection problem

arg max Acct(N,PW,ka,T,G) s.t. Chem < Bmem,
(N, Pw, Ty, T, G)

Here, configurations (N, Py, 7y, T, G) specify the number of parameters, weight precision, KV
strategy (quantization or eviction), test-time token budget, and sampling group size (G' > 1 indicates
multiple samples for majority voting), respectively. Ciem represents the total memory cost, and
Bem is the specified memory budget.

The memory cost is given by
C'mem = Weights(N; PW) + Mkv (N, Ty y T7 G)

Here M yeights is the memory footprint of the weights, roughly proportional to N - Py,. Note that
throughout the paper, we use model size to refer to the number of parameters N and effective size
or scale for the memory footprint of the weights, Myeights. My is KV cache memory, which is
roughly proportional to NV, G, and T, except with ., = eviction, where the cost becomes constant
beyond a certain token budget. Please refer to Appendix [B]for the exact memory cost equations and
model-specific values.

Models. We experiment with the Qwen3 model family (Yang et al.l 2025), which spans from
0.6B to 32B parameters, offering a wide range of model sizes and thus making it well-suited for a
fine-grained systematic study across scales. We additionally evaluate the DeepSeek-R1-Distill (Guo
et al., [2025)) and OpenReasoning-Nemotron (Majumdar et al., [2025)) reasoning model families to
test whether our findings generalize beyond Qwen3.

Tasks. Experiments are conducted on challenging benchmarks representing complementary diffi-
culty profiles. AIME25 (AIME| 2025)) is a competition-level mathematical benchmark that stresses
multi-step reasoning, and MATHS500 (Lightman et al., 2023)) extends this to a larger, more diverse
math set. In contrast, GPQA-Diamond (Rein et al., |2024) emphasizes scientific knowledge and in-
tegrated reasoning across domains such as chemistry, biology, and physics (L1 et al., |2025b)), while
LiveCodeBench (Jain et al.,[2024) evaluates reasoning in code generation.

Inference details. Unless otherwise specified, we report accuracy averaged over 32 genera-
tions per instance and sample with temperature 0.6. Following [Muennighoff et al.| (2025), for
serial scaling with budget forcing, if generation terminates earlier than the desired token bud-
get, we replace the end-of-sequence token with the prompt Wait and continue decoding until
the target budget is reached. When the desired budget is met, we inject the prompt *+Final
Answer**\n\\boxed{. We evaluate token budgets from 2k to 30k in 4k increments. We plan to
release our code publicly.

4 TEST-TIME SCALING WITH WEIGHT-ONLY QUANTIZATION

When aiming for the best performance under limited memory, how should memory be allocated
between model weights and KV cache? Additionally, when allocating space for model weights, is it
better to use more parameters at lower precision or fewer parameters at higher precision?

Under review as a conference paper at ICLR 2026

To answer these questions, we study test-time scaling across different model sizes (V) and weight
precisions (P € {4,8,16}) by varying the test-time token budget (T"). We use GPTQ to quantize
models into 4-bit and 8-bit precisions. For this analysis, we fix 7y, to keep all cache entries (no
eviction, full precision) and first present results for a sampling group size of G = 1. We later
discuss parallel scaling with G > 1 and other 7, policies.

@ Pareto-Optimal Generation Length (b) Pareto-Optimal Effective Model Size
30k A GA @ [} E [)
- EA A ANGO <) ®
o
S = A A o N at
2 20k 20!
2 Am A 5 10 (o e 32B
aa] 3 ® 14B
=} A A B A JAR% 2
) = ® 8B
% 10k ADAMDN L AAAgED:D ® 16-bit 4B
= g o m A 8-bit 1.7B
a4 S0P Al " 4bit 0.6B
O A m
1 5 10 50 1 5 10 50
Total Memory [GB] Total Memory [GB]

Figure 2: Composition of Pareto-optimal configurations (AIME25, Qwen3). The token budget
(a) and effective model size (b) are plotted against the total memory budget for configurations on
the Pareto frontier from Figure [Tl The plots illustrate a strategic shift: at lower memory budgets
(<10 GB), increasing effective model size is memory-efficient, whereas at higher budgets, increas-
ing the token budget becomes the dominant strategy for improving performance.

Figure [I] reveals the Pareto frontier for accuracy versus total memory under serial scaling with a
full-precision KV cache. Analyzing the configurations that lie on this frontier provides practical
recommendations for optimizing model selection, weight precision, and test-time budgets within
fixed memory constraints:

For models effectively smaller than 8-bit 4B, memory is better spent on increasing the effective
model size rather than increasing the test-time budget until saturation. While extending the
generation budget of a small model is often viewed as a way to trade higher latency for lower
memory usage compared to using a large model, our analysis reveals this is a false economy. In
fact, for models effectively smaller than 8-bit 4B, this strategy is often suboptimal in total memory.
Figure [2] shows that for memory budgets below 8 GB, the Pareto frontier is advanced primarily
by increasing model size, not the token budget. For instance, the 1.7B model in 8-bit with a 6k
token budget outperforms the 0.6B model in 8-bit with an 18k token budget. Similarly, the 4B
model in 4-bit with a 10k token budget surpasses the 1.7B model in 8-bit with an 18k token budget,
demonstrating that choosing a model with a larger effective size is better under a similar memory
budget. As our latency analysis confirms (Appendix [C.I)), these configurations with larger effective
sizes are also faster because end-to-end latency is dominated by the token budget, making the choice
to increase the model’s effective size strictly dominant.

For large models with an effective size at or above 8-bit 4B, memory is more efficiently used
when increasing the test-time budget until performance saturates. In direct contrast to the
strategy for small models, extending the generation budget is a more memory-efficient way to im-
prove accuracy for large models. This strategic shift is clearly illustrated in Figure [2] where for
memory budgets larger than 10 GB, the best-performing configurations on the Pareto frontier con-
sistently feature token budgets above 20k. In this regime, increasing the token budget becomes the
dominant method for improving accuracy.

We further confirm that our conclusions about weight precision are not tied to GPTQ. In Ap-
pendix [C.2] we show that AWQ and FP8 weight quantization yield nearly identical memory—
accuracy curves to GPTQ (Figure [I2)), and that the observed trends are robust across quantization
schemes. Separately, while the above analysis assumes a scenario where each inference instance
uses the entire model and KV cache, in practice, model weights can be amortized across multiple
concurrent generations, fundamentally changing the memory dynamics; Appendix [C.3]analyzes this
setting under different theoretical batch sizes.

Under review as a conference paper at ICLR 2026

The memory-efficient allocation strategy between model weights and KV cache is scale-
dependent. For models effectively smaller than 8-bit 4B, memory is more efficiently allo-
cated to increasing the effective model size. For models at or above this threshold, it becomes
more memory-efficient to increase the test-time budget until performance saturates.

0 LiveCodeBench — Total Memory vs. Accuracy

® 4B
4B
1.7B
0.6B

60
S
Za0| © 16bit
5 A 8-bit
38 H 4-bit
<

20

| |
0
1 5 10

Total Memory (Weights + KV Cache) [GB]

Figure 3: Memory vs. Accuracy on Live-
CodeBench (Qwen3). Higher precision (8-/16-
bit) remains more memory-efficient than 4-bit.
The memory-optimal strategy shifts from favor-

GPQA-Diamond — Total Memory vs. Accuracy

60 ® 4B
e 8B oy s [$@
4B .

=50 1.7B v
s 0.6B [}
>
3
5 40 ® 16-bit .
3 A 8-bit 4 It
< B 4-bit]

30

20

1 5 10
Total Memory (Weight + KV Cache) [GB]
Figure 4: Memory vs. Accuracy on

GPQA-Diamond (Qwen3). Unlike mathe-
matical reasoning and code generation, 4-bit
weights remain broadly memory-optimal for

ing model weights at small budgets to longer

this knowledge-intensive task across memory
generations at larger budgets.

budgets.

The memory-optimal weight precision is task- and size-dependent. Our findings show that
for mathematical reasoning tasks, 4-bit weight quantization is consistently memory-inefficient. On
the AIME25 benchmark, 8-bit is memory-optimal for small models (N € {0.6B,1.7B}), as the
performance gains from reallocating memory saved by 4-bit quantization to a larger token budget
are insufficient to compensate for the accuracy loss. This inefficiency of 4-bit persists at larger N,
where 8-bit and 16-bit configurations achieve higher accuracy at comparable memory. This is shown
in Figure [2[(b), where 8-bit or 16-bit weights are most often memory-optimal along the frontier
for memory budgets larger than 6 GB. Notably, the 8B model in 8-bit consistently outperforms
the 14B model in 4-bit (Figure [T)), and the 32B model in 4-bit is strictly dominated by both the
14B model in 8-bit and the 8B model in 16-bit. Such findings are in direct contrast to |Dettmers
& Zettlemoyer] (2023). LiveCodeBench exhibits a similar preference for higher weight precision
over 4-bit (Figure [3), and we refer to Appendix [C.4]for a detailed analysis of LiveCodeBench and
MATHS500. However, we do find that for knowledge-intensive tasks, 4-bit quantization is broadly
memory-optimal. As shown in Figure [for GPQA-Diamond, the frontier shifts to favor lower
precision. This suggests that different task types place different demands on model parameters.
Mathematical reasoning may rely on numerical precision within the weights, which is damaged by
aggressive 4-bit quantization. On the other hand, knowledge-intensive tasks prioritize maximizing
the number of parameters to increase knowledge capacity, making 4-bit large models more memory-
efficient.

For knowledge-intensive tasks, 4-bit is broadly memory-optimal. For mathematical reason-
ing and code generation tasks, higher precision is required. 8-bit is memory-optimal for small

models (N € {0.6B,1.7B}), while both 8-bit and 16-bit are competitive at larger numbers
of parameters.

Under review as a conference paper at ICLR 2026

In addition to serial scaling by increasing the token budget, we can introduce a parallel scaling axis
by increasing the sampling group size (G). Assuming a batched inference setting, the KV cache
grows with (G, in exchange for higher accuracy. This raises another key question:

When is it more memory-efficient to allocate memory to parallel samples, versus allocating it to a
larger effective model size or a longer token budget?

AIME2S5 — Parallel Scaling Pareto (Qwen3) AIME2S5 — Parallel Scaling Pareto (R1-Distill)

80 . . - . .
Sampling Group Size S, //, 60 Sampling Group Size
1 4 8 12 16 = 1 4 8 12 16 7
== == == = Serial Pareto /. == == === Serial Pareto /
< e 50
< 60 <
> >
g g
E E 40 /
(5} [5} 7B 16-bit
210 < 7B81| 14B 16-bit
30 7B4bn IABSbl
14B 4-bit
20 20 J 5B 8)”
10 'SB“" 1.5B 16-bit
0 0 1 2 [2
10 10 10 10 10

Total Memory (Weights + KV Cache) [GB]

Figure 5: Effect of parallel scaling on the
Pareto frontier (Qwen3). Each colored curve
represents the Pareto frontier for a specific
model size and weight precision, obtained by
increasing the sampling group size, G. Pareto
frontier for serial scaling (G = 1) across all
models is shown as the dotted line. Parallel scal-

Total Memory (Weights + KV Cache) [GB]

Figure 6: Effect of parallel scaling on the
Pareto frontier (DeepSeek-R1-Distill). A
similar scale-dependent pattern holds for
DeepSeek-R1-Distill: parallel scaling is
memory-inefficient for small models but im-
proves the Pareto frontier for sufficiently large
ones.

ing is only effective for large models.

The effectiveness of parallel scaling is scale-dependent. For systematic evaluation, we use bud-
get forcing to control the token budget for each of the G parallel samples and use majority voting to
select the final answer. This majority voting protocol corresponds to self-consistency with majority
aggregation (Wang et al.|[2022). Figure[5|shows how parallel scaling affects the memory—accuracy
trade-off. The dotted line marks the Pareto frontier from serial scaling alone. Each colored curve
represents the frontier for a specific model configuration as the group size, G, is increased (see Ap-
pendix [C.3] Figure [15] for a per-model breakdown). For models effectively smaller than 8-bit 4B,
parallel scaling is memory-inefficient, as its configurations lie below the frontier established by serial
scaling alone. However, for large models, parallel scaling improves the trade-off, and the memory-
optimal group size G on the global Pareto frontier increases with the memory budget. While group
sizes of 4 < (G < 8 are memory-optimal in the 16.4-28.9 GB range, for budgets above 28.9 GB, the
frontier is pushed by even larger groups (G > 8). This scale-dependent behavior is not unique to
Qwen3: for DeepSeek-R1-Distill and OpenReasoning-Nemotron (Figures [6] and [I6), parallel scal-
ing is memory-inefficient for smaller effective sizes but improves the Pareto frontier once models
are sufficiently large. Appendix [C.6]provides detailed results on these reasoning model families.

For models effectively smaller than 8-bit 4B, serial scaling alone provides a better memory—
accuracy trade-off than parallel scaling. For models effectively larger than this, parallel scal-
ing improves the trade-off, and the memory-optimal group size G on the global Pareto fron-
tier increases with the memory budget.

While this work focuses on memory trade-offs, practical scenarios also consider latency and
throughput constraints. We analyze these trade-offs in Appendix [C.1]

Under review as a conference paper at ICLR 2026

4.1 PARALLEL SCALING WITH AN EXTERNAL VERIFIER AIME25 — Majority Voting vs. Best-of-N
=== Serial

" Majority Voting

Best-of-N

We evaluate Best-of-N parallel scaling with ActPRM-X (Duan
et al., 2025) as an external PRM, accounting for its 7B (13.28
GB) memory overhead in our total memory budget. Compar-
ing the Pareto frontiers formed by serial scaling, majority-vote
parallel scaling, and PRM-based Best-of-N (Figure[7), we find w0
that the external verifier is consistently memory-inefficient: 3
accuracy gains are marginal relative to the substantial fixed o
memory cost, and in low-memory regimes it can even under-
perform serial scaling. These results suggest that under tight
memory budgets, self-contained strategies such as majority Figure 7: Parallel scaling with
voting are preferable to relying on large external verifiers. Best-of-N using ActPRM-X.

70

Accuracy (%)

10' 10°

o
Total Memory (Weights + KV Cache) [GB]

5 TEST-TIME SCALING WITH WEIGHT AND KV CACHE COMPRESSION

Our analysis so far shows that while allocating more tokens generally improves accuracy, it is not
always memory-efficient, especially for effectively small models where the KV cache can domi-
nate total memory. While compressing the KV cache via quantization or eviction can reduce this
footprint, it comes at a potential accuracy cost. This raises the following question:

How do KV cache compression strategies, eviction, and quantization, alter the overall
memory—accuracy trade-off, and which approach leads to stronger reasoning?

To answer this, we evaluate both compression strategies across model sizes and weight precisions.
For eviction, we use R-KV with target KV budgets of 8k, 4k, and 2k tokens. For KV cache quanti-
zation, we use symmetric per-channel quantization to 8, 4, and 2-bit precisions with a group size of
64 and a full-precision residual buffer of 128 tokens. The results are averaged over 8 generations per
instance. We first show that both methods are broadly beneficial and then provide a detailed analysis
to determine which strategy is optimal under different conditions.

AIME25 — Total Memory vs. Accuracy

70 KV Strategy -
s [y = ~
o == == Full KV Cache Y b A
? Eviction // v
;\? 501 === Quantization P //
240 /7
Q
g ////
3 30 o
Q
< Y4
20 /77
Y
’/
101 ==
z-
-
0 4
10" 10'

Total Memory (Model Size + KV Cache) [GB]

Figure 8: Memory vs. Accuracy by KV cache compression strategy (AIME2S, Qwen3). The
plot shows the Pareto frontiers of KV cache compression across model sizes and weight precisions
under serial scaling with budget forcing. Eviction uses R-KV with token budgets of 8k, 4k, and
2k. Quantization is symmetric per-channel (group size 64) at 8-, 4-, and 2-bits. Faint background
lines show curves for individual (model size, weight precision, KV strategy) configurations. Both
compression strategies consistently improve the memory—accuracy trade-off.

KY cache eviction and quantization consistently advance the Pareto frontier across all tested
model sizes and weight precisions. Our first key finding, illustrated in Figure[§] is that the aggre-
gate Pareto frontiers for both quantization and eviction decisively advance beyond a baseline without

Under review as a conference paper at ICLR 2026

compression for models with 4-bit, 8-bit, and 16-bit weights. This improvement demonstrates that
these strategies enable either higher accuracy at the same memory budget or the same accuracy
at a lower memory cost, regardless of the model weight precision. The benefits are especially pro-
nounced in the low-memory regime below 10 GB, where smaller models are most constrained by the
KV cache. This indicates that even when model weights are aggressively compressed, the KV cache
contains significant redundancies that can be exploited. Our results, therefore, establish KV cache
compression as an essential and broadly beneficial strategy for the memory-efficient deployment of
reasoning models.

Weight quantization alone is not sufficient for memory-optimal reasoning. KV cache com-
pression advances the memory—accuracy frontier across all weight precisions.

Having established that KV cache compression is broadly beneficial, we now analyze which com-
pression strategy, quantization or eviction, is preferable for a given model size N and weight pre-
cision Py . Figure 9] shows the resulting memory—accuracy trade-offs, where each strategy shapes
the curves differently. Quantization reduces the memory cost per token, shifting the curves leftward,
typically with some accuracy degradation. Eviction, in contrast, enforces a fixed memory ceiling
for the KV cache, resulting in characteristic vertical curves where accuracy improves while memory
usage remains constant.

Qwen3-14B » 4-bit Qwen3-8B ¢ 16-bit

— —— R —
§ . _./’l:"f’A/A /,_._.—-—0-—-. " ',.—"';‘Q—A Ve ././
> 50 /. /A i /. ./
Q S /" /' P
g 5) 5 AT
Q / /
2 /) /s
01_coseecee 01_odeiesee
10' L1x10" 12x10 13x10' 14x10' 1.6x10 1.7x 10" 1.8x10" 1.9x10'
Qwen3-8B * 8-bit Qwen3-4B ¢ 16-bit
—) —— N — —————
S e /./._—o—o “ L— — e
350 o - 1
9 o / i e /
£ P A s
3 £ 8 25 D
g, .._(_/_‘__“ S
9x10° 10' Lix10' 12x100 13x10 8x 10’ 9x 10 10"
20 Qwen3-1.7B ¢ 4-bit Qwen3-0.6B ¢ 8-bit
~ A e @ e 0@ . U N
£ " 1=
= = 10 Ze
g 10 > L) /
5 /) 7
] Ve pd.
< [I ——— [T —————
2x10° 3x10° 4x10° 10° 2x10° 3x10° 4x10°
Total Memory (GB) Total Memory (GB)

—e— Full KV Cache —4— Eviction (8k) —&— Quantization (8-bit)
Eviction (4k) —®— Quantization (4-bit)

Eviction (2k) —®— Quantization (2-bit)

Figure 9: Per-model Memory vs. Accuracy by KV cache strategy (AIME25). Each plot illus-
trates the memory—accuracy trade-off for a single model size and weight precision, comparing a full
KV cache baseline against R-KV eviction and symmetric per-channel quantization. Points along
each curve represent increasing number of processed tokens via budget forcing.

Eviction is more effective than quantization for small models. For models with an effective size
smaller than an 8-bit 8B model, eviction consistently provides the best memory—accuracy trade-off.
As shown in Figure [9] for the full-precision 4B model, eviction with an 8k token budget maintains
nearly lossless in maximum accuracy while substantially reducing total memory. This observation
holds across all weight precisions for the 4B model (see Appendix Figure [I§| for these results).

Under review as a conference paper at ICLR 2026

In contrast, aggressive 4-bit KV cache quantization causes a significant drop in accuracy at these
small effective sizes. This suggests that effectively small models are more sensitive to the numerical
errors introduced by quantization, whereas eviction preserves the full precision of a smaller, more
critical set of tokens. For instance, on the 1.7B model with 4-bit weight precision, eviction achieves
the best memory trade-off while maintaining high accuracy, whereas an 8-bit quantized KV cache,
while effective, requires significantly more memory to reach a similar performance level.

Quantization becomes competitive with eviction for large models. For models with an effective
size larger than an 8-bit 8B model, the clear advantage of eviction diminishes as quantization be-
comes a highly competitive strategy. On the 8B model with 16-bit weights, for example, quantization
and eviction achieve comparable memory—accuracy trade-offs. While 4-bit KV cache quantization
is competitive, eviction with smaller budgets (4k or 2k) offers a similar trade-off in low-memory
regimes. This suggests that large models, with their greater number of effective parameters, are
more robust to the precision loss from quantization. However, we find that more aggressive 2-bit
quantization still results in a significant loss of accuracy.

KV cache eviction provides a better memory—accuracy trade-off than KV cache quantization
for models with an effective size smaller than an 8-bit 8B model. For models at or above this
threshold, quantization becomes an increasingly competitive strategy.

6 CONCLUSION

Under real-world circumstances with fixed memory budgets, deploying reasoning models is ulti-
mately a problem of where to spend bytes, and practitioners are presented with a myriad of choices.
Our work reformulates test-time scaling around this constraint. We study the trade-offs in allocating
memory across model size, weight precision, KV cache compression, token budget, and sampling
group size for reasoning models. We find that the memory-optimal inference strategy for reason-
ing models cannot be a one-size-fits-all prescription: instead, it depends on the model’s capacity
(determined by effective size) and the nature of the task.

For smaller model sizes (typically models under the 8B size), prioritizing model weights yields
better memory—accuracy trade-offs by using higher-precision 8-/16-bit weights for mathematical
reasoning and favoring KV cache eviction over quantization. For larger models, increasing the token
budget until saturation and leveraging parallel scaling become the dominant strategies. Importantly,
the inflection point where extra KV cache beats extra model weight may change as models become
more sophisticated. However, by shifting the focus from FLOPs-based test-time scaling laws to
practical memory constraints, our framework and analysis provide general principles on how to
deploy reasoning models effectively.

7 LIMITATIONS AND FUTURE WORK

Our scope is intentionally focused to keep the search space tractable and inference-only. For test-
time scaling, we rely on prompt injection for serial scaling and majority voting for parallel scaling,
and only include a limited evaluation of an external verifier rather than a comprehensive compar-
ison of verifier-based methods. We compare a small set of post-training quantization schemes but
do not systematically study alternative KV cache eviction algorithms or training-time approaches
such as quantization-aware training. Our main analysis centers on the Qwen3 family, chosen for its
broad size range and fixed architecture, and two challenging benchmarks (AIME25 for mathemati-
cal reasoning and GPQA-Diamond for knowledge-intensive reasoning). However, additional exper-
iments on the DeepSeek-R1-Distill and OpenReasoning-Nemotron model families and on the Live-
CodeBench and MATH500 benchmarks suggest that our findings generalize beyond a single model
family and a single pair of benchmarks. These choices were necessary to maintain a tractable search
space, which already spans over 1,700 experimental configurations, and focus on self-contained
inference strategies, leaving a broader comparison of methods as a clear avenue for future work.

10

Under review as a conference paper at ICLR 2026

REFERENCES

AIME. AIME Problems and Solutions. https://artofproblemsolving.com/wiki/
index.php/AIME_Problems_and_Solutions, 2025.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity
scaling laws. arXiv preprint arXiv:2404.05405, 2024.

Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,
November 2023. URL https://mobiusml.github.io/hgg_blog/.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Zefan Cai, Wen Xiao, Hanshi Sun, Cheng Luo, Yikai Zhang, Ke Wan, Yucheng Li, Yeyang Zhou, Li-
Wen Chang, Jiuxiang Gu, et al. R-kv: Redundancy-aware kv cache compression for training-free
reasoning models acceleration. arXiv preprint arXiv:2505.24133, 2025.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36:4396-4429, 2023.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
International Conference on Machine Learning, pp. 7750-7774. PMLR, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318-30332, 2022.

Keyu Duan, Zichen Liu, Xin Mao, Tianyu Pang, Changyu Chen, Qiguang Chen, Michael Qizhe
Shieh, and Longxu Dou. Efficient process reward model training via active learning. arXiv
preprint arXiv:2504.10559, 2025.

Guhao Feng, Kai Yang, Yuntian Gu, Xinyue Ai, Shengjie Luo, Jiacheng Sun, Di He, Zhenguo Li,
and Liwei Wang. How numerical precision affects arithmetical reasoning capabilities of llms. In
Findings of the Association for Computational Linguistics: ACL 2025, pp. 4685, 2025.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Worts-
man, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, et al. Language models scale
reliably with over-training and on downstream tasks. In The Thirteenth International Conference
on Learning Representations, 2025.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

11

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://mobiusml.github.io/hqq_blog/

Under review as a conference paper at ICLR 2026

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270-1303, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipe for near-lossless generative inference of
llm. arXiv preprint arXiv:2403.05527, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Junhyuck Kim, Jongho Park, Jaewoong Cho, and Dimitris Papailiopoulos. Lexico: Extreme kv
cache compression via sparse coding over universal dictionaries. In Forty-second International
Conference on Machine Learning, 2024.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Man-
sheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision.
arXiv preprint arXiv:2411.04330, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611-626, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947-22970, 2024.

Zhen Li, Yupeng Su, Runming Yang, Congkai Xie, Zheng Wang, Zhongwei Xie, Ngai Wong, and
Hongxia Yang. Quantization meets reasoning: Exploring Ilm low-bit quantization degradation for
mathematical reasoning. arXiv preprint arXiv:2501.03035, 2025a.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025b.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device Ilm compression and acceleration. Proceedings of machine learning and systems,
6:87-100, 2024.

12

Under review as a conference paper at ICLR 2026

Ruikang Liu, Yuxuan Sun, Manyi Zhang, Haoli Bai, Xianzhi Yu, Tiezheng Yu, Chun Yuan, and
Lu Hou. Quantization hurts reasoning? an empirical study on quantized reasoning models. arXiv
preprint arXiv:2504.04823, 2025a.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023a.

Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
Lisa Jin, Yunyang Xiong, Yangyang Shi, et al. Paretoq: Scaling laws in extremely low-bit 1lm
quantization. arXiv preprint arXiv:2502.02631, 2025b.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342-52364, 2023b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Lifeng Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 1, 2024.

Somshubra Majumdar, Igor Gitman, Shubham Toshniwal, and Aleksander. Openreasoning-
nemotron: A family of state-of-the-art distilled reasoning models. https://huggingface.
co/blog/nvidia/openreasoning-nemotron, 2025. Hugging Face community article.

Anmol Mekala, Anirudh Atmakuru, Yixiao Song, Marzena Karpinska, and Mohit Iyyer. Does quan-
tization affect models’ performance on long-context tasks? arXiv preprint arXiv:2505.20276,
2025.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisen-
thwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, et al. Fp8 formats for
deep learning. arXiv preprint arXiv:2209.05433, 2022.

John X Morris, Chawin Sitawarin, Chuan Guo, Narine Kokhlikyan, G Edward Suh, Alexander M
Rush, Kamalika Chaudhuri, and Saeed Mahloujifar. How much do language models memorize?
arXiv preprint arXiv:2505.24832, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://gwenlm.github.io/blog/qwg-32b/.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Ranajoy Sadhukhan, Zhuoming Chen, Haizhong Zheng, Yang Zhou, Emma Strubell, and Beidi
Chen. Kinetics: Rethinking test-time scaling laws. In ICML 2025 Workshop on Long-Context
Foundation Models.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling 1lm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun

Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

13

https://huggingface.co/blog/nvidia/openreasoning-nemotron
https://huggingface.co/blog/nvidia/openreasoning-nemotron
https://qwenlm.github.io/blog/qwq-32b/

Under review as a conference paper at ICLR 2026

Jian Wang, Boyan Zhu, Chak Tou Leong, Yongqi Li, and Wenjie Li. Scaling over scaling: Exploring
test-time scaling pareto in large reasoning models. arXiv preprint arXiv:2505.20522, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824-24837, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models.
arXiv preprint arXiv:2408.00724, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087-38099. PMLR, 2023a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. Zeroquant-v2: Exploring
post-training quantization in llms from comprehensive study to low rank compensation. arXiv
preprint arXiv:2303.08302, 2023.

Nan Zhang, Yusen Zhang, Prasenjit Mitra, and Rui Zhang. When reasoning meets compression:
Benchmarking compressed large reasoning models on complex reasoning tasks. arXiv preprint
arXiv:2504.02010, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661-34710, 2023.

James Xu Zhao, Bryan Hooi, and See-Kiong Ng. Test-time scaling in reasoning models is not
effective for knowledge-intensive tasks yet. arXiv preprint arXiv:2509.06861, 2025.

14

Under review as a conference paper at ICLR 2026

A RELATED WORK

Train-time scaling and knowledge capacity. Foundational scaling studies (Kaplan et al., 2020}
Henighan et al.} 2020} [Hoffmann et al., [2022)) establish power-law relationships between model size,
data, and loss, yielding prescriptions for compute-optimal training under fixed compute budgets.
While these results provide guidance for allocating parameters and tokens during pre-training, they
do not consider inference-time compute and hence require new extrapolations 2025). In
parallel, capacity-oriented analyses estimate what models can store, either by modeling knowledge
as information per parameter or by measuring memorization versus generalization
2025} [Allen-Zhu & Lil 2024). These views motivate a budget-centric view but leave precision and
inference-time trade-offs under deployment constraints unspecified. Bit-normalized studies examine
how performance at different precision scales with total model bits (Dettmers & Zettlemoyer} 2023)

or the amount of training data (Kumar et al., 2024)), particularly in zero-shot or few-shot scenarios.
Feng et al| (2025)); [Mekala et al.| (2025) further show that reduced numerical precision can markedly

impair arithmetic reasoning and long-context performance unless compensated by a larger model
size, indicating interactions between precision, task structure, and context length.

Inference-time methods and scaling laws. Chain-of-thought prompting elicits intermediate
steps, and self-consistency improves performance by sampling diverse rationales and aggregating
them via majority voting (Wei et al} 2022} Wang et al.| 2022). Modern reasoning models are trained
to generate substantially more tokens, yielding significant gains across benchmarks (Wang et al.
2022}, [Wei et all, 2022; Brown et al.| 2024} [Muennighoff et al.} 2025} [Guo et al., Yang et al.
2025}, (Comanici et al., [2025} [Jaech et al., 2024} |Qwen Team), 2025; [Team et all, [2025). Test-time
scaling laws study how performance changes with increased FLOPs, tokens, or number of genera-
tions, comparing strategies such as majority voting, best-of-n, and verification-based search (Brown
et al} 2024} [Wu et al, 2024} Snell et al, 2024; Muennighoff et al., 2025} [Sadhukhan et al.; Wang
et al. [2025} Zhao et al.l [2025)). However, these studies do not capture the impact of compression
techniques such as weight-only quantization, which reduces memory and latency without affecting
FLOPs. Moreover, the effects of jointly compressing model weights and the KV cache on test-time
scaling remain underexplored despite their practical importance.

Efficient inference. Various strategies have been proposed to address challenges in LLM quanti-
zation, particularly handling outliers (Frantar et al., 2022} [Xiao et al, 20234} [Lin et al.}, 2024} [Kim|
et all 2023}, [Dettmers et al.,[2022)). Quantization-aware training extends this idea by training models
with quantized weights in the forward pass (Liu et al, [2023a; Ma et al., 2024} [Liu et al., [2025b).
Post-training KV cache compression techniques can be categorized into eviction and quantization.
Eviction methods selectively discard less important entries based on different criteria (Cai et al.]

2025; Xiao et all[2023b; [Zhang et al., 2023}, [Liu et al., 2023b; [Li et al.| 2024; |Ge et al.,[2023)), while
quantization approaches reduce the precision of cached values (Badri & Shajil, 2023} [Kang et al.}

2024} [Liu et all, 2024} [Kim et al.}, 2024}, [Hooper et al, 2024).

Quantization and reasoning. Recent work has also examined how compression and low-bit quan-
tization affect reasoning. find that aggressive weight quantization notably harms
mathematical reasoning at low precision, consistent with our observation that 4-bit precision is
memory-inefficient for mathematical reasoning. [Liu et al. show that the impact varies by
bit-width and model family, and [Zhang et al. (2025) benchmark compressed reasoning models on
complex tasks to chart accuracy under compression. Our work complements these studies by fram-
ing the problem as selecting a memory-optimal strategy for reasoning, identifying a scale-dependent
threshold for allocating memory between model weights and longer generations, and incorporating
KV cache compression into this analysis.

15

Under review as a conference paper at ICLR 2026

B MEMORY EQUATIONS AND SPECIFICATIONS

The total memory cost Crem i the sum of the memory required for the model weights Mycights
and the KV cache My, .

Weight Memory. The total memory footprint for weights is the sum of memory for the quantized
and unquantized parameters. The general equation is

PW N, uant PS + PZ Pnative
Mwei s ~ N, uant * T 5 h . Nun uant °
ght (q t S + aw S + q t]

) [bytes]

Quantized Parameters Unquantized Parameters

where Ngyant and Nynquant are the number of quantized and unquantized parameters, respectively,
Py is the low-bit precision for weights, gy is the group size, Ps and P are the bit-widths for the
scales and zero-points, and P,,¢ive 18 the native precision of the unquantized layers.

In our specific setup using GPTQ, the large linear layers are quantized, while components such as
the token embedding matrix, normalization layer weights, and the final language model head remain
in native BF16 precision. For our experiments, we use a group size gy = 128, a scale precision of
Ps = 16 (FP16), and symmetric quantization, making the zero-point precision Pz = 0.

KV Cache Memory. Without compression, the KV cache memory is given by

Pna ive
Mkv =G -T- Nlayers * Tkv_heads * dhead -2 Tt [byteS]

where G is the sampling group size, T is the number of tokens, njayers iS the number of layers,
Nkv_heads 18 the number of Key/Value heads, d},c.q is the dimension per head, the factor of 2 accounts
for both Key and Value tensors, and P, ,tive 1S the native precision of the cache elements in bits (e.g.,
16 for BF16).

The memory cost is modified by different KV cache strategies:

* Eviction: This strategy reduces the number of tokens stored. The memory cost is
Rlative
8

where Tietain 1S the maximum number of tokens retained by the policy. In our experiments,
we use R-KV and test Tyotain € {8192, 4096, 2048}.

* Quantization: This strategy reduces the precision but introduces overhead for quantization
parameters. The cost is

My =G - min(T, Tretain) * Nlayers * Mkv_heads * dhead - 2 -

Py 1 Ps+ P
My, = (G 2T Nlayers * Tkv_heads * dhead - 2) : <k + SZ)

8 Jkv 8

where gy, is the group size, and Pg and P are the precisions of the scales and zero-points.
For our experiments, we use symmetric quantization (Pz = 0) with gi, = 64, Ps = 16,
and test Py, € {8,4,2}.

Below are the architectural details and memory footprints for the models used in our experiments

(Table[T).

16

Under review as a conference paper at ICLR 2026

Table 1: Architectures and memory footprints of evaluated models.

Model Model Size (GB) Nlayers Mkv_heads Thead KV Cache (KB/token)
4-bit 8-bit 16-bit

Qwen3-0.6B 050 0.71 1.40 28 8 128 112
Qwen3-1.7B 126 193 3.78 28 8 128 112
Qwen3-4B 249 419 749 36 8 128 144
Qwen3-8B 568 894 15.26 36 8 128 144
Qwen3-14B 930 1550 2751 40 8 128 160
Qwen3-32B 18.01 32.66 61.02 64 8 128 256
R1-Distill/OpenReasoning-1.5B | 1.51 2.12 3.31 28 2 128 28
R1-Distill/OpenReasoning-7B 5.19 825 14.19 28 4 128 56
R1-Distill/OpenReasoning-14B | 9.30 15.50 27.51 48 8 128 192

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 LATENCY AND THROUGHPUT ANALYSIS

While we focus primarily on memory—accuracy trade-offs, latency and throughput can be important
practical considerations as well. We analyze how model size, weight precision, and generation
length affect both metrics.

Experimental setup. All measurements are performed on a single NVIDIA A100 80 GB GPU
using the VLLM framework (Kwon et al} [2023) with FlashAttention (Dao} 2023)) as the attention
backend. To measure throughput for a given token budget, we sweep a range of batch sizes and
record the highest batch size that completes successfully without out-of-memory errors or KV cache
preemption.

AIME25 — Latency vs. Accuracy AIME25 — Throughput vs. Accuracy

e 3B
e 14B
60 (] 60
S S
> 40 > 40
g * g
3 : 3
Q Q
<20 <20
0 0

107 10’ 10° 10" 10°
End-to-End Latency (s) Throughput (requests per second)

Figure 10: Latency vs. Accuracy trade-offs
(AIME25, Qwen3). Each curve shows end-to-
end latency vs. accuracy for different model
sizes and weight precisions with increasing gen-

Figure 11: Throughput vs. Accuracy trade-
offs (AIME2S5, Qwen3). Each point represents
maximum throughput (requests per second) vs.
accuracy under 80 GB VRAM constraints with

eration length. Generation length emerges as
the dominant factor in determining latency, with
weight quantization providing more noticeable
speedups for large models (14B, 32B).

increasing generation length. While small mod-
els can achieve higher batch sizes, the frontier is
dominated by configurations that balance model
capability with generation efficiency.

We show in Figure [I0]that generation length is the dominant factor determining end-to-end latency
across all model configurations. The benefit of weight quantization on latency due to reduced mem-
ory movement costs is modest for small models (up to 8B), but becomes noticeable for larger models
(14B, 32B). For instance, the 14B model takes 137.7 seconds to generate 6k tokens at 16-bit preci-
sion, while the 4-bit variant generates 10k tokens in 130.1 seconds. The 4B model with 8-bit and
16-bit precision shows the strongest latency—accuracy trade-off.

17

Under review as a conference paper at ICLR 2026

The overall trend for throughput analysis in Figure [T1] is similar to the latency findings. The 4B
model with 8-bit and 16-bit precision again demonstrates the strongest throughput—accuracy trade-
off, while the 32B model performs poorly due to slow generation and limited batch size scalability
under 80 GB VRAM constraints. Small size models (0.6B, 1.7B) achieve extreme batch sizes up to
160 and 170, respectively, yielding throughput of 2.9 and 2.64 requests per second with 2k token
generations. However, longer generations reduce maximum batch sizes and provide poor trade-offs
due to the fundamental accuracy limitations of these smaller models.

C.2 RESULTS ON OTHER QUANTIZATION METHODS

AIME25 — Other Quantization Methods (AWQ, FP8)

1.7B + FP8

g0l T 4B AWQbit e

—4— 4B -FP8 ey
~ | == 8B:-AWQ4-bit 4 [F
& | —— 8$B-FP8 1/
240
IS
=3 % Y ¢
Q
Q
<90
A
n
0

1 5 10
Total Memory (Weights + KV Cache) [GB]

Figure 12: Comparison of quantization methods. The background lines correspond to the GPTQ

curves from Figure [Tl Memory—accuracy trade-offs remain consistent across different quantization
schemes.

To test whether our conclusions depend on a particular quantization scheme, we replicated the test-
time scaling analysis using AWQ and FP8 (Micikevicius et al.l[2022)) quantization
on 1.7B, 4B, and 8B models. As shown in Figure [I] when plotted alongside GPTQ, the memory—
accuracy curves from AWQ and FP8 nearly overlap, confirming that the observed trend is not tied
to a specific quantization algorithm. Thus, the key memory-allocation pattern persists under these
schemes: at a low memory budget (~4.1 GB), a smaller FP8 1.7B model with a long 22k-token gen-
eration underperforms a larger AWQ-4-bit 4B model with a shorter 10k-token generation, whereas
at a higher budget (~8 GB), an FP8 4B model with 30k tokens outperforms an AWQ-4-bit 8B model
with 18k tokens. Overall, the AWQ and FP8 results reinforce our main conclusion that for smaller
effective sizes, memory is better spent on model weights, while for larger effective sizes it is better
spent on the KV cache to support longer generations.

18

Under review as a conference paper at ICLR 2026

C.3 THEORETICAL BATCH SIZE ANALYSIS

(@ Theoretical Batch Size = 2 (b Theoretical Batch Size = 4

701 70

60 1 60

(%
1=

50

'S
=3

40

%)
o

30

Accuracy (%)

[)
=1

20

o

=}
o

0.5 1 5 10 0.5 1 5 10

(©) Theoretical Batch Size = 8 @ Theoretical Batch Size = 16

-
=)

70

(=)

(=]
o000
=
oo

60

%3
<)

50

N
S

40

w
o

30

Accuracy (%)

[3%3

2

m>e
o]
<

20

o

o
o

0.5 1 5 10 05 1 5 10
Memory Usage Per Generation [GB] Memory Usage Per Generation [GB]

Figure 13: Memory vs. Accuracy under different theoretical batch sizes (AIME25, Qwen3).
Each subplot shows memory-per-generation vs. accuracy for different theoretical batch sizes, where
model weight memory is amortized across concurrent generations. The Pareto frontier shifts as batch

size increases, revealing how model weight amortization affects the optimal memory allocation
strategy.

Figure[T3]examines how memory—accuracy trade-offs change when model weights are shared across
multiple concurrent generations, as is common in production serving scenarios. As the theoretical
batch size increases, the benefit of smaller model weights diminishes because weight costs are amor-
tized across more generations. We find that the 0.6B model never appears on the Pareto frontier at a
theoretical batch size of 16. The 8B and 14B models with 4-bit and 8-bit weight precision and the
4B model with 8-bit and 16-bit precision demonstrate favorable trade-offs in the 1-4 GB memory-

per-generation region when the theoretical batch size is 16. Notably, the 8-bit 4B model consistently
lies on the Pareto frontier for the 1-2 GB region.

19

Under review as a conference paper at ICLR 2026

C.4 DETAILED RESULTS ON LIVECODEBENCH AND MATHS500

To provide a more detailed view, we examine LiveCodeBench for code generation and MATHS00
for a larger, more diverse set of math problems (Figure [3|and Figure [T4).

LiveCodeBench exhibits a trend very similar to AIME25. For models with an effective size below
8-bit 4B, allocating memory to model weights is superior. Under a low memory budget (~6.2 GB),
a 4B 8-bit model with a 14k token budget achieves 61.7% accuracy, significantly outperforming a
1.7B 16-bit model with a larger 22k token budget, which only reaches 42.5%. Conversely, above
the threshold, increasing the test-time budget becomes optimal. At a higher budget (~10.5 GB), a
4B 16-bit model with a 22k token budget reaches 65.00%, whereas a larger 14B 4-bit model with a
restricted 6k token budget degrades to 26.8%. Notably, unlike the knowledge-intensive GPQA, 4-
bit precision remains less memory-efficient on LiveCodeBench: a 16-bit 4B configuration is strictly
more memory-efficient than a 4-bit 14B configuration.

MATHS500 — Total Memory vs. Accuracy

90 ey s It
Fo
80 7N [e
S . .
é 70 L] 8B
P e 4B
] 1.7B
=1]
3 60 0.6B
<
501 ® 16-bit
A 8bit
401 B 4bit
1 5 10

Total Memory (Weights + KV Cache) [GB]

Figure 14: Memory vs. Accuracy on MATHS500 (Qwen3). Serial scaling on MATHS500 also
exhibits a scale-dependent memory—accuracy trade-off, but the effective model size threshold shifts
toward smaller models due to the benchmark’s relative ease.

For MATHS500, the easier nature of the task shifts the threshold toward smaller effective sizes. Ac-
curacy saturates quickly once models exceed roughly a 16-bit 1.7B effective size. However, below
this threshold, investing in model weights remains more efficient. At a low memory budget (~3.0
GB), a 1.7B 8-bit model with a 10k token budget achieves 83.0%, outperforming a 0.6B 8-bit model
with a 22k token budget at 70.0%. We also observe non-monotonicity in accuracy under budget

forcing. This is because for an already-easy set, pushing generation length beyond what is needed
can lead to reduced accuracy.

Together, these results reinforce the existence of a scale-dependent threshold and the corresponding
memory-optimal strategies. We also find that code generation as well as mathematical reasoning are
sensitive to low-bit settings, and higher precision can be more memory-efficient than scaling to a
larger model at 4-bit precision under a fixed budget.

20

Under review as a conference paper at ICLR 2026

C.5 DETAILED RESULTS FOR PARALLEL SCALING

Figure [I3] presents the per-model plots for the parallel scaling analysis discussed in Section 4]

~
[

Qwen3-32B « 16-bit

Qwen3-32B « 8-bit

Qwen3-32B « 4-bit

75

- 75
X
Eso 50 50
g
§ 25 25 25
<
0 0 0
1 510 50 100 1 510 50 100 1 510 50 100
Qwen3-14B ¢ 16-bit Qwen3-14B -« 8-bit Qwen3-14B * 4-bit
75 75 75
&\‘i
> 50 50 50
g
§ 25 25 25
<
0 0 0
1 510 50 100 1 510 50 100 1 510 50 100
Qwen3-8B ¢ 16-bit Qwen3-8B ¢ 8-bit Qwen3-8B * 4-bit
75 75
S 60
.50 50
2 40
§ 25 25 20
<
0 0 0
i 510 50 100 i 510 50 1 510 50
Qwen3-4B ¢« 16-bit Qwen3-4B ¢ 8-bit Qwen3-4B ¢ 4-bit
75 75
< 60
§50 50 20
5
g 25 25 20
<
0 0 0
1 510 50 1 510 50 1 510 50
Qwen3-1.7B * 16-bit Qwen3-1.7B ¢ 8-bit Qwen3-1.7B ¢ 4-bit
) 60 60
40 40 40
—
=
=, /‘ N / 20
<
0 0 0
1 510 50 1 510 50 1 510 50
Qwen3-0.6B * 16-bit Qwen3-0.6B ¢ 8-bit Qwen3-0.6B ¢ 4-bit
60 60 60
g 40 40 40
3
820 20 /""" 20
< /_.’0“‘
0 0 0 i
1 510 50 1 510 50 1 510 50
Total Memory [GB] Total Memory [GB] Total Memory [GB]

Figure 15: Per-model Memory vs. Accuracy for parallel scaling (AIME2S). Each plot shows
the accuracy-memory trade-off for a single model and weight precision, comparing serial scaling
(G = 1) with parallel scaling by increasing the sampling group size, G € {1,3,4,6,8,12,16}.
Points along each curve represent increasing the token budget via budget forcing. Parallel scaling
improves the memory—accuracy trade-off, only for models effectively larger than 8-bit 4B.

21

Under review as a conference paper at ICLR 2026

C.6 DETAILED RESULTS ON OTHER MODEL FAMILIES

To provide a more detailed view, we examine the DeepSeek-R1-Distill and OpenReasoning-
Nemotron reasoning model families (Figures [6] and [T6).

For DeepSeek-R1-Distill on AIME25, under a low memory budget (~9.6 GB), allocating memory
to model weights proves superior: a 7B 8-bit model with a 6k token KV cache (~1.3 GB) achieves
37.09% accuracy, significantly outperforming a 1.5B 8-bit model with a larger 18k token KV cache
(G = 16, ~7.8 GB) which only reaches 27.60%. Conversely, in a high memory regime (~30.1
GB), allocating memory to the KV cache becomes optimal: a 7B 16-bit model with 18k tokens and

parallel scaling (G = 16) reaches 54.5%, surpassing a larger 14B 16-bit model with 14k tokens and
serial scaling (39.2%).

AIME25 — Parallel Scaling Pareto (OpenReasonin,

Q
~

D.

Sampling Group Size
[—
1 4 8 12 16

== == == = Secrial Pareto

[oe)
(=]

Accuracy (%)
3

S
=)

14B 8-bit
}7B 4-bit / 14B 16-bit

14B 4-bit

1.5B 16-bit
41-5B 8-bit —
1.5B4-bit ™
-
0 1 2
10 10 10

Total Memory (Weights + KV Cache) [GB]

[\~
(=]

Figure 16: Parallel scaling for OpenReasoning-Nemotron. Comparison of serial vs. parallel

scaling frontiers. Allocating substantial memory to the KV cache is only effective for sufficiently
large models.

Similar trends are observed for OpenReasoning-Nemotron. At a ~6.8 GB budget, the 7B 4-bit
model with 26k tokens (G = 1) achieves 61.8%, outperforming the 1.5B 16-bit model with 18k
tokens and parallel scaling (G = 8, 44.4%). At ~31.0 GB, the 7B 16-bit model with 26k tokens and
parallel scaling (G = 12) reaches 81.1%, surpassing the 14B 16-bit model with 14k tokens (52.5%).

These results confirm that the threshold behavior, favoring model weights for smaller effective sizes

and KV cache for larger ones, is consistent across different reasoning model families, although the
exact threshold may vary.

22

Under review as a conference paper at ICLR 2026

C.7 DETAILED RESULTS FOR

KV CACHE COMPRESSION

Figures [T7] and [I8] show the per-model results for the KV cache compression analysis discussed in
Section|5| For eviction, we also present results for StreaminglL.LLM, where we retain the first Tegin /2
tokens and the most recent Trein /2 tokens for a given retention budget Trerin-

Qwen3-14B « 8-bit

)
L T D

’ A e @ e ! 3 N A A
3 604 Ll iy — 601 < A —
: . /A/ ! ~ 7
g 401 '/ P ‘/ 40 >
5 // g
9 204 20 4 /
2 // P
01 seeeesee 01 e — . = = — -
1.6%10" 1.7x10" 1.8x10" 1.9%10" 2% 10' 5000 10000 15000 20000 25000 30000
Qwen3-14B « 4-bit
731 — 75 h——
A N
< -_./""'5,‘ “ PR ﬁé{.;ﬂgf
< 50 2 /’/ 501 /‘717 =
é‘ ,-{/ . = A/>/
=1 B / A
2 254 b4 251
9 ,
2 A/ &
0 - 012 — - = T — .
10" 1.1x10" 12x10' 13x10" 14x10' 5000 10000 15000 20000 25000 30000
Qwen3-8B ¢ 16-bit
N e PRE—— E—
o601 S A 60 — .
S e /’ /A o
<
2 40 / / 04 40 o
5 5ol / /
g //f e N
3 201 '/_ 201 /’
< p
£ S
0 012 — -+ = T — .
1.6x10 1.7 %]0‘ 1.8x10" 1.9x 1()' 5000 10000 15000 20000 25000 30000
Qwen3-8B ¢ 8-bit
4 —r") —— s/}
360 G /./' 60 1 /:%‘
< -’.’7A(’ /. ,\/""--/"—"— —_—
g 401 v — “7 /A/
el -
] 4]
320 / / /S 20 /
< 7
01_eeeeecee 0{ o * * * * * * *
9x10° 10" 1.1x10" 12x10' 13x10' 5000 10000 15000 20000 25000 30000

Total Memory (Model Size + KV Cache) [GB]

=—&— Full KV Cache

== R-KV — 8k
R-KV — 4k
R-KV — 2k

StreamingLLM — 8k
StreamingLLM — 4k
StreamingLLM — 2k

Tokens Processed

=& Quantization — 8-bit
~—#— Quantization — 4-bit
=& Quantization — 2-bit

Figure 17: Per-model Memory vs. Accuracy by KV cache strategy (AIME25, models > 4B).
Each plot shows the accuracy-memory trade-off for a single model and weight precision, comparing
KV cache eviction methods (R-KV, Streamingl.LM) against KV cache quantization and no com-
pression. Points along each curve represent increasing the number of processed tokens.

23

Under review as a conference paper at ICLR 2026

Qwen3-4B ¢ 16-bit

e @ = PR—
=" — 1 ="
< D

el
2 404 40 4 /‘
g ’
3
3 201 201 /
< .
10! 5000 10000 15000 20000 25000 30000
Qwen3-4B ¢ 8-bit
5
= 60 60 ; i
g _—
2 401 401 /
5]
5 .
3 204 204 /
< . P —
5% 10" 6x10" 7x10° 8x 10 5000 10000 15000 20000 25000 30000
Qwen3-4B ¢ 4-bit
A . /._—0—0 —
< [, * U
< 407 " ° 401 /‘:";‘
A .’ /A
> / -
Q
g o o
5 201 /,/ 4 201 ;»r
Q
< Py~ = N L = — .
» y a - g / —y— -
3x10° 4x10° 6x10° 5000 10000 15000 20000 25000 30000
Qwen3-1.7B ¢ 8-bit
i — PR— o
=301 . . A o— 30 1 A —" /_
S _ 7~ .%‘."Y‘V / —
2201 /‘ 201 ;
g /
= 2
3 101 ‘/ " 109 47
<
LR o e e o] 0
2x10° 3x10° 4x10° 5000 10000 15000 20000 25000 30000
Qwen3-1.7B « 4-bit
2 s 20
[Jpyemm—— e O S e — el
;\? - // — . /A’/
= S .
2 101 i7 101 -
7 y
é:) ‘/ v R
01 s—n—n—n—n—n—n—2 0
2% 10 3x10° 4x10° 5000 10000 15000 20000 25000 30000
Qwen3-0.6B ¢ 8-bit
s 15 — A/.-_-._.—. 154 ./,._40__0—.
x yA; /x;—- —— A A
> - - ——
> 101 /7 o 101 y —<4
2 p / g
g
3 s 7 s{ ./ /
é ‘/ b
0] _s—m—s—s—n—n—n—sn 0
10° 2x10° 3x10” 4x10 5000 10000 15000 20000 25000 30000

Total Memory (Model Size + KV Cache) [GB]

—&— Full KV Cache

—&— R-KV — 8k
R-KV — 4k
R-KV — 2k

StreamingLLM — 8k
StreamingLLM — 4k
StreamingLLM — 2k

Tokens Processed

== Quantization — 8-bit
=@ Quantization — 4-bit

Figure 18: Per-model Memory vs. Accuracy by KV cache strategy (AIME2S5, models < 4B).
Each plot shows the accuracy-memory trade-off for a single model and weight precision, comparing
KV cache eviction methods (R-KV, Streamingl.LM) against KV cache quantization and no com-
pression. Points along each curve represent increasing the number of processed tokens.

24

	Introduction
	Background
	Experimental Setup
	Test-Time Scaling with Weight-Only Quantization
	Parallel Scaling with an External Verifier

	Test-Time Scaling with Weight and KV Cache Compression
	Conclusion
	Limitations and Future Work
	Related Work
	Memory Equations and Specifications
	Additional Experimental Results
	Latency and Throughput Analysis
	Results on Other Quantization Methods
	Theoretical Batch Size Analysis
	Detailed results on LiveCodeBench and MATH500
	Detailed Results for Parallel Scaling
	Detailed results on other model families
	Detailed Results for KV Cache Compression

