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Abstract
A use case of large language models (LLMs) is
in goal-directed decision-making tasks (or “agent”
tasks), where an LLM needs to make intelligent
decisions over a multi-turn interaction to accom-
plish a task. Reinforcement learning (RL) pro-
vides a general paradigm to address such agent
tasks, but current RL methods for LLMs largely
focus on optimizing single-turn rewards (e.g.,
PPO for RLHF). By construction, most single-
turn RL methods cannot endow LLMs with the
ability to perform credit assignment, or reason
about their past actions, in multiple turns. How
can we design effective and efficient multi-turn
RL algorithms for LLMs? In this paper, we de-
velop a framework for building multi-turn RL al-
gorithms for fine-tuning LLMs, that preserves the
flexibility of existing single-turn RL methods for
LLMs, while accommodating multiple turns, long
horizons, and delayed rewards. Our framework
builds a hierarchical RL approach and runs two
RL algorithms in parallel: a high-level off-policy
value-based RL algorithm to aggregate reward
over utterances, and a low-level policy gradient
RL algorithm that utilizes this high-level value
function to train a token policy within each turn.
Our hierarchical framework, Actor-Critic Frame-
work with a Hierarchical Structure (ArCHer),
can also give rise to other RL methods. Empiri-
cally, we find that ArCHer significantly improves
efficiency and performance on agent tasks, attain-
ing a sample efficiency of about 100x over ex-
isting methods, while also improving with larger
model capacity (upto the 7 billion scale).

1. Introduction
Owing to their generalist knowledge, large language models
(LLMs) have a tremendous potential to address a wide vari-
ety of decision-making or “agent” problems that can be ex-
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pressed in text or natural language, from writing code (Yang
et al., 2023a; Li et al., 2022; Lin et al., 2018), navigating
the web (Zhou et al., 2023a; Yao et al., 2023a), and using
tools (Schick et al., 2023), all the way to interacting with
humans (Ghosal et al., 2022; Verma et al., 2022; Jaques
et al., 2020). In order to succeed in these domains, an
LLM needs to make a sequence of intelligent decisions over
multiple turns instead of generating the most probable text
completion at each step that is trained to do in pre-training.

Despite clear use cases in multi-turn agent problems, most
methods for eliciting goal-directed behavior from LLMs
often rely on myopic objectives that either attempt to
mimic successful demonstrations at each step (Zeng et al.,
2023; Chen et al., 2023), or optimize for single-turn prefer-
ences (Touvron et al., 2023; Ouyang et al., 2022; Bai et al.,
2022). Policies trained via single-turn methods often fail to
perform effective credit assignment (e.g., they fail to identify
good actions that may lead to long-term future performance
despite appearing sub-optimal just at a given step) and do not
endow policies with information-seeking behavior, which
is important in agent problems (e.g., when dealing with a
new tool). Therefore, we consider the problem of building
multi-turn RL approaches that are able to directly maximize
long-term objective of interest (e.g., customer satisfaction at
the end of a multi-turn conversation with an LLM assistant),
formulated via a scalar reward function.

Unlike single-step RL (Touvron et al., 2023; Ouyang et al.,
2022; Bai et al., 2022), training LLMs via multi-turn RL
presents a number of unique challenges. First of all, multi-
turn RL would require online interaction with external
sources such as humans or web servers, which can be slow
and expensive. Due to this, on-policy methods such as
PPO (Schulman et al., 2017) quickly become impractical
owing to their inability to reuse data from past interaction.
While off-policy methods circumvent this problem, these
methods present other challenges: as the number of tokens
increase with multiple turns (often substantially so, due to
the bias of LLMs towards producing long responses), token-
level methods (Snell et al., 2023; Jaques et al., 2020) that
consider individual tokens as actions need to now propagate
reward signal over extremely long horizons. This results
in extremely slow learning speeds over long horizons, with
additional error compounding. For example, token-level
ILQL (Snell et al., 2023) takes more than 10 days to con-
verge on a task in our experiments, while filtered behavior
cloning takes less than a day. To address long horizon issues,
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Single-Turn Agent
I’m feeling unmotivated for work 
and everything.

I’m sorry to hear that you are feeling 
unmotivated. Here are some tips to 
help you regain some motivations: 
1, Set Small, Achievable Goals. Try 
breaking down your work into small 
more manageable tasks. 
2, Change Your Routine. Monotony can 
lead to demotivation. 
3, Seek Inspiration. Try listening to an 
inspiring podcast, reading a 
motivational book, or talking to 
someone you find inspiring. 
4, Take Care of Your Health. Lack of 
motivation can sometimes be linked to 
physical factors such as poor diet. 

I had enough of such cliche.

User Satisfaction: 😞

Multi-Turn Agent
I’m feeling unmotivated for work 
and everything.

I’m sorry to hear that! Would you 
like to share if there is anything 
particular happening recently?

My paper got rejected from a 
conference… but I really put a lot of 
time and efforts in it.

I’m really sorry to hear that your 
paper got rejected, but it could also 
be a chance for you to polish your 
paper and make a bigger deal so 
that it can shine in a resubmission to 
the next conference!

Thanks a lot! I feel much better 
now!

User Satisfaction: 😃
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Figure 1: Single-turn RL vs multi-turn RL for LLMs (ours). In particular, the single-turn RL agent seeks to resolve the request within a
single turn and hence ends up providing as much information as possible in its response. On the contrary, the multi-turn RL agent can
execute information-gathering actions and address requests in a targeted manner over turns. While current single-turn RL methods for
LLMs abstractly use some form of policy gradients computed using a reward model to train the LLM policy, the method proposed in our
paper extends this paradigm to the multi-turn setting by now replacing the reward model with a learned value function, which is trained
with off-policy reinforcement learning.

in principle, one can treat the entire utterance for each turn
as an action (Verma et al., 2022; Jang et al., 2022), but this
comes at the cost of introducing an enormous, variable-size
action space, presenting a challenge for off-policy meth-
ods based on temporal-difference (TD) learning that require
maximization over the action at each time step. This ne-
cessitates a multi-turn RL framework that attains the right
balance in terms of the aforementioned challenges.

In this paper, we devise a framework for building multi-turn
RL algorithms that attains this kind of a sweet spot. Our
key insight is that a hierarchical approach for RL with
language models that addresses the challenges with both
on-policy and off-policy RL approaches as outlined above.
Specifically, our framework prescribes an off-policy tempo-
ral difference learning method for training an utterance-level
value function at the high level, and any on-policy policy gra-
dient algorithm for optimizing the token generation at each
turn of the interaction at the low level, treating the high-level
value function as the terminal reward for that turn. Unlike
on-policy methods, this allows for sample reuse and faster
convergence, while avoiding Bellman backups over individ-
ual tokens or maximization over enormous action spaces,
as the high-level critic is trained at a coarser time-scale, on
tokens produced by the actor. In addition, it also directly
inherits implementation details from existing token-level RL
algorithms developed for single-turn RL with preferences,
for training the policy. This way we are able to obtain the
best of both utterance-based and token-based, and off-policy
and on-policy approaches for training LLMs.

Our main contribution is a framework for developing hierar-
chical RL approaches for LLMs, that we call: Actor-Critic
framework with a Hierarchical Structure (or ArCHer in
short). We study several concrete algorithmic instantations
derived from the ArCHer framework by conducting experi-

ments on a range of language “agent” tasks with active data
collection (i.e., the “online” setting). We find that algorithms
derived from ArCHer are 100x more sample efficient than
on-policy methods such as PPO, and converge to a better
performance than off-policy methods. Moreover, our meth-
ods are easy to build on existing single-turn RL methods
and scale to different transformer architectures and more
parameters (we show effectiveness of our approach up to
the 7 billion scale), directly enabling plug-and-play choices
of RL algorithms and models. 1

2. Related Work
Single-turn RL for LLMs. Most prior works that use RL
for LLMs study problems where the language model must
produce a single decision, with no further steps of interac-
tion with an external environment (e.g., the “single-turn”
preference optimization setting (Casper et al., 2023; Chris-
tiano et al., 2023; Ziegler et al., 2019)). Typical algorithms
used for this sort of single-turn RL include policy-gradient
methods such as PPO (Ouyang et al., 2022; OpenAI et al.,
2023; Ramamurthy et al., 2023), A2C (Glaese et al., 2022),
offline optimization methods such as DPO (Rafailov et al.,
2023), and filtered supervised learning approaches (Yuan
et al., 2023; Korbak et al., 2023; Gulcehre et al., 2023; Dong
et al., 2023). Despite promising results, there remain many
important agent problems that cannot be solved in a single-
turn setting. Many of these problems require the agent to
explicitly take the steps to gather information before mak-
ing a decision, such as asking for personalized preferences
before making a travel plan (Hong et al., 2023) or initially
attempting to read the help manual of the shell in a linux
terminal, before carrying out the requested tasks (Liu et al.,

1The project page is https://yifeizhou02.github.io/archer.io/ and
code can be found at https://github.com/YifeiZhou02/ArCHer.
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2023). Single-step approaches cannot learn such nuanced
strategies, necessitating multi-turn RL for training LLMs.

Training language agents without RL. Motivated by few-
shot learning and reasoning abilities of LLMs, prior works
also utilize LLMs for sequential decision-making via prompt
engineering. For example, ReAct (Yao et al., 2023b) and Re-
flexion (Shinn et al., 2023) prompt the LLM to “think” and
analyze past failures before executing the next action. Voy-
ager (Wang et al., 2023) prompts the LLM agent to develop
and refine a curriculum and action library based on envi-
ronment input. However, without updating the parameters
of the LLM, the effectiveness of these methods is inher-
ently limited by the intrinsic capabilities obtained from pre-
training (Zeng et al., 2023; Chen et al., 2023). Even state-
of-the-art models such as GPT-4 with in-context learning
can perform very sub-optimally in out-of-distribution set-
tings (Liu et al., 2023; Yang et al., 2023b) without updating
the model. To improve over pre-trained capabilities, another
line of work finetunes LLMs with successful trajectories
(generated manually or by rolling out a strong pre-trained
LLM) (Schick et al., 2023; Zeng et al., 2023; Chen et al.,
2023). However, manual labels and tool call annotations are
be expensive to obtain. Moreover, it would be prohibitively
expensive for automated approaches to stumble upon suc-
cessful rollouts will as the task horizon increases (Liu et al.,
2023; Abdulhai et al., 2023). Therefore, in this paper, we
sidestep these problems by directly maximizing the objec-
tive of interest via RL.

Multi-turn RL for LLMs. While many prior works di-
rectly use off-the-shelf policy-gradient methods, such as
PPO (Schulman et al., 2017; Szot et al., 2023; Yao et al.,
2023a) and REINFORCE (Sutton et al., 1999; Williams,
2004; Ranzato et al., 2015; Wu & Hu, 2018; Paulus et al.,
2017) to train LMs, these methods can become sample in-
efficient in multi-step settings that require interaction with
an external environment (Verma et al., 2022; Jang et al.,
2022). To address such sample complexity issues, off-policy
and offline value-based methods learn from existing static
data (Snell et al., 2023; Jaques et al., 2020; Verma et al.,
2022; Jang et al., 2022). However, existing off-policy meth-
ods for multi-turn language tasks either (1) consider a single
token as an action (i.e., “token-level”) (Snell et al., 2023;
Jaques et al., 2020) and must deal with long horizons, or (2)
consider an utterance as a single action, but utilize multiple
candidate utterances from a frozen pre-trained LLM for max-
imization in the Bellman backup (Verma et al., 2022; Jang
et al., 2022), reducing the pace of policy improvement, as
we also observe. Our approach addresses both limitations.

Hierarchical RL. Within the field of hierarchical RL (out-
side of LLMs), there are several algorithmic approaches.
These approaches can be grouped into methods based on
learning options (e.g., Option-critic (Bacon et al., 2016),
Semi-MDP for options (Sutton, 1998), DADS (Sharma
et al., 2019)) and hierarchical goal-conditioned RL (e.g.,
HIQL (Park et al., 2024), HIRO (Nachum et al., 2018), Feu-

dal networks (Vezhnevets et al., 2017), and LEAP (Nasiriany
et al., 2019)), which can be regarded as a specific instantia-
tion of the options framework for the class of goal-reaching
problems. Hierarchical goal-conditioned RL approaches
train the high-level policy to propose intermediate states or
waypoints, or more generally, latent task embeddings for
the low-level to solve.

3. Actor-Critic Framework with a
Hierarchical Structure (ArCHer)

Existing RL methods that consider an individual token as
an action suffer from very long horizons over multiple turns.
Utterance-level RL methods avoid this challenge, but now
they must tractably maximize over a coherent set of tokens
within an utterance. To address these issues, we will develop
a class of hierarchical RL methods, ArCHer, that bypass
these challenges by running two RL algorithms, in paral-
lel.Of course, RL algorithms running at two levels in this
hierarchy do share information, but this is done in a way to
still prevent challenges with previous methods. We start by
describing how multi-turn language generation can be posed
as a hierarchical Markov decision process (MDP), followed
by building RL methods in this hierarchical MDP.

3.1. Language Generation as a Hierarchical MDP
To build multi-turn approaches, we will first present a for-
mulation of language generation as acting in a hierarchical
MDP. Our construction defines a high-level MDP, and a
low-level MDP embedded inside the high-level MDP. For
both MDPs, states are a variable-length sequence of tokens.
For the high-level MDP, an action is defined as a sequence
of tokens. An action in the low-level MDP is a single token,
such that executing a sequence of actions in the low-level
MDP corresponds to a single action in the high-level MDP.
Formally, each state st in the high-level MDP consists of
an interaction history between the LLM and the external
environment, and each action at in this MDP is a variable-
length sequence of tokens. The low-level MDP models the
generation of the high-level action produced by the agent
within a single high-level action, where each low-level ac-
tion aht is an individual token (i.e., the h-th token in the
t-th high-level action). A state in this low-level MDP is
obtained by concatenating a high-level state sc consisting of
the interaction history until this turn and a1:h−1

t , the history
of individual action tokens produced within the current turn
before step h. The next state is obtained by concatenating
the current action to this token history. Figure 2 shows a
visualization of our notations for the hierarchical MDP.

Policy optimization in the high-level MDP aims to maxi-
mize task reward, whereas a policy in the low-level MDP
attempts to find a sequence of up to L tokens a1:Lt that max-
imizes reward equal to the value function of the high-level
MDP Qπ(s, a1:Lt ), provided at the end of the low-level roll-
out. A rollout in the low-level MDP ends as soon as the
policy ends up choosing to produce an “EOS” token.
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s

Utterance-Level Critic

CLS

a s′ 

Vπ(s′ )

Utterance-Level Critic

CLS

Qπ(s, a) ← r + γVπ(s′ )

Token-Level Actor

sc

search [ black …… bed ] EOS

Search [ black …… bed ] EOS

at

a1
t aL

t
. . . . . .

Aπ(sc, at)

Utterance Level

Token Level

How can I help you?

Instruction:
Buy a black queen-sized bed under $200

…

How can I help you?

Instruction:
Buy a black queen-sized bed under $200

search[black queen-sized bed]

[BMX67N] Nice spacious queen-sized bed $128
[BMZ77V] black and white king bed $ 258

[Prev][Next][Back to search]
…

How can I help you?

Instruction:
Buy a black queen-sized bed under $200

…

CLS CLS

Qπ(s, a)
Bellman	Backup

Policy	Gradient

Figure 2: Schematic of the practical instantiation of Actor-Critic Framework with a Hierarchical Structure (ArCHer). Our algorithm
operates both at the utterance level and the token level. At the utterance level, our algorithm learns a Q-function, via Bellman bootstrapping
with TD errors. At the token level, the policy is learned by maximizing the advantage function induced by the utterance-level Q-function
using a policy gradient approach, where this advantage estimate is provided as a reward at the end of the sequence of tokens appearing
within the utterance.

A concrete and natural instantiation of this hierarchical
framework is when each turn or an “utterance” corresponds
to a single time step in the high-level MDP, and each token
within a turn is an action in the low-level MDP. In other
words, this construction chooses to use the utterance-level
MDP (Figure 2) at the high level and the token-level MDP
at the low level. For example, in the context of a web
agent, the state would be the interaction of web pages vis-
ited so far and a high-level action would be an utterance,
e.g., “search[queen-sized bed, black]”. A candidate reward
function would be +1 if the correct item can be bought
and 0 otherwise. The dynamics would involve the web en-
gine reacting to an action. Each token of an utterance (e.g.,
“search[queen-sized bed, black]”) would be an individual
action in the embedded token-level MDP, for example, an
action would be individual tokens “search”, “[”, “queen”.

3.2. Preliminaries: Reinforcement Learning Definitions
To build our approach, we first provide a few standard def-
initions. The Q function of a policy π is the long-term
reward obtained by executing a certain action at the current
step, followed by executing π thereafter: Qπ(sh, ah) =
Eπ
[∑∞

t=0 γ
ir(sh+t, ah+t)

]
. The value function V π(sh) is

given by taking an expectation of the Q-value, Qπ(sh, ah),
under actions ah sampled from the policy π. The advan-
tage Aπ(sh, ah) of a state-action pair is the difference be-
tween its Q-value and the value of the state under the policy:
Aπ(sh, ah) = Qπ(sh, ah) − V π(sh). We will denote the
value function in the low-level MDP as Ṽ (sc, a

1:i−1
h ).

3.3. RL Algorithms in the Hierarchical Language MDP
This hierarchical MDP provides flexibility in designing
multi-turn RL algorithms: we could use any choice of RL
algorithm for the high or the low level. That said, note
that only the high level requires interaction with a (non-
differentiable) environment, while the low level optimizes
against the high-level value function, and therefore trains
entirely “in silico,” without any interaction with an environ-
ment. Therefore, the requirements on these methods are
different: the high-level algorithm should be highly sample
efficient, while the low-level algorithm should enable easy
policy optimization. Hence, a convenient choice is to use TD
learning at the high level, while using policy gradient, akin
to single-turn preference optimization approaches (Ouyang
et al., 2022; Bai et al., 2022) at the low level.

3.4. A Practical Instantiation of ArCHer for
Sample-Efficient Online RL

For deriving a concrete practical algorithm, we will utilize
the natural hierarchical MDP induced in multi-turn language
interaction: the utterance-level MDP at the high level and
the embedded token-level MDP at low level, as discussed
at the end of Section 3.1. In this setting, our approach
would train an utterance-level critic with TD backups and a
token-level policy with policy gradients.

High-level utterance critic. Following the practice in prior
RL algorithms (Snell et al., 2023), we train two LLM models
at the high-level, one to represent the utterance-level Q-
function Qπθ (s, a), and one to represent the utterance-level
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value function, V πψ (s). The Q-model is trained on Bellman
targets computed from a delayed copy of the value-model.
And the value model, in turn, is trained to approximate the
expected value of the Q-model on token sequences (i.e.,
utterances) obtained by sampling autoregressively from the
low-level policy, πϕ. Due to the off-policy nature of this
training process, we store and train on data from all previous
online interactions D = {si, ai, ri, s′i}Ni=1. The objective
for training the Q-model and the value-model are given by:

JQ(θ) = Es,a,r,s′∼D
[
(Qθ(s, a)− r − γVψ̄(s′))2

]
. (1)

JV (ψ) = Es∼D
[
Ea∼πϕ(·|s)

[
(Vψ(s)−Qθ̄(s, a))2

]]
. (2)

We estimate Equation 2 by sampling a batch of n obser-
vations {si}ni=1, followed by auto-regressively sampling
token sequences from the actor {aLi }ni=1. The delayed tar-
get models Qθ̄ and Vψ̄ are updated towards their current
counterparts with Polyak averaging (Haarnoja et al., 2018).

Low-level token actor. At the low-level, we train the token-
level actor πϕ(·|sc, a1:ht ) via an on-policy policy gradient
approach to find a sequence of tokens that maximizes the
prediction of the Q-model. To reduce variance, we use ad-
vantage values derived from the Q-model as the terminal
reward. This subroutine for training the actor generalizes
single-turn RL methods from RLHF, except that the ter-
minal reward is now an estimate of the multi-turn advan-
tage instead of a reward model. Concretely, we update the
token-level policy with the policy gradient computed via
REINFORCE (Williams, 2004):

Jϕ(π) = Esc∼D,a1:Lt ∼π(·|sc)

[
L∑
i=1

A(sc, a
1:L
t ) log πϕ(a

i
t|sc, a1:i−1

t )

]
.

(3)

3.5. Other Practical Instantiations of ArCHer
The instantiation of ArCHer described in Section 3.4 is
simple and ready-to-use, but the flexibility of the ArCHer
framework also enables it to incorporate other components
that prior RL works have found to be successful. We de-
scribe two variants in the two paragraphs to follow. The
first improves the sample efficiency while interacting with
the external environment and the second enables ArCHer to
learn entirely from a dataset of pre-collected experience.

Improvements to token-level policy gradient. In appli-
cations where the horizon of the token-level MDP is long
(i.e. each utterance has many tokens), despite the use of
advantage values (instead of Q-model predictions directly),
the REINFORCE estimator corresponding to Equation 3
can struggle to improve the policy due to a high variance in
token-level reward (Schulman et al., 2015). This variance
can be reduced by introducing a baseline value function,
Ṽη(π̃) parameterized by η, in the token-level MDP. For
simplicity, we opt to train this token-level baseline via su-
pervised regression onto Monte-Carlo return estimates (with

a discount factor of 1.0) in the token-level MDP as shown in
Equation 4, though Bellman backups can also be employed
in the low-level MDP to estimate it:

Jη(Ṽ ) = Esc∼D,a1:Lt ∼π(·|sc)

[
L∑
i=1

(
A(sc, a

1:L
t )− Ṽη(sc, a1:i−1

t )
)2]

.

(4)

Incorporating this token-level baseline, the new objective
for the actor given by Equation 5:

Jϕ(π) = Esc∼D,a1:Lt ∼π(·|sc)

[

L∑
i=1

(
A(sc, a

1:L
t )− Ṽη(sc, a1:i−1

t )
)
· log πϕ(ait|sc, a1:i−1

t )].

(5)

Offline RL training with ArCHer. ArCHer can also learn
from a dataset of pre-collected experience without any on-
line interaction. A distinguishing aspect of the offline setting
is that improving the policy normally results in selecting out-
of-distribution actions (Kumar et al., 2019), whose Q values
are difficult to estimate accurately given only the offline
dataset. As a result, directly optimizing the Q values, as
in the online setting, often results in severe overestimation,
divergence, and poor policy performance. This suggests
that we need to adopt different objective functions in this
offline setting. One concrete instantiation is to utilize the
implicit Q-learning (IQL) (Kostrikov et al., 2021) algorithm
for obtaining backup targets for the utterance-level critic
restricted to in-support actions, and the AWR (Peng et al.,
2019) algorithm for imposing a penalty on deviating far
away from the data on the actor. While our offline RL exper-
iments utilize these design choices, one could also utilize
other techniques such as explicitly regularizing the critic’s
predictions (Kumar et al., 2020) or imposing a behavioral
cloning loss on the actor (Fujimoto & Gu, 2021).

The IQL loss aims to derive a version of the TD error that
aims to inherit characteristics of the Bellman optimality
operator but without performing an explicit maximization
over the actions, by instead regressing Q-functions towards
a higher expectile of possible target values at the next state.
For a given expectile parameter τ ∈ [0.5, 1), the IQL loss is
given by the following:

J IQL
ψ (V ) = Es∼D[Ea∼πϕ(·|s)[L

τ
2(Vψ(s)−Qθ̄(s, a))]], (6)

where Lτ2(u) = |τ − 1{u < 0}|u2. See the paper
(Kostrikov et al., 2021) for more details.

The policy extracted by AWR (Peng et al., 2019) trades off
between searching for high-return policies and imitating the
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policy that generated the dataset, by minimizing the loss

Jϕ(π) = −E(sc,a1:Lt )∼D[
exp

(
β ·A(sc, a1:Lt )

)
·
L∑
i=1

log πϕ(a
i
t|sc, a1:i−1

t )

]
. (7)

The tradeoff is controlled by a positive, user-defined scalar
value β. Low values for β encourage imitating the policy
that generated the dataset. Large values of β lead to more
aggressive maximization of rewards, but potentially at the
cost of stability (Peng et al., 2019). The results for the
offline alternative is shown in Appendix D.1.

4. Theoretical Analysis
We will present empirical results showing the effectiveness
of ArCHer in Section 5, but in this section we will first
highlight some theoretical and conceptual benefits of our hi-
erarchical design. An important difference between ArCHer
and prior token-level RL algorithms such as ILQL (Snell
et al., 2023) is the high-level critic. Thus, we aim to un-
derstand the impact of estimation errors in this high-level
critic on the token-level policy in contrast with the impact
of estimation errors in a token-level critic. While our proof
techniques can be easily applied to general high-level and
low-level MDPs, we focus on analyzing the specific contrast
of utterance and token-level critics to be concrete.

Conditions for convergence. To start, we show that a
hierarchical RL design prescribed by ArCHer requires sub-
stantially weaker conditions for algorithm convergence com-
pared to off-policy token-level methods. These conditions
pertain to (1) the capacity of the function class representing
the critic (i.e., Bellman completeness (Song et al., 2023;
Zhou et al., 2023b; Zanette, 2023; Xie et al., 2021)), and (2)
the coverage of off-policy data as measured by the density
ratio (Zhan et al., 2022; Foster et al., 2021), following the
practice standard in RL theory. For (1), we show in Lemma 1
that satisfying the Bellman completeness (Song et al., 2023;
Zhou et al., 2023b; Zanette, 2023; Xie et al., 2021) condition
imposes weaker requirements on the function class used to
model the critic at the utterance-level (as is the case with
ArCHer) as opposed to the token level. Intuitively, this is
because a function class representing the token-level critic
must exhibit flexibility to realize arbitrary functions at the
next token, which would require higher capacity compared
to a utterance-level critic that only needs to be able to realize
arbitrary functions at the coarser time-scale of utterances.

For (2), we show in Lemma 2 that the density ratio condi-
tion (Zhan et al., 2022; Foster et al., 2021) imposes identical
requirements on the coverage of the offline data for token-
level and utterance-level critic, despite a larger space of
possible utterances (i.e., actions in the higher-level MDP).
Intuitively, this is because the a given offline dataset induces
the same trajectory distribution at both the utterance and
token levels. In other words, if a trajectory is covered by the

offline data at the utterance level, it is also covered by the
offline data at the token level, and vice versa.

Statistical error analysis. With the convergence condi-
tions discussed above, we are able to establish an analysis
of the statistical error incurred in estimating the advantage
estimates using the utterance-level and token-level critics.
Intuitively, this means that an utterance-level critic provides
a much more correct signal for improving the policy. We
state the conclusions of the theorem below, and refer inter-
ested readers to Appendix G for a formal proof.

Theorem 1 (Main Theorem; Informal). For an utterance-
level MDP with discount factor γ, where L is the maximum
length of each utterance, suppose utterance-level Assump-
tion 1 and 2 holds, let f be the final Q-function returned
by fitted policy evaluation formalized in Algorithm 2 at the
utterance level, f yields a suboptimality gap of

Es,a∼dπ
[(
(f̄(s, a)− Ea′∼π(·|s)[f̄(s, a)])−Aπ(s, a)

)2]
≤ 1

γL1/2
O
(

1

(1− γ)(1− γ1/L)L1/2
(ϵstat +

√
ϵstat)

)
.

For an equivalent token-level MDP with discount factor
γ1/L, suppose token-level Assumption 1 and 2 holds, let f
be the final Q function returned by Fitted Policy Evaluation
formalized in Algorithm 2 at the token level, f yields a
suboptimality gap of

Es,a∼d̃π
[(

(f̄(s, a)− Ea′∼π(·|s)[f̄(s, a)])− Ãπ(s, a)
)2]

≤O
(

1

(1− γ)(1− γ1/L)L1/2
(ϵstat +

√
ϵstat)

)
,

where ϵstat is the statistical error, proportional to N−1/2

(N is the number of utterance-level transitions).

Informally, Theorem 1 shows that the error in estimating
advantages using the token-level critic is γ

√
L larger than

the the utterance-level critic (in the worst case), where L
is the maximum number of tokens in each utterance, due
to error accumulation. In practice, a common choice for γ
is greater than 0.95 while L can be as large as 64 tokens,
resulting in γL1/2 >> 1. Therefore, we have not only
shown that a hierarchical design requires weaker conditions
for convergence, but it also enjoys improved guarantees on
the statistical error, resulting in a more accurate estimate of
policy gradient for improving the policy in the worst case.

5. Experiments
The goal of our experiments is to evaluate the efficacy of hi-
erarchical RL algorithms derived from ArCHer. Specifically,
we aim to answer the following questions: (1) Is ArCHer
able to achieve better sample complexity and performance
than prior on-policy and off-policy RL methods for LLMs?
(2) Does the TD-learning design for the utterance-level critic
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enable an effective use of off-policy data? (3) How does the
performance of ArCHer scale with larger base models (such
as Mistral 7B (Jiang et al., 2023))? (4) How do different
practical algorithms derived from our ArCHer framework
compare? To answer these questions, we will present an
extensive empirical evaluation of ArCHer and several prior
methods on a suite of environments encompassing natu-
ral language games, navigation problems posed in natural
language, and interaction with the web.

5.1. Tasks and Environments
To stress-test ArCHer, we need environments and task setups
that satisfy several desiderata. First, the chosen tasks must
require strategic multi-step planning and reasoning under
delayed rewards, and cannot be solved in one turn. We
also want these tasks to require LLMs to generate coherent
natural language and keep the task realistics.

Next, we want these tasks to be solvable by models of upto
7 billion parameter scale, which corresponds to the upper
end of our computational budget. Finally, the chosen tasks
should support fast and reliable evaluations, for reproducibil-
ity and benchmarking. Most existing LLM agent tasks such
as those which require interacting with terminals, operating
systems, and databases (Yang et al., 2023a; Liu et al., 2023)
require larger base models (typically larger than 7B) for
obtaining non-trivial success rates and can often be solved
in a single step. This makes these tasks unfavorable for fast
iteration within our compute budget. Other dialogue and
tutoring tasks (Hong et al., 2023; Verma et al., 2022; Zhu
et al., 2020; Lee et al., 2019; Budzianowski et al., 2018) re-
quire either costly user studies or evaluate using metrics that
do not directly represent task performance, making them
unfavorable for stress-testing our approach. Therefore, we
utilize a different set of tasks for our evaluations.

Concretely, we consider the following tasks: (1) Detective
Game (Hausknecht et al., 2019), an interactive text fiction
game where the agent must generate a sequence of natu-
ral language actions (e.g.,“take paper”, “eat apple”) based
on environment feedback. A reward is given if the agent
reaches some milestones towards finishing the game, where
the end goal is to successfully find the murderer in a murder
mystery; (2)Twenty Questions (Abdulhai et al., 2023), a
dialogue task where the agent plays the role of a guesser try-
ing to guess a hidden word from a list of 157 words within
twenty yes/no questions. The oracle answers the questions
with “Yes.”, “No.”, or “Invalid Question.” The oracle is
simulated with a “flan-t5-small” (Chung et al., 2022) model
trained with supervised fine-tuning on the dataset provided
by Abdulhai et al. (2023). Upon guessing the correct word,
the agent receives a reward of 0 and the environment termi-
nates. Otherwise, a reward of -1 is provided at each time
step. We also study a variation of this task with a list of
only 10 possible underlying words, that we call Twenty
Questions Subset. This variant challenges the algorithms
to tailor a very specific strategy when there is a shortcut

in the task; (3) Guess My City (Abdulhai et al., 2023), a
similar multi-turn task where the agent attempts to guess the
name of a hidden city from a list of 100 cities within twenty
questions. A crucial difference between the Guess My City
task and the Twenty Questions task is that the guesser is
now allowed to ask any question and can observe free-form
responses (which are not necessarily “Yes” or “No”); (4)
WebShop (Yao et al., 2023a), a tool-use task where the
agent is instructed to buy an item from a shopping server.
A dense reward between 0 and 1 is provided based on the
similarity of the item purchased and the item requested. See
Appendix A for more details. These tasks require planning
over long horizons, allow non-trivial success rates within
the 7 billion parameter scale, and come equipped with re-
producible and task-directed evaluation metrics.

5.2. Comparisons and Baseline Approaches
We compare our method to a number of alternative RL
approaches. For token-level methods, we consider token-
level PPO (Schulman et al., 2017) due to its state-of-the-art
performance with LLMs (Ouyang et al., 2022; Ramamurthy
et al., 2022). For each iteration, PPO collects new on-policy
data by rolling out the current actor and uses these data
to estimate the policy gradient. Perhaps most importantly,
data collected by previous policies is simply discarded for
later updates. We use the existing PPO implementation by
Abdulhai et al. (2023). We also implemented token-level
DQN (Mnih et al., 2013), but were unable to get it to attain
non-zero task performance and we did not find any prior
work evaluating this method so omit it from our results.

We also considered a non-RL approach based on filtered
behavioral cloning (BC), denoted as Filtered BC. As prior
work (Abdulhai et al., 2023; Snell et al., 2023) shows, per-
haps surprisingly, this simple baseline often attains competi-
tive or better performance than RL approaches for LLMs,
implying that outperforming filtered BC is a hallmark of
proper functioning of the “RL component” in an approach.
Our implementation of filtered BC maintains a buffer of
recent rollouts and trains the actor on top 10% rollouts.

For utterance-level methods, we compare with a state-of-the-
art utterance-level RL method, CHAI (Verma et al., 2022).
CHAI was designed for offline RL specifically. To extend
it to learn from online rollouts, we simply replace the pes-
simistic loss function (i.e., a conservative Q-learning (Ku-
mar et al., 2020) loss) in this approach with a standard TD-
learning loss function on data sampled from the off-policy
replay buffer, identical to the one used in ArCHer. That
said, the key difference is that CHAI utilizes a frozen actor
obtained by behavioral cloning (or supervised fine-tuning)
on the replay buffer, whereas ArCHer optimizes the actor
as well. Each time when an action needs to be sampled, k
utterances are sampled from the frozen actor. The utterance-
level critic in CHAI ranks these k utterances and chooses
the utterance with the highest Q value. A larger value of
k would likely lead to better performance, but is also com-
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Figure 3: Online RL results comparing ArCHer and other approaches on four tasks. We plot the median performance of each method
across three seeds. Observe that ArCHer steadily improves the policy, outperforming all other methods on three tasks and matching the
best prior approach on the simple Detective Game task. While PPO appears to not be learning, by zooming into the learning curve in
Figure 7, we find that PPO still gradually improves but at a very slow speed.
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Figure 4: Webshop results. Observe that fine-tuning a GPT2 base
model with ArCHer outperforms prior approaches, filtered BC and
CHAI, and is the only approach to outperform GPT 3.5 equipped
with several effective prompting strategies.

putationally expensive for this method. To obtain a sweet
spot, we instantiate CHAI with k = 5 to effectively balance
computational overhead and performance (note that k = 5
already results in a runtime of about 4 times longer than
our approach for this prior method; going beyond would
be prohibitive for our computational resources). Model
architectures, learning rates, and other algorithm-agnostic
details are kept identical between all prior methods and
ArCHer (see Section A.1).

Finally, akin to single-turn RL fine-tuning of LLMs, we
initialize the token-level policy for all methods with a pol-
icy checkpoint obtained by running supervised instruction
tuning on sub-optimal data for the task (see Appendix A for
how this sub-optimal data is generated). Uniformly across
all methods, this initialization enables effective exploration
at the beginning of RL fine-tuning.

5.3. Results: Sample Efficiency in the Online Setting
Figure 3 and 4 show the comparison between ArCHer with
other methods across the five tasks. We also provide some
example rollouts of ArCHer for each environment in Ap-
pendix E. Overall, we found that ArCHer converges to a
much better performance than all other prior methods on the
four harder tasks that require identifying hidden information
or present diverse initial states (i.e., Twenty Questions Sub-

set, Twenty Questions, Guess My City, and WebShop). In
fact, on WebShop, online RL training of GPT2 base model
via ArCHer outperforms several effective prompting strate-
gies (i.e., an expert-written prompt and ReAct (Yao et al.,
2023b)) applied on top of GPT-3.5, a strong LLM.

First, we found that token-level PPO fails to achieve perfor-
mance competitive with all other off-policy methods using
the same amount of data. This is perhaps unsurprising, as
PPO is an on-policy method, and therefore, cannot effec-
tively reuse samples from past iterations. In particular, on
the Twenty Questions task, we observed that PPO could
only stably improve when provided with at least 1024 on-
policy rollouts for each gradient step, likely because of high
gradient variance. This observation corroborates the finding
of Abdulhai et al. (2023), suggesting that online PPO is less
practical for this task. Quantitatively, we find that while it
takes more than 100k samples for PPO to attain an average
return just higher than -17 (see Figure 7 in the appendix),
ArCHer attains this reward with fewer than 1000 samples,
implying at least a 100x boost in sample efficiency.

While filtered BC generally converges very quickly, the re-
sulting policy often performs suboptimally and does not
improve with more data in Figure 3. On the other hand,
ArCHer enjoys steady policy improvement as it collects
more samples. Finally, we observed that while CHAI im-
proved at a faster than ArCHer initially, it often converged
to a worse final performance. We suspect this is because
the critic in CHAI is directly used to rerank samples from a
frozen behavior policy, which only enables a narrow margin
for policy improvement. On the contrary, ArCHer needs an
initial learning phase to reduce critic estimation error, after
which it can improve steadily.

5.4. Ablation Study: Importance of Off-Policy Data
In Figure 5 (b), we investigate the importance of off-policy
data by varying the size of replay buffer on the Guess My
City task. A smaller buffer means that updates rely on re-
peatedly sampling on-policy data. In our experiments, we
observed that using a replay buffer containing only the most
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Figure 5: (a) Ablation study of the token-level baseline on Guess My City. (b) Ablation study of the importance of off-policy data by
varying the size of the replay buffer on Guess My City. (c) Ablation study of changing the base model for critic from encoder-only
RoBERTa to autoregressive decoder-only GPT2 on Twenty Questions. (d) Ablation study of scaling the base model for the actor from
GPT2 to Mistral7B on Twenty Questions Subset.

recent 48 rollouts resulted in unstable learning, likely due to
overfitting on limited data, which has been observed in stan-
dard RL problems outside of LLMs (Nikishin et al., 2022).
On the other hand, larger buffers are more stable. However,
increasing the size of the buffer beyond a certain point is
benign, resulting in no meaningful changes to performance.
Overall, this means that making use of off-policy data can
improve the stability and performance of practical methods.

5.5. Ablation Study: Alternate Base Models for the
High-Level Critic in ArCHer

In Figure 5 (c), we changed the architecture for the critic
model from an encoder-only RoBERTa (Liu et al., 2019)
to an autoregressive decoder-only GPT2 (Radford et al.,
2019), where we took the embedding of the last “[EOS]”
token as the embedding of the utterances. Observe that
although ArCHer w/ RoBERTa critic learns a bit faster in
the beginning, learning curves for both of these critic models
behave identically past a certain number of initial samples.
Therefore, ArCHer can also use decoder-only transformer
models, with no loss in performance.

5.6. Ablation Study: Scaling the Base Model from 100M
to 7B Parameters

In Figure 5 (d), we replaced the 100 million parameter GPT-
2 model used to represent the token-level actor in ArCHer
with a 7 billion parameter Mistral model (Jiang et al., 2023).
When using this 7B model, we did not need to apply super-
vised fine-tuning since the open-source checkpoint already
attained non-trivial rewards on Twenty Questions Subset
when evaluated zero-shot. Observe in Figure 5 (d), that
ArCHer with this Mistral7B actor learns to solve the task
much faster than ArCHer with a GPT2 Actor. This indicates
that our ArCHer framework can scale well with LLMs with
more parameters. More broadly, due to similarities between
the token-level actor update in ArCHer and single-turn RL
fine-tuning for LLMs in RLHF, we would expect perfor-
mance to exhibit similar benefits from scaling the model
size for the policy (Gao et al., 2023).

5.7. Alternate Practical Algorithms
In Figure 5 (a), we compare the performance of ArCHer
with and without a token-level baseline on the Guess My
City task (Equation 5). This task requires the utterances
of the agent in each turn to be longer and more diverse
than other tasks. Observe that incorporating this token-
level baseline in ArCHer outperforms standard ArCHer by
a large margin, supporting our hypothesis that the introduc-
tion of the token-level baseline can effectively reduce the
variance of the vanilla policy gradient while updating the
token-level actor (especially when the utterances are long
and diverse). That said, this improvement requires paying
an extra overhead associated with training Ṽη , which might
not be necessary when each utterance is short.

To summarize, our experiments show that ArCHer can be
used to derive multi-turn RL methods that lead to substantial
improvements to sample efficiency of LLM training, benefit
from offline and off-policy experience as well as improve-
ments to RL algorithms, and scale with model capacity.

6. Discussion and Conclusion
We proposed a novel Actor-Critic Framework with a Hierar-
chical Structure (ArCHer) for multi-turn LLM agent tasks.
By running two RL algorithms simultaneously, one at the
high level (i.e., utterances in our practical method) and one
at the low level (i.e., tokens), ArCHer reduces task horizons
while enjoying the ability to retain a compact token-level
action space at the low level. Empirically, we observed
that ArCHer significantly outperforms prior RL methods
for LLMs, on a range of online RL tasks and scales fa-
vorably with more capable base models and other design
improvements. Deriving and evaluating novel practical al-
gorithms from the hierarchical framework of ArCHer is also
an interesting avenue for future work with the potential to
greatly improve task performance in multi-turn problems.
Our evaluations also focus entirely on tasks with compu-
tational rewards, and our method still requires thousands
of interactions, so an important direction is to make these
methods perform well with only hundreds of interactions.
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Impact Statement
Our work focuses on RL methods for training LLMs. This
has a variety of applications, and some of these applications
have complex and unpredictable societal implications: LLM
agents that can improve from interaction can be used for
many highly desirable problems, such as personalization,
improving efficiency of AI assistants, and more quickly
resolving customer service issues. They can also be used in
settings where care must be taken, such as marketing, where
the ability to optimize for persuasiveness may lead to either
unintended or unethical behavior. Finally, RL algorithms
for LLMs can also be used maliciously, for example to
enable agents to more effectively perform illegal acts. As
RL methods for LLMs improve, we expect this will also
increase the importance of research on detecting RL-enabled
LLM agents in interactions, and also research on methods
to mitigate unintended harmful behavior of such agents, in
order to address the potential societal challenges of these
technologies.
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Appendices
A. Environment and Dataset Details
In this section, we provide more details on the environments and datasets that we used in our experiments. Example actions
and observations for each environment are shown in Figure 6.

Detective Game (Hausknecht et al., 2019). In this game, the agent plays the role of a detective looking into a case where
the Mayor got murdered. At each time step, the agent generates a free-form text where the game engine parses the text and
determines the next state at each time step. The game engine provides a feedback of “Illegal Action.” if the generated text is
an illegal action or cannot be correctly parsed. The optimal policy takes 51 steps to solve and reaches a maximum reward of
360. The game timeouts and terminates after 60 steps (including steps where illegal actions are generated). The observation
at each time step includes the current surroundings, items carried, environment feedback for the outcome of the last action,
and a list of available actions. The Supervised Fine-Tuning (SFT) dataset for this environment consists of 1000 trajectories
of an agent picking a random action from the list of available actions at each timestep.

Action: take paper

Observation: 
<< Chief's office >>
You are standing in the Chief's office. He is telling you 
"The Mayor was murdered yeaterday night at 12:03 am. 
I want you to solve it before we get any bad publicity or 
the FBI has to come in. "Yessir!" You reply. He hands 
you a sheet of paper. Once you have read it, go north or 
west.

You are carrying:
  a piece of white paper

Taken.

[Your score has just gone up by ten points.]
['east', 'west', 'put paper down', 'north']

Detective Game Guess My City
Action: Is your city located in Europe?

Observation: 

Action: Is the object an artwork?

Observation: 

Twenty Questions Web Shopping
Action:

Observation: Questions:
Is the object alive?
No.
Is the object man-made?
Yes.
Is the object a vehicle?
No.
Is the object a piece of furniture?
No.
Is the object a piece of clothing?
No.
Is the object a piece of technology?
No.
Is the object a piece of jewelry?
No.
Is the object a piece of clothing?
No.
Is the object an artwork?
No.

Questions:
What is the primary language spoken in your city?
The primary language spoken in the city is Spanish.

Is your city located on the east coast of the country?
Yes, it is located on the east coast of the country.

Is your city located in North America?
No, my city is not located in North America.

Is your city located in Europe?
Yes, my city is located in Europe.

WebShop
Instruction:
i am looking for a wireless bluetooth 4.0 power amplifier 
board, and price lower than 60.00 dollars
[Search]
Action:
search[wireless bluetooth 4.0 power amplifier board]
Observation:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B08LDPQCB4]
Audio Amplifier Module,TDA7492P Wireless Bluetooth 
4.0 Audio Receiver Power Amplifier Board 
Module,CSR8635 Bluetooth Chip,Auto Pairing,Amplifier 
Speakers Board
$25.19
[B08GPVK8LB]
Liccx TDA7492P Power Amplifier Board£¬Wireless 
Bluetooth 4.0 Audio Receiver Power Amplifier Board 
Module Audio Amplifier Module
$24.99

search[wireless bluetooth 4.0 power amplifier board]

Figure 6: Example actions and observations for each environment that we study in this paper.

Twenty Questions and Twenty Questions Subset (Abdulhai et al., 2023). In this environment, for each episode, a random
word is chosen from a list of 157 words of household items such as “basketball”, “apple”, and “car”. The word is held
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hidden from the agent and the agent is tasked to guess the hidden word within 20 questions. The questions are limited to
yes/no questions and the answers from the oracle are limited to “Yes.”, “No.”, and “Invalid Question.”. As opposed to using
“flan-t5-xl”(Chung et al., 2022) as the oracle (Abdulhai et al., 2023), we train a ‘flan-t5-small” to simulate the oracle with
the same data and use it for our online experiments due to computational constraints. The agent gets a reward of 0 if it
guesses the correct word and the episode terminates. Otherwise, the agent gets a reward of -1 for each question it raises.
This reward structure results in a minimum reward of -20 if the agent does not guess the corret word with twenty questions
and a maximum reward of 0 if the agent guesses the correct word with the first question although it is very unlikely. We
use the official offline dataset provided by Abdulhai et al. (2023) with 100K simulated episodes. Our SFT checkpoints
for online experiments for both Twenty Questions and Twenty Questions Subset are also trained with this dataset. Twenty
Questions Subset keeps everything else the same except that it uses a subset of 10 hidden words in the word list. Since the
offline dataset and the SFT checkpoint for online experiments are based on the entire Twenty Questions, Twenty Questions
Subset challenges different algorithms with a significant distribution shift and requires the agent to come up with an entirely
different strategy from behavior cloning.

Guess My City (Abdulhai et al., 2023). This environment is a similar dialogue task to Twenty Questions. For each episode,
a random city is chosen from a list of 100 cities in the world. The city is held hidden from the agent and the agent is tasked
to guess the name of the city within 20 questions. Both the questions and answers are free-form except that the answers are
not allowed to contain the name of the city. As opposed to using “flan-t5-xl”(Chung et al., 2022) as the oracle (Abdulhai
et al., 2023), we train a ‘flan-t5-small” to simulate the oracle with the same data and use it for our online experiments due to
computational constraints. We found in our online experiments that the agent can easily learn to “exploit” the oracle by
tricking it to directly output the name of the city. Therefore, we simply replace the answer with a hardcoded template “I
cannot answer that question.” if the name of the city is found in the output of the oracle language model to reduce reward
hacking. The reward structure is the same as Twenty Questions. We use the official offline dataset provided by Abdulhai
et al. (2023) with 100K simulated episodes.

Web Shopping (Yao et al., 2023a). This environment challenges the ability of the agents to interact with external tools. For
each episode, a random instruction requesting a specific item is chosen and shown to the agent. The agent needs to make use
of a simplified web shopping server to make the purchase. Every successful purchase is consisted of searching the keywords
in the search engine, selecting an item from searched results, clicking on features and attributes for the item, and finally
making the purchase. Following ReAct (Yao et al., 2023b), the agent can choose to take a “think” action before taking any
actual actions such as “search” and “click”. An observation consists of the instruction and the history of visited webpages
(described in text) and actions. The reward is a scalar between 0 and 1 depending on the similarity of the purchased item
with the requested item. For example, a partial reward will be given if the agent purchases a black king-sized bed while
a black queen-sized bed is requested. The episode timeouts after 10 interaction steps and a reward of 0 is issued. Our
main online environments use a subset of 100 instructions from index 2000 to 2100 for a fast evaluation. We collect the
offline dataset using the instructions from index 0 to 1000 with GPT-3 text-davinci-002 with prompts from ReAct’s official
implementation.

A.1. Framework Summary and Practical Implementation Details

Pseudocode. The algorithms derived from the ArCHer framework so far are summarized in Algorithm 1. These algorithms
can operate in either offline or online mode (Line 4), and can utilize a variety of objectives for training the utterance-level Q-
and V-models (Lines 9-15) as well the token-level policy (Line 20). Optionally, a token-level baseline value function may
also be utilized (Line 17).

Implementation details. In our main experiments, we use a GPT-2 (Radford et al., 2019) architecture for parameterizing
the policy, and a RoBERTa-base model (Liu et al., 2019) with a linear layer on top of the embeddings corresponding to the
“[CLS]” token for obtaining the critic’s predictions. To address the issue of overestimation of Q-values, we also employ
the double Q-learning trick (van Hasselt et al., 2015) and train two copies of Q- and V-models, {Q1, V1} and {Q2, V2},
independently. The advantage value is calculated by using a minimum over Q1, Q2 and V1, V2.

To save computation and memory costs, Q1, Q2, V1, V2 share the same language model encoder backbone with separate
MLP heads. The parameters of the token-level actor are independent from the critic. When utilized, the token-level value
baseline is parameterized by a separate GPT2 architecture with a MLP layer on top of the hidden states for each token.
Additional details and hyperparameters for our approach are provided in Appendix F.
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Algorithm 1 ArCHer: Practical Framework

1: Initialize parameters ϕ, ψ, θ, θ̄, (Optionally) η
2: Initialize replay buffer D (optionally from an offline dataset).
3: for each iteration do
4: ## Data Collection. ▷ [only online mode]
5: for each environment step do
6: Execute at ∼ πϕ(·|st) , obtain the next state st+1, add to buffer D.
7: end for
8: for each critic step do
9: ## Update utterance-level Q and V functions by target function bootstrapping.

10: θ ← θ −∇Jθ(Q) ▷ Equation 1
11: ψ ← ψ −∇Jψ(V ) ▷ Equation 2 or 6
12: ## Update target Q and V functions.
13: θ̄ ← (1− τ)θ̄ + τθ
14: ψ̄ ← (1− τ)ψ̄ + τψ
15: end for
16: ## Update token-level baseline by MC regression.
17: for each baseline step do
18: η ← η −∇Jη(Ṽ ) ▷ (Optionally), Equation 4
19: end for
20: ## Update token-level actor with utterance-level critic.
21: for each actor step do
22: ϕ← ϕ−∇Jϕ(π) ▷ Equation 3, 5, or 7
23: end for
24: end for

B. Offline Algorithm and Practical Considerations
Our offline algorithm is a hierarchical version of the IQL algorithm (Kostrikov et al., 2021). Specifically, the critic leverages
IQL (Eq. (6)) while the actor update is based on AWR (Equation 7).

These choices for the actor and for the critic update identify two key hyperparameters, the expectile value τ (defined in
Equation 6 and 7) and the temperature β, whose effect is described in the respective sections. These hyper-parameters
are already present in the original IQL algorithm (Kostrikov et al., 2021), and they have a similar interepretation here. By
choosing τ and β appropriately, the algorithm identifies a policy whose performance should be between the optimal one and
the one that generated the dataset. (In general, recovering the optimal policy by just using a dataset may not be possible as
the dataset may not contain information about an optimal policy).

The offline algorithm shares most of the ingredients with its online counterpart, such as the double critic, target networks,
soft updates, and value function heads. However, some unique features inherited from IQL allow to considerably simplify
several algorithmic choices.

• The actor and the critic no longer need to be synchronized by using a certain update ratio. This is because the critic
update defined in Equation 6 is independent of the actor’s current policy, and so the two can be updated with any
desired frequency without introducing instabilities.

• It is not necessary to pre-train the policy with a behavioural cloning objective, because such objective is already
included in the actor’s loss function in Equation 7.

• The warmup steps for the critic are also not necessary, because the initially small advantage function has a neglegible
effect in the AWR loss.
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C. Additional Baseline Details
C.1. Performance of PPO

In Figure 7, we provide a zoom-in of the learning curves of PPO for Twenty Questions, Twenty Questions Subset, and
Guess My City. We observed that PPO does improve over the SFT checkpoint, especially in the more simple task Twenty
Questions Subset. However, as PPO is unable to reuse past off-policy data, we need to collect at least 1024 trajectories of
on-policy data for each PPO update, as shown in Appendix F. This observation is consistent with Abdulhai et al. (2023).
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Figure 7: A zoom-in of learning curves of PPO. PPO gradually improves despite its worse sample complexity compared to other off-policy
methods.

C.2. Additional Reproduction Details for WebShop Experiment

For our WebShop experiment, we utilized the environment and the few-shot prompting baselines from ReAct (Yao et al.,
2023b). ReAct introduces two prompting strategies: the ReAct method and the Act-only method, which we denote as ReAct
and expert-prompt in Figure 4. The ReAct method additionally allows the agent to articulate its reasoning before making
an action, whereas the Act-only method does not. We use the original prompts in ReAct’s implementation without any
modifications, and to ensure that our paper is self-contained, we also include these prompts in Figure 9 and 8.

We assessed these algorithms on the webshop index from 2000 to 2100 to establish the LLM-based few-shot baselines
in Figure 4. Notably, by early January 2024, OpenAI had deprecated the GPT-3 text-davinci-002 model used in the
original ReAct study. Consequently, we switched to the gpt-3.5-turbo-instruct model. While the expert-prompt approach
yielded performance comparable to the best performing text-davinci-002 based method, the ReAct method underperformed
significantly with the newer model. This discrepancy, also observed and replicated in other tasks independetly by other
researchers 2, is faithfully depicted in Figure 4.

2For more details, see the Github Issue on ReAct’s repository: https://github.com/ysymyth/ReAct
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ReAct Prompt
Webshop
Instruction:
i would like a 3 ounce bottle of bright citrus deodorant for sensitive skin, and price lower than 50.00 dollars
[Search]
Action: search[3 ounce bright citrus deodorant sensitive skin]
Observation:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama — Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce
$10.99
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama — Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce
$10.99
[B08KBVJ4XN]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor
Protection, Cedar & Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)
$15.95
Action: think[B078GWRC1J and B078GTKVXY are bright citrus deodorant less then 50 dollars. I can check
B078GWRC1J first.]
Observation: OK.
Action: click[B078GWRC1J]
Observation:
[Back to Search]
[< Prev]
scent [assorted scents][bright citrus][calming lavender][ginger fresh][simply non-scents]
size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]
Bright Citrus Deodorant by Earth Mama — Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce
Price: $10.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]
Action: think[For 3 ounce bottle of bright citrus deodorant for sensitive skin, the item has options ’bright citrus’
and ’3 ounce (pack of 1)’ and seems good to buy.]
Observation: OK.
Action: click[bright citrus]
Observation: You have clicked bright citrus.
Action: click[3 ounce (pack of 1)]
Observation: You have clicked 3 ounce (pack of 1).
Action: click[Buy Now]

Figure 8: Prompts used by the act-only (expert) baseline.
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Act-only (expert) Prompt
Instruction:
i would like a 3 ounce bottle of bright citrus deodorant for sensitive skin, and price lower than 50.00 dollars
[Search]
Action: search[3 ounce bright citrus deodorant sensitive skin]
Observation:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama — Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce
$10.99
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama — Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce
$10.99
[B08KBVJ4XN]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor
Protection, Cedar & Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)
$15.95
Action: click[B078GWRC1J]
Observation:
[Back to Search]
[< Prev]
scent [assorted scents][bright citrus][calming lavender][ginger fresh][simply non-scents]
size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]
Bright Citrus Deodorant by Earth Mama — Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce
Price: $10.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]
Action: click[bright citrus]
Observation: You have clicked bright citrus.
Action: click[3 ounce (pack of 1)]
Observation: You have clicked 3 ounce (pack of 1).
Action: click[Buy Now]

Figure 9: Prompts used by the act-only (expert) baseline.

D. Additional Experimental Results
D.1. Offline ArCHer with IQL and AWR.

We now present a preliminary study of ArCHer in the offline setting, when learning from a static dataset from past
environment interactions. Due to computational constraints, we were not able to perform extensive comparisons with the
state-of-the-art algorithms; rather, we investigated the effect of several design choices in order to investigate the effect of
various design choices in the offline setting, including IQL and AWR losses described in Section 3.5. We also incorporate a
baseline, BC, which performs (unfiltered) imitation learning on the offline dataset. Finally, we also ran filtered BC, which
only imitates the best trajectories in the offline dataset.

In Table 1, we also evaluate several other design choices in the offline setting. Directly borrowing the REINFORCE objective
from the online setting (Equation 3) results in a quick collapse of performance due to the lack of any regularization to
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Twenty Questions (Return)

ArCHer (IQL + AWR) −14.1
ArCHer (IQL + REINFORCE) −20
ArCHer (IQL + REINFORCE + BC) −15.3
ArCHer (SARSA + AWR) −14.5
Filtered BC −15.4
BC −16.8

Table 1: Variants of ArCHer in the offline RL setting. The performance of different approaches is evaluated by running 1280
trajectories across 5 random seeds for ArCHer and the Filtered BC approach. Observe that handling out-of-distribution actions by
instantiating ArCHer with the IQL and AWR objectives works best in the offline setting.

prevent out-of-distribution actions, as is well known in the offline RL problem setting outside of LLMs (Kumar et al., 2019).
Combining Equation 3 with an imitation learning loss stabilizes learning and results in a performance improvement, but still
underperforms advantage-weighted regression (AWR) (Peng et al., 2019). Finally, we replaced the IQL in-sample expectile
backup with a SARSA backup, where the utterance present in the offline dataset at the next turn is used to compute the
Bellman target, i.e., no implicit or explicit maximization over target values is utilized, and the value function is trained to
represent the long-term Q-values of the data collection policy. Observe that this variant did not offer the same level of policy
improvement as using IQL to train the critic in this setting. This highlights the importance of maximization over actions to
calculate Bellman targets in the offline setting. Finally, we also find that instantiations of ArCHer that use IQL and SARSA
in conjunction with AWR, both outperform the naı̈ve BC and filtered BC, further higlighting the importance of dynamic
programming to train the critic.

D.2. TD-Learning v.s. MC Regression

To validate whether TD-learning plays an important role in ArCHer, we carried out an ablation study where we replaced
TD-learning in ArCHer with MC regression for critic updates. To make sure that data in the replay buffer are generated
by similar policies, we use a smaller replay buffer that contains trajectories collected by three latest policies. The ablation
results are shown in Figure 10a. We observed that MC regression may learn faster in the beginning as the information
propagates faster than per step TD learning, but it fails to learn reliably over then entire training process. This ablation result
shows the importance of TD-learning to effectively make use of off-policy data.

D.3. Online IQL Critic Loss

In our ablation study of using IQL critic loss in the online setting, we set τ = 0.9 to encourage more risk-seeking for better
explorations. As we can see from Figure 10b, the use of IQL critic can indeed accelerate explorations in simple tasks such as
Detective Game. However, a naive instantiation of IQL fails to provide an unbiased estimate for the policy gradient resulting
in potential instabilities in harder tasks such as Twenty Questions.
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E. Reward Hacking
To understand whether our agent has really learnt to behave more strategically with reinforcement learning instead of
exploiting the environment, we present sample trajectories for Twenty Questions Subset, Twenty Questions, Guess My City,
and WebShop in Figure 11, 12, 13, 14. Note that for detective game, there is only a limited number of legal actions and all
illegal actions will lead to making no progress in the game, resulting in a lower rewards. For Twenty Questions Subset and
Twenty Questions, we observed that the successful dialogues tend to be mostly natural and strategic while some unsuccessful
dialogues tend to contain more meaningless repetitions. For Guess My City, we observed that the agent learnt to ask the
predominant language of the city which is one of the most informative questions in the SFT distribution we considered in
Appendix A. However, as there are some vulnerabilities and hallucinations of the imperfect oracle model for generating
free-form answers, some of the conversations might diverge to meaningless repetitions in the end. For WebShop, as the
environment forces the format of legal actions for the web server to process, the trajectories tend to be natural and realistic.

Twenty Questions Subset
Questions:
Is it a living thing? No.
Is it a man-made? Yes.
Is it a machine? No.
Is it a tool? No.
Is it a piece of clothing? No.
Is it a piece of furniture? Yes.
Is it a chair? Yes.

Figure 11: Example environment interactions of ArCHer for Twenty Questions Subset at the end of training. It can be seen that in this
environment, ArCHer learnt a near-optimal binary search strategy.
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Twenty Questions
Questions:
Is it a living thing? Yes.
Is the object a mammal? No.
Is the object a plant? Yes.
Is the object edible? Yes.
Is the object a vegetable? No.
Is the object a fruit? Yes.
Is the object a citrus fruit? No.
Is the object a berry? Yes.
Is the object a strawberry? No.
Is the object a strawberry? No.
Is the object a blueberry? No.
Is the object a rasepeberry? No.
Is the object a currant? No.
Is the object a grape? Yes.

Questions:
Is the object a living thing? No.
Is the object man-made? Yes.
Is the object a vehicle? No.
Is the object a piece of jewelry? No.
Is the object a musical instrument? Yes.
Is the object a stringed instrument? No.
Is the object a wind instrument? Yes.
Is the object a trumpet? No.
Is the object a trombone? No.
Is the object a flute? No.
Is the object a saxophone? No.
Is the object a clarinet? No.
Is the object a clarinet? No.
Is the object a clarinet? No.
Is the object a clarinet? No.
Is the object a clarinet? No.
Is the object a clarinet? No.
Is the object a clarinet? No.
Is the object a clarinet? No.
Is the object a clarinet? No.

Figure 12: Example environment interactions of ArCHer for Twenty Questions (one successful and one unsuccessful trajectory) at the end
of training. In this environment, the conversation is smooth and natural for successful trajectories. However, for unsuccessful trajectories,
the agent may sometimes keep repeating the same question.

23



ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL

Guess My City
Questions:
What is the predominant language spoken:
The predominant language spoken is Mandarin Chinese.
Is the city you are from Shanghai?
No, I am not from Shanghai.
Is the city you are from Taipei,Is the city you are from TaipeiIs the city you are from Tis aipeiIs the city you are
from Tai
Yes

Questions:
What is the predominant language spoken:
English
Is the city you are from London?
No, I am not from London.
Is the city you are from LondonIs the city you are from London Is the city you are from London
Yes, my city is from London.
Is the city you are from LondonIs the city you are from London Is the city you are from London
Yes, my city is from London.
Is the city you are from LondonIs the city you are from London Is the city you are from London
Yes, my city is from London.
Is the city you are from LondonIs the city you are from London Is the city you are from London
Yes, my city is from London.
Is the city you are from LondonIs the city you are from London Is the city you are from London
Yes, my city is from London.
......

Figure 13: Example environment interactions of ArCHer for Guess My City at the end of training. The agent learns to ask the question for
the predominant language, which is one of the most informative questions from the offline SFT distribution. However, as the oracle model
provides free-form responses can be out of distribution, the agent is more prone to collapsing in out-of-distribution states.
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WebShop
Observation:
WebShop
Instruction:
i would like a citrus yao conditioner made with natural ingredients, and price lower than 50.00 dollars
[Search]
Action:
search[citrus yao conditioner natural ingredients]
Observation:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B099KWBV49]
VIORI Terrace Garden Conditioner Bar - Handcrafted with Longsheng Rice Water & Natural Ingredients -
Sulfate-free, Paraben-free, Cruelty-free, Phthalate-free, pH balanced 100% Vegan, Zero-Waste
$16.25
[B09KQZ9GTK]
VIORI Hidden Waterfall Shampoo & Conditioner Bar Set WITHOUT Bamboo Holder - Handcrafted with
Longsheng Rice Water & Natural Ingredients - Sulfate-free, Paraben-free, Phthalate-free, 100% Vegan
$29.25
Action:
click[B099KWBV49]
Observation:
[Back to Search]
[< Prev]
style [bamboo bar holder][citrus yao][hidden waterfall]
size [bamboo bar holder][conditioner][shampoo][shampoo + conditioner set]
VIORI Terrace Garden Conditioner Bar - Handcrafted with Longsheng Rice Water & Natural Ingredients -
Sulfate-free, Paraben-free, Cruelty-free, Phthalate-free, pH balanced 100% Vegan, Zero-Waste
Price: $16.25
Rating: N.A.
[Description]
[Features]
[Reviews]
[Attributes]
[Buy Now]
Action:
click[citrus yao]
Observation:
You have clicked citrus yao.
Action:
click[Buy Now]
Observation:
Your score (min 0.0, max 1.0): 0.75

Figure 14: Example environment interactions of ArCHer for WebShop at the end of training. It can be seen that in this environment, the
behavior of ArCHer is very natural.

F. Hyperparameters
Table 2 shows hyperparameters for ArCHer and other baselines for all environments. As shown in the table, most
hyperparameters are held the same across all environment except that a smaller actor learning rate is used for Twenty
Questions and a larger number of rollout trajectories is used for Web Shopping. This shows that ArCHer is relatively
insensitive to selection of hyperparameters and does not require too much hyperparameter tuning to work in different
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environments.

Table 2: Hyperparameters for All Experiments

Detective Game Twenty Questions Subset Twenty Questions Guess My City Web Shopping

SFT actor lr 2e-4 2e-4 2e-4 2e-4 2e-4
batch size 32 32 32 32 32

Filtered
BC

actor lr 3e-4 3e-4 3e-5 3e-4 3e-4
batch size 256 256 256 256 256

rollout trajectories 32 32 32 32 128
replay buffer size 10000 10000 10000 10000 10000

filtering percentage 0.1 0.1 0.1 0.1 0.1
actor updates per iteration 10 10 10 10 10

CHAI

actor lr 3e-4 3e-4 3e-5 3e-4 3e-4
critic lr 6e-4 6e-4 6e-4 6e-4 6e-4

batch size 256 256 256 256 256
rollout trajectories 128 128 128 128 512
replay buffer size 10000 10000 10000 10000 10000

critic updates per iteration 50 50 50 50 50
discount 0.98 0.95 0.95 0.95 0.9

polyak alpha 0.9 0.9 0.9 0.9 0.9

ArCHer

actor lr 3e-4 3e-4 3e-5 3e-4 3e-4
critic lr 6e-4 6e-4 6e-4 6e-4 6e-4

batch size 256 256 256 256 256
rollout trajectories 128 128 128 128 512
replay buffer size 10000 10000 10000 10000 10000

critic updates per iteration 50 50 50 50 50
discount 0.98 0.95 0.95 0.95 0.9

polyak alpha 0.9 0.9 0.9 0.9 0.9
actor updates per iteration 3 3 3 3 3

warm up iters with no actor update 10 10 20 10 20

ArCHer
w/
Baseline

actor lr \ \ \ 3e-4 \
critic lr \ \ \ 6e-4 \

batch size \ \ \ 256 \
rollout trajectories \ \ \ 128 \
replay buffer size \ \ \ 10000 \

critic updates per iteration \ \ \ 50 \
discount \ \ \ 0.95 \

actor updates per iteration \ \ \ 3 \
baseline updates per iteration \ \ \ 60 \

warm up iters with no actor update \ \ \ 10 \
polyak alpha \ \ \ 0.9 \

PPO

actor lr \ 6e-6 6e-6 6e-4 \
batch size \ 1024 1024 1024 \

rollout trajectories \ 2048 2048 1024 \
PPO epochs \ 10 20 4 \

discount \ 0.95 0.95 0.95 \
GAE lambda \ 0.95 0.95 0.95 \

clip range \ 0.2 0.2 0.2 \

Table 3: Hyperparameters for ArCHer and baseline methods for all experiments.

G. Proof of Main Theorem
G.1. Equivalent Utterance and Token Level MDPs

We consider the groundtruth utterance-level discounted infinite horizon MDPM = {S,A, γ, r, µ0, P} as defined in Section
3.1. An equivalent token-level infinite horizon MDP can be constructed with M̃ = {S̃, Ã, γ1/L, r, µ0, P̃}, where L is the
length of each utterance, Ã contains all individual tokens with a special padding token (such that each utterance is padded to
the same length L), S̃ ∈ S × ÃL contains both the state in the utterance-level MDP and the partial sequence of utterance
that has already been generated, γ1/L is the equivalent discount factor. Note that this definition of token-level MDP is not
the same as the definition of token-level MDP in the hierarchical language MDP defined for ArCHer in Section 3.1. The
token-level MDP for ArCHer is only embedded in one particular utterance and the only reward that it receives is at the end
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of the utterance from the utterance-level critic while the equivalent token-level MDP spans multiple utterances and receives
rewards from the external environment at the end of each utterance. This construction of token-level MDP is “equivalent” to
the utterance-level MDP in the sense that for any autoregressive policy π that generates an utterance token by token, we
have:

∀s ∈ S, V π(s) = Ṽ π(s),

where V π and Ṽ π are value functions of π in the utterance-level MDPM and the token-level MDP M̃ respectively. We use
π̃ for the same utterance-level policy π when it generates one token at a time.

As usual, for any MDPM, we define dπ ∈ ∆(S ×A) as the average state-action occupancy measure of policy π such that:

dπ(s, a) = (1− γ)(µ0(s)π(a|s) +
∞∑
t=1

γtPπ(st = s, at = a))

We denote V π = Es0∼µ0V
π(s0) as the expected total discounted reward of π. We denote T π as the Bellman operator

associated with π, i.e., given a function f ∈ S ×A 7→ R, we have

T πf(s, a) = r(s, a) + γEs′∼P (s,a),a′∼π(s′)[f(s
′, a′)].

Similar definitions can be made in the token-level MDP M̃ for d̃π, Ṽ π, and T̃ π. We also define Ãπ as the advantage
function in the token level.

G.2. Fitted Policy Evaluation Subroutine

In this section, we present our theoretical subroutine for fitting the critic in Algorithm 2. On a high level, it just repeats
finding the Q function that minimizes the bellman error with respect to the Q function in the last iteration, and returns the
average of all Q functions in the end. Both critic fitting in the token-level MDP M̃ or in the utterance-level MDPM follows
from the same subroutine with the same function class F that map the space of seuqnces of tokens to real values. This
theoretical algorithm is simply a more fomalized version of the critic update in Algorithm 1.

Algorithm 2 Fitted Policy Evaluation (FPE)
Require: Policy π, function class F , number of iterations K, weight λ
Require: K independent datasets D1:K = {(s, a, r, s′)} of M many samples each from the same offline distribution ν.

1: Initialize f0 ∈ F .
2: for k = 1, . . . ,K do
3: Solve the square loss regression problem to compute:

fk ← argmin
f∈F

ÊDk
[(f(s, a)− r − γfk−1(s

′, π(s′)))2] (8)

4: end for
5: Return f̄ = 1

K

∑K
k=1 fk.

G.3. Assumptions

We present the two important assumptions that we use for analyzing FPE subroutine, and both assumptions share the same
definition for utterance-level MDPM and token-level MDP M̃.

Assumption 1 (Bellman Completeness (Song et al., 2023; Zhou et al., 2023b; Zanette, 2023; Xie et al., 2021)). We say that
F is Bellman Complete for some policy π, if for all f ∈ F , there exists a f ′ ∈ F such that ∥f ′(s, a)− T πf(s, a)∥∞ = 0.

Assumption 2 (Density Ratio Coefficient (Zhan et al., 2022; Foster et al., 2021)). Given the offline distribution ν, for any
policy π, we define the density ratio coefficient as

Cν,π := max
s,a

dπ(s, a)

ν(s, a)
.
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The following two lemmas compare the utterance-level assumptions and token-level assumptions.

Lemma 1. For any stationary policy π, token-level Bellman Completeness for M̃ =⇒ utterance-level Bellman Complete-
ness forM

Proof. ∀s ∈ S, a ∈ A being state and action in the utterance-level, the utterance a can be decomposed into L tokens in the
action space of the token-level MDP:

a = ã1:L, ãi ∈ Ã, i = 1, . . . , L.

Therefore,

min
f ′∈F

|f ′(s, a)− T πf ′(s, a)|

= min
f1,...,fL∈F

|f1(s, a)− T̃ πf2(s, a) + r(s, a) + γ1/LEs′∼P (·|s,a),ã1∼π̃(·|s′)f2(s
′, ã1)

− γ1/LEs′∼P (·|s,a),ã1∼π̃(·|s′)T̃
πf3(s

′, ã1) + · · ·+ γ(L−1)/LEs′∼P (·|s,a),ã1:L−1∼π̃(·|s′)fL(s
′, ã1:L−1)

− r(s, a)− γ(L−1)/LEs′∼P (·|s,a),ã1:L−1∼π̃(·|s′)T̃
πf(s′, ã1:L−1)|

≤ min
f1,...,fL∈F

|f1(s, a)− T̃ πf2(s, a)|
L∑
i=2

γ(i−1)/LEs′∼P (·|s,a),ã1:i−1∼π̃(·|s′))|f
i(s, ã1:i−1)− T̃ π((s, ã1:i−1)|

≤0,

where the last inequality follows from the assumption of token-level Bellman Complete.

The next lemma assumes that the offline distribution ν is the same for both token-level MDP and utterance-level MDP, i.e.
the token-level transitions are derived by splitting utterance-level transitions. We use ν̃ to denote the token-level offline
distribution created in this way.

Lemma 2. For any stationary policy π, and any offline distribution ν, we have Density Ratio Coefficient for token-level M̃
= Density Ratio Coefficient for utterance-levelM.

Cν,π = Cν̃,π

Proof. The proof is constructed by noticing the fact that each token-level state consists of not only the utterance-level state
but also all the tokens that have been generated in the current utterance:

max
s̃∈S̃,ã∈Ã

d̃π(s̃, ã)

ν̃(s̃, ã)

= max
s∈S,ã1:i−1∈Ã,i∈[1,L]

d̃π(s, ã1:i−1, ãi)

ν̃(s, ã1:i−1, ãi)

= max
s∈S,ã1:L∈Ã

d̃π(s, ã1:L)

ν̃(s, ã1:L)

= max
s∈S,a∈A

dπ(s, a)

ν(s, a)
,

where the first equation follows by regrouping states and actions as each state in the token-level state space s̃ ∈ S̃ = S ×ÃL,
and the second equation holds because maxb

p(a,b)
q(a,b) ≥

p(a)
q(a) .

G.4. Proof of Main Theorem

Now we are ready to analyze the sample complexity of Fitted Policy Evaluation in Algoritm 2, the proof of our main theorem
makes use of several technical lemmas from Section G.5.
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Lemma 3 (Guarantees of FPE). For the algorithm described in Algorithm 2 with K independent datasets
D1:K = {(s, a, r, s′)} such that the effective number of samples N = MK, if the function class satisfies
maxf∈F,s∈S,a∈A |f(s, a)| < R, then with probability at least 1− δ the output value function satisfies:

Es,a∼dπ [(f̄(s, a)− T π f̄(s, a))2] ≤ Cν,π
(
4(R+ 1)2

K
+

256R2 log(2|F|K/δ)
M

)
.

Proof. By applying Lemma 6, to each iteration 1, . . . ,K, and apply a union bound over all iterations, we have that:

∀k,MEs,a∼ν [(fk(s, a)− T πfk−1(s, a))
2] ≤ 3M inf

f∈F
Es,a∼ν [(f(s, a)− T πfk−1(s, a))

2] + 256R2 log(2|F|K/δ)

∀k,Es,a∼ν [(fk(s, a)− T πfk−1(s, a))
2] ≤ 256R2 log(2|F|K/δ)

M
, (9)

where the second line holds by Assumption 1. To combine the guarantees that we have from each round to the guarantee of
the returned value function f̄ :

Es,a∼ν [(f̄(s, a)− T π f̄(s, a))2]

=Es,a∼ν

( 1

K
(f1(s, a)− T πfK(s, a) +

K∑
k=2

fk(s, a)− T πfk−1(s, a))

)2


≤ 1

K
Es,a∼ν

[
(f1(s, a)− T πfK(s, a))2 +

K∑
k=2

(fk(s, a)− T πfk−1(s, a))
2

]

≤ 1

K

[
4(R+ 1)2 + (K − 1)

256R2 log(2|F|K/δ)
M

]
≤4(R+ 1)2

K
+

256R2 log(2|F|K/δ)
M

, (10)

where the first inequality follows by Jensen’s Inequality and the second inequality follows by plugging in Line 9. Then, we
can plug in Assumption 2 to conclude the proof.

Es,a∼dπ [(f̄(s, a)− T π f̄(s, a))2] ≤Cν,πEs,a∼ν [(f̄(s, a)− T π f̄(s, a))2]

≤ Cν,π(
4(R+ 1)2

K
+

256R2 log(2|F|K/δ)
M

).

≤ 64Cν,πR(R+ 1)

√
log(2|F|K/δ)

KM

= 64Cν,πR(R+ 1)

√
log(2|F|K/δ)

N

:= ϵstat (11)

Theorem 1 (Main Theorem). For an utterance-level MDP with discount factor γL, where L is the maximum length of
each utterance, suppose utterance-level Assumption 1 and 2 holds, let f be the final Q function returned by Fitted Policy
Evaluation formalized in Algorithm 2 at the utterance level, yields a suboptimality gap of

Es,a∼dπ [((f̄(s, a)− Ea′∼π(·|s)[f̄(s, a)])−Aπ(s, a))2]

≤ 4

1− γ
(ϵstat + 2(R+ 1)

√
ϵstat)

≤ 4

γL(1− γ1/L)
(ϵstat + 2(

1

1− γ
+ 1)
√
ϵstat).
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For an equivalent token-level MDP with discount factor γ1/L, suppose token-level Assumption 1 and 2 holds, let f be the
final Q function returned by Fitted Policy Evaluation formalized in Algorithm 2 at the token level, yields a suboptimality gap
of

Es,a∼dπ [((f̄(s, a)− Ea′∼π(·|s)[f̄(s, a)])− Ãπ(s, a))2]

≤ 4

(1− γ1/L)L1/2
(ϵstat + 2(

1

1− γ
+ 1)
√
ϵstatL

1/4),

where ϵstat is the statistical error defined in Line 11 proportional to N−1/2 the number of utterance-level transitions. This
error term is defined the same for both utterance-level MDP and token-level MDP.

Proof. First, we start with analyzing utterance-level FPE with effective number of samples, we start by bounding the errors
of the Q functions:

Es,a∼dπ (f̄(s, a)−Qπ(s, a))2

=Es,a∼dπ (f̄(s, a)− T π f̄(s, a) + T π f̄(s, a)−Qπ(s, a))2

=Es,a∼dπ [(f̄(s, a)− T π f̄(s, a))2 + 2(f̄(s, a)− T π f̄(s, a))(T π f̄(s, a)−Qπ(s, a)) + (T π f̄(s, a)−Qπ(s, a))2]

≤Es,a∼dπ [(f̄(s, a)− T π f̄(s, a))2] + 2
√
Es,a∼dπ (f̄(s, a)− T π f̄(s, a))2(T π f̄(s, a)−Qπ(s, a))2

+ Es,a∼dπ [(T π f̄(s, a)−Qπ(s, a))2]

≤Es,a∼dπ [(f̄(s, a)− T π f̄(s, a))2] + 2(R+ 1)
√
Es,a∼dπ (f̄(s, a)− T π f̄(s, a))2 + Es,a∼dπ [(T π f̄(s, a)−Qπ(s, a))2]

≤Es,a∼dπ [(f̄(s, a)− T π f̄(s, a))2] + 2(R+ 1)
√
Es,a∼dπ (f̄(s, a)− T π f̄(s, a))2

+ γ2Es,a∼dπ,s′∼P (·|s,a),a′∼π(·|s′)[(f̄(s
′, a′)−Qπ(s′, a′))2]

≤Es,a∼dπ [(f̄(s, a)− T π f̄(s, a))2] + 2(R+ 1)
√
Es,a∼dπ (f̄(s, a)− T π f̄(s, a))2 + γEs,a∼dπ (f̄(s, a)−Qπ(s, a))2,

where the first inequality follows from Jensen’s inequality, and the second inequality follows from
maxs,amax{|T π f̄(s, a)|, |Qπ(s, a)|} ≤ R+ 1, the third inequality follows again from Jensen’s inequality,and the
fourth inequality follows from Lemma 5. Finally, we get:

Es,a∼dπ (f̄(s, a)−Qπ(s, a))2

≤ 1

1− γ
(Es,a∼dπ [(f̄(s, a)− T π f̄(s, a))2] + 2(R+ 1)

√
Es,a∼dπ (f̄(s, a)− T π f̄(s, a))2)

=
1

1− γ
(ϵstat + 2(R+ 1)

√
ϵstat),

where ϵstat is defined in Line 11. Finally, we can directly bound the errors for the advantages:

Es,a∼dπ [((f̄(s, a)− Ea′∼π(·|s)f̄(s, a))−Aπ(s, a))2]
=Es,a∼dπ [((f̄(s, a)− Ea′∼π(·|s)f̄(s, a))− (Qπ(s, a)− Ea′∼π(·|s)Qπ(s,a)))

2]

≤2Es,a∼dπ [(f̄(s, a)−Qπ(s, a))2] + 2Es∼dπ [(Ea′∼π(·|s)[f̄(s, a′)−Qπ(s, a′)])2]
≤4Es,a∼dπ [(f̄(s, a)−Qπ(s, a))2]

≤ 4

1− γ
(ϵstat + 2(R+ 1)

√
ϵstat),

≤ 4

(1− γ1/L)γL
(ϵstat + 2(R+ 1)

√
ϵstat)

=
4

(1− γ1/L)γL
(ϵstat + 2(

1

1− γ
+ 1)
√
ϵstat)

,
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where the second inequality follows from Jensen’s inequality, and the fourth inequality follows from Lemma 4. A similar
analysis can be done with token-level FPE, noticing that the effective number of samples for token-level FPE is NL because
each utterance transition can be splitted into L token transitions:

Es,a∼d̃π [((f̄(s, a)− Ea′∼π(·|s)f̄(s, a))− Ãπ(s, a))2] ≤
4

1− γ
(ϵstatL

−1/2 + 2(R+ 1)
√
ϵstatL

−1/4).

≤ 4

(1− γ)L1/2
(ϵstat + 2(

1

1− γ
+ 1)
√
ϵstatL

1/4).

G.5. Technical Lemmas

First, we would like to prove an interesting lemma that allows us to compare the different discount factors for token level
γ1/L and utterance level γ.

Lemma 4. With the discount factor γ ∈ (0, 1), and L being a positive number, we have that:

1

1− γ
=

1

(1− γ1/L)(1 + γ1/L + γ2/L + · · ·+ γ(L−1)/L)

≤ 1

Lγ(1− γ1/L)

Below are some common technical lemmas useful for reinforcement learning.

Lemma 5 ((Zhou et al., 2023b, Lemma 2)). For any policy π, and non-negative function g(s, a), we have:

Es̄,ā∼dπEs∼P (·|s̄,ā),a∼π(a|s)[g(s, a)] ≤
1

γ
Es,a∼dπ [g(s, a)].

where µ0 denotes the initial state distribution (which is the same for all policies π).

Proof. Recall that limh→∞ γh = 0. We start by noting that:

dπ(s, a) = (1− γ)(µ0(s, a) + γdπ1 (s, a) + γ2dπ2 (s, a) + . . . ) (12)

≥ γ(1− γ)

(∑
s̄,ā

µ0(s̄, ā)P (s|s̄, ā)π(a|s) + γ
∑
s̄,ā

dπ1 (s̄, ā)P (s|s̄, ā)π(a|s) + . . .

)
= γ(1− γ)

∑
s̄,ā

(µ0(s̄, ā) + γdπ1 (s̄, ā) + . . . )P (s|s̄, ā)π(a|s)

= γ
∑
s̄,ā

dπ(s̄, ā)P (s|s̄, ā)π(a|s) (13)

= γEs̄,ā∼dπ [P (s|s̄, ā)π(a|s)],

where Line 13 follows by plugging in the relation in Line 12 for s̄, ā. The above implies that for any function g ≥ 0,∑
s,a

dπ(s, a)g(s, a) ≥
∑
s,a

γEs̄,ā∼dπ [P (s|s̄, ā)π(a|s)g(s, a)],

which implies that

Es̄,ā∼dπEs∼P (·|s̄,ā),a∼π(a|s)[g(s, a)] ≤
1

γ
Es,a∼dπ [g(s, a)].

Lemma 6 (Least squares generalization bound, (Song et al., 2023, Lemma 3)). Let R > 0, δ ∈ (0, 1), and consider a
sequential function estimation setting with an instance space X and target space Y . Let H : X 7→ [−R,R] be a class
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of real valued functions. Let D = {(x1, y1), . . . , (xT , yT )} be a dataset of T points where xt ∼ ρt := ρt(x1:t−1, y1:t−1),
and yt is sampled via the conditional probability pt(xt) (which could be adversarially chosen). Additionally, suppose that
maxt|yt| ≤ R and maxhmaxx|h(x)| ≤ R. Then, the least square solution ĥ← argminh∈H

∑T
t=1(h(xt)− yt)

2 satisfies

T∑
t=1

Ex∼ρt,y∼pt(x)
[
(ĥ(x)− y)2

]
≤ 3 inf

h∈H

T∑
t=1

Ex∼ρt,y∼pt(x)
[
(h(x)− y)2

]
+ 256R2 log(2|H|/δ)

with probability at least 1− δ.
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