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I have a 
question!

Hmm, someone 
over there asked
a question...

Where's my phone? 
Could you call it for me?

Ah,
it's in my bag!

Figure 1: Audio-Visual Spatial Reasoning. (Left) A phone rings out of sight inside a bag;
although the sound’s semantic cue (“ring tone”) is present, spatial reasoning is required to locate the
true source among visually silent objects. (Right) In a classroom, several students share the same
semantic cue (“speech”), so the teacher must rely on spatial audio to identify which student asked
the question. These examples illustrate that accurate audio-visual understanding demands not only
semantic alignment but also spatial comprehension.

Abstract

Many audio-visual learning methods have focused on aligning audio and visual1

information, either through semantic or temporal correspondence. However, most2

of these works have utilized monaural audio, which does not contain information3

about the spatial location of the sound source. In contrast, humans and other4

animals utilize binaural hearing to perceive this spatial information. Combining5

spatial sound and visual perception enables powerful high-level reasoning: for6

example, a person looking for their phone may hear the ringing sound coming7

from a backpack sitting on a table, and quickly infer that the missing phone is8

inside the backpack. In this paper, we investigate the problem of Audio-Visual9

Spatial Reasoning. We design a spatial audio-visual question answering dataset to10

cover scenarios where semantic correspondence between audio and visual signals11

is absent but spatial alignment exists, as well as cases with multiple audio-visual12

semantic correspondences that require spatial reasoning to disambiguate. We13

propose a model that learns spatial comprehension across the audio and vision14

modalities by connecting them with a large language model and experimentally15

demonstrate that spatial sound perception is an essential part of our task.16
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1 Introduction18

We live in a world full of sights and sounds, naturally associating what we hear with what we see.19

Several cues help us connect the two, such as the visual appearance and audible characteristics of20

an object, the synchronization between an action or event and its corresponding sound, and the21

direction from which the sound arrives, through binaural hearing. We rely on these audio-visual cues22

to locate a missing mobile device, or to know when an emergency vehicle is approaching as we are23

driving. This natural ability to connect auditory and visual information has motivated advancements24

in audio-visual machine learning, such as sound source localization (object detection based on audio25

queries) [7, 21, 33, 27, 30, 23, 29], source separation [3, 14, 16, 48, 46, 15, 45], and audio-visual26

synchronization [12, 6, 32]. However, most of these studies, which commonly use monaural audio,27

focus on the semantic correspondence between a sound and the visual appearance of the object that28

made the sound, or the audio-visual temporal alignment between an event and the sound it creates.29

These past approaches often overlook spatial cues that provide information about where a sound is30

coming from.31

Binaural audio becomes essential when semantic matching is ambiguous or misleading. Figure 132

illustrates two scenarios where spatial reasoning is necessary. For instance, understanding that33

a ringtone sound is emanating from a backpack requires spatial reasoning, as the backpack does34

not semantically match the sound. Another example is when a single sound (e.g., speech) could35

correspond to multiple visual objects (e.g., several students in a classroom), where spatial cues36

help pinpoint the actual source. These examples highlight the limitations of previous methods,37

emphasizing the need to address spatial reasoning beyond basic perception.38

Previous studies in spatial audio reasoning have primarily focused on audio-only approaches, exclud-39

ing visual information while incorporating language as a modality for spatial interpretation. [13]40

aligns audio and text embeddings for spatial tasks, while [52] leverages large language models for41

spatial audio question answering. While spatial audio itself provides rich information for spatial42

reasoning, integrating visual information into these tasks is a natural extension, as visual signals43

inherently convey spatial context. This combination not only enhances spatial perception and local-44

ization capabilities, but also enables more sophisticated spatial reasoning, such as handling scenarios45

involving sounding sources and nearby visual objects.46

In this paper, we address the problem of Audio-Visual Spatial Reasoning, which involves under-47

standing the spatial relationship between a sound and the visual context. This task goes beyond48

simply perceiving and localizing a sound source, as it requires reasoning about spatial cues to infer49

relationships and interactions between objects. To support research on this problem, we construct50

a large-scale dataset of 1 million question-answer pairs, specifically designed to serve as both51

the training and evaluation set for spatial audio-visual reasoning in diverse scenarios. The vision52

and spatial audio is rendered using SoundSpaces 2.0 [4], with source audio clips sampled from53

VGGSound[8]. 3D objects associated with these sounds are generated using Stable Diffusion 3[35]54

and InstantMesh [49], and then are placed within the virtual environments. This dataset serves as55

a comprehensive benchmark for spatially intricate settings, providing questions that assess spatial56

alignment between modalities, relative locations between sounding and non-sounding objects, and57

localization of sound sources among multiple visual objects of the same category as the query audio.58

Furthermore, we propose a multi-modal framework, Hear You Are LLM, which leverages spatial59

audio and visual encoders to integrate spatial information. The model is trained to handle all the60

spatial reasoning tasks from our dataset, enabling it to address scenarios where semantic alignment61

alone is insufficient. We experimentally demonstrate that our proposed method effectively addresses62

the audio-visual spatial reasoning problem, outperforming existing baseline models including a63

state-of-the-art monaural sound source localization method [39, 40] and a large language model-64

based audio-visual model that lacks spatial understanding. These results highlight the importance of65

incorporating spatial audio-visual knowledge to achieve robust multi-modal reasoning. To summarize,66

our main contributions are as follows:67

• We define a new task, audio-visual spatial reasoning, focusing on understanding spatial relationships68

between sound and visual context, going beyond basic semantic perception such as sound source69

localization (object detection based on audio queries) and audio-visual segmentation.70

• We propose Hear You Are LLM, a multi-modal modeling framework that integrates spatial audio71

and visual encoders with a large language model to handle complex spatial reasoning tasks.72
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• We construct Hear You Are QA, the first large-scale dataset specifically designed for audio-visual73

spatial reasoning, consisting of 1 million question-answer pairs across diverse spatial scenarios for74

training and evaluation. We will open source both the dataset and the training code.75

2 Related Work76

2.1 Audio-Visual Sound Source Localization77

Audio-visual sound source localization is the task of detecting the object or area that corresponds to the78

query audio in the visual scene. Following the development of deep learning, Senocak et al. [37, 38]79

suggested a semantic alignment-based approach by proposing a cross-modal attention mechanism80

with contrastive learning. The field has advanced in the direction of better cross-modal alignment by81

leveraging negative-free self-supervised learning [42], intra-modality similarity learning [43], and the82

use of multiple positive learning [39], aligning with representation learning methods. However, these83

methods rely on monaural audio and are limited to audio-visual semantic correspondence without84

spatial understanding.85

Different approaches have focused more on spatial audio for sound source localization. Anoopcherian86

et al. [20] proposed a 3D sound source localization method trained on a dataset with four-channel87

audio and multi-view visual scenes synthesized using SoundSpaces 2.0. Their approach localizes88

sound within the visual scene, but the visual counterpart of the sound is not visible in their setting,89

as they only localize the area of the sound source. Shimada et al. [41] constructed an audio-visual90

sound source localization and detection dataset in which audio-visual alignment is guaranteed. In91

their framework, the visual signal serves as an auxiliary modality to improve sound localization and92

detection. In contrast, we present an audio-visual scene that includes both sound-producing and silent93

objects, allowing the model to learn a broader range of spatial reasoning tasks that require contextual94

understanding beyond basic localization.95

2.2 Spatial Audio Reasoning96

Following recent advancements in audio understanding [18, 1, 24] and reasoning [19, 36], several97

approaches have been proposed to address spatial audio reasoning. [52] synthesize the spatial sound98

question answering dataset with the SoundSpaces 2.0 simulator and train a spatial audio encoder and99

a large language model for spatial audio understanding and reasoning. This framework handles tasks100

such as sound event detection, direction and distance estimation, and spatial reasoning, for example,101

“What is the sound on the left side of the sound of the dog barking?” Another line of research explores102

spatial audio reasoning through contrastive language-audio pretraining, with synthetic first-order103

ambisonics [13]. However, these approaches do not incorporate the vision modality, which opens104

another dimension for reasoning.105

2.3 Audio-Visual LLMs106

Inspired by the advancements of Large Language Models (LLMs), recent studies have extended these107

models to Multimodal Large Language Models (MLLMs) to tackle a wider range of multimodal108

tasks. In the audio-visual domain, GroundingGPT [26] introduces multimodal grounding for audio,109

image, and video data using LLMs. Meerkat [10] aligns audio-visual features using optimal transport110

and attention consistency, and CAT [51] aggregates question-related clues in audio-visual scenarios.111

From a benchmarking standpoint, AVHBench, AVTRUSTBENCH, and AV-Odyssey Bench [11,112

44, 17] provide comprehensive benchmarks targeting hallucination detection [44], reliability and113

robustness [11], and both foundational capabilities and high-level reasoning [17]. While recent114

studies have advanced multimodal learning, they primarily rely on monaural audio, limiting their115

ability to handle spatial reasoning. As spatial reasoning enables a broader range of tasks and more116

closely reflects real-world scenarios, it must be addressed to achieve comprehensive audio-visual117

understanding. We propose a new dataset and model specifically designed for spatial reasoning in118

audio-visual tasks.119

3 Creation of Hear You Are QA Dataset120

Our goal is to train a model to learn both semantic and spatial reasoning, for audio-visual inputs. To121

this end, we introduce the Hear You Are QA Dataset. Constructing large-scale audio-visual scene data122
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Figure 2: Image sample from Hear You Are QA dataset. The dataset consists of diverse indoor
scenes captured in 360° panoramic views, featuring various object arrangements and providing a
comprehensive range of spatial contexts for analysis.

Table 1: Spatial audio visual question types and base prompts/answers

Q1. Spatial Correspondence
Q: What is the sound class category? Where is the sound coming from? A: phone ringing; cupboard

Q2-4. Relative Location
(Distance) Q: Is the sound source of the siren closer to the agent than it is to the cat? A: Yes
(Direction) Q: Can you estimate the distance from the accordion sound to the dog, and the relative location of the accordion from the dog?

A: right; behind; upper; 2.3 m
(Angle) Q: Can you estimate the distance from the accordion sound to the dog, and the angle between the agent’s gaze directions toward the

accordion and the dog? A: 30; 10; 2.3 m

Q5. Spatial & Semantic Correspondence (One visual object semantically matches the audio)
Q: What is the object in the scene located at (−30, −12), 2.549 m? Is it making a sound?
A: bird squawking; making sound

Q6. Spatial & Semantic Correspondence (Multiple visual objects semantically match the audio)
Q: What is the object in the scene located at (150, −14), 1.735 m? Is it making a sound?
A: canary calling; making sound

Q7. Spatial & Semantic Correspondence (One visual object semantically matches the audio)
Q: Given multiple visual objects, which one is making a sound, and where is it located?
A: bird squawking; −30; −12; 2.549 m

Q8. Spatial & Semantic Correspondence (Multiple visual objects semantically match the audio)
Q: Could you determine the sound class category, and which object of that category in the scene is making the sound?
A: canary calling; 150; −14; 1.735 m

Q9. Semantic Co-occurrence
Q: What is the sound class category? Is the sound source visible in the scene? A: cat; not visible
Q: What is the sound class category? Is the sound source visible in the scene? A: fox; visible

with real-world spatial audio is time-consuming and challenging, requiring specialized equipment123

such as ambisonic or dummy head microphones. To efficiently build a diverse dataset with various124

objects and sound events, we adopt a simulation-based approach to generate both the scenes and125

spatial audio.126

Spatial Audio Simulator. We employ the SoundSpaces 2.0 simulator [4], which renders geometry-127

based acoustics, adding realistic reverberation for any source–receiver pair. Users can freely vary128

wall materials, object properties, and microphone-array geometry, letting us create a rich, controllable129

dataset while retaining exact ground-truth parameters, e.g., every source’s 3D position and orientation.130

Scene meshes come from Matterport3D [2], a collection of 90 fully scanned buildings averaging131

24.5 rooms across 2.61 floors and 517.34 m² of floor space. We use 72 scenes for training, 9 for132

validation and 9 for testing. Given a source location, monaural signal, receiver position, and heading,133

the observed signal is obtained by convolving the monaural signal with the environment’s room134

impulse response. We configure the receiver to record a binaural audio signal with the default Head135

Related Transfer Function (HRTF) provided by SoundSpaces2.0.136

Sound Sources. Previous spatial audio datasets include either a limited number of class cate-137

gories [41] or classes that are not guaranteed to be visually observable [52, 20]. To construct a138

large-scale audio-visual dataset, we adopt VGGSound [8], which contains 200,000 in-the-wild 10-139

second YouTube clips, each annotated with one of 309 audio event classes. However, some of these140

classes correspond to events that typically occur outdoors or are difficult to associate with a single141

visual object (e.g., “Airplane Flyby”, “People Marching”). To enhance the visual reliability and142

realism of our dataset, we manually exclude categories typically occur outdoors, or are visually143
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ambiguous. We follow the original testing splits provided by VGGSound, and create a validation set144

of the same size as the testing set by sampling clips from the VGGSound training split.145

Visual Objects. Due to the limited number of sound-emitting categories in existing 3D object146

datasets, we generate our own 3D objects to be placed within the Matterport3D environments, either147

as sounding objects or as distractor objects. Specifically, we first select 150 class categories from148

VGGSound and 40 from ImageNet, and generate 2D images for each category using Stable Diffusion149

3. After manually filtering out low-quality or unrealistic generations, we select 40 visually plausible150

images per category. These 2D images are then lifted into 3D object meshes using the method151

from [49]. For each sounding object category, we reserve 32 images for training, 4 for validation and152

4 for testing.153

Audio-Visual Scene Construction. Each audio-visual scene consists of a 360◦ panoramic image as154

Figure 2 and corresponding binaural audio. We stitch 18 images, each with a horizontal FoV of 20155

degrees as in [5], to form a 360◦ view. The final image resolution is set to 224×812, and the center of156

the image is aligned with the front-facing direction of the observing agent in SoundSpaces 2.0.157

We inject the aforementioned sound source and 3D objects into random locations within the scene,158

excluding placements where objects are occluded by walls or located in a different room. Each scene159

includes one sound source. The sound source, depending on the question scenario, is assigned to160

either a semantically matching object from a VGGSound category, a random object from a different161

category (VGGSound or ImageNet), or a random empty location within the scene.162

One potential concern is that rendering artifacts, such as visible seams between injected objects and163

the original scene, could serve as shortcuts for the model. To mitigate this and increase the visual164

complexity of the scene, we randomly insert up to three random objects sampled from categories165

distinct from the main visual objects in the scene.166

Crafting Questions. We manually defined nine different “base” questions that require spatial167

audio-visual understanding, summarized in Table 1. When filling a question template, we use168

handcrafted rules to automatically populate the missing fields in the question and answer using the169

scene construction parameters. The questions cover four main categories: spatial correspondence170

(Q1), relative location (Q2, Q3, Q4), spatial and semantic correspondence (Q5, Q6, Q7, Q8), and171

semantic co-occurrence (Q9). Spatial Correspondence questions aim to evaluate whether the model172

can correctly associate an audio signal with its spatially aligned visual source. To assess the model’s173

robustness, we include counterfactual examples in which semantically mismatched visual objects174

and sounds (e.g., a piano and dog barking) are placed at the same location. This setting discourages175

reliance on semantic priors and encourages the model to learn true spatial correspondence between176

audio and visual modalities without hallucination. Relative Location questions assess the model’s177

ability to understand the spatial relationship between audio and visual information. These include178

determining whether a sound source is located to the left, right, front, or behind the agent, as well as179

reasoning about vertical position (e.g., above or below), angular direction, and relative distance with180

respect to a visual reference. Spatial and Semantic Correspondence questions evaluate whether181

the model can jointly associate the correct object class (semantic) and its location (spatial) based on182

the audio signal. Semantic Co-occurrence questions focus on learning spatial audio understanding183

regardless of whether the corresponding visual object is explicitly visible, encouraging the model not184

to solely rely on an object’s appearance. To diversify the question set and improve naturalness, we185

utilize ChatGPT-4o to paraphrase and expand each base question into multiple human-like variations.186

4 Method187

Our aim is to construct a model that can answer the questions in our proposed dataset by leveraging188

both visual and spatial audio inputs. To this end, we design and train a multi-modal large language189

model with both visual and binaural audio inputs. The overall architecture is illustrated in Figure 3.190

Audio and Visual Encoders with Projector. Given an image v and its corresponding audio a, our191

backbone networks extract features from each modality. The vision encoder fv processes a panoramic192

image frame and outputs a sequence of spatially aligned visual tokens, v ∈ RNv×Cv , where Nv is193

the number of visual tokens and Cv is the feature dimension of each token. We preserve the full194

spatial layout of patch tokens without pooling. The audio encoder fa takes the input spectrogram195

of a and produces a set of audio tokens, a ∈ RNa×Ca , where Na is the number of audio tokens196

and Ca is the corresponding feature dimension. Each modality-specific encoder is followed by a197

5



Visual 
Encoder 

Audio
Encoder

Spatial
Audio

Image

Large Language Models

Visual 
Projector

Audio 
Projector

Embedding

Question

Answer
Datasets

❄

"

" "

"

Figure 3: The pipeline of our framework: feature extraction, projection, and multimodal reasoning.
We extract spatial audio and visual features using pre-trained encoders, project them into a shared
embedding space, and integrate the embeddings with the question embedding to generate the answer.

projector that maps the extracted features into the hidden dimension of the language model. The198

visual projector attends to the spatial visual features to generate NV projected tokens, and the audio199

projector similarly produces NA tokens from the audio features. These projected tokens are then200

passed to the large language model for multi-modal reasoning.201

Large Language Model. To bridge the audio and visual encoders, we utilize a large language202

model that takes as input the projected audio and image tokens along with the embedded question203

text. During fine-tuning, the model is optimized to generate the correct answer based on the given204

question and the corresponding multimodal inputs. Training is performed using the standard language205

modeling objective function that maximizes the likelihood of the target sequence using a cross-entropy206

loss applied at each token position.207

Warm Start of the Encoders. To ensure the effectiveness of each modality-specific representation,208

the audio and visual encoders, along with their respective projectors, are pretrained in a unimodal209

setting using a large language model. We utilize the panorama image and binaural audio from our210

dataset and construct two types of auxiliary questions for each modality: classification and localization211

tasks. For the visual encoder, the classification task involves identifying visual objects at specific212

coordinates, phrased as “What visual objects did you detect at ({azimuth}, {elevation}),213

{distance} meters?”, and the localization task asks for the predicted azimuth, elevation, and214

distance to a specified object class, stated as “What are the predicted azimuth and elevation angles, and215

the distance to the {class category}?”. The audio encoder is trained with analogous tasks: the216

classification task asks “What sound did you detect?”, while the localization task prompts for spatial217

coordinates of the sound source with the question “What are the predicted azimuth and elevation218

angles, and the distance to the sound source?”. The visual encoder adopts a progressive training219

scheme, first focusing on classification to learn semantic representations and then incorporating220

spatial grounding through a combined classification and localization task. The audio encoder is221

trained on both tasks jointly from the beginning.222

5 Experiments223

5.1 Implementation Details224

Image Encoder fv . We use a SigLIP2 [47] vision encoder with the NaFLEX setting, which supports225

flexible image resolutions and aspect ratios. The encoder processes a panoramic image and outputs a226

sequence of patch tokens. We apply LoRA [22] to fine-tune the patch embedding and attention layers227

of the encoder during both the uni-modal training and the audio-visual end-to-end training.228

Audio Encoder fa. We use the pretrained Spatial-AST binaural audio encoder from [52]. The model229

takes binaural audio spectrograms as input and generates a sequence of audio tokens that preserve230

spatial acoustic cues. The encoder was pretrained using the same audio event classification and231

localization tasks proposed in [52]. This encoder is kept frozen throughout the entire training process.232

Modality-specific Projectors and Large Language Model We adopt the Q-Former architecture233

as the projector for both modalities. The audio-side projector is based on the implementation and234

pretrained weights from BAT [52], while the visual-side projector is adapted from BLIP-2 [25], using235

only the first two attention layers and their corresponding pretrained weights. The number of query236
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Table 2: Evaluation of baseline models on sound source localization that requires spatial
understanding. R, B, M, Q refer to RGB Image, Binaural Audio, Monaural Audio, and Question
(Text) in this table.

Method Modality Q1 (class) Q1 (aligned) Q1 (non-matching) Q7 (class) Q7 (DoA) Q8 (class) Q8 (DoA)
Question Only Q 3.50 3.00 2.44 2.56 7.89 0.78 7.61

ISSL [39, 40] R+M 26.97 28.83 12.94 28.46 23.18 26.94 21.0
ACL-SSL [31] R+M 40.56 32.83 10.61 40.41 30.68 41.11 24.33
VideoLLaMA2 [9] R+M+Q 51.01 77.44 50.75 70.88 68.57 75.33 46.37
Ours R+B+Q 52.69 77.61 61.67 75.44 73.21 70.27 64.27

tokens is set to N1 = 64 for audio and N2 = 128 for vision. All projector parameters are fully237

trainable. We adopt Qwen2-7B-Instruct [50] as our LLM backbone.238

Training Setup and Input Preprocessing. Inputs to our model consist of a single 224 × 812239

panoramic image and a 10-second audio binaural waveform sampled at 32 kHz. We preprocess the240

image input following [47] and the audio input following [52]. Our full model is trained for 3 epochs241

on 8 A5000 GPUs with an effective batch size of 128, using a LoRA rank of 16 for the image encoder242

and LLM backbone. The training takes three days. Additional training details are provided in the243

supplementary material.244

Baselines. Since no existing method directly addresses our proposed task, we introduce three baselines245

adapted from related domains. The first two baselines are audio-visual sound source localization246

approaches. Specifically, we adopt the framework proposed in [39, 40], which has demonstrated247

strong performance on synthetic benchmarks and exhibits robustness with multiple visual objects.248

[31] learns audio-driven embeddings compatible with the text encoder of CLIP[34] and leverages249

the CLIP-based segmentation network [28] to achieve tight localization results. Although they do250

not handle language understanding, we evaluate them using cross-modal retrieval and localization251

metrics. Implementation details are provided in the supplementary material. The third baseline is252

the VideoLLaMA2[9], multi-modal large language model (MLLM), the closest prior work to ours253

in terms of multimodal reasoning. For a fair comparison, we replace its original vision and audio254

encoders with the same encoders used in our method, Spatial AST[52] and SigLIP2 NaFLEX [47],255

and fine-tune the model on our proposed dataset using the same LLM backbone. Notably, the baseline256

uses monaural audio input, whereas our method leverages binaural cues. Since the sound source257

localization approaches are not designed for reasoning tasks (e.g., Q2, Q3, Q4, Q5, Q6, Q9), we258

evaluate them only on tasks that do not require language processing. The metrics in Table 2 cover259

classification and direction of arrival (DoA). Q1 (aligned) and Q1 (non-matching) indicate sound260

source localization task where the source is semantically aligned and non-aligned with the audio,261

respectively.262

5.2 Main Results263

We present our results in Table 2, showing that only our model effectively addresses spatial reasoning264

scenarios. For sound classification tasks (Q1, Q7, Q8), sound source localization approaches265

outperform the Question Only setting, which serves as a random baseline. VideoLLaMA2 shows266

comparable performance to our model, particularly in Q1 (aligned) and Q7 (DoA), where semantic267

cues are sufficient for localization due to the presence of a single matching visual object with audio.268

Monaural audio is sufficient to localize the sound source, allowing baseline models to perform269

consistently without spatial audio cues. However, in Q1 (non-matching) and Q8 (DoA), spatial270

reasoning is essential for different reasons. In Q1 (non-matching), the visual object at the sound271

source is semantically unrelated to the audio, requiring spatial cues to correctly associate the sound272

with the aligned object. In Q8 (DoA), multiple objects share the same sound category, making it273

necessary to differentiate between them using spatial cues. In both cases, baseline models perform274

significantly worse. VideoLLaMA2, which shares the same architecture as ours but lacks binaural275

audio, achieves approximately 50% accuracy in Q8 (DoA), indicating its inability to distinguish276

between visually similar objects that semantically match the audio. Since all baseline models use277

only monaural audio, they lack spatial information, making spatial reasoning impossible.278
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Table 3: Ablation study on modality settings for audio-visual spatial reasoning tasks. R, B, M, Q
refer to RGB Image, Binaural Audio, Monaural Audio, and Question (Text) in this table.

Trained and tested on Trained on R+B+Q, tested on Random Chance

metric R+B+Q R+M+Q B+Q M+Q R+Q R+M+Q B+Q Q
Q1
sound accuracy ↑ 52.69 51.01 52.53 51.40 27.28 54.03 46.86 3.50
coming-from accuracy ↑ 69.64 64.10 26.40 26.40 56.22 61.92 23.39 2.72

Q2 (Yes or No) ↑ 84.74 83.77 55.63 50.87 85.28 83.55 54.11 50.11

Q3
3-field accuracy ↑ 69.73 66.52 32.40 18.67 74.46 66.42 24.57 18.56
Avg. distance error (m) ↓ 0.39 0.41 1.20 1.31 0.36 0.47 1.37 1.34

Q4
DoA accuracy ↑ 65.68 59.03 12.86 12.43 58.06 56.14 11.38 9.80
Avg. DoA error (°) ↓ 15.41 20.21 81.18 87.38 18.59 23.55 86.49 85.48
Avg. distance error (m) ↓ 0.38 0.47 1.10 1.21 0.38 0.51 1.32 1.21

Q2-invisible audio ↑ 72.46 70.40 57.14 48.00 73.03 70.51 52.91 50.63

Q3-invisible audio
3-field accuracy ↑ 59.52 47.29 34.14 18.45 41.64 45.56 25.49 18.22
Avg. distance error (m) ↓ 0.75 0.98 1.20 1.33 1.02 1.12 1.39 1.38

Q4-invisible audio
DoA accuracy ↑ 41.18 16.71 11.18 11.76 13.53 16.47 11.29 9.88
Avg. DoA error (°) ↓ 39.81 69.25 80.51 84.56 77.15 75.39 85.24 84.81
Avg. distance error (m) ↓ 0.71 1.08 1.13 1.21 1.16 1.04 1.32 1.23

Q5
class accuracy ↑ 72.43 74.26 25.79 25.63 74.87 72.82 22.18 2.78
sounding accuracy ↑ 75.60 64.54 59.48 37.72 36.63 65.93 75.93 41.36

Q6
class accuracy ↑ 81.06 81.61 51.78 50.47 83.78 80.72 42.72 3.72
sounding accuracy ↑ 72.33 52.33 59.33 38.67 31.94 49.28 75.67 41.67

Q7
class accuracy ↑ 75.44 70.88 51.64 53.62 37.35 73.53 51.68 2.56
DoA accuracy ↑ 73.21 68.57 47.30 7.80 37.52 64.04 48.38 7.89
Avg. DoA error (°) ↓ 14.75 22.41 33.02 88.31 56.66 24.55 35.25 90.92
Avg. distance error (m) ↓ 0.30 0.33 0.50 0.53 0.44 0.36 0.79 0.53

Q8
class accuracy ↑ 70.27 75.33 48.42 48.02 69.89 71.90 32.51 0.78
DoA accuracy ↑ 64.27 46.37 47.69 8.46 43.72 39.76 49.41 7.61
Avg. DoA error (°) ↓ 23.78 50.80 32.32 89.93 51.90 52.46 32.45 89.40
Avg. distance error (m) ↓ 0.36 0.44 0.48 0.51 0.42 0.46 0.85 0.52

Q9
sound accuracy ↑ 54.00 51.14 51.14 52.20 27.17 55.57 47.25 2.81
visiblity accuracy ↑ 75.22 72.94 38.99 39.79 33.31 76.35 49.42 42.31

5.3 Ablation Studies279

Table 3 shows that both image (R: RGB) and binaural audio (B) inputs are crucial for spatial reasoning.280

It compares R+B+Q, R+M+Q (M: monaural), B+Q, M+Q, and R+Q (Q: question), highlighting that281

binaural audio provides spatial cues while monaural lacks directional information. The following is282

an analysis of the performance for each question type.283

Question 1 involves sound and visual object classification, with half of the samples containing a284

non-matching visual object at the sound source. Both R+B+Q and R+M+Q show similar sound285

classification accuracy (52.69% and 51.01%), suggesting comparable semantic cues from monaural286

and binaural audio. However, in coming-from accuracy, R+B+Q (69.64%) outperforms R+M+Q287

(64.10%), highlighting the spatial advantage of binaural audio.288

Questions 2, 3, and 4 assess distance and relative location between the sound source and visual289

objects, requiring spatial reasoning across modalities. For visible audio, R+M+Q achieves 66.52%290

in Q3 and 59.03% in Q4, performing similarly to R+B+Q (69.73% and 65.68%). When the sound291

source is invisible, R+B+Q shows a clear advantage, outperforming R+M+Q in Q3 (59.52% vs.292

47.29%) and Q4 (41.18% vs. 16.71%). This highlights the role of binaural audio in capturing spatial293

cues that monaural audio with visual input cannot provide.294

Questions 5 and 6 both involve identifying the sound-producing object but differ in complexity295
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based on the number of visual objects that match the sound. In Q5, with only one matching object,296

visual context alone provides sufficient spatial information for localization. R+M+Q leverages visual297

cues effectively, achieving a sounding accuracy of 64.54%. With no visual ambiguity, the model can298

reliably associate the sound with the correct object using spatial information from the visual signal.299

In Q6, two visually similar objects match the sound, introducing ambiguity. R+M+Q’s performance300

drops to 52.33%, as visual context alone is no longer sufficient to distinguish between the two objects,301

leading to random guessing. In contrast, B+Q and R+B+Q maintain consistent performance across302

both questions. In Q5, they achieve 59.48% and 75.60%, respectively, and in Q6, their performance303

remains stable at 59.33% and 72.33%. This stability is due to binaural audio, which provides explicit304

spatial cues, enabling the model to localize the sound source based solely on directional information,305

unaffected by visual similarity. These results indicate that when there is only one matching object306

(Q5), R+M+Q can effectively use visual spatial information. However, when multiple visually similar307

objects are present (Q6), spatial audio cues become essential, allowing B+Q and R+B+Q to maintain308

stable performance regardless of visual similarity. These results highlight the importance of binaural309

audio in resolving ambiguity in complex visual scenes.310

Questions 7 and 8 both involve sound classification and localization but differ in the number of visual311

objects that correspond to the audio, with two in Q8 and one in Q7. In Q8, two visually similar objects312

correspond to the audio, making it difficult for the model to distinguish between them using visual313

information alone. R+M+Q and B+Q show similar DoA accuracy (46.37% and 47.69%), but their314

Avg. DoA errors differ, with R+M+Q at 50.80° and B+Q at 32.32°. R+M+Q relies on visual context315

for spatial cues, but semantic ambiguity between the two objects complicates localization, leading316

to random selection and higher error. In contrast, B+Q, using binaural audio, focuses solely on317

directional information, perceiving only one sound source without considering object-level ambiguity,318

resulting in a lower error. R+B+Q achieves the lowest error (23.78°) by combining spatial audio and319

visual inputs. In Q7, the audio corresponds to a single object, eliminating semantic ambiguity. In this320

case, the performance of R+M+Q and B+Q reverses from Q8. R+M+Q records a lower error (22.41°)321

than B+Q (33.02°), indicating that when only one object is present, visual spatial information can322

effectively guide localization without semantic confusion. These results support the findings in Q5323

and Q6, emphasizing the role of spatial audio in disambiguating visually similar objects.324

Question 9 involves sound classification and localization while also requiring the model to determine325

whether the object is visually present at the sound source. This task demands both audio and visual326

semantic understanding. Both multi-modal settings (R+B+Q, R+M+Q) successfully address this327

question.328

Modality Setting Cross-Evaluation. To assess the impact of vision signals and binaural audio during329

training, we evaluate the model trained on R+B+Q under R+M+Q and B+Q settings. While Q7 and330

Q8 show minimal change, Q5 and Q6 exhibit noticeable gaps in sounding accuracy. This might come331

from Q5 and Q6 only requiring yes/no responses given a location, without the detailed localization332

required in Q7 and Q8. Consequently, the model in the B+Q setting may not effectively leverage333

spatial reasoning for these tasks. However, with visual signals, the model gains implicit spatial cues334

that align audio locations with the visual scene, potentially enhancing spatial audio understanding.335

Thus, the presence of visual information may be beneficial even for learning spatial audio cues.336

6 Conclusion337

We introduce a new task, audio-visual spatial reasoning, along with the Hear You Are LLM and QA338

dataset. Unlike prior work that focuses on semantic or temporal alignment, our approach emphasizes339

spatial reasoning by integrating binaural audio and visual inputs. We build a large-scale dataset340

covering diverse spatial scenarios and propose a multimodal framework combining spatial encoders341

with a large language model. Experiments show that monaural audio with vision or unimodal binaural342

methods lack the capacity for spatial reasoning. These results underscore the importance of spatial343

reasoning in robust multimodal understanding and set a new benchmark in audio-visual learning.344

7 Limitations and Future Directions345

While our framework effectively addresses spatial reasoning by integrating binaural audio and visual346

context, several real-world scenarios remain unaddressed. Specifically, our approach does not consider347

moving sound sources, actions associated with visual objects, or occluded objects positioned behind348

walls or in separate rooms. These aspects are critical for capturing dynamic spatial interactions.349

Future work will focus on extending the dataset to incorporate these complexities, enabling more350

comprehensive audio-visual reasoning in realistic settings.351
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NeurIPS Paper Checklist454

1. Claims455

Question: Do the main claims made in the abstract and introduction accurately reflect the456

paper’s contributions and scope?457

Answer: [Yes]458

Justification: We address audio-visual spatial reasoning by introducing a dataset that empha-459

sizes spatial alignment over semantic correspondence and propose a model that integrates460

spatial sound cues with visual perception for enhanced multimodal reasoning.461

Guidelines:462

• The answer NA means that the abstract and introduction do not include the claims463

made in the paper.464

• The abstract and/or introduction should clearly state the claims made, including the465

contributions made in the paper and important assumptions and limitations. A No or466

NA answer to this question will not be perceived well by the reviewers.467

• The claims made should match theoretical and experimental results, and reflect how468

much the results can be expected to generalize to other settings.469

• It is fine to include aspirational goals as motivation as long as it is clear that these goals470

are not attained by the paper.471

2. Limitations472

Question: Does the paper discuss the limitations of the work performed by the authors?473

Answer: [Yes]474

Justification: The limitations are addressed in Sec. 7.475

Guidelines:476

• The answer NA means that the paper has no limitation while the answer No means that477

the paper has limitations, but those are not discussed in the paper.478

• The authors are encouraged to create a separate "Limitations" section in their paper.479

• The paper should point out any strong assumptions and how robust the results are to480

violations of these assumptions (e.g., independence assumptions, noiseless settings,481

model well-specification, asymptotic approximations only holding locally). The authors482

should reflect on how these assumptions might be violated in practice and what the483

implications would be.484

• The authors should reflect on the scope of the claims made, e.g., if the approach was485

only tested on a few datasets or with a few runs. In general, empirical results often486

depend on implicit assumptions, which should be articulated.487

• The authors should reflect on the factors that influence the performance of the approach.488

For example, a facial recognition algorithm may perform poorly when image resolution489

is low or images are taken in low lighting. Or a speech-to-text system might not be490

used reliably to provide closed captions for online lectures because it fails to handle491

technical jargon.492

• The authors should discuss the computational efficiency of the proposed algorithms493

and how they scale with dataset size.494

• If applicable, the authors should discuss possible limitations of their approach to495

address problems of privacy and fairness.496

• While the authors might fear that complete honesty about limitations might be used by497

reviewers as grounds for rejection, a worse outcome might be that reviewers discover498

limitations that aren’t acknowledged in the paper. The authors should use their best499

judgment and recognize that individual actions in favor of transparency play an impor-500

tant role in developing norms that preserve the integrity of the community. Reviewers501

will be specifically instructed to not penalize honesty concerning limitations.502

3. Theory assumptions and proofs503

Question: For each theoretical result, does the paper provide the full set of assumptions and504

a complete (and correct) proof?505
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Answer: [NA] .506

Justification: This work focuses on empirical evaluations rather than theoretical formulations507

or proofs.508

Guidelines:509

• The answer NA means that the paper does not include theoretical results.510

• All the theorems, formulas, and proofs in the paper should be numbered and cross-511

referenced.512

• All assumptions should be clearly stated or referenced in the statement of any theorems.513

• The proofs can either appear in the main paper or the supplemental material, but if514

they appear in the supplemental material, the authors are encouraged to provide a short515

proof sketch to provide intuition.516

• Inversely, any informal proof provided in the core of the paper should be complemented517

by formal proofs provided in appendix or supplemental material.518

• Theorems and Lemmas that the proof relies upon should be properly referenced.519

4. Experimental result reproducibility520

Question: Does the paper fully disclose all the information needed to reproduce the main ex-521

perimental results of the paper to the extent that it affects the main claims and/or conclusions522

of the paper (regardless of whether the code and data are provided or not)?523

Answer: [Yes]524

Justification: We provide all implementation details in Sec. 5.1 and Appendix A.1, and the525

data and code will be released upon paper acceptance.526

Guidelines:527

• The answer NA means that the paper does not include experiments.528

• If the paper includes experiments, a No answer to this question will not be perceived529

well by the reviewers: Making the paper reproducible is important, regardless of530

whether the code and data are provided or not.531

• If the contribution is a dataset and/or model, the authors should describe the steps taken532

to make their results reproducible or verifiable.533

• Depending on the contribution, reproducibility can be accomplished in various ways.534

For example, if the contribution is a novel architecture, describing the architecture fully535

might suffice, or if the contribution is a specific model and empirical evaluation, it may536

be necessary to either make it possible for others to replicate the model with the same537

dataset, or provide access to the model. In general. releasing code and data is often538

one good way to accomplish this, but reproducibility can also be provided via detailed539

instructions for how to replicate the results, access to a hosted model (e.g., in the case540

of a large language model), releasing of a model checkpoint, or other means that are541

appropriate to the research performed.542

• While NeurIPS does not require releasing code, the conference does require all submis-543

sions to provide some reasonable avenue for reproducibility, which may depend on the544

nature of the contribution. For example545

(a) If the contribution is primarily a new algorithm, the paper should make it clear how546

to reproduce that algorithm.547

(b) If the contribution is primarily a new model architecture, the paper should describe548

the architecture clearly and fully.549

(c) If the contribution is a new model (e.g., a large language model), then there should550

either be a way to access this model for reproducing the results or a way to reproduce551

the model (e.g., with an open-source dataset or instructions for how to construct552

the dataset).553

(d) We recognize that reproducibility may be tricky in some cases, in which case554

authors are welcome to describe the particular way they provide for reproducibility.555

In the case of closed-source models, it may be that access to the model is limited in556

some way (e.g., to registered users), but it should be possible for other researchers557

to have some path to reproducing or verifying the results.558

5. Open access to data and code559
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Question: Does the paper provide open access to the data and code, with sufficient instruc-560

tions to faithfully reproduce the main experimental results, as described in supplemental561

material?562

Answer: [Yes]563

Justification: After acceptance, we will publish the code, data, and model for public use.564

Guidelines:565

• The answer NA means that paper does not include experiments requiring code.566

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/567

public/guides/CodeSubmissionPolicy) for more details.568

• While we encourage the release of code and data, we understand that this might not be569

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not570

including code, unless this is central to the contribution (e.g., for a new open-source571

benchmark).572

• The instructions should contain the exact command and environment needed to run to573

reproduce the results. See the NeurIPS code and data submission guidelines (https:574

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.575

• The authors should provide instructions on data access and preparation, including how576

to access the raw data, preprocessed data, intermediate data, and generated data, etc.577

• The authors should provide scripts to reproduce all experimental results for the new578

proposed method and baselines. If only a subset of experiments are reproducible, they579

should state which ones are omitted from the script and why.580

• At submission time, to preserve anonymity, the authors should release anonymized581

versions (if applicable).582

• Providing as much information as possible in supplemental material (appended to the583

paper) is recommended, but including URLs to data and code is permitted.584

6. Experimental setting/details585

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-586

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the587

results?588

Answer:[Yes]589

Justification: We provide all training and test details in Sec. 5.1 and Appendix A.1.590

Guidelines:591

• The answer NA means that the paper does not include experiments.592

• The experimental setting should be presented in the core of the paper to a level of detail593

that is necessary to appreciate the results and make sense of them.594

• The full details can be provided either with the code, in appendix, or as supplemental595

material.596

7. Experiment statistical significance597

Question: Does the paper report error bars suitably and correctly defined or other appropriate598

information about the statistical significance of the experiments?599

Answer: [No]600

Justification: We did not include error bars as we were unable to run sufficient experiments601

due to resource limitations. The model was tuned using the validation set and the final602

performance was reported on the test set.603

Guidelines:604

• The answer NA means that the paper does not include experiments.605

• The authors should answer "Yes" if the results are accompanied by error bars, confi-606

dence intervals, or statistical significance tests, at least for the experiments that support607

the main claims of the paper.608

• The factors of variability that the error bars are capturing should be clearly stated (for609

example, train/test split, initialization, random drawing of some parameter, or overall610

run with given experimental conditions).611
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• The method for calculating the error bars should be explained (closed form formula,612

call to a library function, bootstrap, etc.)613

• The assumptions made should be given (e.g., Normally distributed errors).614

• It should be clear whether the error bar is the standard deviation or the standard error615

of the mean.616

• It is OK to report 1-sigma error bars, but one should state it. The authors should617

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis618

of Normality of errors is not verified.619

• For asymmetric distributions, the authors should be careful not to show in tables or620

figures symmetric error bars that would yield results that are out of range (e.g. negative621

error rates).622

• If error bars are reported in tables or plots, The authors should explain in the text how623

they were calculated and reference the corresponding figures or tables in the text.624

8. Experiments compute resources625

Question: For each experiment, does the paper provide sufficient information on the com-626

puter resources (type of compute workers, memory, time of execution) needed to reproduce627

the experiments?628

Answer: [Yes]629

Justification: We provide the regarding information in Sec. 5.1.630

Guidelines:631

• The answer NA means that the paper does not include experiments.632

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,633

or cloud provider, including relevant memory and storage.634

• The paper should provide the amount of compute required for each of the individual635

experimental runs as well as estimate the total compute.636

• The paper should disclose whether the full research project required more compute637

than the experiments reported in the paper (e.g., preliminary or failed experiments that638

didn’t make it into the paper).639

9. Code of ethics640

Question: Does the research conducted in the paper conform, in every respect, with the641

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?642

Answer: [Yes]643

Justification: Yes, our work aligns with the ethical guidelines set by NeurIPS.644

Guidelines:645

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.646

• If the authors answer No, they should explain the special circumstances that require a647

deviation from the Code of Ethics.648

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-649

eration due to laws or regulations in their jurisdiction).650

10. Broader impacts651

Question: Does the paper discuss both potential positive societal impacts and negative652

societal impacts of the work performed?653

Answer: [Yes]654

Justification: We provide the regarding information in Appendix A.3.655

Guidelines:656

• The answer NA means that there is no societal impact of the work performed.657

• If the authors answer NA or No, they should explain why their work has no societal658

impact or why the paper does not address societal impact.659

• Examples of negative societal impacts include potential malicious or unintended uses660

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations661

(e.g., deployment of technologies that could make decisions that unfairly impact specific662

groups), privacy considerations, and security considerations.663

16

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied664

to particular applications, let alone deployments. However, if there is a direct path to665

any negative applications, the authors should point it out. For example, it is legitimate666

to point out that an improvement in the quality of generative models could be used to667

generate deepfakes for disinformation. On the other hand, it is not needed to point out668

that a generic algorithm for optimizing neural networks could enable people to train669

models that generate Deepfakes faster.670

• The authors should consider possible harms that could arise when the technology is671

being used as intended and functioning correctly, harms that could arise when the672

technology is being used as intended but gives incorrect results, and harms following673

from (intentional or unintentional) misuse of the technology.674

• If there are negative societal impacts, the authors could also discuss possible mitigation675

strategies (e.g., gated release of models, providing defenses in addition to attacks,676

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from677

feedback over time, improving the efficiency and accessibility of ML).678

11. Safeguards679

Question: Does the paper describe safeguards that have been put in place for responsible680

release of data or models that have a high risk for misuse (e.g., pretrained language models,681

image generators, or scraped datasets)?682

Answer: [Yes]683

Justification: Our study itself does not present significant risks. We employ publicly684

accessible diffusion models known to have certain risks, and we refer readers to their model685

cards for safeguard information.686

Guidelines:687

• The answer NA means that the paper poses no such risks.688

• Released models that have a high risk for misuse or dual-use should be released with689

necessary safeguards to allow for controlled use of the model, for example by requiring690

that users adhere to usage guidelines or restrictions to access the model or implementing691

safety filters.692

• Datasets that have been scraped from the Internet could pose safety risks. The authors693

should describe how they avoided releasing unsafe images.694

• We recognize that providing effective safeguards is challenging, and many papers do695

not require this, but we encourage authors to take this into account and make a best696

faith effort.697

12. Licenses for existing assets698

Question: Are the creators or original owners of assets (e.g., code, data, models), used in699

the paper, properly credited and are the license and terms of use explicitly mentioned and700

properly respected?701

Answer: [Yes]702

Justification: We provide the regarding information in Appendix A.4.703

Guidelines:704

• The answer NA means that the paper does not use existing assets.705

• The authors should cite the original paper that produced the code package or dataset.706

• The authors should state which version of the asset is used and, if possible, include a707

URL.708

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.709

• For scraped data from a particular source (e.g., website), the copyright and terms of710

service of that source should be provided.711

• If assets are released, the license, copyright information, and terms of use in the package712

should be provided. For popular datasets, paperswithcode.com/datasets has713

curated licenses for some datasets. Their licensing guide can help determine the license714

of a dataset.715
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• For existing datasets that are re-packaged, both the original license and the license of716

the derived asset (if it has changed) should be provided.717

• If this information is not available online, the authors are encouraged to reach out to718

the asset’s creators.719

13. New assets720

Question: Are new assets introduced in the paper well documented and is the documentation721

provided alongside the assets?722

Answer: [Yes]723

Justification: We provide the detail about the dataset in Appendix A.2.724

Guidelines:725

• The answer NA means that the paper does not release new assets.726

• Researchers should communicate the details of the dataset/code/model as part of their727

submissions via structured templates. This includes details about training, license,728

limitations, etc.729

• The paper should discuss whether and how consent was obtained from people whose730

asset is used.731

• At submission time, remember to anonymize your assets (if applicable). You can either732

create an anonymized URL or include an anonymized zip file.733

14. Crowdsourcing and research with human subjects734

Question: For crowdsourcing experiments and research with human subjects, does the paper735

include the full text of instructions given to participants and screenshots, if applicable, as736

well as details about compensation (if any)?737

Answer: [NA]738

Justification: The study does not include crowdsourcing or human subject research.739

Guidelines:740

• The answer NA means that the paper does not involve crowdsourcing nor research with741

human subjects.742

• Including this information in the supplemental material is fine, but if the main contribu-743

tion of the paper involves human subjects, then as much detail as possible should be744

included in the main paper.745

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,746

or other labor should be paid at least the minimum wage in the country of the data747

collector.748

15. Institutional review board (IRB) approvals or equivalent for research with human749

subjects750

Question: Does the paper describe potential risks incurred by study participants, whether751

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)752

approvals (or an equivalent approval/review based on the requirements of your country or753

institution) were obtained?754

Answer: [NA] .755

Justification: The study does not include crowdsourcing or human subject research.756

Guidelines:757

• The answer NA means that the paper does not involve crowdsourcing nor research with758

human subjects.759

• Depending on the country in which research is conducted, IRB approval (or equivalent)760

may be required for any human subjects research. If you obtained IRB approval, you761

should clearly state this in the paper.762

• We recognize that the procedures for this may vary significantly between institutions763

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the764

guidelines for their institution.765

• For initial submissions, do not include any information that would break anonymity (if766

applicable), such as the institution conducting the review.767
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16. Declaration of LLM usage768

Question: Does the paper describe the usage of LLMs if it is an important, original, or769

non-standard component of the core methods in this research? Note that if the LLM is used770

only for writing, editing, or formatting purposes and does not impact the core methodology,771

scientific rigorousness, or originality of the research, declaration is not required.772

Answer: [Yes]773

Justification: We provide the regarding information in Appendix A.5.774

Guidelines:775

• The answer NA means that the core method development in this research does not776

involve LLMs as any important, original, or non-standard components.777

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/778

LLM) for what should or should not be described.779

19

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Audio-Visual Sound Source Localization
	Spatial Audio Reasoning
	Audio-Visual LLMs

	Creation of Hear You Are QA Dataset
	Method
	Experiments
	Implementation Details
	Main Results
	Ablation Studies

	Conclusion
	Limitations and Future Directions

