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Hear you are: Teaching LLMs Spatial Reasoning
with Vision and Spatial Sound
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a question...

Where's my phone?
Could you call it for me,
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Figure 1: Audio-Visual Spatial Reasoning. (Left) A phone rings out of sight inside a bag;
although the sound’s semantic cue (“ring tone”) is present, spatial reasoning is required to locate the
true source among visually silent objects. (Right) In a classroom, several students share the same
semantic cue (“speech”), so the teacher must rely on spatial audio to identify which student asked
the question. These examples illustrate that accurate audio-visual understanding demands not only
semantic alignment but also spatial comprehension.

Abstract

Many audio-visual learning methods have focused on aligning audio and visual
information, either through semantic or temporal correspondence. However, most
of these works have utilized monaural audio, which does not contain information
about the spatial location of the sound source. In contrast, humans and other
animals utilize binaural hearing to perceive this spatial information. Combining
spatial sound and visual perception enables powerful high-level reasoning: for
example, a person looking for their phone may hear the ringing sound coming
from a backpack sitting on a table, and quickly infer that the missing phone is
inside the backpack. In this paper, we investigate the problem of Audio-Visual
Spatial Reasoning. We design a spatial audio-visual question answering dataset to
cover scenarios where semantic correspondence between audio and visual signals
is absent but spatial alignment exists, as well as cases with multiple audio-visual
semantic correspondences that require spatial reasoning to disambiguate. We
propose a model that learns spatial comprehension across the audio and vision
modalities by connecting them with a large language model and experimentally
demonstrate that spatial sound perception is an essential part of our task.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



8

19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38

39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67

68
69
70

1 Introduction

We live in a world full of sights and sounds, naturally associating what we hear with what we see.
Several cues help us connect the two, such as the visual appearance and audible characteristics of
an object, the synchronization between an action or event and its corresponding sound, and the
direction from which the sound arrives, through binaural hearing. We rely on these audio-visual cues
to locate a missing mobile device, or to know when an emergency vehicle is approaching as we are
driving. This natural ability to connect auditory and visual information has motivated advancements
in audio-visual machine learning, such as sound source localization (object detection based on audio
queries) [[7, 21} 133} 27, 130} 23} [29]], source separation [3} 14, 16, 48, 46, 15, 45]], and audio-visual
synchronization [12} 6} 132]. However, most of these studies, which commonly use monaural audio,
focus on the semantic correspondence between a sound and the visual appearance of the object that
made the sound, or the audio-visual temporal alignment between an event and the sound it creates.
These past approaches often overlook spatial cues that provide information about where a sound is
coming from.

Binaural audio becomes essential when semantic matching is ambiguous or misleading. FigureT]
illustrates two scenarios where spatial reasoning is necessary. For instance, understanding that
a ringtone sound is emanating from a backpack requires spatial reasoning, as the backpack does
not semantically match the sound. Another example is when a single sound (e.g., speech) could
correspond to multiple visual objects (e.g., several students in a classroom), where spatial cues
help pinpoint the actual source. These examples highlight the limitations of previous methods,
emphasizing the need to address spatial reasoning beyond basic perception.

Previous studies in spatial audio reasoning have primarily focused on audio-only approaches, exclud-
ing visual information while incorporating language as a modality for spatial interpretation. [13]
aligns audio and text embeddings for spatial tasks, while [52] leverages large language models for
spatial audio question answering. While spatial audio itself provides rich information for spatial
reasoning, integrating visual information into these tasks is a natural extension, as visual signals
inherently convey spatial context. This combination not only enhances spatial perception and local-
ization capabilities, but also enables more sophisticated spatial reasoning, such as handling scenarios
involving sounding sources and nearby visual objects.

In this paper, we address the problem of Audio-Visual Spatial Reasoning, which involves under-
standing the spatial relationship between a sound and the visual context. This task goes beyond
simply perceiving and localizing a sound source, as it requires reasoning about spatial cues to infer
relationships and interactions between objects. To support research on this problem, we construct
a large-scale dataset of 1 million question-answer pairs, specifically designed to serve as both
the training and evaluation set for spatial audio-visual reasoning in diverse scenarios. The vision
and spatial audio is rendered using SoundSpaces 2.0 [4], with source audio clips sampled from
VGGSound[8]]. 3D objects associated with these sounds are generated using Stable Diffusion 3[35]]
and InstantMesh [49], and then are placed within the virtual environments. This dataset serves as
a comprehensive benchmark for spatially intricate settings, providing questions that assess spatial
alignment between modalities, relative locations between sounding and non-sounding objects, and
localization of sound sources among multiple visual objects of the same category as the query audio.

Furthermore, we propose a multi-modal framework, Hear You Are LLM, which leverages spatial
audio and visual encoders to integrate spatial information. The model is trained to handle all the
spatial reasoning tasks from our dataset, enabling it to address scenarios where semantic alignment
alone is insufficient. We experimentally demonstrate that our proposed method effectively addresses
the audio-visual spatial reasoning problem, outperforming existing baseline models including a
state-of-the-art monaural sound source localization method [39} 140] and a large language model-
based audio-visual model that lacks spatial understanding. These results highlight the importance of
incorporating spatial audio-visual knowledge to achieve robust multi-modal reasoning. To summarize,
our main contributions are as follows:

* We define a new task, audio-visual spatial reasoning, focusing on understanding spatial relationships
between sound and visual context, going beyond basic semantic perception such as sound source
localization (object detection based on audio queries) and audio-visual segmentation.

* We propose Hear You Are LLM, a multi-modal modeling framework that integrates spatial audio
and visual encoders with a large language model to handle complex spatial reasoning tasks.
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* We construct Hear You Are QA, the first large-scale dataset specifically designed for audio-visual
spatial reasoning, consisting of 1 million question-answer pairs across diverse spatial scenarios for
training and evaluation. We will open source both the dataset and the training code.

2 Related Work

2.1 Audio-Visual Sound Source Localization

Audio-visual sound source localization is the task of detecting the object or area that corresponds to the
query audio in the visual scene. Following the development of deep learning, Senocak et al. [37,138]]
suggested a semantic alignment-based approach by proposing a cross-modal attention mechanism
with contrastive learning. The field has advanced in the direction of better cross-modal alignment by
leveraging negative-free self-supervised learning [42], intra-modality similarity learning [43]], and the
use of multiple positive learning [39], aligning with representation learning methods. However, these
methods rely on monaural audio and are limited to audio-visual semantic correspondence without
spatial understanding.

Different approaches have focused more on spatial audio for sound source localization. Anoopcherian
et al. [20] proposed a 3D sound source localization method trained on a dataset with four-channel
audio and multi-view visual scenes synthesized using SoundSpaces 2.0. Their approach localizes
sound within the visual scene, but the visual counterpart of the sound is not visible in their setting,
as they only localize the area of the sound source. Shimada et al. [41]] constructed an audio-visual
sound source localization and detection dataset in which audio-visual alignment is guaranteed. In
their framework, the visual signal serves as an auxiliary modality to improve sound localization and
detection. In contrast, we present an audio-visual scene that includes both sound-producing and silent
objects, allowing the model to learn a broader range of spatial reasoning tasks that require contextual
understanding beyond basic localization.

2.2 Spatial Audio Reasoning

Following recent advancements in audio understanding [18l[1} 24] and reasoning [19}36], several
approaches have been proposed to address spatial audio reasoning. [52] synthesize the spatial sound
question answering dataset with the SoundSpaces 2.0 simulator and train a spatial audio encoder and
a large language model for spatial audio understanding and reasoning. This framework handles tasks
such as sound event detection, direction and distance estimation, and spatial reasoning, for example,
“What is the sound on the left side of the sound of the dog barking?”” Another line of research explores
spatial audio reasoning through contrastive language-audio pretraining, with synthetic first-order
ambisonics [[13]. However, these approaches do not incorporate the vision modality, which opens
another dimension for reasoning.

2.3 Audio-Visual LLMs

Inspired by the advancements of Large Language Models (LLMs), recent studies have extended these
models to Multimodal Large Language Models (MLLMs) to tackle a wider range of multimodal
tasks. In the audio-visual domain, GroundingGPT [26] introduces multimodal grounding for audio,
image, and video data using LLMs. Meerkat [[10] aligns audio-visual features using optimal transport
and attention consistency, and CAT [51] aggregates question-related clues in audio-visual scenarios.
From a benchmarking standpoint, AVHBench, AVTRUSTBENCH, and AV-Odyssey Bench [11}
44| [17] provide comprehensive benchmarks targeting hallucination detection [44], reliability and
robustness [[11], and both foundational capabilities and high-level reasoning [17]. While recent
studies have advanced multimodal learning, they primarily rely on monaural audio, limiting their
ability to handle spatial reasoning. As spatial reasoning enables a broader range of tasks and more
closely reflects real-world scenarios, it must be addressed to achieve comprehensive audio-visual
understanding. We propose a new dataset and model specifically designed for spatial reasoning in
audio-visual tasks.

3 Creation of Hear You Are QA Dataset

Our goal is to train a model to learn both semantic and spatial reasoning, for audio-visual inputs. To
this end, we introduce the Hear You Are QA Dataset. Constructing large-scale audio-visual scene data
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Figure 2: Image sample from Hear You Are QA dataset. The dataset consists of diverse indoor
scenes captured in 360° panoramic views, featuring various object arrangements and providing a
comprehensive range of spatial contexts for analysis.

Table 1: Spatial audio visual question types and base prompts/answers

Q1. Spatial Correspondence
Q: What is the sound class category? Where is the sound coming from? A: phone ringing; cupboard

Q2-4. Relative Location
(Distance) Q: Is the sound source of the siren closer to the agent than it is to the cat? ~ A: Yes
(Direction) Q: Can you estimate the distance from the accordion sound to the dog, and the relative location of the accordion from the dog?
A: right; behind; upper; 2.3 m
(Angle) Q: Can you estimate the distance from the accordion sound to the dog, and the angle between the agent’s gaze directions toward the
accordion and the dog?  A:30; 10;2.3 m

Q5. Spatial & Semantic Correspondence (One visual object semantically matches the audio)
Q: What is the object in the scene located at (—30, —12), 2.549 m? Is it making a sound?
A: bird squawking; making sound

Q6. Spatial & Semantic Correspondence (Multiple visual objects semantically match the audio)
Q: What is the object in the scene located at (150, —14), 1.735 m? Is it making a sound?
A: canary calling; making sound

Q7. Spatial & S tic Correspondence (One visual object semantically matches the audio)
Q: Given multiple visual objects, which one is making a sound, and where is it located?
A: bird squawking; —30; —12;2.549 m

Q8. Spatial & Semantic Correspondence (Multiple visual objects semantically match the audio)
Q: Could you determine the sound class category, and which object of that category in the scene is making the sound?
A: canary calling; 150; —14; 1.735 m

Q9. Semantic Co-occurrence
Q: What is the sound class category? Is the sound source visible in the scene? A: cat; not visible
Q: What is the sound class category? Is the sound source visible in the scene? A: fox; visible

with real-world spatial audio is time-consuming and challenging, requiring specialized equipment
such as ambisonic or dummy head microphones. To efficiently build a diverse dataset with various
objects and sound events, we adopt a simulation-based approach to generate both the scenes and
spatial audio.

Spatial Audio Simulator. We employ the SoundSpaces 2.0 simulator [4], which renders geometry-
based acoustics, adding realistic reverberation for any source—receiver pair. Users can freely vary
wall materials, object properties, and microphone-array geometry, letting us create a rich, controllable
dataset while retaining exact ground-truth parameters, e.g., every source’s 3D position and orientation.
Scene meshes come from Matterport3D [2]], a collection of 90 fully scanned buildings averaging
24.5 rooms across 2.61 floors and 517.34 m? of floor space. We use 72 scenes for training, 9 for
validation and 9 for testing. Given a source location, monaural signal, receiver position, and heading,
the observed signal is obtained by convolving the monaural signal with the environment’s room
impulse response. We configure the receiver to record a binaural audio signal with the default Head
Related Transfer Function (HRTF) provided by SoundSpaces2.0.

Sound Sources. Previous spatial audio datasets include either a limited number of class cate-
gories [41]] or classes that are not guaranteed to be visually observable [52] 20]. To construct a
large-scale audio-visual dataset, we adopt VGGSound [8]], which contains 200,000 in-the-wild 10-
second YouTube clips, each annotated with one of 309 audio event classes. However, some of these
classes correspond to events that typically occur outdoors or are difficult to associate with a single
visual object (e.g., “Airplane Flyby”, “People Marching”). To enhance the visual reliability and
realism of our dataset, we manually exclude categories typically occur outdoors, or are visually
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ambiguous. We follow the original testing splits provided by VGGSound, and create a validation set
of the same size as the testing set by sampling clips from the VGGSound training split.

Visual Objects. Due to the limited number of sound-emitting categories in existing 3D object
datasets, we generate our own 3D objects to be placed within the Matterport3D environments, either
as sounding objects or as distractor objects. Specifically, we first select 150 class categories from
VGGSound and 40 from ImageNet, and generate 2D images for each category using Stable Diffusion
3. After manually filtering out low-quality or unrealistic generations, we select 40 visually plausible
images per category. These 2D images are then lifted into 3D object meshes using the method
from [49]. For each sounding object category, we reserve 32 images for training, 4 for validation and
4 for testing.

Audio-Visual Scene Construction. Each audio-visual scene consists of a 360° panoramic image as
Figure [2|and corresponding binaural audio. We stitch 18 images, each with a horizontal FoV of 20
degrees as in [5], to form a 360° view. The final image resolution is set to 224x812, and the center of
the image is aligned with the front-facing direction of the observing agent in SoundSpaces 2.0.

We inject the aforementioned sound source and 3D objects into random locations within the scene,
excluding placements where objects are occluded by walls or located in a different room. Each scene
includes one sound source. The sound source, depending on the question scenario, is assigned to
either a semantically matching object from a VGGSound category, a random object from a different
category (VGGSound or ImageNet), or a random empty location within the scene.

One potential concern is that rendering artifacts, such as visible seams between injected objects and
the original scene, could serve as shortcuts for the model. To mitigate this and increase the visual
complexity of the scene, we randomly insert up to three random objects sampled from categories
distinct from the main visual objects in the scene.

Crafting Questions. We manually defined nine different “base” questions that require spatial
audio-visual understanding, summarized in Table [I, When filling a question template, we use
handcrafted rules to automatically populate the missing fields in the question and answer using the
scene construction parameters. The questions cover four main categories: spatial correspondence
(Q1), relative location (Q2, Q3, Q4), spatial and semantic correspondence (QS5, Q6, Q7, Q8), and
semantic co-occurrence (Q9). Spatial Correspondence questions aim to evaluate whether the model
can correctly associate an audio signal with its spatially aligned visual source. To assess the model’s
robustness, we include counterfactual examples in which semantically mismatched visual objects
and sounds (e.g., a piano and dog barking) are placed at the same location. This setting discourages
reliance on semantic priors and encourages the model to learn true spatial correspondence between
audio and visual modalities without hallucination. Relative Location questions assess the model’s
ability to understand the spatial relationship between audio and visual information. These include
determining whether a sound source is located to the left, right, front, or behind the agent, as well as
reasoning about vertical position (e.g., above or below), angular direction, and relative distance with
respect to a visual reference. Spatial and Semantic Correspondence questions evaluate whether
the model can jointly associate the correct object class (semantic) and its location (spatial) based on
the audio signal. Semantic Co-occurrence questions focus on learning spatial audio understanding
regardless of whether the corresponding visual object is explicitly visible, encouraging the model not
to solely rely on an object’s appearance. To diversify the question set and improve naturalness, we
utilize ChatGPT-4o to paraphrase and expand each base question into multiple human-like variations.

4 Method

Our aim is to construct a model that can answer the questions in our proposed dataset by leveraging
both visual and spatial audio inputs. To this end, we design and train a multi-modal large language
model with both visual and binaural audio inputs. The overall architecture is illustrated in Figure 3]

Audio and Visual Encoders with Projector. Given an image v and its corresponding audio a, our
backbone networks extract features from each modality. The vision encoder f, processes a panoramic
image frame and outputs a sequence of spatially aligned visual tokens, v € RV**Cv where N, is
the number of visual tokens and C,, is the feature dimension of each token. We preserve the full
spatial layout of patch tokens without pooling. The audio encoder f, takes the input spectrogram
of a and produces a set of audio tokens, a € RNaxCa  where N, is the number of audio tokens
and C, is the corresponding feature dimension. Each modality-specific encoder is followed by a
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Figure 3: The pipeline of our framework: feature extraction, projection, and multimodal reasoning.
We extract spatial audio and visual features using pre-trained encoders, project them into a shared
embedding space, and integrate the embeddings with the question embedding to generate the answer.

projector that maps the extracted features into the hidden dimension of the language model. The
visual projector attends to the spatial visual features to generate Ny, projected tokens, and the audio
projector similarly produces N4 tokens from the audio features. These projected tokens are then
passed to the large language model for multi-modal reasoning.

Large Language Model. To bridge the audio and visual encoders, we utilize a large language
model that takes as input the projected audio and image tokens along with the embedded question
text. During fine-tuning, the model is optimized to generate the correct answer based on the given
question and the corresponding multimodal inputs. Training is performed using the standard language
modeling objective function that maximizes the likelihood of the target sequence using a cross-entropy
loss applied at each token position.

Warm Start of the Encoders. To ensure the effectiveness of each modality-specific representation,
the audio and visual encoders, along with their respective projectors, are pretrained in a unimodal
setting using a large language model. We utilize the panorama image and binaural audio from our
dataset and construct two types of auxiliary questions for each modality: classification and localization
tasks. For the visual encoder, the classification task involves identifying visual objects at specific
coordinates, phrased as “What visual objects did you detect at ({azimuth}, {elevation}),
{distance} meters?”, and the localization task asks for the predicted azimuth, elevation, and
distance to a specified object class, stated as “What are the predicted azimuth and elevation angles, and
the distance to the {class category}?’. The audio encoder is trained with analogous tasks: the
classification task asks “What sound did you detect?”, while the localization task prompts for spatial
coordinates of the sound source with the question “What are the predicted azimuth and elevation
angles, and the distance to the sound source?”. The visual encoder adopts a progressive training
scheme, first focusing on classification to learn semantic representations and then incorporating
spatial grounding through a combined classification and localization task. The audio encoder is
trained on both tasks jointly from the beginning.

S Experiments

5.1 Implementation Details

Image Encoder f,. We use a SigLIP2 [47] vision encoder with the NaFLEX setting, which supports
flexible image resolutions and aspect ratios. The encoder processes a panoramic image and outputs a
sequence of patch tokens. We apply LoRA [22]] to fine-tune the patch embedding and attention layers
of the encoder during both the uni-modal training and the audio-visual end-to-end training.

Audio Encoder f,. We use the pretrained Spatial-AST binaural audio encoder from [52]]. The model
takes binaural audio spectrograms as input and generates a sequence of audio tokens that preserve
spatial acoustic cues. The encoder was pretrained using the same audio event classification and
localization tasks proposed in [52]. This encoder is kept frozen throughout the entire training process.

Modality-specific Projectors and Large Language Model We adopt the Q-Former architecture
as the projector for both modalities. The audio-side projector is based on the implementation and
pretrained weights from BAT [52]], while the visual-side projector is adapted from BLIP-2 [25], using
only the first two attention layers and their corresponding pretrained weights. The number of query
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Table 2: Evaluation of baseline models on sound source localization that requires spatial
understanding. R, B, M, Q refer to RGB Image, Binaural Audio, Monaural Audio, and Question
(Text) in this table.

Method Modality Q1 (class) Q1 (aligned) Q1 (non-matching) Q7 (class) Q7 (DoA) Q8 (class) QS8 (DoA)
ISSL [39]1140] R+M 26.97 28.83 12.94 28.46 23.18 26.94 21.0
ACL-SSL [31] R+M 40.56 32.83 10.61 40.41 30.68 41.11 24.33
VideoLLaMA?2 [9] R+M+Q 51.01 77.44 50.75 70.88 68.57 75.33 46.37
Ours R+B+Q 52.69 77.61 61.67 75.44 73.21 70.27 64.27

tokens is set to N} = 64 for audio and Ny = 128 for vision. All projector parameters are fully
trainable. We adopt Qwen2-7B-Instruct [50] as our LLM backbone.

Training Setup and Input Preprocessing. Inputs to our model consist of a single 224 x 812
panoramic image and a 10-second audio binaural waveform sampled at 32 kHz. We preprocess the
image input following [47]] and the audio input following [52]]. Our full model is trained for 3 epochs
on 8 A5000 GPUs with an effective batch size of 128, using a LoRA rank of 16 for the image encoder
and LLM backbone. The training takes three days. Additional training details are provided in the
supplementary material.

Baselines. Since no existing method directly addresses our proposed task, we introduce three baselines
adapted from related domains. The first two baselines are audio-visual sound source localization
approaches. Specifically, we adopt the framework proposed in [39, 40], which has demonstrated
strong performance on synthetic benchmarks and exhibits robustness with multiple visual objects.
[31]] learns audio-driven embeddings compatible with the text encoder of CLIP[34]] and leverages
the CLIP-based segmentation network [28] to achieve tight localization results. Although they do
not handle language understanding, we evaluate them using cross-modal retrieval and localization
metrics. Implementation details are provided in the supplementary material. The third baseline is
the VideoLLaMAZ2[9], multi-modal large language model (MLLM), the closest prior work to ours
in terms of multimodal reasoning. For a fair comparison, we replace its original vision and audio
encoders with the same encoders used in our method, Spatial AST[52]] and Sigl.IP2 NaFLEX [47]],
and fine-tune the model on our proposed dataset using the same LLM backbone. Notably, the baseline
uses monaural audio input, whereas our method leverages binaural cues. Since the sound source
localization approaches are not designed for reasoning tasks (e.g., Q2, Q3, Q4, QS5, Q6, Q9), we
evaluate them only on tasks that do not require language processing. The metrics in Table 2] cover
classification and direction of arrival (DoA). Q1 (aligned) and Q1 (non-matching) indicate sound
source localization task where the source is semantically aligned and non-aligned with the audio,
respectively.

5.2 Main Results

We present our results in Table[2] showing that only our model effectively addresses spatial reasoning
scenarios. For sound classification tasks (Q1, Q7, Q8), sound source localization approaches
outperform the Question Only setting, which serves as a random baseline. VideoLLaMA?2 shows
comparable performance to our model, particularly in Q1 (aligned) and Q7 (DoA), where semantic
cues are sufficient for localization due to the presence of a single matching visual object with audio.
Monaural audio is sufficient to localize the sound source, allowing baseline models to perform
consistently without spatial audio cues. However, in Q1 (non-matching) and Q8 (DoA), spatial
reasoning is essential for different reasons. In Q1 (non-matching), the visual object at the sound
source is semantically unrelated to the audio, requiring spatial cues to correctly associate the sound
with the aligned object. In Q8 (DoA), multiple objects share the same sound category, making it
necessary to differentiate between them using spatial cues. In both cases, baseline models perform
significantly worse. VideoLLaMA?2, which shares the same architecture as ours but lacks binaural
audio, achieves approximately 50% accuracy in Q8 (DoA), indicating its inability to distinguish
between visually similar objects that semantically match the audio. Since all baseline models use
only monaural audio, they lack spatial information, making spatial reasoning impossible.
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Table 3: Ablation study on modality settings for audio-visual spatial reasoning tasks. R, B, M, Q
refer to RGB Image, Binaural Audio, Monaural Audio, and Question (Text) in this table.

Trained and tested on Trained on R+B+Q, tested on Random Chance
metric R+B+Q R+M+Q B+Q M+Q R+Q R+M+Q B+Q Q
Q1
sound accuracy T 52.69 51.01 52.53 5140 27.28 54.03 46.86 3.50
coming-from accuracy 1 69.64 64.10 26.40 2640 56.22 61.92 23.39 2.72
Q2 (Yes or No) 1 84.74 83.77 55.63 50.87 85.28 83.55 54.11 50.11
Q3
3-field accuracy 1 69.73 66.52 3240 18.67 74.46 66.42 24.57 18.56
Avg. distance error (m) | 0.39 0.41 1.20 1.31 0.36 0.47 1.37 1.34
04
DoA accuracy 1 65.68 59.03 12.86 12.43 58.06 56.14 11.38 9.80
Avg. DoA error (°) | 1541 20.21 81.18 87.38 18.59 23.55 86.49 85.48
Avg. distance error (m) | 0.38 0.47 1.10 1.21 0.38 0.51 1.32 1.21
Q2-invisible audio T 72.46 70.40 57.14 48.00 73.03 70.51 5291 50.63
Q3-invisible audio
3-field accuracy 1 59.52 47.29 34.14 1845 4l1.64 45.56 25.49 18.22
Avg. distance error (m) | 0.75 0.98 1.20 1.33 1.02 1.12 1.39 1.38
Q4-invisible audio
DoA accuracy 1 41.18 16.71 11.18 11.76  13.53 16.47 11.29 9.88
Avg. DoA error (°) | 39.81 69.25 80.51 84.56 77.15 75.39 85.24 84.81
Avg. distance error (m) | 0.71 1.08 1.13 1.21 1.16 1.04 1.32 1.23
05
class accuracy 1 72.43 74.26 2579 25.63 74.87 72.82 22.18 2.78
sounding accuracy 1 75.60 64.54 5948 37.72 36.63 65.93 75.93 41.36
06
class accuracy 1 81.06 81.61 51.78 50.47 83.78 80.72 42.72 3.72
sounding accuracy 1 72.33 52.33 59.33  38.67 31.94 49.28 75.67 41.67
Q7
class accuracy 1 75.44 70.88 51.64 53.62 3735 73.53 51.68 2.56
DoA accuracy 1 73.21 68.57 4730 7.80 37.52 64.04 48.38 7.89
Avg. DoA error (°) | 14.75 2241 33.02 88.31 56.66 24.55 35.25 90.92
Avg. distance error (m) | 0.30 0.33 0.50 053 0.44 0.36 0.79 0.53
08
class accuracy 1 70.27 75.33 4842 48.02 69.89 71.90 32.51 0.78
DoA accuracy 1 64.27 46.37 47.69 846 43.72 39.76 49.41 7.61
Avg. DoA error (°) | 23.78 50.80 3232 89.93 51.90 52.46 32.45 89.40
Avg. distance error (m) | 0.36 0.44 0.48 0.51 0.42 0.46 0.85 0.52
Q9
sound accuracy T 54.00 51.14 51.14 5220 27.17 55.57 47.25 2.81
visiblity accuracy 1 75.22 72.94 38.99 39.79 3331 76.35 49.42 42.31

5.3 Ablation Studies

TableE] shows that both image (R: RGB) and binaural audio (B) inputs are crucial for spatial reasoning.
It compares R+B+Q, R+M+Q (M: monaural), B+Q, M+Q, and R+Q (Q: question), highlighting that
binaural audio provides spatial cues while monaural lacks directional information. The following is
an analysis of the performance for each question type.

Question 1 involves sound and visual object classification, with half of the samples containing a
non-matching visual object at the sound source. Both R+B+Q and R+M+Q show similar sound
classification accuracy (52.69% and 51.01%), suggesting comparable semantic cues from monaural
and binaural audio. However, in coming-from accuracy, R+B+Q (69.64%) outperforms R+M+Q
(64.10%), highlighting the spatial advantage of binaural audio.

Questions 2, 3, and 4 assess distance and relative location between the sound source and visual
objects, requiring spatial reasoning across modalities. For visible audio, R+M+Q achieves 66.52%
in Q3 and 59.03% in Q4, performing similarly to R+B+Q (69.73% and 65.68%). When the sound
source is invisible, R+B+Q shows a clear advantage, outperforming R+M+Q in Q3 (59.52% vs.
47.29%) and Q4 (41.18% vs. 16.71%). This highlights the role of binaural audio in capturing spatial
cues that monaural audio with visual input cannot provide.

Questions 5 and 6 both involve identifying the sound-producing object but differ in complexity
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based on the number of visual objects that match the sound. In QS5, with only one matching object,
visual context alone provides sufficient spatial information for localization. R+M+Q leverages visual
cues effectively, achieving a sounding accuracy of 64.54%. With no visual ambiguity, the model can
reliably associate the sound with the correct object using spatial information from the visual signal.
In Q6, two visually similar objects match the sound, introducing ambiguity. R+M+Q’s performance
drops to 52.33%, as visual context alone is no longer sufficient to distinguish between the two objects,
leading to random guessing. In contrast, B+Q and R+B+Q maintain consistent performance across
both questions. In Q5, they achieve 59.48% and 75.60%, respectively, and in Q6, their performance
remains stable at 59.33% and 72.33%. This stability is due to binaural audio, which provides explicit
spatial cues, enabling the model to localize the sound source based solely on directional information,
unaffected by visual similarity. These results indicate that when there is only one matching object
(Q5), R+M+Q can effectively use visual spatial information. However, when multiple visually similar
objects are present (Q6), spatial audio cues become essential, allowing B+Q and R+B+Q to maintain
stable performance regardless of visual similarity. These results highlight the importance of binaural
audio in resolving ambiguity in complex visual scenes.

Questions 7 and 8 both involve sound classification and localization but differ in the number of visual
objects that correspond to the audio, with two in Q8 and one in Q7. In Q8, two visually similar objects
correspond to the audio, making it difficult for the model to distinguish between them using visual
information alone. R+M+Q and B+Q show similar DoA accuracy (46.37% and 47.69%), but their
Avg. DoA errors differ, with R+M+Q at 50.80° and B+Q at 32.32°. R+M+Q relies on visual context
for spatial cues, but semantic ambiguity between the two objects complicates localization, leading
to random selection and higher error. In contrast, B+Q, using binaural audio, focuses solely on
directional information, perceiving only one sound source without considering object-level ambiguity,
resulting in a lower error. R+B+Q achieves the lowest error (23.78°) by combining spatial audio and
visual inputs. In Q7, the audio corresponds to a single object, eliminating semantic ambiguity. In this
case, the performance of R+M+Q and B+Q reverses from Q8. R+M+Q records a lower error (22.41°)
than B+Q (33.02°), indicating that when only one object is present, visual spatial information can
effectively guide localization without semantic confusion. These results support the findings in Q5
and Q6, emphasizing the role of spatial audio in disambiguating visually similar objects.

Question 9 involves sound classification and localization while also requiring the model to determine
whether the object is visually present at the sound source. This task demands both audio and visual
semantic understanding. Both multi-modal settings (R+B+Q, R+M+Q) successfully address this
question.

Modality Setting Cross-Evaluation. To assess the impact of vision signals and binaural audio during
training, we evaluate the model trained on R+B+Q under R+M+Q and B+Q settings. While Q7 and
Q8 show minimal change, Q5 and Q6 exhibit noticeable gaps in sounding accuracy. This might come
from Q5 and Q6 only requiring yes/no responses given a location, without the detailed localization
required in Q7 and Q8. Consequently, the model in the B+Q setting may not effectively leverage
spatial reasoning for these tasks. However, with visual signals, the model gains implicit spatial cues
that align audio locations with the visual scene, potentially enhancing spatial audio understanding.
Thus, the presence of visual information may be beneficial even for learning spatial audio cues.

6 Conclusion

We introduce a new task, audio-visual spatial reasoning, along with the Hear You Are LLM and QA
dataset. Unlike prior work that focuses on semantic or temporal alignment, our approach emphasizes
spatial reasoning by integrating binaural audio and visual inputs. We build a large-scale dataset
covering diverse spatial scenarios and propose a multimodal framework combining spatial encoders
with a large language model. Experiments show that monaural audio with vision or unimodal binaural
methods lack the capacity for spatial reasoning. These results underscore the importance of spatial
reasoning in robust multimodal understanding and set a new benchmark in audio-visual learning.

7 Limitations and Future Directions

While our framework effectively addresses spatial reasoning by integrating binaural audio and visual
context, several real-world scenarios remain unaddressed. Specifically, our approach does not consider
moving sound sources, actions associated with visual objects, or occluded objects positioned behind
walls or in separate rooms. These aspects are critical for capturing dynamic spatial interactions.
Future work will focus on extending the dataset to incorporate these complexities, enabling more
comprehensive audio-visual reasoning in realistic settings.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We address audio-visual spatial reasoning by introducing a dataset that empha-
sizes spatial alignment over semantic correspondence and propose a model that integrates
spatial sound cues with visual perception for enhanced multimodal reasoning.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are addressed in Sec. 7.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA] .

Justification: This work focuses on empirical evaluations rather than theoretical formulations
or proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all implementation details in Sec. 5.1 and Appendix A.1, and the
data and code will be released upon paper acceptance.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: After acceptance, we will publish the code, data, and model for public use.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]
Justification: We provide all training and test details in Sec. 5.1 and Appendix A.1.
Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We did not include error bars as we were unable to run sufficient experiments
due to resource limitations. The model was tuned using the validation set and the final
performance was reported on the test set.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the regarding information in Sec. 5.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, our work aligns with the ethical guidelines set by NeurIPS.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide the regarding information in Appendix A.3.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our study itself does not present significant risks. We employ publicly
accessible diffusion models known to have certain risks, and we refer readers to their model
cards for safeguard information.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We provide the regarding information in Appendix A.4.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the detail about the dataset in Appendix A.2.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The study does not include crowdsourcing or human subject research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: The study does not include crowdsourcing or human subject research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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768 16. Declaration of LLLM usage

769 Question: Does the paper describe the usage of LLMs if it is an important, original, or
770 non-standard component of the core methods in this research? Note that if the LLM is used
77 only for writing, editing, or formatting purposes and does not impact the core methodology,
772 scientific rigorousness, or originality of the research, declaration is not required.

773 Answer: [Yes]

774 Justification: We provide the regarding information in Appendix A.S.

775 Guidelines:

776 * The answer NA means that the core method development in this research does not
777 involve LLMs as any important, original, or non-standard components.

778 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
779 1L.LM) for what should or should not be described.

19


https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Audio-Visual Sound Source Localization
	Spatial Audio Reasoning
	Audio-Visual LLMs

	Creation of Hear You Are QA Dataset
	Method
	Experiments
	Implementation Details
	Main Results
	Ablation Studies

	Conclusion
	Limitations and Future Directions

