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ABSTRACT

Reliable decision-making relies on both prediction and reasoning. In this work, we
investigate whether Vision-Language Models (VLMs), when applied as driving
assistants, can genuinely understand how present observations shape future out-
comes, or whether their outputs merely reflect patterns memorized during training
without grounded temporal reasoning. While recent efforts have integrated VLMs
into autonomous driving, prior studies typically emphasize scene understanding
and instruction generation, implicitly assuming that strong visual interpretation
naturally enables future reasoning and thus ensures reliable decision-making—a
claim we critically examine. We identify two major challenges limiting VLM
reliability in this setting: response inconsistency—where minor input perturba-
tions yield different answers or, in some cases, responses degenerate toward near-
random guessing—and limited temporal reasoning, in which models fail to reason
and align sequential events from current observations, often resulting in incorrect
or even contradictory responses. Moreover, we find that models with strong visual
understanding do not necessarily perform best on tasks requiring temporal reason-
ing, indicating a tendency to over-rely on pretrained patterns rather than modeling
temporal dynamics. To address these issues, we adopt existing evaluation meth-
ods and introduce FutureVQA, a human-annotated benchmark dataset specifically
designed to assess future scene reasoning. In addition, we propose a simple yet
effective self-supervised tuning approach that improves both consistency and tem-
poral reasoning without requiring temporal labels.
The data and code for our experiments will be released upon acceptance.

1 INTRODUCTION

Modern Vision-Language Models (VLMs) exhibit human-like perception and reasoning capabilities,
enabling more natural and intelligent interactions in everyday applications Liu et al. (2023b;a); Wang
et al. (2023); Liu et al. (2024); Bai et al. (2023); Young et al. (2024); Zhang et al. (2023b). Recent
studies Jiang et al. (2024); Hwang et al. (2024); Fu et al. (2025); Renz et al. (2025) have explored
their potential as driving assistants, applying them to scene analysis and decision-making in complex
driving environments. Trained on large-scale visual data, these models demonstrate strong abilities
in interpreting visual cues and traffic signs, generating high-level driving instructions that resemble
human reasoning and can assist autonomous vehicles.

However, despite these encouraging advancements, most existing approaches implicitly assume that
strong visual understanding naturally translates into reliable future scene prediction and reason-
ing. In this work, we critically examine this assumption by evaluating the consistency and relia-
bility of VLM responses in driving scenarios. Specifically, we investigate whether these responses
stem from genuine temporal reasoning or merely reflect memorized knowledge acquired during pre-
training Fatemi et al. (2024); Xu et al. (2024).

Specifically, we address the following challenges: (1) Response inconsistency, where identical or
nearly identical inputs can lead to divergent or unstable outputs; and (2) limited temporal reason-
ing, where the model fails to maintain coherent reasoning across events that unfold over time, often
producing incorrect predictions or even contradictory answers to follow-up questions requiring tem-
poral understanding. These issues highlight a fundamental limitation: the model’s lack of temporal
grounding. Unlike humans, VLMs do not experience the flow of time and may over-rely on mem-
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Event A

Event B

The white car appears to be following the lane
markings, which indicate a leftward turn...

Please describe the scene 4 second later.

... The white car in the middle is driving forward
through the intersection....

Where will the white car go at the intersection?

How many cars are on the left?

There are 3 cars on the left.

How many cars are on the left?

There are 3 cars on the left.

How many cars are on the left?

There is 1 car on the left.

Response Inconsistency Contradiction and Temporal Misalignment

Figure 1: Reliability failures in VLMs. The figure illustrates three issues: (i) response inconsis-
tency—identical or very similar prompts yield different answers; (ii) contradiction—correct local
interpretation but inconsistent future description; and (iii) temporal misalignment—events predicted
at incoherent times despite accurate per-frame cues.

orized patterns from pretraining rather than performing genuine temporal reasoning Fatemi et al.
(2024).

Our experiments show that both open-source and commercial VLMs exhibit varying degrees
of inconsistency when answering driving-related questions, even under minimal input perturba-
tions—such as shuffling the order of answer options in a visual question answering (VQA) task.
Furthermore, we find that models with stronger visual understanding are not necessarily better at
reasoning about future scenes or events. In some cases, these models perform worse than others,
revealing a disconnect between visual perception and temporal reasoning. These findings under-
score a critical concern: the potential risks of deploying VLMs in safety-critical applications such
as autonomous driving, where consistent and temporally grounded reasoning is essential.

Alongside standard evaluation methods, we introduce FutureVQA, a fully human-annotated bench-
mark designed to assess how well VLMs can reason about future scenes based on their understanding
of preceding visual observations. In addition, we propose a simple yet effective self-supervised tun-
ing approach that improves the model’s ability to perform consistent temporal reasoning and scene
prediction—without requiring explicit temporal labels.

In summary, our main contributions include: (1) We identify and analyze key limitations of cur-
rent Vision-Language Models (VLMs) in driving scenarios, including response inconsistency and
lack of temporal reasoning, which pose risks for safety-critical applications. (2) We introduce Fu-

tureVQA, a human-annotated benchmark designed to evaluate VLMs’ ability to reason about future
scenes based on prior visual context. (3) We propose a simple yet effective self-supervised tuning
method that enhances temporal consistency and future scene prediction without requiring temporal
supervision.

2 RELATED WORK

Vision Language Models: Recent advances in LLMs have greatly expanded the scope of multi-
modal research. In the visual domain, models like LLaVA Liu et al. (2023b;a), QWen Bai et al.
(2023), Yi-VL Young et al. (2024), and CogVLM Wang et al. (2023) have made significant strides
in image-text reasoning, offering detailed analyses of visual data alongside textual descriptions.
LLaVA-Next Liu et al. (2024) further enhances this capability by supporting higher-resolution in-
puts, enabling more detailed image understanding. For video-text understanding, models such as
Video-LLaMA Zhang et al. (2023b) and LLaVA-Video Zhang et al. (2024) have advanced narra-
tive comprehension by incorporating temporal information from dynamic visual content. Beyond
generic VLMs, modern VLMs are increasingly integrated into autonomous driving Nie et al. (2024);
Chen et al. (2024b); Liao et al. (2024); Pan et al. (2024); Gopalkrishnan et al. (2024); Zhou et al.
(2024a); You et al. (2024); Chen et al. (2024a); Sima et al. (2023); Wang et al. (2024a), enhancing
scene understanding and decision-making.

Future Scene Reasoning: Predicting future scenes is a crucial task in robotics and autonomous driv-
ing, requiring models to understand the physical world and how scenes evolve over time. Recently,
the construction of world models has gained popularity across various modalities, including point
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cloud generation, which aims to construct a realistic 3D representation of the world over time Khu-
rana et al. (2023); Huang et al. (2024); Yang et al. (2024b); Manivasagam et al. (2020), and video
generation under different environmental conditions and control signals Wang et al. (2024b); Zhao
et al. (2024); Gao et al. (2024); Hu et al. (2023; 2024); Zhou et al. (2024b); Wang et al. (2024c); Jia
et al. (2023); Hassan et al. (2024).

Visual Question Answering: Early VQA datasets primarily focused on general image-question
performance Antol et al. (2015); Zhang et al. (2016); Goyal et al. (2017). Beyond general-purpose
VQA, researchers have explored domain-specific applications, such as medical VQA Lau et al.
(2018); Bae et al. (2024) and science-driven VQA Kembhavi et al. (2017). To provide a more
robust evaluation, some datasets go beyond free-form sentence answers and adopt structured answer
formats, such as Yes/No questions Fu et al. (2024) and multiple-choice formats Liu et al. (2023d);
Wu et al. (2024); Fu et al. (2024), ensuring a more consistent and objective assessment of model
performance. Recently, VQA in autonomous driving has gained attention, aiming to enhance scene
understanding in dynamic traffic environments Sachdeva et al. (2024); Malla et al. (2023); Sima
et al. (2023); Wang et al. (2024a); Qian et al. (2023); Deruyttere et al. (2019); Vasudevan et al.
(2018).

3 PROBLEM FORMULATION AND EVALUATION

A reliable safe-driving assistant should anticipate how actions and events unfold over time, remain
temporally coherent, and respond consistently under semantics-preserving prompt changes. Let
Vt = {Ii | i  t} be the historical frames up to time t. A VLM  is queried to produce a
description at+�t of the scene at time t+�t, where �t 2 Z+ is the prediction horizon. Using the
model’s response when given the ground-truth future frame It+�t as a reference, reliability requires
alignment between past-only and future-conditioned predictions:

P 
�
at+�t | Vt

�
⇡ P 

�
at+�t | It+�t

�
. (1)

3.1 RESPONSE UNRELIABILITY AND INCONSISTENCY

Existing studies on language models highlight reliability issues, including hallucination Kalai et al.
(2025) and sensitivity to input phrasing Ahn & Yin (2025). These concerns are acute in autonomous
driving, where decisions must rest on consistent and trustworthy reasoning. For the multiple-choice
VQA variant with input x and K options, the VLM  induces a categorical distribution P (k | x)
over answers k 2 {1, . . . ,K}. We consider semantics-preserving perturbations T�(x) such as
shuffling options by permutation � 2 SK , and align labels via P̃ (k | T�(x)) := P (�(k) | T�(x)).
One potential source of inconsistency is prompt-perturbation sensitivity, which we describe as a
distributional shift under such perturbations, measured by a nonzero total-variation (TV) distance:

TV
�
P (· | x), P̃ (· | T�(x))

�
= 1

2

KX

k=1

��P (k | x)� P̃ (k | T�(x))
�� > 0. (2)

Another manifestation is a change in the top-1 prediction under perturbations, denoted as the flip
rate (FR) with ties broken by the smallest index:

FR(x) := Pr
�⇠Unif(SK)

h
argmax

k
P (k | x) 6= argmax

k
P̃ (k | T�(x))

i
, (3)

Another potential source of inconsistency is random guessing: even when Equation (2) and Equa-
tion (3) are (near) zero, repeated runs may differ because the model samples from a near-uniform
distribution. In this regime, predictions have accuracy ⇡ 1/K, entropy ⇡ logK, self-agreement
R2(x) =

PK
k=1 P (k | x)2 ⇡ 1/K, and are invariant to semantics-preserving perturbations (i.e.,

TV ⇡ 0 and FR(x) = 0 at the distribution level with a fixed tie-break). In Section 5, we show
that—regardless of model size—both open-source and commercial VLMs exhibit accuracy drops
and elevated flip rates under option shuffles with the question fixed, consistent with distributional
shifts rather than uniform guessing.
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Q: Describe the vehicle...
A: It is a red truck

Human
annotators

(3) False options
generation

(1) QA Generation (2) AI Quality Check

(A) It is a red truck
(B) It is a white bus
(c) ......

(4) Human Quality Check
e.g. Single Correct Answer

Agent with Reliable Temporal Reasoning Benchmack FutureVQA Creation

Visual
Understanding

Non-contradictory
Reasoning

Temporally Aligned
Prediction

Prompt

There are two trucks in the middle

driving through the intersection. The

road is marked with white lane

markings and...

There is a white SUV on the left side
of the image, stopped at the

intersection. The road is marked
with white lane markings and...

Predicted Description Reference Description

Similarity

P
er
fo
rm

an
ce

Evaluation
Self-Aligned Predicted Description LLM-as-Judge Evaluation

Predicted Scene
Description...

Reference Scene

Matching Score

Temporal Performance Decay

Visual Understanding
Reasoning / Prediction

The same QA

[Ans 1,

Ans 2,

.

.

Ans N]

Repeat x N

Consistent Response

Figure 2: Overview of our framework for evaluating reliable temporal reasoning in VLM driving
assistants. Left: The agent consumes past frames Vt and a prompt to generate temporally aligned
predictions over a variable future horizon. Right (FutureVQA): Benchmark construction combines
human and AI contributions: human experts create natural Q/A pairs, while AI performs quality con-
trol to ensure answerability and consistency. Bottom (Evaluation): To thoroughly analyze model
reliability, we adopt a self-aligned future description setup, where a model’s predicted description
is compared to a reference response generated by the same model when the actual future frames
are provided. An AI checker is further applied to validate that predictions remain coherent and
meaningful. Beyond this, we evaluate consistency under repeated queries and option shuffling, and
analyze temporal performance decay to quantify how model reliability changes as the prediction
horizon increases.

3.2 CONTRADICTION AND TEMPORAL MISALIGNMENT

Despite VLMs’ ability to accurately interpret current traffic conditions, they often produce con-
tradictory descriptions when reasoning about future scenes. As shown in Figure 1, a model may
correctly identify visual cues and vehicle intentions at the current time based on the input, yet fail to
answer follow-up questions consistently. These contradictions suggest that rich and accurate visual
interpretation alone does not equip VLMs with the ability to reason about how a scene may evolve
over time. In other words, while the model may learn associations between images and their cor-
responding textual descriptions, it does not genuinely understand their real-world implications or
how present actions influence future outcomes. Another issue is temporal misalignment. As shown
in Figure 1, VLMs may correctly interpret visual cues and identify individual events, yet they of-
ten fail to align these within a coherent temporal structure, as they do not experience time flow as
humans do. This limitation is especially critical in driving scenarios, where outcomes such as colli-
sions depend not only on the intentions of surrounding agents but also on the precise timing of their
movements.

Formalization. Let A be the response space and Rt+� ✓ A the set of admissible (reference)
responses for time t+�. Consider two tasks that condition on different information sets:

 ?pred := argmax
 

E
⇥
P (Rt+� | Vt)

⇤
,  ?ref := argmax

 
E
⇥
P (Rt+� | Vt+�)

⇤
, (4)

where Vt is the history up to t and Vt+� denotes the future slice at t+�. In general, these Bayes-
optimal solutions are not necessarily the same—they are not guaranteed to coincide:

 ?pred 6=  ?ref (5)

Empirically (Section 5), we observe behavior consistent with this non-equivalence: models that per-
form well when directly shown Vt+� can still contradict themselves across follow-ups and exhibit
temporal misalignment when forecasting from Vt alone.
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C6D5E0

How many red cars do you see in
this image?
(A) 0    (B) 1    (C) 2    (D) 3

Describe the first vehicle on the
right hand side of the image
(A) It is a white bus    (B) It is a black SUV      
(C) It is a taxi    (D) It is a red pickup truck

How many red cars do you see in
this image?
(A) I cannot find any    (B) 1    (C) 2    (D) 3

What is the color of the second car
on the right hand side the image?
(A) Black    (B) White    (C) Red    (D) Yellow

How many red cars do you see in
this image?
(A) There is no red car    (B) 1    (C) 2    (D) 3

What is the color of the car on the
right?
(A) Black    (B) White    (C) Red    (D) Yellow

Where is the taxi?
(A) Right hand side of the image    (B) Left
hand side of the image ......

How many pedestrians are there on
the crosswalk?
(A) 0    (B) 1    (C) 2    (D) 3

Figure 3: Example of the FutureVQA task. The VLM is asked to answer questions about future
scenes based on predictions, without access to the corresponding future frames.

Algorithm 1 Self-Aligned Future Description

Require: Model  , Visual Input Vt = {Ii | i 
t}, horizon �t 2 Z+, similarity/quality measure
M(·, ·), threshold ⌧

1: apred
t+�t   (Vt,�t) {Predicted response at

t+�t from history}
2: aref

t+�t   ({It+�t}, 0) {Reference response
using actual future frame}

3: q  M
�
apred
t+�t, a

ref
t+�t

�

4: return q

Algorithm 2 Multi-trial Evaluation for Consistency

Require: Model  , Question Q, Visual Input Vt,
Answer A, Number of Trials N

1: for i = 1 to N do

2: Qi  SHUFFLEOPTIONS(Q)
3: Pi   (Vt, Qi)
4: if Pi 6= A then

5: return False

6: end if

7: end for

8: return True

3.3 EVALUATION AND METRICS

This section turns the reliability criteria from Section 3 into practical tests. Since comparing full dis-
tributions P (· | ·) is impractical, we use paired queries and controlled perturbations as proxies. We
evaluate (i) self-alignment between past-only predictions and future-conditioned references, (ii) sta-
bility to semantics-preserving prompt changes (paraphrases, option shuffles with label alignment),
and (iii) behavior across horizons �t.

Self-Aligned Future Description. As in Algorithm 1, we test whether a model’s description of the
future scene based on past context Vt aligns with the description it produces when directly given the
future slice Vt+�t. We compare the predicted response apred with the reference response aref using
a similarity measure M. A conventional choice for M is to adopt statistical metrics developed
for machine translation Papineni et al. (2002); Lin (2004); Banerjee & Lavie (2005); Vedantam
et al. (2014); Anderson et al. (2016). Typical examples include BLEU Papineni et al. (2002) and
ROUGE Lin (2004), which compute n-gram overlaps between sentences. This general family can
be expressed as

Mn-gr(a
pred, aref) = f

0

BB@

NP
n=1

wn · gn(apred, aref)

NP
n=1

wn

1

CCA ·BP, (6)

where gn denotes an n-gram similarity function weighted by wn, f(·) applies a transformation (e.g.,
geometric mean), and BP is a brevity penalty to adjust for length differences.

LLM-as-Judge Evaluation. While widely used for evaluating language models, statistical meth-
ods struggle to capture in-depth spatial relationships Chang et al. (2024a) and the complex semantic
meanings Zheng et al. (2023) handled by modern models. An alternative is model-based evalu-
ation Liu et al. (2023c); Zheng et al. (2023); Fu et al. (2023b); Yuan et al. (2021); Sellam et al.
(2020); Chang et al. (2024a;b), which leverages an advanced judge model Jm to assess response
quality. In this setup, Jm is prompted to rate a response based on the visual input xt, producing a
score in the range Jm(apred, xt) 2 Z\ [1, 10]. In our experiments we use GPT-4o as the judge, with
details and prompt templates provided in Appendix D.
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FutureVQA Benchmark. To complement existing evaluation metrics and address their limita-
tions in capturing temporal reasoning and visual dynamics, we introduce the FutureVQA Bench-

mark (Figure 2)—a dataset comprising 2.7k manually annotated question-answer pairs. While ex-
isting datasets such as DriveLM Sima et al. (2023) contribute to general scene understanding, they do
not explicitly challenge VLMs on time-specific future prediction. Moreover, many rely on structured
templates or rule-based generation, which limits the diversity and naturalness of question formats.
In contrast, our dataset is constructed by human expert annotators based on individual video clips,
featuring diverse and naturally phrased questions tailored to each scene. See Figure 3 and Algo-
rithm 2 for the benchmark exampls and the multi-trial protocol. For a detailed comparison and an
overview of the dataset’s contributions, please refer to Appendix A.

We evaluate performance across horizons from t+1 to t+12 seconds using accuracy (%). To capture
both pointwise and temporal trends, we report: (i) Acc@t, accuracy at horizon t, reflecting predic-
tion capability at different time steps; (ii) �Acc12s1s , the accuracy drop between t+1 and t+12,
indicating performance decay; (iii) mAcc(1!12s), mean accuracy over horizons 1–12, summarizing
overall performance; (iv) Normalized Drop Ratio (NDR), defined as NDR = 1

⌘0

PT
t=1(⌘t�1�⌘t),

the cumulative accuracy drop normalized by the initial value ⌘0, where ⌘t denotes accuracy at hori-
zon t; and (v) Mean Relative Accuracy Retention (mRAR), mRAR = 1

T

PT
t=1

⌘t
⌘0

, the average
ratio of accuracy at each horizon relative to the initial value.

4 FUTUREAGENT: AN APPROACH FOR ENHANCED TEMPORAL REASONING

Describe

Predict

Loss:
Init.

Gradient Flow

Figure 4: Proposed self-supervised approach
to align temporal events and minimize in-
correct or contradictory reasoning. Given
a video sequence V , we generate detailed
descriptions using a pretrained VLM  as
pseudo reference labels aref

t+�t. We then fine-
tune the model  ⇤, initialized from  , using
only past frames as input and training it to
predict descriptions of unseen future frames
apred
t+�t. A weighting function �(�t) adjusts

the contribution of each loss term based on
the temporal distance �t.

To address the limitations in temporally grounded
reasoning, we propose a self-supervised fine-tuning
approach, as illustrated in Figure 4. The design is
motivated by two key challenges: (1) the scarcity
of large-scale, high-quality temporal annotations for
future scene understanding; and (2) the need to align
temporally distributed events based on partial visual
context.

Instead of relying on expensive manual labels, we
leverage the original pretrained model  to generate
pseudo reference descriptions aref

t+�t using ground-
truth future frames It+�t. We then fine-tune a new
model  ⇤, initialized from  , to predict these de-
scriptions from past-only inputs It�k:t, without ac-
cess to future frames. This encourages the model not
only to interpret the current visual input but also to
imagine and temporally align possible future events.
A time-aware weighting function �(�t) is applied
to modulate the loss contribution from different fu-
ture steps, allowing the model to focus differently on
short-term versus long-term temporal reasoning. In
practice, we set k = 5, using 5 seconds of past ob-
servations (sampled at 1 frame per second) as input. We observed that increasing the window to 10
seconds did not improve performance but significantly increased computational cost. The weighting
function �(�t) is implemented as an exponential decay: �(�t) = 2��t, assigning lower impor-
tance to predictions further into the future while still allowing for multi-scale temporal supervision.
See Appendix B for more implementation details.

5 EXPERIMENT AND ANALYSIS

In this section, we evaluate how well VLMs can reason about and describe potential future scenes
based on preceding visual observations. Specifically, we analyze two key aspects: (1) whether
the model can generate consistent responses under minimal input perturbations, which serves as
an indicator of genuine understanding versus random guessing; and (2) whether the model can
accurately reason about future scenes by interpreting the given history frames

6
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VLM Evaluation Method
S �M # S/M "Single-Trial " Multi-Trial "

GPT-4o Hurst et al. (2024) 76.2% 66.1% 11.1% 86.7%
GPT-4o-mini Hurst et al. (2024) 66.9% 54.5% 12.4% 81.5%
LLV-v1.5-7b Liu et al. (2023b) 55.1% 33.8% 21.3% 61.3%
LLV-v1.5-13b Liu et al. (2023b) 61.0% 42.3% 18.7% 69.3%
LLV-Next-13b Liu et al. (2024) 41.8% 18.7% 23.1% 44.7%
LLV-Video Zhang et al. (2024) 65.4% 58.1% 7.3% 88.8%
Qwen-VL-7b Bai et al. (2023) 24.6% 4.6% 20.0% 18.7%
Qwen2.5-VL-7b Bai et al. (2025) 79.1% 69.1% 10.0% 87.4%
CogVLM-17b Wang et al. (2023) 53.1% 29.3% 23.8% 44.8%
Yi-VL-34b Young et al. (2024) 60.9% 41.2% 19.7% 67.7%
Vid-LMA2 Zhang et al. (2023a) 67.6% 54.3% 13.3% 80.3%
Baseline† 64.5% 51.4% 13.1% 79.7%
FutureAgent† 62.7% 52.1% 10.6% 83.1%
Baseline⇤ 73.5% 63.5% 10.5% 85.7%
FutureAgent⇤ 72.3% 64.0% 7.8% 89.2%

Table 1: In this evaluation we examine the ability of different VLMs on our evaluation dataset,
where multiple answer options are shuffled across several rounds of answering by the VLMs. The
accuracy change reflects the difference in performance between single-trial approach and multiple-
trial answering, where the LLM must consistently identify the correct option in every round. This
method minimizes the influence of random guessing by ensuring that only consistently correct an-
swers are counted. S �M denotes the performance drop from single-trial to multi-trial. The ratio
M/S represents the remaining performance.

5.1 EVALUATION SETUP AND IMPLEMENTATION DETAILS

All experiments were conducted on a server equipped with 4×A100-80GB GPUs. For fine-tuning,
we utilized all 4 GPUs, while evaluation was performed using a single GPU for all models. In the
FutureVQA benchmark, each input consists of a 5-second video segment, and the task is to reason
about the future scene at time steps t = 1 to t = 12 seconds. For our fine-tuning method, we
sampled training data from the OpenDV-YouTube dataset Yang et al. (2024a), covering 16 cities
across different continents. This subset comprises approximately 84k frames, each with a resolution
of 1280×720, captured at various times of day. Training required approximately 140 GPU hours.
Our base model uses Hermes-Yi-34B as the language backbone and CLIP-L Radford et al. (2021)
as the visual token encoder. It is pretrained using the LLaVA v1.6 Liu et al. (2024) pipeline, and we
refer to this model as Baseline⇤ in our experiments. The fine-tuned version is denoted as Ours⇤. We
also evaluate a variant using Qwen-VL-32B as the language model, denoted as Baseline† and Ours†
after fine-tuning.

5.2 CONSISTENCY AND RELIABILITY OF VLMS RESPONSE

In Table 1, we evaluate the performance of various VLMs on our proposed FutureVQA benchmark
using the corresponding image for each question-answer pair as input—i.e., no future prediction
is required. This setup serves both as a baseline for future scene reasoning and as a diagnostic
to assess the consistency and reliability of VLM responses. Notably, we observe that all tested
VLMs exhibit a significant drop in accuracy when the answer options are simply shuffled, despite
the semantic content of the questions remaining unchanged. The most substantial decline occurs
with CogVLM Wang et al. (2023), which drops by 23.8%, followed by LLaVA-NeXT 13B Liu et al.
(2024) with a 23.1% decrease.

Prompt-perturbation sensitivity vs. random guessing. The performance drop in Table 1 across
all models is largely attributable to random guessing, as the decrease scales with the number of
options (four in our setup) and the number of trials. In contrast, Figure 5a shows error bars that
reflect much smaller shifts when repeating four trials multiple times. These fluctuations (typically
0.5–1.2 points) arise from prompt-perturbation sensitivity: responses are inconsistent across trials
but still exhibit a clear preference toward certain answers, rather than uniform randomness.
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(a) (b) (c)

Figure 5: Temporal performance decay analysis on the FutureVQA dataset. (a) Accuracy decay
across horizons, where solid lines denote four trials and shaded regions indicate fewer trials (1–3).
(b) Relationship between regular VQA performance (y-axis) and relative long-horizon preservation
(x-axis: Acc@12 divided by regular VQA accuracy). (c) Relationship between regular VQA per-
formance (y-axis) and relative mean preservation (x-axis: mAcc(1!12s) divided by regular VQA
accuracy). Together, these plots show how well models retain their performance when extending
from immediate perception to future prediction.

Model Accuracy " NDR # mRAR "Acc@1s Acc@4s Acc@12s �Acc12s1s mAcc(1!12s)

GPT-4o 59.1% 41.1% 31.6% -27.5% 42.2% 0.42 0.64
GPT-4o-mini 47.7% 36.0% 32.0% -15.7% 37.7% 0.29 0.69
LLV-v1.5-7b 24.0% 18.1% 16.0% -8.0% 18.6% 0.24 0.55
LLV-v1.5-13b 37.8% 30.9% 26.3% -11.5% 30.7% 0.27 0.73
LLV-Next-13b 15.4% 9.3% 4.2% -11.2% 7.3% 0.60 0.39
LLV-Video 53.7% 46.5% 43.4% -10.3% 46.8% 0.18 0.81

Qwen2.5-VL-7b 61.9% 49.5% 40.7% -21.2% 47.2% 0.31 0.68
CogVLM-17b 22.8% 19.4% 14.0% -8.8% 17.2% 0.30 0.59
Yi-VL-34b 38.1% 30.0% 26.1% -12.0% 28.4% 0.29 0.70
Vid-LMA2 52.4% 41.2% 37.2% -15.2% 42.4% 0.28 0.78
Baseline† 49.8% 44.1% 33.1% -16.7% 38.6% 0.33 0.75
FutureAgent† 49.2% 46.7% 36.0% -13.2% 41.4% 0.25 0.79
Baseline⇤ 60.2% 48.2% 38.1% -22.7% 46.1% 0.36 0.73
FutureAgent⇤ 60.8% 50.7% 43.6% 16.6% 50.1% 0.21 0.78
w/o CoT 60.5% 48.4% 41.3% -19.2% 48.2% 0.30 0.75

Table 2: Accuracy (Acc) of models on our VQA benchmark at different future time frames. All
accuracy values are evaluated across multiple trials to minimize the influence of random chance.
The result suggest that models like GPT-4o, while showing strong ability in visual understdaning,
fail to maintain consistent future scene reasoning across different time interval. †*Our model is not
trained with explicit temporal (video) label.

5.3 CAN VLMS ”SEE” THE FUTURE?

Effective decision-making in dynamic environments should be grounded in accurate predictions.
Here, we investigate whether VLMs are capable of reasoning about future scenes based on their
interpretation of present visual cues, and whether they understand how events unfold over time. As
shown in Table 2, we evaluate VLMs on our FutureVQA benchmark by asking them to answer
questions about unseen future scenes using only the past five seconds of visual input. The task
challenges models to make predictions ranging from 1 to 12 seconds into the future. Each question
is evaluated using a multi-trial protocol. Interestingly, we find that models that perform best in
standard visual understanding tasks do not necessarily excel in future reasoning. For example, while
GPT-4o demonstrates strong visual comprehension, its performance drop over time, measured by
both �Acc12s1s and NDR, is significantly higher than that of other models. This suggests that, while
equipped with strong visual interpretation capabilities, these models often fail to reason about how a
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scene evolves over time. In particular, they may struggle to understand how present events influence
future outcomes, even if they generate accurate responses based on the current image.

In Figure 5b and Figure 5c, we observe that very poor visual interpretation ability typically coincides
with weak temporal reasoning—an expected outcome since reliable reasoning requires accurate
perception as a foundation. However, models such as GPT-4o Hurst et al. (2024) and Qwen-2.5 Bai
et al. (2025), despite strong visual interpretation, experience significant drops when asked to predict
the future, suggesting that good perception alone does not guarantee reliable temporal reasoning.

In (Table 3, Table 4), we compare how closely the predicted future scene descriptions match the
model’s own descriptions when the actual future image is provided. Ideally, if the prediction is
accurate, both descriptions should align, as if the model had seen the future scene. Our results show
that, after applying the proposed training method, the predicted descriptions become significantly
more accurate and consistent across all time intervals.

Model Mean Score(0!12s) "
mB3 mB4 mRL mC mM

Baseline† 10.7 6.0 22.8 2.3 25.4
FutureAgent† 20.3 19.8 35.2 11.3 34.6

Baseline⇤ 12.3 7.1 25.2 3.6 28.5
FutureAgent⇤ 28.8 22.7 37.3 12.3 39.2

w/o CoT 25.9 20.4 35.9 11.1 38.3
w/o self-sup. 11.8 6.9 24.7 2.3 26.0

Table 3: We compare how well our proposed
model describes future scenes as if it ”sees”
them. A higher value indicates greater similarity
between the reference description and the pre-
dicted description. The mean score, m, is com-
puted over discrete time steps t 2 Z[1,12] sec-
onds. B3: BLEU-3, B4: BLEU-4, R-L: ROUGE-L,
C: CIDEr, M: METEOR.

Model Score Over Time "
S@1s S@2s S@4s S@8s S@12s

LLV-v1.5-7b 2.59 2.67 2.07 2.52 2.25
LLV-v1.5-13b 2.13 1.92 1.94 2.49 2.40
LLV-Next-13b 2.11 2.87 2.26 2.57 2.15

Baseline† 4.88 4.01 2.96 2.34 2.41
FutureAgent† 5.31 5.01 3.98 3.44 .2.46

Baseline⇤ 5.36 4.23 3.03 3.22 2.98
FutureAgent⇤ 6.43 6.12 5.33 5.04 4.66

w/o CoT 5.84 5.44 4.33 4.18 3.92
(w/o self-sup. 3.72 3.96 3.01 3.19 3.04

Table 4: Model-based evaluation of predicted
caption quality across various time frames us-
ing GPT-4o, with a specific focus on objective
descriptions, such as the accuracy of object ap-
pearance and location within the image.

6 LIMITATION AND DISCUSSION

While our approach offers data efficiency and improved temporal reasoning, it also presents trade-
offs. The self-supervised fine-tuning relies on the quality of the baseline model; its limitations may
propagate through pseudo labels. Future work could explore alternative forms of supervision such
as constructing high-quality, large-scale training data. Similarly, although CoT prompting enhances
reasoning without additional training, its step-by-step nature increases inference time. This may be
a concern in real-time settings. A promising direction is to distill multi-step reasoning into a single-
step model for faster inference. Despite these challenges, our framework provides a practical and
extensible foundation for enhancing temporal understanding in VLMs.

7 CONCLUSION

We investigated the foresight capabilities of VLMs and found that, despite strong visual under-
standing, they struggle with consistent future scene reasoning. To address this, we introduced the
FutureVQA Benchmark, a human-annotated dataset designed to evaluate VLMs’ perception and pre-
diction across different time intervals. Our experiments demonstrate that conventional models fail
to maintain consistency in future predictions, while our self-supervised training pipeline improves
temporal reasoning without requiring annotated temporal data. Notably, our model outperforms
video-based VLMs despite lacking explicit temporal supervision. These findings highlight the need
for better integration of visual perception and temporal reasoning in VLMs.
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