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ABSTRACT

A reliable driving assistant should provide consistent responses and reasoning
based on observed information. In this work, we investigate whether Vision-
Language Models (VLMs), when applied as driving assistants, can response con-
sistantly and genuinely understand how present observations shape future out-
comes, or whether their outputs merely reflect patterns memorized during training
without grounded temporal reasoning. While recent efforts have integrated VLMs
into autonomous driving, prior studies typically emphasize scene understanding
and instruction generation, implicitly assuming that strong visual interpretation
naturally enables consistant future reasoning and thus ensures reliable decision-
making, a claim we critically examine. We focus on two major challenges lim-
iting VLM reliability in this setting: response inconsistency, where minor input
perturbations yield different answers or, in some cases, responses degenerate to-
ward near-random guessing, and limited temporal reasoning, in which models
fail to reason and align sequential events from current observations, often result-
ing in incorrect or even contradictory responses. Moreover, we find that models
with strong visual understanding do not necessarily perform best on tasks requir-
ing temporal reasoning, indicating a tendency to over-rely on pretrained patterns
rather than modeling temporal dynamics. To address these issues, we adopt exist-
ing evaluation methods and introduce FutureVQA, a human-annotated benchmark
dataset specifically designed to assess future scene reasoning. In addition, we pro-
pose a simple yet effective self-supervised tuning approach with chain-of-thought
reasoning that improves both consistency and temporal reasoning without requir-
ing temporal labels.
The data and code for our experiments will be released upon acceptance.

1 INTRODUCTION

Modern Vision-Language Models (VLMs) exhibit human-like perception and reasoning capabilities,
enabling more natural and intelligent interactions in everyday applications (Liu et al., 2023b;a; Wang
et al., 2023; Liu et al., 2024; Bai et al., 2023; Young et al., 2024; Zhang et al., 2023b). Recent
studies (Jiang et al., 2024; Hwang et al., 2024; Fu et al., 2025; Renz et al., 2025) have explored their
potential as driving assistants, applying them to scene analysis and decision-making in complex
driving environments. Trained on large-scale visual data, these models demonstrate strong abilities
in interpreting visual cues and traffic signs, generating high-level driving instructions that resemble
human reasoning and can assist autonomous vehicles.

However, despite these encouraging advancements, most existing approaches implicitly assume that
strong visual understanding naturally translates into reliable future scene prediction and reason-
ing. In this work, we critically examine this assumption by evaluating the consistency and relia-
bility of VLM responses in driving scenarios. Specifically, we investigate whether these responses
stem from genuine temporal reasoning or merely reflect memorized knowledge acquired during pre-
training (Fatemi et al., 2024; Xu et al., 2024).

Specifically, we address the following challenges: (1) Response inconsistency, where identical or
nearly identical inputs can lead to divergent or unstable outputs; and (2) limited temporal reason-
ing, where the model fails to maintain coherent reasoning across events that unfold over time, often
producing incorrect predictions or even contradictory answers to follow-up questions requiring tem-
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Event A

Event B

The white car appears to be following the lane
markings, which indicate a leftward turn...

Please describe the scene 4 second later.

... The white car in the middle is driving forward
through the intersection....

Where will the white car go at the intersection?

How many cars are on the left?

There are 3 cars on the left.

How many cars are on the left?

There are 3 cars on the left.

How many cars are on the left?

There is 1 car on the left.

Response Inconsistency Contradiction and Temporal Misalignment

Figure 1: Reliability failures in VLMs. The figure illustrates three issues: (i) response inconsis-
tency—identical or very similar prompts yield different answers; (ii) contradiction—correct local
interpretation but inconsistent future description; and (iii) temporal misalignment—events predicted
at incoherent times despite accurate per-frame cues.

poral understanding. These issues highlight a fundamental limitation: the model’s lack of temporal
grounding. Unlike humans, VLMs do not experience the flow of time and may over-rely on mem-
orized patterns from pretraining rather than performing genuine temporal reasoning (Fatemi et al.,
2024).

Our experiments show that both open-source and commercial VLMs exhibit varying degrees
of inconsistency when answering driving-related questions, even under minimal input perturba-
tions—such as shuffling the order of answer options in a visual question answering (VQA) task.
Furthermore, we find that models with stronger visual understanding are not necessarily better at
reasoning about future scenes or events. In some cases, these models perform worse than others,
revealing a disconnect between visual perception and temporal reasoning. These findings under-
score a critical concern: the potential risks of deploying VLMs in safety-critical applications such
as autonomous driving, where consistent and temporally grounded reasoning is essential.

Alongside standard evaluation methods, we introduce FutureVQA, a fully human-annotated bench-
mark designed to assess how well VLMs can reason about future scenes based on their understanding
of preceding visual observations. In addition, we propose a simple yet effective self-supervised tun-
ing approach that improves the model’s ability to perform consistent temporal reasoning and scene
prediction—without requiring explicit temporal labels.

In summary, our main contributions include: (1) We identify and analyze key limitations of cur-
rent Vision-Language Models (VLMs) in driving scenarios, including response inconsistency and
lack of temporal reasoning, which pose risks for safety-critical applications. (2) We introduce Fu-
tureVQA, a human-annotated benchmark designed to evaluate VLMs’ ability to reason about future
scenes based on prior visual context. (3) We propose a simple yet effective self-supervised tuning
method that enhances temporal consistency and future scene prediction without requiring temporal
supervision.

2 RELATED WORK

Vision Language Models: Recent advances in LLMs have greatly expanded the scope of multi-
modal research. In the visual domain, models like LLaVA (Liu et al., 2023b;a), QWen (Bai et al.,
2023), Yi-VL (Young et al., 2024), and CogVLM (Wang et al., 2023) have made significant strides
in image-text reasoning, offering detailed analyses of visual data alongside textual descriptions.
LLaVA-Next (Liu et al., 2024) further enhances this capability by supporting higher-resolution in-
puts, enabling more detailed image understanding. For video-text understanding, models such as
Video-LLaMA (Zhang et al., 2023b) and LLaVA-Video (Zhang et al., 2024) have advanced narra-
tive comprehension by incorporating temporal information from dynamic visual content. Beyond
generic VLMs, modern VLMs are increasingly integrated into autonomous driving (Nie et al., 2024;
Chen et al., 2024b; Liao et al., 2024; Pan et al., 2024; Gopalkrishnan et al., 2024; Zhou et al.,
2024a; You et al., 2024; Chen et al., 2024a; Sima et al., 2023; Wang et al., 2024a), enhancing scene
understanding and decision-making.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Future Scene Reasoning: Predicting future scenes is a crucial task in robotics and autonomous
driving, requiring models to understand the physical world and how scenes evolve over time. Re-
cently, the construction of world models has gained popularity across various modalities, including
point cloud generation, which aims to construct a realistic 3D representation of the world over
time (Khurana et al., 2023; Huang et al., 2024; Yang et al., 2024b; Manivasagam et al., 2020), and
video generation under different environmental conditions and control signals (Wang et al., 2024b;
Zhao et al., 2024; Gao et al., 2024; Hu et al., 2023; 2024; Zhou et al., 2024b; Wang et al., 2024c; Jia
et al., 2023; Hassan et al., 2024).

Visual Question Answering: Early VQA datasets primarily focused on general image-question
performance (Antol et al., 2015; Zhang et al., 2016; Goyal et al., 2017). Beyond general-purpose
VQA, researchers have explored domain-specific applications, such as medical VQA (Lau et al.,
2018; Bae et al., 2024) and science-driven VQA (Kembhavi et al., 2017). To provide a more ro-
bust evaluation, some datasets go beyond free-form sentence answers and adopt structured answer
formats, such as Yes/No questions (Fu et al., 2024) and multiple-choice formats (Liu et al., 2023d;
Wu et al., 2024; Fu et al., 2024), ensuring a more consistent and objective assessment of model
performance. Recently, VQA in autonomous driving has gained attention, aiming to enhance scene
understanding in dynamic traffic environments (Sachdeva et al., 2024; Malla et al., 2023; Sima et al.,
2023; Wang et al., 2024a; Qian et al., 2023; Deruyttere et al., 2019; Vasudevan et al., 2018).

3 PROBLEM FORMULATION AND EVALUATION

A reliable safe-driving assistant should anticipate how actions and events unfold over time, remain
temporally coherent, and respond consistently under semantics-preserving prompt changes. Let
Vt = {Ii | i ≤ t} be the historical frames up to time t. A VLM ψ is queried to produce a
description at+∆t of the scene at time t+∆t, where ∆t ∈ Z+ is the prediction horizon. Using the
model’s response when given the ground-truth future frame It+∆t as a reference, reliability requires
alignment between past-only and future-conditioned predictions:

Pψ
(
at+∆t | Vt

)
≈ Pψ

(
at+∆t | It+∆t

)
. (1)

3.1 RESPONSE UNRELIABILITY AND INCONSISTENCY

Existing studies on language models highlight reliability issues, including hallucination (Kalai et al.,
2025) and sensitivity to input phrasing (Ahn & Yin, 2025). These concerns are acute in autonomous
driving, where decisions must rest on consistent and trustworthy reasoning. For the multiple-choice
VQA variant with input x and K options, the VLM ψ induces a categorical distribution Pψ(k | x)
over answers k ∈ {1, . . . ,K}. We consider semantics-preserving perturbations Tσ(x) such as
shuffling options by permutation σ ∈ SK , and align labels via P̃ψ(k | Tσ(x)) := Pψ(σ(k) | Tσ(x)).
One potential source of inconsistency is prompt-perturbation sensitivity, which we describe as a
distributional shift under such perturbations, measured by a nonzero total-variation (TV) distance:

TV
(
Pψ(· | x), P̃ψ(· | Tσ(x))

)
= 1

2

K∑
k=1

∣∣Pψ(k | x)− P̃ψ(k | Tσ(x))∣∣ > 0. (2)

Another manifestation is a change in the top-1 prediction under perturbations, denoted as the flip
rate (FR) with ties broken by the smallest index:

FR(x) := Pr
σ∼Unif(SK)

[
argmax

k
Pψ(k | x) ̸= argmax

k
P̃ψ(k | Tσ(x))

]
, (3)

Another potential source of inconsistency is random guessing: even when Equation (2) and Equa-
tion (3) are (near) zero, repeated runs may differ because the model samples from a near-uniform
distribution. In this regime, predictions have accuracy ≈ 1/K, entropy ≈ logK, self-agreement
R2(x) =

∑K
k=1 Pψ(k | x)2 ≈ 1/K, and are invariant to semantics-preserving perturbations (i.e.,

TV ≈ 0 and FR(x) = 0 at the distribution level with a fixed tie-break). In Section 5, we show
that—regardless of model size—both open-source and commercial VLMs exhibit accuracy drops
and elevated flip rates under option shuffles with the question fixed, consistent with distributional
shifts rather than uniform guessing.
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Q: Describe the vehicle...
A: It is a red truck

Human
annotators

(3) False options
generation

(1) QA Generation (2) AI Quality Check

(A) It is a red truck
(B) It is a white bus
(c) ......

(4) Human Quality Check
e.g. Single Correct Answer

Agent with Reliable Temporal Reasoning Benchmack FutureVQA Creation

Visual
Understanding

Non-contradictory
Reasoning

Temporally Aligned
Prediction

Prompt

There are two trucks in the middle

driving through the intersection. The

road is marked with white lane

markings and...

There is a white SUV on the left side
of the image, stopped at the

intersection. The road is marked
with white lane markings and...

Predicted Description Reference Description

Similarity

P
er
fo
rm

an
ce

Evaluation
Self-Aligned Predicted Description LLM-as-Judge Evaluation

Predicted Scene
Description...

Reference Scene

Matching Score

Temporal Performance Decay

Visual Understanding
Reasoning / Prediction

The same QA

[Ans 1,

Ans 2,

.

.

Ans N]

Repeat x N

Consistent Response

Figure 2: Overview of our framework for evaluating reliable temporal reasoning in VLM driving
assistants. Left: The agent consumes past frames Vt and a prompt to generate temporally aligned
predictions over a variable future horizon. Right (FutureVQA): Benchmark construction combines
human and AI contributions: human experts create natural Q/A pairs, while AI performs quality con-
trol to ensure answerability and consistency. Bottom (Evaluation): To thoroughly analyze model
reliability, we adopt a self-aligned future description setup, where a model’s predicted description
is compared to a reference response generated by the same model when the actual future frames
are provided. An AI checker is further applied to validate that predictions remain coherent and
meaningful. Beyond this, we evaluate consistency under repeated queries and option shuffling, and
analyze temporal performance decay to quantify how model reliability changes as the prediction
horizon increases.

3.2 CONTRADICTION AND TEMPORAL MISALIGNMENT

Despite VLMs’ ability to accurately interpret current traffic conditions, they often produce con-
tradictory descriptions when reasoning about future scenes. As shown in Figure 1, a model may
correctly identify visual cues and vehicle intentions at the current time based on the input, yet fail to
answer follow-up questions consistently. These contradictions suggest that rich and accurate visual
interpretation alone does not equip VLMs with the ability to reason about how a scene may evolve
over time. In other words, while the model may learn associations between images and their cor-
responding textual descriptions, it does not genuinely understand their real-world implications or
how present actions influence future outcomes. Another issue is temporal misalignment. As shown
in Figure 1, VLMs may correctly interpret visual cues and identify individual events, yet they of-
ten fail to align these within a coherent temporal structure, as they do not experience time flow as
humans do. This limitation is especially critical in driving scenarios, where outcomes such as colli-
sions depend not only on the intentions of surrounding agents but also on the precise timing of their
movements.

Formalization. Let A be the response space and Rt+∆ ⊆ A the set of admissible (reference)
responses for time t+∆. Consider two tasks that condition on different information sets:

ψ⋆pred := argmax
ψ

E
[
Pψ(Rt+∆ | Vt)

]
, ψ⋆ref := argmax

ψ
E
[
Pψ(Rt+∆ | Vt+∆)

]
, (4)

where Vt is the history up to t and Vt+∆ denotes the future slice at t+∆. In general, these Bayes-
optimal solutions are not necessarily the same—they are not guaranteed to coincide:

ψ⋆pred ̸= ψ⋆ref (5)

Empirically (Section 5), we observe behavior consistent with this non-equivalence: models that per-
form well when directly shown Vt+∆ can still contradict themselves across follow-ups and exhibit
temporal misalignment when forecasting from Vt alone.
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C6D5E0

How many red cars do you see in
this image?
(A) 0    (B) 1    (C) 2    (D) 3

Describe the first vehicle on the
right hand side of the image
(A) It is a white bus    (B) It is a black SUV      
(C) It is a taxi    (D) It is a red pickup truck

How many red cars do you see in
this image?
(A) I cannot find any    (B) 1    (C) 2    (D) 3

What is the color of the second car
on the right hand side the image?
(A) Black    (B) White    (C) Red    (D) Yellow

How many red cars do you see in
this image?
(A) There is no red car    (B) 1    (C) 2    (D) 3

What is the color of the car on the
right?
(A) Black    (B) White    (C) Red    (D) Yellow

Where is the taxi?
(A) Right hand side of the image    (B) Left
hand side of the image ......

How many pedestrians are there on
the crosswalk?
(A) 0    (B) 1    (C) 2    (D) 3

Figure 3: Example of the FutureVQA task. The VLM is asked to answer questions about future
scenes based on predictions, without access to the corresponding future frames.

Algorithm 1 Self-Aligned Future Description

Require: Model ψ, Visual Input Vt = {Ii | i ≤
t}, horizon ∆t ∈ Z+, similarity/quality measure
M(·, ·), threshold τ

1: apred
t+∆t ← ψ(Vt,∆t) {Predicted response at
t+∆t from history}

2: aref
t+∆t ← ψ({It+∆t}, 0) {Reference response

using actual future frame}
3: q ←M

(
apred
t+∆t, a

ref
t+∆t

)
4: return q

Algorithm 2 Multi-trial Evaluation for Consistency

Require: Model ψ, Question Q, Visual Input Vt,
Answer A, Number of Trials N

1: for i = 1 to N do
2: Qi ← SHUFFLEOPTIONS(Q)
3: Pi ← ψ(Vt, Qi)
4: if Pi ̸= A then
5: return False
6: end if
7: end for
8: return True

3.3 EVALUATION AND METRICS

This section turns the reliability criteria from Section 3 into practical tests. Since comparing full dis-
tributions Pψ(· | ·) is impractical, we use paired queries and controlled perturbations as proxies. We
evaluate (i) self-alignment between past-only predictions and future-conditioned references, (ii) sta-
bility to semantics-preserving prompt changes (paraphrases, option shuffles with label alignment),
and (iii) behavior across horizons ∆t.

Self-Aligned Future Description. As in Algorithm 1, we test whether a model’s description of
the future scene based on past context Vt aligns with the description it produces when directly given
the future slice Vt+∆t. We compare the predicted response apred with the reference response aref

using a similarity measureM. A conventional choice forM is to adopt statistical metrics devel-
oped for machine translation (Papineni et al., 2002; Lin, 2004; Banerjee & Lavie, 2005; Vedantam
et al., 2014; Anderson et al., 2016). Typical examples include BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004), which compute n-gram overlaps between sentences. This general family can
be expressed as

Mn-gr(a
pred, aref) = f


N∑

n=1

wn · gn(apred, aref)

N∑
n=1

wn

 ·BP, (6)

where gn denotes an n-gram similarity function weighted by wn, f(·) applies a transformation (e.g.,
geometric mean), and BP is a brevity penalty to adjust for length differences.

LLM-as-Judge Evaluation. While widely used for evaluating language models, statistical meth-
ods struggle to capture in-depth spatial relationships (Chang et al., 2024a) and the complex semantic
meanings (Zheng et al., 2023) handled by modern models. An alternative is model-based evalua-
tion (Liu et al., 2023c; Zheng et al., 2023; Fu et al., 2023b; Yuan et al., 2021; Sellam et al., 2020;
Chang et al., 2024a;b), which leverages an advanced judge model Jm to assess response quality. In
this setup, Jm is prompted to rate a response based on the visual input xt, producing a score in the
range Jm(apred, xt) ∈ Z ∩ [1, 10]. In our experiments we use GPT-4o as the judge, with details and
prompt templates provided in Appendix D.
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FutureVQA Benchmark. To complement existing evaluation metrics and address their limita-
tions in capturing temporal reasoning and visual dynamics, we introduce the FutureVQA Bench-
mark (Figure 2)—a dataset comprising 2.7k manually annotated question-answer pairs. While
existing datasets such as DriveLM (Sima et al., 2023) contribute to general scene understanding,
they do not explicitly challenge VLMs on time-specific future prediction. Moreover, many rely on
structured templates or rule-based generation, which limits the diversity and naturalness of ques-
tion formats. In contrast, our dataset is constructed by human expert annotators based on individual
video clips, featuring diverse and naturally phrased questions tailored to each scene. See Figure 3
and Algorithm 2 for the benchmark exampls and the multi-trial protocol. For a detailed comparison
and an overview of the dataset’s contributions, please refer to Appendix A.

We evaluate performance across horizons from t+1 to t+12 seconds using accuracy (%). To capture
both pointwise and temporal trends, we report: (i) Acc@t, accuracy at horizon t, reflecting predic-
tion capability at different time steps; (ii) ∆Acc12s1s , the accuracy drop between t+1 and t+12,
indicating performance decay; (iii) mAcc(1→12s), mean accuracy over horizons 1–12, summarizing
overall performance; (iv) Normalized Drop Ratio (NDR), defined as NDR = 1

η0

∑T
t=1(ηt−1−ηt),

the cumulative accuracy drop normalized by the initial value η0, where ηt denotes accuracy at hori-
zon t; and (v) Mean Relative Accuracy Retention (mRAR), mRAR = 1

T

∑T
t=1

ηt
η0

, the average
ratio of accuracy at each horizon relative to the initial value.

4 FUTUREAGENT: AN APPROACH FOR ENHANCED TEMPORAL REASONING

Describe

Predict

Loss:
Init.

Gradient Flow

Figure 4: Proposed self-supervised approach
to align temporal events and minimize in-
correct or contradictory reasoning. Given
a video sequence V , we generate detailed
descriptions using a pretrained VLM ψ as
pseudo reference labels aref

t+∆t. We then fine-
tune the model ψ∗, initialized from ψ, using
only past frames as input and training it to
predict descriptions of unseen future frames
apred
t+∆t. A weighting function λ(∆t) adjusts

the contribution of each loss term based on
the temporal distance ∆t.

To address the limitations in temporally grounded
reasoning, we propose a self-supervised fine-tuning
approach, as illustrated in Figure 4. The design is
motivated by two key challenges: (1) the scarcity
of large-scale, high-quality temporal annotations for
future scene understanding; and (2) the need to align
temporally distributed events based on partial visual
context.

Instead of relying on expensive manual labels, we
leverage the original pretrained model ψ to generate
pseudo reference descriptions aref

t+∆t using ground-
truth future frames It+∆t. We then fine-tune a new
model ψ∗, initialized from ψ, to predict these de-
scriptions from past-only inputs It−k:t, without ac-
cess to future frames. This encourages the model
not only to interpret the current visual input but
also to imagine and temporally align possible fu-
ture events. In addition, we incorporate a temporal
Chain-of-Thought (CoT) formulation (Wei et al.,
2022), where the model is guided to articulate in-
termediate reasoning steps describing how the scene
evolves from the near future toward the further fu-
ture. This provides an auxiliary structural prior that encourages the model to reason through short-
term transitions before imagining longer-horizon outcomes, leading to more stable and temporally
coherent predictions. A time-aware weighting function λ(∆t) is applied to modulate the loss con-
tribution from different future steps, allowing the model to focus differently on short-term versus
long-term temporal reasoning. In practice, we set k = 5, using 5 seconds of past observations (sam-
pled at 1 frame per second) as input. We observed that increasing the window to 10 seconds did not
improve performance but significantly increased computational cost. The weighting function λ(∆t)
is implemented as an exponential decay: λ(∆t) = 2−∆t, assigning lower importance to predictions
further into the future while still allowing for multi-scale temporal supervision. See Appendix B for
more implementation details.
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VLM Evaluation Method
S −M ↓ M/S ↑Single-Trial ↑ Multi-Trial ↑

GPT-4o (Hurst et al., 2024) 76.2% 66.1% 11.1% 86.7%
GPT-4o-mini (Hurst et al., 2024) 66.9% 54.5% 12.4% 81.5%
LLV-v1.5-7b (Liu et al., 2023b) 55.1% 33.8% 21.3% 61.3%
LLV-v1.5-13b (Liu et al., 2023b) 61.0% 42.3% 18.7% 69.3%
LLV-Next-13b (Liu et al., 2024) 41.8% 18.7% 23.1% 44.7%
LLV-Video (Zhang et al., 2024) 65.4% 58.1% 7.3% 88.8%
Qwen-VL-7b (Bai et al., 2023) 24.6% 4.6% 20.0% 18.7%
Qwen2.5-VL-7b (Bai et al., 2025) 79.1% 69.1% 10.0% 87.4%
CogVLM-17b (Wang et al., 2023) 53.1% 29.3% 23.8% 44.8%
Yi-VL-34b (Young et al., 2024) 60.9% 41.2% 19.7% 67.7%
Vid-LMA2 (Zhang et al., 2023a) 67.6% 54.3% 13.3% 80.3%

Baseline† 64.5% 51.4% 13.1% 79.7%
FutureAgent† 62.7% 52.1% 10.6% 83.1%
Baseline∗ 73.5% 63.5% 10.5% 85.7%
FutureAgent∗ 72.3% 64.0% 7.8% 89.2%

Table 1: In this evaluation we examine the ability of different VLMs on our evaluation dataset,
where multiple answer options are shuffled across several rounds of answering by the VLMs. The
accuracy change reflects the difference in performance between single-trial approach and multiple-
trial answering, where the LLM must consistently identify the correct option in every round. This
method minimizes the influence of random guessing by ensuring that only consistently correct an-
swers are counted. S −M denotes the performance drop from single-trial to multi-trial. The ratio
M/S represents the remaining performance.

5 EXPERIMENT AND ANALYSIS

In this section, we evaluate how well VLMs can reason about and describe potential future scenes
based on preceding visual observations. Specifically, we analyze two key aspects: (1) whether
the model can generate consistent responses under minimal input perturbations, which serves as
an indicator of genuine understanding versus random guessing; and (2) whether the model can
accurately reason about future scenes by interpreting the given history frames

5.1 EVALUATION SETUP AND IMPLEMENTATION DETAILS

All experiments were conducted on a server equipped with 4×A100-80GB GPUs. For fine-tuning,
we utilized all 4 GPUs, while evaluation was performed using a single GPU for all models. In the
FutureVQA benchmark, each input consists of a 5-second video segment, and the task is to reason
about the future scene at time steps t = 1 to t = 12 seconds. For our fine-tuning method, we
sampled training data from the OpenDV-YouTube dataset (Yang et al., 2024a), covering 16 cities
across different continents. This subset comprises approximately 84k frames, each with a resolution
of 1280×720, captured at various times of day. Training required approximately 140 GPU hours.
Our base model uses Hermes-Yi-34B as the language backbone and CLIP-L (Radford et al., 2021)
as the visual token encoder. It is pretrained using the LLaVA v1.6 (Liu et al., 2024) pipeline, and we
refer to this model as Baseline∗ in our experiments. The fine-tuned version is denoted as Ours∗. We
also evaluate a variant using Qwen-VL-32B as the language model, denoted as Baseline† and Ours†
after fine-tuning.

5.2 CONSISTENCY AND RELIABILITY OF VLMS RESPONSE

In Table 1, we evaluate the performance of various VLMs on our proposed FutureVQA benchmark
using the corresponding image for each question-answer pair as input—i.e., no future prediction
is required. This setup serves both as a baseline for future scene reasoning and as a diagnostic
to assess the consistency and reliability of VLM responses. Notably, we observe that all tested
VLMs exhibit a significant drop in accuracy when the answer options are simply shuffled, despite
the semantic content of the questions remaining unchanged. The most substantial decline occurs
with CogVLM (Wang et al., 2023), which drops by 23.8%, followed by LLaVA-NeXT 13B (Liu
et al., 2024) with a 23.1% decrease.
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Figure 5: Temporal performance decay analysis on the FutureVQA dataset. (a) Accuracy decay
across horizons, where solid lines denote four trials and shaded regions indicate fewer trials (1–3).
(b) Relationship between regular VQA performance (y-axis) and relative long-horizon preservation
(x-axis: Acc@12 divided by regular VQA accuracy). (c) Relationship between regular VQA per-
formance (y-axis) and relative mean preservation (x-axis: mAcc(1→12s) divided by regular VQA
accuracy). Together, these plots show how well models retain their performance when extending
from immediate perception to future prediction.

Model Accuracy ↑ NDR ↓ mRAR ↑
Acc@1s Acc@4s Acc@12s ∆Acc12s1s mAcc(1→12s)

GPT-4o 59.1% 41.1% 31.6% -27.5% 42.2% 0.42 0.64
GPT-4o-mini 47.7% 36.0% 32.0% -15.7% 37.7% 0.29 0.69
LLV-v1.5-7b 24.0% 18.1% 16.0% -8.0% 18.6% 0.24 0.55
LLV-v1.5-13b 37.8% 30.9% 26.3% -11.5% 30.7% 0.27 0.73
LLV-Next-13b 15.4% 9.3% 4.2% -11.2% 7.3% 0.60 0.39
LLV-Video 53.7% 46.5% 43.4% -10.3% 46.8% 0.18 0.81
Qwen2.5-VL-7b 61.9% 49.5% 40.7% -21.2% 47.2% 0.31 0.68
CogVLM-17b 22.8% 19.4% 14.0% -8.8% 17.2% 0.30 0.59
Yi-VL-34b 38.1% 30.0% 26.1% -12.0% 28.4% 0.29 0.70
Vid-LMA2 52.4% 41.2% 37.2% -15.2% 42.4% 0.28 0.78

Baseline† 49.8% 44.1% 33.1% -16.7% 38.6% 0.33 0.75
FutureAgent† 49.2% 46.7% 36.0% -13.2% 41.4% 0.25 0.79
Baseline∗ 60.2% 48.2% 38.1% -22.7% 46.1% 0.36 0.73
FutureAgent∗ 60.8% 50.7% 43.6% -16.6% 50.1% 0.21 0.78
w/o CoT 60.5% 48.4% 41.3% -19.2% 48.2% 0.30 0.75

Table 2: Accuracy (Acc) of models on our VQA benchmark at different future time frames. All
accuracy values are evaluated across multiple trials to minimize the influence of random chance.
The result suggest that models like GPT-4o, while showing strong ability in visual understdaning,
fail to maintain consistent future scene reasoning across different time interval. †*Our model is not
trained with explicit temporal (video) label.

Prompt-perturbation sensitivity vs. random guessing. The performance drop in Table 1 across
all models is largely attributable to random guessing, as the decrease scales with the number of
options (four in our setup) and the number of trials. In contrast, Figure 5a shows error bars that
reflect much smaller shifts when repeating four trials multiple times. These fluctuations (typically
0.5–1.2 points) arise from prompt-perturbation sensitivity: responses are inconsistent across trials
but still exhibit a clear preference toward certain answers, rather than uniform randomness.

5.3 CAN VLMS ”SEE” THE FUTURE?

Effective decision-making in dynamic environments should be grounded in accurate predictions.
Here, we investigate whether VLMs are capable of reasoning about future scenes based on their
interpretation of present visual cues, and whether they understand how events unfold over time. As
shown in Table 2, we evaluate VLMs on our FutureVQA benchmark by asking them to answer
questions about unseen future scenes using only the past five seconds of visual input. The task
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challenges models to make predictions ranging from 1 to 12 seconds into the future. Each question
is evaluated using a multi-trial protocol. Interestingly, we find that models that perform best in
standard visual understanding tasks do not necessarily excel in future reasoning. For example, while
GPT-4o demonstrates strong visual comprehension, its performance drop over time, measured by
both ∆Acc12s1s and NDR, is significantly higher than that of other models. This suggests that, while
equipped with strong visual interpretation capabilities, these models often fail to reason about how a
scene evolves over time. In particular, they may struggle to understand how present events influence
future outcomes, even if they generate accurate responses based on the current image.

In Figure 5b and Figure 5c, we observe that very poor visual interpretation ability typically coincides
with weak temporal reasoning—an expected outcome since reliable reasoning requires accurate
perception as a foundation. However, models such as GPT-4o (Hurst et al., 2024) and Qwen-2.5 (Bai
et al., 2025), despite strong visual interpretation, experience significant drops when asked to predict
the future, suggesting that good perception alone does not guarantee reliable temporal reasoning.

In (Table 3, Table 4), we compare how closely the predicted future scene descriptions match the
model’s own descriptions when the actual future image is provided. Ideally, if the prediction is
accurate, both descriptions should align, as if the model had seen the future scene. Our results show
that, after applying the proposed training method, the predicted descriptions become significantly
more accurate and consistent across all time intervals.

Model Mean Score(0→12s) ↑
mB3 mB4 mRL mC mM

Baseline† 10.7 6.0 22.8 2.3 25.4
FutureAgent† 20.3 19.8 35.2 11.3 34.6

Baseline∗ 12.3 7.1 25.2 3.6 28.5
FutureAgent∗ 28.8 22.7 37.3 12.3 39.2

w/o CoT 25.9 20.4 35.9 11.1 38.3
w/o self-sup. 11.8 6.9 24.7 2.3 26.0

Table 3: We compare how well our proposed
model describes future scenes as if it ”sees”
them. A higher value indicates greater similarity
between the reference description and the pre-
dicted description. The mean score, m, is com-
puted over discrete time steps t ∈ Z[1,12] sec-
onds. B3: BLEU-3, B4: BLEU-4, R-L: ROUGE-L,
C: CIDEr, M: METEOR.

Model Score Over Time ↑
S@1s S@2s S@4s S@8s S@12s

LLV-v1.5-7b 2.59 2.67 2.07 2.52 2.25
LLV-v1.5-13b 2.13 1.92 1.94 2.49 2.40
LLV-Next-13b 2.11 2.87 2.26 2.57 2.15

Baseline† 4.88 4.01 2.96 2.34 2.41
FutureAgent† 5.31 5.01 3.98 3.44 .2.46

Baseline∗ 5.36 4.23 3.03 3.22 2.98
FutureAgent∗ 6.43 6.12 5.33 5.04 4.66

w/o CoT 5.84 5.44 4.33 4.18 3.92
(w/o self-sup. 3.72 3.96 3.01 3.19 3.04

Table 4: Model-based evaluation of predicted
caption quality across various time frames us-
ing GPT-4o, with a specific focus on objective
descriptions, such as the accuracy of object ap-
pearance and location within the image.

6 LIMITATION AND DISCUSSION

While our approach offers data efficiency and improved temporal reasoning, it also presents trade-
offs. The self-supervised fine-tuning relies on the quality of the baseline model; its limitations may
propagate through pseudo labels. Future work could explore alternative forms of supervision such
as constructing high-quality, large-scale training data. Similarly, although CoT prompting enhances
reasoning without additional training, its step-by-step nature increases inference time. This may be
a concern in real-time settings. A promising direction is to distill multi-step reasoning into a single-
step model for faster inference. Despite these challenges, our framework provides a practical and
extensible foundation for enhancing temporal understanding in VLMs.

7 CONCLUSION

We investigated the foresight capabilities of VLMs and found that, despite strong visual under-
standing, they struggle with consistent future scene reasoning. To address this, we introduced the
FutureVQA Benchmark, a human-annotated dataset designed to evaluate VLMs’ perception and pre-
diction across different time intervals. Our experiments demonstrate that conventional models fail
to maintain consistency in future predictions, while our self-supervised training pipeline improves
temporal reasoning without requiring annotated temporal data. Notably, our model outperforms
video-based VLMs despite lacking explicit temporal supervision. These findings highlight the need
for better integration of visual perception and temporal reasoning in VLMs.
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ETHICS STATEMENT

This work uses publicly available and properly licensed driving-scene datasets, and all human-
annotated question–answer pairs in FutureVQA were collected with informed consent and contain
no personally identifiable information. Our method, FutureAgent, is designed solely to study the
temporal reliability and consistency of VLM reasoning in offline driving scenarios; it is not intended
for real-world autonomous driving or safety-critical deployment. We clearly report the limitations
of our benchmark and method, and we caution that model outputs should not be used directly for
vehicle control or decision making. We support responsible AI research by releasing our dataset
construction details, evaluation metrics, and methodological choices transparently, and by encour-
aging safe, rigorous, and ethical use of this benchmark for analyzing VLM behaviors rather than
operational driving systems.

REPRODUCIBILITY STATEMENT

We have taken several steps to support reproducibility. The complete details of our model archi-
tecture, training objectives, and self-supervised fine-tuning procedure are described in Section 5
with additional implementation details provided in Appendix B. The construction process of the
FutureVQA benchmark, including data selection, annotation protocol, and preprocessing steps, is
documented in Appendix A of the appendix. Evaluation scripts in the supplementary materials to
facilitate full reproducibility of our results.
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Appendix

A FUTUREVQA

A.1 DATASET CREATION AND QUALITY
CONTROL

Our dataset creation aims to provide a bench-
mark that address VLMs ability in consistant and
accurate future reasoning with focus on diverse
questions costomized based on different scene.
To achieve this we utilize the annotation pipeline
operate with both human and AI agent, which to
efficiently create the QA.

(1) Human Expert QA Generation and Qual-
ity Control: To construct a human-like bench-
mark dataset with high diversity, we employed
five expert annotators to manually generate
question-answer pairs based on selected clips
from OpenDV-YouTube dataset (Yang et al.,
2024a), covering multiple cities with different
weathers. Each QA pair was subsequently re-
viewed and verified by 1–2 annotators to ensure
clarity, unambiguity, and answerability based on
the given input. Although time-consuming, this
process results in a more diverse and naturally
phrased QA dataset compared to rule-based or
template-driven approaches.

Compared to existing works in the driving do-
main (see Figure 2), such as nuScenes-QA (Qian
et al., 2023) and DRAMA (Malla et al., 2023),
which rely on rule-based methods, or Om-
niDrive (Wang et al., 2024a), which uses GPT-
generated data to construct large-scale datasets,
our benchmark prioritizes diversity and human-
like reasoning. While DriveLM-ns (Sima et al.,
2023) incorporates human annotations for pre-
diction and planning tasks, it still follows a rigid
and highly structured question format, regard-
less of the uniqueness of each video clip. As
shown in Table 5, despite being smaller in overall
size, our dataset provides over 4× more unique
questions, nearly 3× larger vocabulary, and over
400× higher type-token ratio (TTR). Notably,
more than 95% of our questions appear fewer
than 10 times. In contrast, DriveLM contains
over 85% of questions repeated more than 102

times, over 20% more than 103 times, and over
2% more than 104 times, without considering the
uniqueness of differences in scene content.

(2) AI Quality Control and Multi-option Gen-
eration: To minimize typographical errors, we
employ GPT-4o to review all QA pairs gener-
ated by human annotators and automatically cor-
rect any detected typos. Following this, GPT-4o

is further used to generate plausible but incor-
rect answer options based on the ground-truth
answers provided by annotators.

To ensure that the resulting multiple-choice
questions remain unambiguous—with only one
clearly correct answer—each generated QA pair
is manually reviewed by human annotators. This
final verification step guarantees the quality and
clarity of the multi-option format in our dataset.

Dataset N. Ques. N. Uniq. Ques. Vocab. Size TTR
DriveLM(Pred.) 123k 15 69 4.1 × 10−5

DriveLM(Pred.&Percep.) 285k 234 150 4.1 × 10−5

Ours 2.7k 969 433 1.8 × 10−2

Table 5: Comparison of question diversity be-
tween our dataset and DriveLM. N. Ques. de-
notes the total number of questions; N. Uniq.
Ques. represents the number of unique ques-
tions after de-duplication; Vocab. Size is the
number of distinct words used in the questions;
and TTR (Type-Token Ratio) measures lexical
diversity, computed as the ratio of unique words
to total words. The results highlight its greater
linguistic diversity and reduced reliance on fixed
templates.

A.2 EVALUATION PROTOCOL

To address the limitations of conventional
statistical-based metrics, we adopted an option-
based answer format for evaluation, where each
question has predefined multiple-choice answers
(e.g., A: Yellow). The models were required
to provide the corresponding option label (e.g.,
A) as the answer. See Figure 6 for the prompt
and Algorithm 2 for the multi-trials evaluation.

Interestingly, during our experiments, we ob-
served that not all models consistently adhered
to this strict answer format. Some models
would output answers like A: Yellow or sim-
ply Yellow. To account for this, we relaxed
the evaluation criteria to accept both answer for-
mats as correct. However, models like Qwen-
VL-7B (Bai et al., 2023) still struggled to follow
the instructions and produced responses such as
”The answer is A”, ”The answer is A: Yellow”,
or other variations. Since following instructions
is an important part of the evaluation, we did
not further relax this restriction, which resulted
in lower accuracy for these models, as shown in
Table 1.
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Benchmark Task T. Size Cust. Q Ans. Type Mul. Trl. Mul. C. Pred. T-Pred.
nuScenes-QA Qian et al. (2023) Drive VQA 83.3k** ✗ Mixed ✗ ✓ ✗ ✗
BDD-X Kim et al. (2018) Drive Action 2.6k - Sentence ✗ ✓ ✗ ✗
DRAMA Malla et al. (2023) Drive VQA 11.6k ✗ Mixed ✗ ✗ ✗ ✗
Rank2Tell Sachdeva et al. (2024) Drive VQA - ✗ Mixed ✗ ✓ ✗ ✗
OmniDrive Wang et al. (2024a) Drive VQA 24k† ✓ Sentence ✗ ✓ ✓ ✗
DriveLM-nS Sima et al. (2023) Drive VQA 73k* ✗ Sentence ✗ ✓ ✓ ✗
MMBench Liu et al. (2023d) Gen. I. QA 1.7k ✓ Options ✓ - - -
LngVidBench Wu et al. (2024) Gen. V. QA 5.3k ✓ Options ✗ - - -
Video-MME Fu et al. (2024) Gen. V. QA 2.7k ✓ Options ✗ - - -
MME Fu et al. (2023a) Gen. I. QA 2.1k ✗ Y/N ✗ - - -
Ours Drive VQA 2.8k ✓ Options ✓ ✓ ✓ ✓

Table 6: Comparison of existing VLM benchmarks. Key aspects of dataset creation include test
size (T. Size), whether questions are customized for different scenarios and video clips (Cust. Q),
answer type (Ans. Type), multi-trial evaluation for each question (Mul. Tri), inclusion of mul-
tiple cities (Mul. C.), presence of perception tasks (Perc.), inclusion of prediction tasks (Pred.),
and whether the dataset challenges VLMs with time-specific prediction (T-Pred.). Our benchmark
dataset consists of fully human-annotated QA pairs tailored to different scenes, rather than relying
on rule-based methods. Furthermore, our dataset challenges VLMs to predict future scenes at spe-
cific time intervals, requiring precise temporal reasoning to differentiate between near-future and
far-future events.
†: The QA pairs are fully generated by GPT-4. ** Fully rule-based (no human annotators), * Semi-
rule-based labeling (with human annotators for certain tasks).

FutureVQA Prompt

Imagine you are looking at the image {future_second} second
after the input frames and answer the following question:
Question: {question}
Options: {options}

Please choose the most appropriate answer from the given
options. Respond with the option without any explanation, for
example, if the answer is B: Yellow, your answer should be: B

Figure 6: The prompt used to instruct VLMs to
predict the future scene and answer the corre-
sponding question.

A.3 VQA CATEGORY

To evaluate the diverse reasoning capabilities of
VLMs, we classify VQA tasks into the follow-
ing categories. These categories are not mutu-
ally exclusive, as a single question can belong
to multiple categories depending on the type of
reasoning required.

• Hallucination: This category evaluates
the model’s ability to avoid providing
incorrect information about objects or
features that do not exist in the scene.
(e.g., ”How many blue cars do you see
in this image?”) Such questions are es-
pecially challenging when an object has
just left the scene.

• General: General questions involve
straightforward scene understanding or
recognition tasks that do not require
spatial or temporal reasoning. Exam-
ples include identifying landmarks, ob-
jects, or common scene elements (e.g.,

”What is the landmark in the middle of
the image?”).

• Traffic Understanding: This category
targets traffic-related reasoning, includ-
ing understanding road signs, speed
limits, or dynamic traffic scenarios.
These questions often require knowl-
edge specific to driving environments
(e.g., ”What is the speed limit here?”).

• Absolute Location: Absolute location
questions focus on the spatial properties
of objects in the scene, such as iden-
tifying specific positions or attributes
relative to the image boundaries (e.g.,
”What color is the car on the far right
of the image?”).

• Relative Position: Relative position
questions require understanding the
spatial relationships between multiple
objects in the scene. These ques-
tions test the model’s ability to interpret
multiple objects interaction (e.g., ”De-
scribe the vehicle in front of the taxi.”).

By introducing these categories, we aim to pro-
vide a comprehensive evaluation framework for
VLMs, covering both basic scene understanding
and complex reasoning tasks. See Figure 7 for
the examples.

A.4 ANALYSIS ON DIFFERENT
FUTUREVQA CATEGORIES

To establish a baseline for expected performance
in the FutureVQA, we analyze various VLMs
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Hallucination

Q: How many red cars do you see
in this image?
(A) 1
(B) 5
(C) 0
(D) 3

General

Q: What is the landmark in the
middle of the image?
(A) Arc de triomphe 
(B) Pyramid
(C) eiffel tower
(D) Taipei 101

Q: What is the speed limit here?
(A) 30
(B) 50
(C) 100
(D) 70

Q: What color is the car on the far
right of the image?
(A) Green 
(B) Red
(C) Pink
(D) Yellow

Absolute Location

Q: Describe the vehicle in front 
of the taxi.
(A) It is a black SUV 
(B) It is a White SUV
(C) It is a black truck
(D) It is a motorbike

Relative PositionTraffic Understanding

Figure 7: Examples of visual question answering (VQA) tasks categorized into different types:
Hallucination, General, Traffic Understanding, Absolute Location, and Relative Position. Each
question is categorized based on the type of reasoning it requires; however, a single question can
belong to multiple categories simultaneously, depending on its context and the type of information
needed.
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Figure 8: Radar plots comparing the performance of various models across five VQA categories:
Hallucination, General, Traffic Understanding, Absolute Location, and Relative Position. In this
experiment, models perform regular VQA on images, with the actual images provided as input.
The plots illustrate the strengths and weaknesses of each model in handling different reasoning
tasks, providing a comparative baseline for understanding the capabilities of existing VLMs before
extending to future image QA tasks.
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Figure 9: Radar plots comparing the performance of different models across various VQA categories
(Hallucination, General, Traffic Understanding, Absolute Location, and Relative Position) at differ-
ent future time steps: (a) t+ 1, (b) t+ 4, (c) t+ 8, and (d) t+ 12. The results highlight that while
most models maintain robustness in hallucination detection, their performance in other categories,
particularly traffic understanding and spatial reasoning, declines as the time offset increases.
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on our benchmark dataset across different cat-
egories . In this baseline analysis, VLMs per-
form regular VQA, where the actual images cor-
responding to the questions are provided as in-
put.

As shown in Figure 8, we evaluate models
includes CogVLM (Wang et al., 2023), Yi-
VL (Young et al., 2024), LLaVA series (Liu
et al., 2023a; 2024) and GPT-4o, the results
suggest that traffic understanding appears to be
a relatively weak area for many existing VQA
models. Most models do not exhibit significant
differences in their capability to handle abso-
lute or relative position questions. Additionally,
for hallucination-related tasks, where models are
asked about nonexistent objects, most models
perform well when the image is provided, ef-
fectively avoiding incorrect predictions. These
findings highlight the strengths and weaknesses
of current VLMs and provide a foundation for
evaluating their potential performance in future
image QA tasks.

In Figure 9, we further compare the perfor-
mance of VLMs across different question cate-
gories when asked to predict future scenes. As
time progresses, we observe that GPT-4o’s per-
formance degrades significantly across all cate-
gories, with the most notable decline in questions
related to relative and absolute positioning.

Algorithm 3 Temporal Chain-of-Thought Fu-
ture Scene Reasoning

Require: VLMψ, Observed Frames It−5:t, Tar-
get Future Step ∆t, Question Qt+t∆

1: D0 ← Initialize empty future description
2: for i = 1 to ∆t do
3: Di ←

ψ.describe future(It−5:t, Di−1, i)
4: end for
5: ans← ψ.answer(Qt+t∆ , DT )
6: return ans

B DETAIL IMPLEMENTATION

B.1 CHAIN-OF-THOUGHT

To enhance temporal reasoning, we adopt a
Chain-of-Thought (CoT) prompting strategy in
which the VLM predicts the future scene pro-
gressively, one step at a time. Rather than di-
rectly predicting the outcome at a future times-
tamp, the model is encouraged to reason through
each intermediate step—first predicting t = 1,
then t = 2, and so on, until the final target
time is reached, see Algorithm 3. At each step,
the model uses the history frames along with its
previous predictions to generate the next future
scene description. This design mimics human-
like sequential foresight and allows the model
to build up an understanding of how the scene
may evolve over time. For practical computa-
tional efficiency, we limit the maximum number
of steps to 4. This step-wise reasoning not only
improves temporal consistency but also provides
interpretable intermediate predictions that make
the model’s reasoning process more transparent
and grounded in scene dynamics.

B.2 VISUAL INPUT ENCODING

Memory Decay Sampling. Our implementa-
tion of the memory decay sampler leverages
a transformer-based framework with learnable
sampling queries Q = {q1, q2, . . . , qn}, where
n is the total number of queries set as the initial
number of tokens. These queries are initialized
at the beginning of training and are optimized to
extract temporal information relevant to the task.
Let the current time be t0, and let the number
of tokens provided by the image encoder be n0.
The decay factor for the frame at time t0 − i is
defined as

(
1
2

)i
. Accordingly, the first n0 ·

(
1
2

)i
queries are utilized in the cross-attention mecha-
nism to represent the frame at t0 − i.
Adaptive Token Sampling. In our implementa-
tion, frame similarity is evaluated by first com-
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Prior Frame
Memory Encoder

Memory Decay
Sampler

Visual Input Encoding

Adaptive Token
Sampler

Image Encoder

(The black regions indicating
frame dissimilarity )

Adaptive Token Sampling Strategy

Figure 10: Overview of our visual encoding
pipeline. The goal is to minimize the number of
tokens while maintaining similar performance.
In the context of autonomous driving videos, re-
cent frames typically have greater influence on
upcoming events. To reflect this, the Memory
Decay Sampler assigns fewer queries to older
frames, while the Adaptive Token Sampler ad-
justs the number of tokens based on the similar-
ity between adjacent frames. The Prior Frame
Memory Encoder is a transformer-based mod-
ule that integrates temporal information from
preceding frames.

puting the difference between two consecutive
frames, |I(t)− I(t− 1)|. To reduce noise in-
troduced by high-frequency details, such as win-
dows on distant buildings in urban environments,
a Gaussian filter, Gσ , is applied to smooth
the difference map while preserving significant
changes. Finally, a Sobel operator, Sxy , is used
to highlight the structural changes between the
frames.

During our experiments, we tested multiple
Gaussian filter kernel sizes and determined that
a kernel size of 13 strikes the best balance be-
tween reducing noise and preserving important
structural details. The comparison is shown in
Figure 11. After computing the similarity maps,
we measure the amount of highlighted area and
then scale and cap the values for consistency. On
average, the scaling factor is approximately 0.5
across our evaluation dataset.

TextTextTextText

Kernel Size (5, 5) Kernel Size (9, 9) Kernel Size (11, 11)

Kernel Size (13, 13) Kernel Size (15, 15) Kernel Size (17, 17)

Figure 11: Visualization of frame similarity eval-
uation using Gaussian smoothing followed by
the Sobel operator with different kernel sizes.
The input images have a resolution of 1280 ×
720 pixels. The difference between two con-
secutive frames, |I(t)− I(t− 1)|, is computed,
smoothed using Gaussian filters with kernel sizes
of 5, 9, 11, 13, 15, and 17, and then pro-
cessed with the Sobel operator, Sxy , to highlight
changes. For better readability, the colors of the
similarity maps are inverted.

Time Model Scores ↑
B-3 B-4 R-L C M

+1s

Baseline∗ 13.4 6.1 25.0 2.4 25.9
Ours∗ 32.2 26.2 40.2 17.7 41.5
w/o CoT 28.1 22.7 38.2 15.1 40.2
w/o self-sup. 12.1 7.2 24.9 2.7 26.2
t0s:−10s 32.5 26.5 40.0 17.6 41.3
w/o Adpt. Sam. 32.3 26.2 40.4 17.3 41.6
w/o Mem. Sam. 31.8 26.2 40.1 17.0 41.2

+4s

Baseline∗ 22.5 6.0 24.4 2.6 25.5
Ours∗ 28.6 22.5 37.1 11.8 39.1
w/o CoT 25.6 20.1 35.9 11.0 38.4
w/o self-sup. 11.6 6.7 24.4 2.0 25.8
t0s:−10s 32.1 26.2 40.7 17.7 41.5
w/o Adpt. Sam. 32.7 26.3 40.6 18.0 41.5
w/o Mem. Sam. 32.7 25.6 40.8 18.1 41.5

+8s

Baseline∗ 11.2 6.2 25.1 2.2 25.4
Ours∗ 27.5 21.4 36.2 10.1 38.3
w/o CoT 24.1 18.6 34.9 9.7 37.6
w/o self-sup. 12.0 7.1 24.9 2.3 26.3
t0s:−10s 32.2 25.8 40.2 17.7 41.5
w/o Adpt. Sam. 32.3 26.6 41.5 17.5 41.5
w/o Mem. Sam. 32.0 26.4 41.9 17.1 41.5

+12s

Baseline∗ 11.3 7.2 23.9 2.2 25.5
Ours∗ 26.7 20.6 35.6 9.4 37.7
w/o CoT 25.6 20.1 34.4 8.6 36.9
w/o self-sup. 11.5 6.7 24.4 2.0 25.8
t0s:−10s 31.2 26.0 39.5 17.0 41.5
w/o Adpt. Sam. 32.0 25.5 39.6 16.9 41.5
w/o Mem. Sam. 32.1 26.2 40.4 17.9 41.5

Table 7: In this comparison the reference cap-
tions are from regular image captioning, while
the compared captions are generated by our fine-
tuned model which perform future scenes cap-
tioning with only previous frames are given. B-3:
BLEU-3, B-4: BLEU-4, R-L: ROUGE-L, C: CIDEr,
M: METEOR.
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Figure 12: Accuracy over time in the Fu-
tureVQA task with different visual input encod-
ing strategies, showing that our sampling ap-
proach reduces the number of required tokens
while maintaining higher performance.

C ADDITIONAL EVALUATION

C.1 ABLATION STUDY ON SAMPLING
STRATEGY

Our choice of the number of visual input frames
is guided by two main considerations: (1) perfor-
mance and (2) hardware constraints. The objec-
tive is to minimize the number of visual tokens
while maintaining competitive performance. De-
tailed results at specific time steps are provided
in Table 7 and Figure 12.

We observe that extending the input range from
the past 5 seconds to the past 10 seconds does not
lead to significant performance gains, yet results
in increased computational cost. On the other
hand, reducing the input to only the past 2 sec-
onds leads to a slight drop in performance.

Similarly, ablating either the memory decay
sampler or the adaptive token sampler individ-
ually does not substantially affect the final accu-
racy, while reducing visual token usage by ap-
proximately 75%. This highlights the efficiency
of our sampling strategy in balancing perfor-
mance and computational cost.

C.2 HALLUCINATION AND MODE
COLLAPSE

Generating accurate captions is the first and most
crucial step in our training methodology. We
experimented with various models for this task;
however, we observed that not all models are ca-
pable of providing objective and accurate cap-

tions that comprehensively describe all elements
in the scene. For instance, models like LLaVA-
V1.5-7B (Liu et al., 2023b) tend to generate
repetitive sentences and often produce halluci-
nations, exaggerating or inaccurately inferring
details that are not present in the image. Fig-
ure 13 illustrates examples of these issues, show-
casing captions that overstate the number of ob-
jects in the scene and use overly similar and re-
dundant phrasing. These limitations highlight
the need for more robust captioning models to
ensure high-quality data generation for down-
stream tasks.

D PROMPT TEMPLATE

In this section, we describe the unified prompt
template used for our experiments across three
key tasks: captioning evaluation, regular VQA,
and FutureVQA. The template, shown in Fig-
ure 14, standardizes the model’s input format to
ensure consistent and fair evaluation.

For captioning evaluation, the model generates
captions for a given image, which are subse-
quently scored by GPT-4o acting as a judge.
GPT-4o is instructed to provide a score between
1 and 10 based on the objective aspects of the
caption, explicitly disregarding subjective ele-
ments such as mood or atmosphere.

In the regular VQA task, the model is provided
with the input image and a set of predefined
multiple-choice options. It is required to se-
lect the most appropriate answer, establishing a
baseline for evaluating the model’s performance
when the image is explicitly available. In Fig-
ure 15 and Figure 16, we show that even with-
out explicitly tuning the baseline model, having
sufficient knowledge to interpret the visual input
does not translate into temporal reasoning abil-
ity. The model fails to understand how events
unfold over time and cannot align the scene for
both near and distant future predictions.
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LLaVA-1.6-34B

The image depicts a highway scene with a focus on a road intersection. There is a
white SUV in the foreground, stopped at the intersection. The road is marked with
white lane markings and a dashed white line indicating a lane change area. A yellow
diamond-shaped sign with a black symbol of a person walking is visible on the right
side of the road, indicating a pedestrian crossing or area. 

Above the intersection, there is a green highway sign with white lettering that reads
""Left Exit 1A,"" suggesting the direction of the exit ramp. The sign also includes a
symbol indicating the exit is to the left. 

The highway overpass is in the background, with a greenish-gray color. The sky is
clear and blue, indicating fair weather conditions. There are no visible people or
animals in the image. The style of the image is a standard, non-stylized photograph
with no filters or artistic effects applied. The focus is on the road infrastructure and the
vehicle, with no additional context or background details provided.

In the image, there is a highway scene with several vehicles and a clear sky. On the left
side of the image, there is a black SUV driving on the highway. The SUV is positioned
in the left lane, and it appears to be in motion. 

In the center of the image, there is a large black van or bus. It is driving in the right
lane of the highway. The vehicle is quite large, occupying a significant portion of the
image from left to right. 

On the right side of the image, there is a black car driving in the right lane of the
highway. The car is smaller in comparison to the van and is positioned behind it. 

In the background, there are trees and a clear sky, indicating that the highway is likely
in a suburban or rural area. There are no people visible in the image. The overall scene
suggests a typical day with vehicles traveling on a highway.

The image features a busy street with multiple cars and trucks. There are at least 11
cars and 3 trucks visible on the road. Some cars are positioned closer to the
foreground, while others are further back in the scene. The vehicles are driving under a
bridge, and there are traffic lights present in the area. The traffic lights are located at
different positions along the road, ensuring proper traffic flow and safety.

The image shows a busy street with multiple cars and trucks. There are at least 11
cars and 2 trucks visible on the road. Some cars are positioned closer to the
foreground, while others are further back in the scene. The vehicles are driving in
various directions, creating a sense of movement and activity on the street.

LLaVA-1.5-7B

Figure 13: Comparison of captions generated by LLaVA-V1.5-7B (Liu et al., 2023b) and LLaVA-
V1.6-34B (Liu et al., 2024). While LLaVA-V1.5-7B produces shorter and repetitive captions with
occasional hallucination, LLaVA-V1.6-34B generates significantly longer and more detailed de-
scriptions. Additionally, LLaVA-V1.6-34B exhibits a varied response pattern, providing distinct
levels of detail and focus when presented with different images.
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GPT-4o as Judge for Captioning Evaluation

Please act as an impartial judge and evaluate the quality of the image caption
provided by an AI assistant displayed below. Your evaluation should specifically
assess the accuracy of object presence and positioning within the image,
disregarding any subjective descriptions like vibe, atmosphere, or general
impressions. Focus solely on whether the caption correctly reflects the precise
positioning and presence of each object mentioned. Begin your evaluation by
providing a short explanation. Be as objective as possible. After providing your
brief explanation, please rate the response on a scale of 1 to 10 by strictly
following this format: '[[rating]]', for example: 'Rating: [[5]]'.
Caption by the AI assistant: {caption}

Regular VQA

Answer the following question based on the image:
Question: {question}
Options: {options}
Please choose the most appropriate answer from the given options. Respond
with the option without any explanation, for example, if the answer is B:
Yellow, your answer should be: B

Figure 14: Prompts used for three tasks: GPT-4o as a judge in captioning evaluation and Regular
VQA on our annotated evaluation dataset. Each prompt is tailored to the specific requirements of its
respective task.

... On the right side, there are two red cars.... In the
middle of the scene, a yellow taxi...

Please describe the scene 4 second later.

... two red cars are parked on the right... the black
SUV continues rolling forward and has passed

through the intersection...

Please describe the images.

Unseen Future Scenes

... On the right side, there are two red cars.... In the
middle of the scene, a yellow taxi...

Please describe the scene 4 second later.

... with a yellow taxi on the right... the black SUV
continues rolling forward and will soon pass through
the intersection...

Please describe the images.

Baseline Ours

Imagine you are looking at the image 4 second after
...

How many red cars do you see in this image?
 (A) There is no red car    (B) 1    (C) 2    (D) 3

C A

Imagine you are looking at the image 4 second after
...

How many red cars do you see in this image?
 (A) There is no red car    (B) 1    (C) 2    (D) 3

Figure 15: Quantitative result.
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... The white car appears to be following the lane
markings, which indicate a leftward turn...

Please describe the scene 4 second later.

... a white vehicle in the middle is waiting to turn left...

Please describe the images.

Unseen Future Scenes

... The white car appears to be following the lane
markings, which indicate a leftward turn...

Please describe the scene 4 second later.

... A white vehicle on the left is moving across the
intersection...

Please describe the images.

Baseline Ours

Imagine you are looking at the image 4 second after
...

Where is the white vehicle positioned in the image?
 (A) Left side (B) Center (C) Right side (D) Far right

corner

B A

Imagine you are looking at the image 4 second after
...

Where is the white vehicle positioned in the image?
 (A) Left side (B) Center (C) Right side (D) Far right

corner

Figure 16: Quantitative result.
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