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ABSTRACT

Chain-of-thought (CoT) prompting has emerged as a common technique for en-
hancing the reasoning abilities of large language models (LLMs). While extended
reasoning can boost accuracy on complex tasks, it is often unnecessary and sub-
stantially increases token usage, limiting the practicality of reasoning models in
many scenarios. Recent models, such as GPT-OSS and Qwen3, expose controls
that enable users to adjust the length of CoT or determine whether it is used at
all. Yet, it remains unclear when CoT should be used: on some tasks it improves
performance, while on others it provides little benefit or even harms performance.
We address this challenge with confidence-gated CoT, where a model invokes rea-
soning only when confidence in its direct answer is low. To this end, we present
the first systematic study of training-free confidence estimation methods for CoT
gating. Specifically, we evaluate four training-free confidence estimation methods
and compare them to a random baseline and an oracle that always knows when
CoT is needed. Through extensive experiments, we show that existing training-
free confidence measures can reduce redundant CoT and outperform randomly
invoked CoT. However, the utility of individual confidence measures is inconsis-
tent, varying with both the dataset and the model, underscoring the difficulty of
deploying confidence-gated CoT in practice. By analysing both strengths and fail-
ure modes, our study highlights the potential and limitations of current methods
and paves the way toward more reliable adaptive gating of CoT

1 INTRODUCTION

Chain-of-thought (CoT) prompting (Wei et al., 2022;|Guo et al.,2025) has become a cornerstone for
improving the reasoning capabilities of large language models (LLMs). By encouraging models to
generate step-by-step explanations before producing an answer, CoT consistently improves accuracy
on tasks requiring multi-step reasoning, such as mathematics, symbolic reasoning, and scientific
question answering (Wei et al., 2022; |Guo et al., |2025; |(Qwen Team, [2025). However, extended
reasoning is not always beneficial. For many queries, additional reasoning provides limited benefit
and sometimes harms accuracy, while substantially increasing token usage and latency (Liu et al.,
2024; Sprague et al., [2025). This inefficiency can limit the practicality of reasoning-augmented
LLMs where efficiency is important.

Recent models such as GPT-OSS (OpenAlL [2025) and Qwen3 (Qwen Team) 2025) provide a hybrid
thinking mode that lets users control when and how much reasoning the model produces. However,
deciding whether CoT is necessary falls on the user, who must anticipate the difficulty of each query.
Adaptive reasoning methods aim to relieve this burden by automatically adjusting reasoning depth.
Most past work relies on reinforcement learning or classifiers to predict when CoT helps (Yue et al.,
2025; Jiang et al., 2025} |Chuang et al., [2025a). These are powerful, but they require additional
training. Other work explores training-free indicators such as perplexity (Lu et al., 2025). Our work
generalises this idea under the broader notion of confidence-gating (Figure[I), where confidence
signals are used to decide whether the model should answer directly or switch to CoT.

Confidence scores give a simple signal of how reliable a model’s answer is (Kadavath et al.| 2022}
Kuhn et al.| 2023} [Farquhar et al.| 2024). They can be verbalised directly by the model (Tian et al.,
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2023)) or derived from its output probabilities [Kadavath et al.| (2022). They have already been used
in model routing (Ramirez et al.,|2024; Chuang et al.,[2025b), where easy queries are sent to smaller
models and harder ones to larger models. This motivates our central questions: can self-assessed
confidence guide LLMs in deciding when to invoke CoT reasoning?

Our objective is to activate CoT only when necessary, reducing redundant tokens while preserv-
ing accuracy. We call this approach confidence-gated CoT. To evaluate this, we benchmark four
representative self-assessed confidence methods across diverse reasoning benchmarks within our
confidence-gated CoT. We frame this as a gating problem, where each query is routed either to di-
rect answer or to CoT reasoning. To put the results in context we compare against two baselines: the
expected performance of random gating and an oracle that always knows when CoT is required. The
four approaches we evaluate are: asking the model to state its own certainty (verbalised confidence)
(Tian et al., 2023), using the answer’s perplexity, asking whether its answer is correct(P(True)) (Ka-
davath et al.| [2022)), and comparing the probabilities of the top two tokens (margin) Ramirez et al.
(2024). We measure accuracy and token cost.

Our main findings are:
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Figure 1: Confidence-gated CoT con-
trols if a query is answered directly
or with reasoning: high-confidence
queries are answered directly, while

2  RELATED WORK low-confidence ones trigger reasoning.

2.1 ADAPTIVE REASONING

In order to mitigate overthinking, adaptive reasoning aims to enable LLMs to dynamically adjust
the depth or length of their reasoning processes based on certain indicators (Yue et al.|[2025). Adap-
tive reasoning methods typically adopt reinforcement learning (RL) frameworks, where carefully-
designed reward mechanisms guide LLMs to learn strategies under varying conditions (Jiang et al.,
2025;Wang et al., 2025} [Luo et al., 2025 |Chung et al., 2025)). (Cheng et al.|(2025)) propose the Adap-
tive Cognition Policy Optimisation (ACPO) framework and an online token length budget (TLB) to
enable dynamic switches between fast and slow thinking based on the estimated task difficulty. [Liu
et al.|(2025) propose a classification-based method, which leverages features of the token probabil-
ity distribution, to predict whether CoT will provide gains and switch between direct answers and
CoT. The papers mentioned above rely on RL, while there are other works employ training-free
estimators. |Zhu et al.|(2025)) use entropy and token probability to decide if CoT is necessary to gen-
erate each line of code during code generation. [Lu et al.|(2025) introduce Certainty-based Adaptive
Reasoning (CAR) that uses the perplexity of a direct answer to decide if the model should think for
longer. However, there is no research on systematically evaluating which training-free estimator is
best suited for adaptive reasoning across diverse tasks.
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2.2 MODEL CASCADES AND ROUTING

Different from making a specific LLMs adapt to multiple reasoning modes, model cascades and
routing dynamically switching between multiple models. |Ong et al.|(2025)) propose to decide when
to route based on a win prediction model that estimates the probability of a strong model win over
a weak model for a given query. [Feng et al.| (2025) predict the effect and cost of potential edges
in a graph where the task, query, and LLM are modelled as heterogeneous nodes. |Ramirez et al.
(2024) find that simple confidence measures can effectively route harder queries to stronger models
compared to trained routing models. [Chuang et al| (2025b) investigates a comprehensive set of
self-assessed confidence estimation methods for model routing.

2.3 CONFIDENCE AND UNCERTAINTY ESTIMATION IN LLMS

Confidence and uncertainty are two closely related concepts which are often used for gauging the
trustworthiness of responses generated by LLMs (Zhu et al., 2025} |Chuang et al., 2025b). |Lin et al.
(2024) give the following differentiation: uncertainty reflects the variability of a model’s predictions,
while confidence estimates the probability that a specific prediction is correct. Uncertainty is often
estimated by sampling multiple responses and measuring their semantic diversity (Kuhn et al.,2023;
Farquhar et al.| [2024). Semantic entropy clusters equivalent answers and computes entropy over
aggregated probabilities, outperforming logit-based baselines such as P(True) (Kuhn et al., [2023;
Farquhar et al.| [2024) at detecting hallucinations, though it requires multiple samples. To reduce
this cost, [Kossen et al.| (2025) predict semantic entropy directly from model activations. Shifting
Attention to Relevance (SAR) reweights token entropy by their importance to the final answer, also
relying on multiple sampling to get token importance scores(Duan et al., |2024). As our focus is
on single-pass, training-free methods with small overhead, we do not include these sampling-based
approaches in our evaluation.

3 CONFIDENCE-GATED CHAIN-OF-THOUGHT

We propose confidence-gated CoT, where a model selectively triggers reasoning based on its self-
assessed confidence. Each query is first answered directly. If the confidence score is low, the model
re-runs the query with CoT enabled. We systematically evaluate using four confidence estimation
methods: perplexity, P(True), margin sampling, and verbalised confidence.

3.1 PROBLEM DEFINITION

We study the decision of whether a model should stop after a direct answer or answer with CoT rea-
soning. For each input x;, the model first generates a direct answer. A direct answer and confidence
score s(x;; 0) is then derived from a model parametrised by 6. If the score is above the threshold 7,
the direct answer is accepted; otherwise, the model answers the question with CoT enabled:

CoT(z;;0) s(zi;0) <7
te(ai;7,0) = e ’
gate(wi; 7, 0) {DIRECT(xi; 0), s(x;;0) >,
This differs from early-exit methods, which require generating partial reasoning before deciding to
stop (Yang et al.| [2025). In our formulation, reasoning is skipped entirely when the confidence in
the direct answer is sufficient. These two approaches are complementary since confidence gating
selects when to trigger reasoning and early exiting can still be applied once CoT has been selected.

Chain-of-Thought: This mode triggers the model to generate an explicit intermediate reasoning
trace before emitting a concise final answer. Specifically, we use the thinking mode of Qwen3
or GPT-OSS, which triggers multi-step reasoning by inserting a special instruction in the prompt
(Qwen Team| 2025}; |OpenAl, 2025).

Direct: The model is instructed to output only the final answer without generating intermediate
reasoning. To enforce this behaviour, we append a concise instruction such as “Answer:” to the
prompt, which reliably elicits a short response with no CoT or explanation.
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3.2 SELF-ASSESSED CONFIDENCE

In this study, we limit the scope within self-assessed confidence, where the confidence scores are
produced by the model itself or computed based on its outputs without using another predictor. All
strategies we study can be generated without sampling answers multiple times and without additional
training. These methods have low inference overhead and are broadly applicable.

Perplexity: In our study, we view the perplexity of the generated direct answer as a measure of the
LLM'’s confidence in it. Given a direct answer sequence y = (y1, . .., yr) with T tokens, perplexity
is defined as:

T
1
PPL(y | z;) = exp (T Zlogp(yt | y<t,$z‘)> .

t=1
A higher perplexity indicates lower confidence in the generated answer.

P(True) (Kadavath et al.,2022): This approach first generates an answer via direct prompting.
Then, we ask the LLM whether the generated answer is (A) True or (B) False in a second forward
pass. We then extract the probability of generating the token “A”. Full prompt details are found in

Appendix

Margin Sampling: This method measures the difference of the probabilities between the most
likely and second most likely predictions produced by the model for a given input. Margin sampling
has been used with success for model cascades (Ramirez et al.| [2024).

Verbalised Confidence: This approach prompts off-the-shelf LLMs to self-evaluate and express
its confidence as part of its response (Yang et al., [2024). Following prior work (Yang et al., 2024;
Tian et al.}[2023)), we ask the model to output a confidence score between 0.0 and 1.0 after its answer,
which has shown to provide good calibration. Full prompt details are found in Appendix

3.3 BUDGETS AND PARETO-OPTIMAL THRESHOLDS

We define the CoT budget as the proportion of queries that trigger CoT. This reflects scenarios where
only a limited fraction of queries can be allocated to the more costly reasoning mode. To vary this
budget, we sweep percentiles of the confidence score distribution, which provides a fixed fraction
of queries to be routed to CoT. This allows us to trace accuracy-efficiency trade-offs across different
budgets, plotting accuracy against average token cost or CoT usage.

We also explore a practical method for identifying Pareto-optimal thresholds. A threshold is Pareto-
optimal if no other setting achieves equal or higher accuracy at lower token cost. The set of such
thresholds forms the Pareto front, which traces the best accuracy-cost trade-offs. In practice, we are
interested in finding the point in this front with the lowest token cost whose accuracy is within a
tolerance € of the use CoT all the time:

7" = argmin Tok(7) s.t. Acc(T) > Accalcor — €-

To simulate realistic deployment, thresholds are estimated from a calibration set. We sweep per-
centiles, construct the Pareto front, and select 7*. The chosen threshold is then applied to the held-
out test set. To account for variability in calibration splits, we repeat the procedure multiple times
with random fixed-size calibration/test partitions via Monte Carlo cross-validation (Xu & Liang,
2001). We report the mean and standard deviation of accuracy and average tokens per query across
runs. This tests if confidence gating can realistically preserve accuracy while reducing cost.

Online vs Offline Evaluation We consider both offline and online settings for estimating per-
centile thresholds. In the offline case, all direct answers and confidence scores are computed first,
giving access to the full distribution of confidence scores before any decision is made. This allows
thresholds to be set exactly at chosen percentiles. In the online case, we simulate streaming input
queries so thresholds must be decided on the fly without access to the overall confidence score dis-
tribution. We follow the dynamic percentile method introduced by Ramirez et al| (2024). After
each query ¢, the threshold 7; is set to the p-th percentile of {s(z1),...,s(xt—1)}. We randomise
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Accuracy vs CoT Use Rate and Tokens (Offline Routing)
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Figure 2: Offline accuracy—-efficiency trade-offs under percentile budgets. Accuracy vs. CoT
usage (top) and vs. average tokens (bottom), aggregated over all datasets for GPT-OSS-20B (medium
effort), Qwen3-32B, and Qwen3-8B. Curves show verbalised, perplexity, P(True), and margin vs.
the random baseline; stars denote the oracle. Full GPT-OSS results for low/medium/high effort are

in Appendix

dataset order and use a short warm-up phase (the first 20 queries answered directly) to initialise the
observations, and report the mean and standard deviation over 10 runs.

4 EXPERIMENTAL SETUP

4.1 MODELS

Hybrid-reasoning models allow the user to choose between thinking and non-thinking modes
(Qwen Team, [2025)). We extend this definition to GPT-OSS, which allows the user to choose be-
tween low, medium and high reasoning effort (CoT length) in the prompt (OpenAlL 2025)). We focus
on hybrid models such as Qwen3 and GPT-OSS, which natively support confidence-based gating.
In contrast, non-hybrid models without controllable modes require additional instructions or mecha-
nisms to selectively enable reasoning at inference time. GPT-OSS supports three CoT effort settings
(low/medium/high) controlled via prompt. Unless specified, the CoT results of GPT-OSS were gen-
erated with the medium setting. We provide the results of the other effort levels in Appendix

4.2 DATASETS

The experiments include seven datasets (statistics in Appendix [D] Table[3) from four reasoning types
(Sprague et al.| [2025): (1) commonsense reasoning including CommonsenseQA (CSQA) (Talmor
et al., [2019) and StrategyQA (Geva et al., |2021); (2) knowledge-based reasoning using MMLU-
redux (Gema et al.| 2025)); (3) mathematical and scientific reasoning on GPQA (Rein et al., 2024)
and GSMSk (Cobbe et al., 2021)); and (4) soft reasoning using LSAT-AGI (Zhong et al.,[2024) and
MUSR (Sprague et al., 2024). Following (Sprague et al., 2025), these are multiple choice or short
answer tasks as CoT is not used as frequently for long-form responses. This wide range of reasoning
types allows us to test datasets where reasoning has shown different levels of effectiveness.

4.3 BASELINES

Expected Random Baseline. For a given CoT usage budget » € [0, 1], we report the expected
accuracy and token cost: Acc, = (1 —7r) AcCpireet + 7 Acccor, Tok, = (1 — 1) ToKpject + 7 TOKcor-
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Task-specific Routing Trade-offs (Offline)
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Figure 3: Task-level accuracy-efficiency trade-offs. Representative datasets (CSQA, StrategyQA,
GSMB8K, GPQA) comparing confidence-gating to random and oracle across models.

We compute these analytically rather than by randomly selecting for each point, which provides a
fairer and more stable baseline.

Oracle. To assess the ceiling of confidence-based gating, we include an oracle method that triggers
CoT whenever the direct answer is incorrect. This setting assumes perfect knowledge of correctness
and therefore represents the maximum performance that any confidence signal could achieve. The
oracle thus serves as an upper bound on the potential of confidence-guided CoT routing.

5 EXPERIMENTAL RESULTS

First, we look at the offline setting, where thresholds are chosen with access to the score distri-
bution over the entire datasets. This provides a clear view of the trade-offs between accuracy and
efficiency at different CoT budgets. We then turn to the online setting to see if these trade-offs hold
on streaming inputs. Finally, the Pareto-optimal analysis identifies settings that maintain accuracy
while lowering token cost.

CoT Budget-Accuracy Trade-offs. We evaluate accuracy—efficiency curves by sweeping per-
centile budgets as defined in At each budget level, we report both accuracy and average token
usage. Figure[2]shows aggregate results for GPT-OSS-20B, Qwen3-32B, and Qwen3-8B, comparing
confidence-based gating against random selection and the oracle.

For both GPT-OSS-20B and Qwen3-32B, there are confidence methods that achieve clear wins over
the random baseline. Specifically, margin and perplexity consistently outperform random for GPT-
0OSS-20B, while P(True) is most effective for Qwen3-32B. Using these methods, both models can
match the accuracy of always using CoT while invoking it roughly 30-40% less often, showing
that confidence can cut token usage effectively at different budgets. For Qwen3-8B, sometimes
margin and perplexity outperform random at low percentiles and P(True) at higher ones, but no
method consistently beats random across all budgets. The oracle highlights that large efficiency
improvements are possible, for example, for GPT-OSS-20B the oracle achieves 5% higher accuracy
while invoking CoT on less than half of the queries.

Efficiency Gains Vary Across Tasks. Commonsense, soft reasoning, and knowledge tasks benefit
the most from confidence-based gating. In Figure [3] we show representative examples including
CSQA and Strategy QA. On datasets such as MMLU, StrategyQA, and MUSR, both GPT-OSS and
Qwen3-32B can achieve the same accuracy as always using CoT while reducing token usage by
30-50%. In some cases, such as StrategyQA and MUSR with GPT-OSS and Qwen3-32B, perfor-
mance even improves slightly at certain budgets while using fewer tokens. Figure [3] also shows
high potential for these tasks, with the oracle using about 75% less CoT for CSQA and StrategyQA.
In contrast, mathematical and scientific tasks show limited benefit. For GSMS8K, direct answering
without CoT has very low accuracy, making it difficult to save tokens without hurting performance.
This is also clear from the oracle, which shows less room for improvement (Figure [3). Similarly, on
GPQA, some confidence methods (e.g., perplexity for GPT-OSS-20B) perform better than random
and yield modest savings, but the efficiency gains are much less pronounced. The oracle highlights
that there is headroom for efficiency on GPQA, but current models are not effective at separating
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correct from incorrect answers for these challenging questions. Full results across all datasets can
be found in Appendix [E]

No Confidence Method Dominates. As seen in Al Datasets (GPT-055.208) (margin)
Figure the effectiveness of confidence signals L0 -
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across a wide range of budgets. Margin and per-
plexity achieve above-random performance only at
low budgets, but quickly saturate: the distributions
collapse to narrow ranges, limiting their separating
power. Finally, for Qwen3-8B, no method consis-
tently outperforms random gating across all budgets.
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Figure 4: Reliability diagram for GPT-OSS-
20B with margin confidence.

Scale and Calibration Effects. To better understand why confidence gating is more effective in
larger models, we look at the calibration of each confidence signal. Figure [4] shows reliability di-
agrams for GPT-OSS-20B, where margin sampling achieves the highest AUROC. Broadly, both
GPT-0OSS-20B and Qwen3-32B achieve higher AUROC across methods compared to Qwen3-8B
(Appendix [F). This suggests that, at a larger scale, LLMs are better calibrated and can more reli-
ably separate correct and incorrect predictions. This finding is consistent with prior findings that
calibration improves with model size (Kadavath et al., 2022). It also demonstrates why we observe
positive confidence gating results from the larger models. Notably, Qwen3-8B generally produces
longer CoT with an average length of 1,269 tokens compared to 625 for GPT-OSS-20B (high) and
884 for Qwen3-32B. Although Qwen3-8B stands to benefit the most from effective gating, its weak
calibration prevents it from achieving these gains.

5.1 REALISTIC COT DEPLOYMENT

In realistic settings, a model must decide when
to invoke CoT given a budget, without access to
the full confidence distribution. As outlined in

Table 1:

Results for all datasets with Pareto-

optimal thresholds (¢ = 1%). Accuracy remains
within 1% of All CoT; differences are in CoT us-
age and tokens saved per query.

§[E], we address this with dynamic percentile Method  Acc.t AAcct CoT (%)) Avg. Tok. saved 1
thresholding (Ramirez et al., 2024), which up- All CoT 79.9 0.0 100.0 0.0
dates thresholds online from past scores. We § All Direct ~ 54.1  -25.9 0.0 483.3
first examine budget-accuracy trade-offs under % P(True) 792+05 -0.7 95523 153 +89
this setting, and then turn to Pareto-optimal ;’gﬁ;ﬁsed Lo N b
thresholds, which approximate realistic deploy- & Perplexity 789 £05 -1.0  70.6£75  65.7 +220
ment by selecting accuracy-preserving operat- Oracle 850  45.1 459 187.2
il’lg pOil’ltS from a calibration set. All CoT 83.8 0.0 100.0 0.0
@ AllDirect 678 -16.0 0.0 878.6
Lae}
Online CoT Budget-Accuracy Trade-offs. % Vo 83750, 01 08900 3501
We implement the dynamic percentile thresh- & Margin 83801 00 1000+£00  00+41
oldlng procedure from @ to enforce CoT Perplexity 83.8+0.1 0.0 100.0 £0.0 0.0 £4.1
budgets in the online setting. Figure [5] shows Oracle 879  +41 322 4467
that the online curves broadly mirror the of- AllCoT 791 0.0 100.0 0.0
. . All Direct 578 -21.3 0.0 1265.1
fline ones, confirming that CoT budgets canre- &
main effective under realistic deployment con- g DiTrue) 784+05 01 SABLas - 86.6.4 5
ditions. The main difference is increased vari- & Margin = 79.1+02 00 1000400 00456
ance. GPT-OSS-20B remains stable across Perplexity 79.1+£02 00 100000  00+s6
Oracle 838  +40 422 563.8

budgets with behaviour very similar to the of-
fline setting. However, for the Qwen3 models,

margin and perplexity show noticeably higher variability at mid-to-high budgets, reflecting instabil-
ity from a loss of separability in their scores. In contrast, P(True) on Qwen3-32B remains stable
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Accuracy vs CoT Deferral Rate and Tokens (Online Routing)
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Figure 5: Online Accuracy vs. CoT deferral rate (top) and average tokens (bottom) across all datasets
in the online setting. Stars show oracle performance.

and very close to its offline performance. Beyond online budget trade-offs, we also consider whether
we can find a Pareto-optimal threshold using a calibration set.

Pareto-optimal thresholds. We implement the procedure from §3.3|using a 10% calibration split,
e = 1%, and 100 repeats sampling a different calibration split each time (Xu & Liang} 2001). We
report the mean and standard deviation of accuracy and cost across these runs. Table|I|reports these
results. We see that for Qwen3-8B, P(True) maintains accuracy within 1% of the full CoT baseline
while reducing CoT usage by around 10% and saving 89 tokens per query on average. This shows
that although no method on Qwen3-8B consistently outperforms the random baseline across the full
budget sweep, confidence signals can still identify thresholds that deliver useful savings without
hurting accuracy. The larger models also yield Pareto-optimal thresholds that preserve accuracy
while lowering token cost, with GPT-OSS-20B achieving reductions of 30-35% in CoT usage and
Qwen3-32B showing meaningful savings under P(True). These results confirm that even when
the overall trade-off curves appear modest, calibration can highlight settings where performance is
maintained and efficiency improves.

6 ANALYSIS

To better understand how confidence-gated CoT operates in practice, we examine qualitative ex-
amples of both successful and unsuccessful gating cases for a maximum accuracy Pareto-optimal
threshold obtained following the method described in the previous section. Then, we separate out-
come types from cases where CoT is genuinely needed to those where it adds little or no value (i.e.,
direct answers that are already correct). Table E] shows the distribution of these outcomes, defined
by the policy’s decision to use CoT and the correctness of the final answer.

Outcome breakdown. Table[2]reports average outcomes at the Pareto-optimal thresholds selected
in the previous results, using the best-performing confidence method for each model. The largest
share of cases for Qwen3-8B (50.8%) and Qwen3-32B (44.4%) falls into Excess CoT, where the
direct answer was already correct but the policy still used reasoning. GPT-OSS-20B is lower at
26.5%. The Direct category, where the policy chose to answer directly and that answer was correct,
improves with scale, from 7.0% (Qwen3-8B) to 23.5% (Qwen3-32B) and 27.2% (GPT-OSS-20B).
This trend is expected since knowing when to use direct requires the model to have well calibrated
confidence scores, and Qwen3-8B shows the poorest calibration. CoT Fixed accounts for 24.7% of
queries on Qwen3-8B, 18.8% on Qwen3-32B, and 29.9% on GPT-OSS-20B, capturing the cases
where the direct answer would have been wrong but enabling CoT corrected it. Both Fail, cases
where gating couldn’t help, remain around 12-16% across models. We present representative ex-
amples of some of these categories below.
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Example 1: CoT Fixed. Across models, 18-30% of queries fall into this category. Good examples
of this come from GSMS8K, where direct answering often fails but CoT achieves high accuracy
(Sprague et al., [2025). In Example 1, the direct answer was wrong, but the CoT reasoning solved
the problem correctly.

Example 1

Question: Martha is planning her Christmas party. She invited 2 families with 6 people and 3 families with 4 people. 8 people
couldn’t come due to illness, and 1/4 that number had previous commitments. How many people show up for Martha’s party?
Direct answer: 25 (incorrect).

CoT reasoning (excerpt): “Okay, let me try to figure out how many people are coming to Martha’s Christmas party... 2 families
times 6 people = 12. 3 families times 4 people = 12. Adding together gives 24 invited. Now, 8 people couldn’t come due to illness.
Then, 1/4 of that number (2) had previous commitments... So total not coming = 8 + 2 = 10. Therefore, 24 - 10 = 14. ...Yes, that
seems correct. The answer is 14.”

Ground Truth: 14.

Example 2: Direct. This represents a positive case where accuracy is preserved and tokens are
saved by directly answering. This example saved 284 tokens by choosing to skip CoT.

Question: Would a Nike shoebox be too small to fit a swan in?
Direct answer: Yes (P (True) = 0.99).
Ground Truth: Yes.

Example 3: Excess CoT. In this example, the direct answer was already correct, but the policy
still used CoT, leading to redundant tokens.

Question: Where would you put a glass after drinking from it?

Answer choices: (A) ocean, (B) water cooler, (C) cabinet, (D) dishwasher, (E) dining room.

Direct answer: (D) (P (True) = 0.59).

CoT reasoning (excerpt): “Option A doesn’t make sense... Option D, dishwasher, is correct. Therefore, the answer is D.”

These examples highlight both the promise and
the limitations of confidence-gated CoT. On the
positive side, gating can recover accuracy when
CoT is required (as in GSM8K) and preserve ac-
curacy while saving tokens when direct answers

Table 2: Distribution of outcome categories
across three models. Values are averages over
calibration runs with standard deviations shown.

are sufficient. At the same time, unnecessary _Category Qwen8B Qwen32B 0SS20B
CoT remains common, with unnecessary reason-  CoT Fixed 247%,,, 18.8%,  299%,
ing the single largest category in our breakdown  Direct 7.0%;6 23.5%, 4' . 27.2%;2'5
(Table2). This underlines that while training-free  Excess CoT ~ 50.8%,,, 44.4%,,, 26.5%,
confidence signals can guide useful savings, they  Missed Fix 1.2% 13% 13%
are inconsistent in practice, and stronger, more  Both fail 16,2%&8 12.1%%s 1 5,0%i0'6
consistent gating indicators will be needed for re- = = =
liable CoT deployment.

7 CONCLUSION

To our knowledge, we conducted the first systematic study of confidence-guided CoT gating in
LLMs. Our results show that training-free confidence signals preserve accuracy and cut redundant
reasoning by 25-30%, thereby lowering overall token cost. These findings imply that LLMs already
possess useful self-assessment signals that can make reasoning more efficient, especially at scale, but
current confidence estimation methods are too brittle for robust deployment. The challenge ahead
is to develop models that are not only capable of reasoning but also calibrated in terms of when
to reason. Progress would lower inference cost and latency while improving reliability, making
adaptive CoT a practical tool for large-scale, real-world systems.
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A  REPRODUCIBILITY STATEMENT

Our code to reproduce all experiments is available on an anonymous GitHub repository:
https://anonymous.4open.science/r/cgr-DDCE. This repository will remain accessible until the
ICLR 2026 decision notification date: Jan 22, 2026 (AOE). All inference hyperparameters are spec-
ified in Appendix [B| Experiments were run on a combination of Nvidia A100 (80GB) and H100
(80GB) GPUs. We report results as the mean and standard deviation across repeated experiments.
We will also provide all generated outputs, including CoT traces and confidence scores. All datasets
are publicly available.

B MODEL INFERENCE SETTINGS

We use Hugging Face Transformers for all inference. For Qwen models (8B and 32B), we follow
the recommended decoding settings from the model cards, using temperature 0.6 and top-p 0.95
to avoid degenerate repetition. For GPT-OSS-20B, we use the default sampling configuration with
temperature 1.0 and top-p 1.0. In all setting we set a maximum limit of 7000 thinking tokens and
insert text that prompts the model to answer after this limit has been reached.

C LLM USAGE

The writing of this paper received proofreading and language polishing suggestions using LLMs. In
addition, parts of our experimental code were drafted or refactored with the assistance of GitHub
Copilot; all final text and code was manually reviewed and verified by the authors.

D PROMPTS AND DATASET STATISTICS

Please directly provide your best guess of the answer to the question and give the probability that you
think it is correct (0.0 to 1.0). Take your uncertainty in the prompt, the task difficulty, your knowledge
availability, and other sources of uncertainty into account.

Give only the guess and probability, with no other words or explanation.

Format your final response as:
Answer: <your_best_guess>.
Probability: <score between 0.0 and 1.0>

User:

Is this answer:
(A) True

(B) False

Assistant:
The answer is:

Table 3: Dataset statistics.

Dataset # Samples
CommonsenseQA (CSQA) 1221
StrategyQA 2290
MMLU-redux 3000
GSMSK 1319
GPQA 448
LSAT-AGI 1009
MUSR 756
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E PER DATASET TRADE-OFF PLOTS

Figure 6: CSQA: Accuracy vs. CoT use (top) and average tokens (bottom) across models
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Figure 7: GPQA: Accuracy vs. CoT use (top) and average tokens (bottom) across models
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Figure 8: GSMB8K: Accuracy vs. CoT use (top) and average tokens (bottom) across models
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Figure 9: LSAT-AIl:
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Figure 10: MuSR-AIl: Accuracy vs. CoT use (top) and average tokens (bottom) across models
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Figure 11: MMLU-Redux: Accuracy vs. CoT use (top) and average tokens (bottom) across models
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Figure 12: StrategyQA: Accuracy vs. CoT use (top) and average tokens (bottom) across models
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F RELIABILITY DIAGRAMS
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Figure 13: Reliability diagrams for Qwen3-8B. Bars darken with bin count; dashed line is perfect

calibration.
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Figure 14: Reliability diagrams for Qwen3-32B.
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Figure 15: Reliability diagrams for GPT-OSS-20B.
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