
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WARFARE : BREAKING THE WATERMARK PROTECTION
OF AI-GENERATED CONTENT

Anonymous authors
Paper under double-blind review

ABSTRACT

AI-Generated Content (AIGC) is gaining great popularity, with many emerging
commercial services using advanced generative models to create realistic images
and fluent text. Regulating such content is crucial to prevent policy violations,
such as unauthorized commercialization or unsafe content distribution. Water-
marking is a promising solution for content attribution and verification, and nu-
merous watermarking approaches have been proposed recently. However, we
demonstrate its vulnerability to two key attacks: (1) Watermark removal: the ad-
versary can easily erase the embedded watermark from the generated content and
then use it freely bypassing the regulation of the service provider. (2) Watermark
forging: the adversary can create illegal content with forged watermarks from an-
other user, causing the service provider to make wrong attributions. We propose
Warfare, a unified attack framework leveraging a pre-trained diffusion model
for content processing and a generative adversarial network for watermark manip-
ulation. Evaluations across datasets and embedding setups show that Warfare
can achieve high success rates while maintaining the quality of the generated con-
tent. We further introduce Warfare-Plus, which enhances efficiency without
compromising effectiveness.

1 INTRODUCATION

Benefiting from the advance of generative deep learning models (Rombach et al., 2022; Touvron
et al., 2023), AI-Generated Content (AIGC) has become increasingly prominent. Many commercial
services have been released, which leverage large models (e.g., ChatGPT (cha), Midjourney (Mid))
to generate creative content based on users’ demands. The rise of AIGC also leads to some le-
gal considerations, and the service provider needs to set up some policies to regulate the usage of
generated content. First, the generated content is one important intellectual property of the service
provider. Many services do not allow users to make it into commercial use (Touvron et al., 2023;
Mid). Selling the generated content for financial profit (Sel) will violate this policy and cause legal
issues. Second, generative models have the potential of outputting unsafe content (Wei et al., 2023;
Qi et al., 2023; Liu et al., 2023a; Le et al., 2023), such as fake news (Guo et al., 2021), malicious
AI-powered images (Salman et al., 2023; Le et al., 2023), phishing campaigns (Hazell, 2023), and
cyberattack payloads (Charan et al., 2023). New laws are established to regulate the generation and
distribution of content from deep learning models on the Internet (Gov; Sin; Gui).

As protecting and regulating AIGC become urgent, Google hosted a workshop in June 2023 to
discuss the possible solutions against malicious usage of generative models (Barrett et al., 2023). Not
surprisingly, the watermarking technology is mentioned as a promising defense. By adding invisible
specific watermark messages to the generated content (Fernandez et al., 2023; Kirchenbauer et al.,
2023; Liu et al., 2023b), the service provider is able to identify the misuse of AIGC and track the
corresponding users. A variety of robust watermarking methodologies have been designed, which
can be classified into two categories. (1) A general strategy is to make the generative model learn a
specific data distribution, which can be decoded by another deep learning model to obtain a secret
message as the watermark (Fernandez et al., 2023; Liu et al., 2023b; Zhao et al., 2023b). (2) The
service provider can concatenate a watermark embedding model (Zhu et al., 2018; Tancik et al.,
2020) after the generative model to make the final output contain watermarks. A very recent work
from DeepMind, SynthID Beta (Syn), detects AI-generated images by adding watermarks to the
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generated images1. According to its description, this service possibly follows a similar strategy as
StegaStamp (Tancik et al., 2020), which adopts an encoder to embed watermarks into images and a
decoder to identify the embedded watermarks in the given images.

The Google workshop (Barrett et al., 2023) reached the consensus that “existing watermarking al-
gorithms only withstand attacks when the adversary has no access to the detection algorithm”, and
embedding a watermark to a clean image or text “seems harder for the attacker, especially if the
watermarking process involves a secret key”. However, we argue that it is not the case. We find
that it is easy for an adversary without any prior knowledge to remove or forge the embedded se-
cret watermark in AIGC, which will break the IP protection and content regulation. Specifically,
(1) a watermark removal attack makes the service providers fail to detect the watermarks which
are embedded into the AIGC previously, so the malicious user can circumvent the policy regulation
and abuse the content for any purpose. (2) A watermark forging attack can intentionally embed the
watermark of a different user into the unsafe content without the knowledge of the secret key. This
could lead to wrong attributions and frame up that benign user.

Researchers have proposed several methods to achieve watermark removal attacks (Ulyanov et al.,
2018; Liang et al., 2021; Li, 2023; Zhao et al., 2023a; Nam et al., 2021; Wang et al., 2022). However,
they suffer from several limitations. For instance, some attacks require the knowledge of clean data
(Ulyanov et al., 2018; Liang et al., 2021) or details of watermarking schemes (Nam et al., 2021;
Wang et al., 2022), which are not realistic in practice. Some attacks take extremely long time to
remove the watermark from one image (Li, 2023; Zhao et al., 2023a). Besides, there are currently
no studies towards watermark forging attacks. More detailed analysis can be found in Section 2.2.

To remedy the above issues, we introduce Warfare, a novel and efficient methodology to achieve
both watermark forge and removal attacks against AIGC in a unified manner. The key idea is to lever-
age a pre-trained diffusion model and train a generative adversarial network (GAN) for erasing or
embedding watermarks to AIGC. Specifically, the adversary only needs to collect the watermarked
AIGC from the target service or a specific user, without any clean content. Then he can adopt a
public diffusion model, such as DDPM (Ho et al., 2020), to denoise the collected data. The prepro-
cessing operation of the diffusion model can make the embedded message unrecoverable from the
denoised data. Finally, the adversary trains a GAN model to map the data distribution from collected
data to denoised data (for watermark removal) or from denoised data to collected data (for water-
mark forge). After this model is trained, the adversary can adopt the generator to remove or forge
the specific watermark for AIGC. To reduce the time cost and break robust watermarking schemes,
which could be resistant against diffusion denoising, we propose Warfare-Plus by replacing the
preprocessing operation in Warfare with a naive unconditional sampling processing.

We evaluate our proposed methods on various datasets (e.g., CIFAR-10, CelebA), and settings (e.g.,
different watermark lengths, few-shot learning), to show its generalizability. Our results prove that
the adversary can successfully remove or forge a specific watermark in the AIGC and keep the
content indistinguishable from the original one. This provides concrete evidence that existing wa-
termarking schemes are not reliable, and the community needs to explore more robust watermarking
methods. Overall, our contribution can be summarized:

• To the best of our knowledge, it is the first work focusing on removing and forging water-
marks in AIGC under a black-box threat model. Warfare and Warfare-Plus are unified
methodologies, which can holistically achieve both attack goals. We disclose the unreliability and
fragility of existing watermarking schemes.

• Different from prior attacks, Warfare and Warfare-Plus do not require the adversary
to have corresponding unwatermarked data or any information about the watermarking
schemes, which is more practical in real-world applications.

• Comprehensive evaluation proves that Warfare and Warfare-Plus can efficiently remove
or forge the watermarks without harming the data quality. The total time cost is analyzed in
Appendix E.

• Our methods are effective in the few-shot setting, i.e., it can be freely adapted to unseen water-
marks and out-of-distribution images. It remains effective for different watermark lengths.

1Up to the date of writing, SynthID Beta is still a beta product only provided to a small group of users.
Since we do not have access to it, we do not include evaluation results with respect to it in our experiments.
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2 RELATED WORKS

2.1 CONTENT WATERMARK

The rapid progress of large and multimodal models has renewed interest in generative systems—e.g.,
ChatGPT (cha) and Stable Diffusion (Rombach et al., 2022)—capable of producing high-quality im-
ages, text, audio, and video (Ho et al., 2020; Touvron et al., 2023; Kong et al., 2021; Ho et al., 2022).
Because such AI-Generated Content (AIGC) often carries sensitive and high-value IP, protecting it
on public platforms like Twitter and Instagram is crucial (Twi; Ins). A common solution is water-
marking, which embeds a secret, unique message for later ownership verification and attribution.
Methods fall into (1) post hoc approaches—either visible marks (adding characters/graphics) (Liu
et al., 2021; Cheng et al., 2018; Wen et al., 2023) or invisible marks via steganography/signal trans-
forms (Zhu et al., 2018; Tancik et al., 2020; Nam et al., 2021)—and (2) prior approaches where the
generator learns to emit decodable, watermarked outputs (Fei et al., 2022; Fernandez et al., 2023;
Cui et al., 2023; Zhao et al., 2023b). For GANs, Fei et al. supervise the generator with a watermark
decoder (Fei et al., 2022); for diffusion models such as Stable Diffusion, schemes embed predefined
bit strings retrievable by a secret decoder (Rombach et al., 2022; Fernandez et al., 2023; Cui et al.,
2023; Zhao et al., 2023b). These techniques enable service providers to recognize AIGC from their
generative models and, when needed, attribute it to specific user accounts.

2.2 WATERMARK ATTACKS

An et al. (2024) introduce a surrogate decoder attack: an adversary trains a substitute watermark
detector on watermarked and non-watermarked images, then uses PGD to craft perturbations on
the surrogate that transfer to the target detector and flip its decisions. Yang et al. (2024) study an
averaging attack, which aggregates many watermarked images, and contrasted with clean coun-
terparts to estimate a fixed watermark pattern that is then subtracted to remove the watermark or
added to forge one. While these attacks can be effective against fragile schemes, they falter against
robust watermarks. Wang et al. (2021) considers the watermark forging attack. However, they as-
sume the adversary knows the watermarking schemes, which is unrealistic. And they only evaluate
LSB- and DCT-based watermarks instead of advanced deep-learning schemes. Other prior works
mainly focus on the watermark removal attack. These attack solutions can be summarized into three
main categories, i.e., image inpainting methods (Ulyanov et al., 2018; Liang et al., 2021) for vis-
ible watermarks, denoising methods (Li, 2023; Zhao et al., 2023a), and disrupting methods (Nam
et al., 2021; Wang et al., 2022) for invisible watermarks. However, they have several critical draw-
backs in practice. Specifically, the image inpainting methods (Ulyanov et al., 2018; Liang et al.,
2021) require clean images and watermarked images to train the inpainting model, which is not
feasible in the real world, because the user can only obtain watermarked images from the service
providers (Mid). Disrupting methods (Nam et al., 2021; Wang et al., 2022) require the user to know
the details of the watermarking schemes, which is also difficult to achieve. The most promising
method is based on denoising models. For instance, Li (2023) adopted guided diffusion models to
purify the watermarked images and minimize the differences between the watermarked images and
diffusion model’s outputs. However, using diffusion models to remove the watermark will require a
significant amount of time. Our method aims to address these limitations under a black-box threat
model.

3 PRELIMINARY

3.1 SCOPE

In this paper, we target both post hoc and prior watermarking methods. For post hoc methods, we
do not consider visible watermarks as they can significantly decrease the visual quality of AIGC,
making them less popular for practical adoption. For instance, the Tree-Ring watermark (Wen et al.,
2023) is proven to significantly change both pixel and latent spaces, which is treated as “a visible
watermark” (Zhao et al., 2023a). Hence, it is beyond the scope of this paper. For invisible water-
marks, we only consider the steganography approach, as it is much more robust and harder to attack
than the signal transformation approach (Nam et al., 2021; Wang et al., 2022; Zhao et al., 2023a).
We consider watermarks embedded in the generated images. Watermarks in other domains, e.g.,
language, audio, will be our future work.

3
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Figure 1: Overview of Warfare. (1) Collecting watermarked data from the target AIGC service
or Internet. (2) Using a public pre-trained denoising model to purify the watermarked data. (3)
Adopting the watermarked and mediator data to train a GAN, which can be used to remove or forge
the watermark. x′ is the watermarked image. x̂ is the mediator image. The subscript i is omitted.

3.2 WATERMARK VERIFICATION SCHEME

We consider the most popular type of secret message used in watermark: bit strings (Fei et al., 2022;
Fernandez et al., 2023; Cui et al., 2023; Zhao et al., 2023b). When a service provider P employs
a generative model MG to generate creative images for public users, P employs a watermarking
scheme (e.g., (Fernandez et al., 2023; Liu et al., 2023b)) to embed a secret user-specific bit string
m of length L in each image. To verify whether a suspicious image xs is watermarked by P for a
specific user, P uses a decoder MD to extract the bit string ms from xs. Then, P calculates the
Hamming Distance between m and ms: HD(m,ms). If HD(m,ms) ≤ (1 − τ)L, where τ is a
pre-defined threshold, P will believe that xs contains the secret watermark m.

3.3 THREAT MODEL

Attack Goals. A malicious user can break this watermarking scheme with two distinct goals. (1)
Watermark removal attack: the adversary receives a generated image from the service provider,
which contains the secret watermark associated with him. He aims to erase the watermark from the
generated image, and then use it freely without the constraint of the service policy, as the provider
is not able to identify the watermarks and track him anymore. (2) Watermark forging attack: the
adversary tries to frame up a victim user by forging the victim’s watermark on a malicious image
(from another model or created by humans). Then the adversary can distribute the image on the
Internet. The service provider will attribute to the wrong user.

Adversary’s capability. We consider the black-box scenario, where the adversary can only obtain
the generated image and has no knowledge of the generative model or watermark scheme. This is
practical, as many service providers only release APIs for users without leaking any information
about the details of the backend models MG and MD. We further assume that all the generated
images from the target service are watermark-protected, so the adversary cannot collect any clean
images from the same generative model. These assumptions increase the attack difficulty compared
to prior works (Ulyanov et al., 2018; Liang et al., 2021; Nam et al., 2021; Wang et al., 2022).

4 WARFARE : A UNIFIED ATTACK METHODOLOGY

We introduce Warfare to manipulate watermarks with the above goals. Let xi denote a clean
image, and x′

i denote the corresponding watermarked image. These two images are visually in-
distinguishable. Our goal is to establish a bi-directional mapping xi ←→ x′

i. For the watermark
removal attack, we can derive xi from x′

i. For the watermark forging attack, we can construct x′
i

from xi.

However, it is challenging for the adversary to identify the relationship between xi and x′
i, as he

has no access to the clean image xi. To address this issue, the adversary can adopt a pre-trained de-
noising model to convert x′

i into a mediator image x̂i. Due to the denoising operation, x̂i is visually
different from xi, but does not contain the watermark. It will follow a similar ”non-watermarked”
distribution as xi. Then he can train a GAN between xi and x′

i, which is guided by x̂i. Figure 1
shows the overview of Warfare, consisting of three steps. Below, we describe the details.

4.1 DATA COLLECTION

The adversary collects a set of images x′
i generated by the target service provider for one user. All

the collected data contain one specific watermark m associated with this user. For the watermark
removal attack, the adversary can query the service to collect the watermarked images with his
own account, from which he aims to remove the watermark. For the watermark forging attack,
the adversary can possibly collect such data from the victim user’s social account. This is feasible

4
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Table 1: Warfare under the different number of collected images on CIFAR-10. The length of
embedded bits is 8.

# of Samples
(bit length = 8bit)

Original Watermark Remove Watermark Forge
Bit Acc FID PSNR SSIM CLIP Bit Acc FID↓ PSNR↑ SSIM↑ CLIP↑ Bit Acc ↑ FID↓ PSNR↑ SSIM↑ CLIP↑

5000

100.00% 6.19 25.23 0.83 0.99

49.42% 20.75 24.64 0.83 0.92 96.11% 18.86 24.36 0.83 0.93
10000 50.68% 23.76 24.31 0.82 0.90 98.63% 15.68 24.70 0.81 0.94
15000 59.88% 20.32 22.87 0.80 0.92 97.80% 25.34 24.55 0.80 0.92
20000 54.59% 22.90 24.93 0.84 0.90 95.99% 23.56 23.74 0.80 0.92
25000 47.80% 18.42 23.59 0.83 0.91 97.84% 21.09 24.94 0.82 0.93

Table 2: Performance of Warfare under different bit lengths on CIFAR-10. The number of images
for the adversary is 25,000. ↓ means lower is better. ↑ means higher is better.

Bit Length Original Watermark Remove Watermark Forge
Bit Acc FID PSNR SSIM CLIP Bit Acc FID↓ PSNR↑ SSIM↑ CLIP↑ Bit Acc ↑ FID↓ PSNR↑ SSIM↑ CLIP↑

4 bit 100.00% 4.22 27.81 0.89 0.99 52.53% 16.36 24.51 0.86 0.92 95.76% 17.59 26.70 0.88 0.94
8 bit 100.00% 6.19 25.23 0.83 0.99 47.80% 18.42 23.59 0.83 0.91 97.84% 21.09 24.94 0.82 0.93

16 bit 100.00% 11.34 22.71 0.73 0.98 50.10% 24.63 23.44 0.77 0.91 92.23% 18.34 25.84 0.83 0.94
32 bit 99.99% 28.76 19.99 0.53 0.96 53.64% 25.33 21.17 0.64 0.91 90.14% 31.13 23.41 0.71 0.93

as people enjoy sharing their created content on the Internet and adding tags to indicate the used
service2. Then the adversary can forge the watermark of the victim user on any images to cause
wrong attribution. In either case, a dataset X ′ = {x′

i|x′
i ∼ (MG,m)} is established, whereMG is

the service provider’s generative model.

4.2 DATA PRE-PROCESSING

Given the collected watermarked dataset X ′, since the adversary does not have the correspond-
ing non-watermarked dataset X , he cannot directly build the mapping. Instead, he can adopt
a public pre-trained denoising model H to preprocess X ′ and obtain the corresponding media-
tor dataset X̂ . The goal of the denoising model is to remove the watermark m from X ′. Since
existing watermarking schemes are designed to be very robust, we have to increase the denois-
ing strength significantly, in order to distort the embedded watermark. Therefore, we first add
very large-scale noise ϵi into x′

i and then apply a diffusion model H to denoise the images, i.e.,
X̂ = {x̂i|H(x′

i + ϵi) = x̂i, x
′
i ∈ X ′, ϵi ∈ N (0, I)}. This will make x̂i highly visually different

from x′
i and xi. Figure 6 shows some visualization results of x′

i and x̂i, and we can observe that
they keep some similar semantic information but look very different. Table 3 proves that x̂i does not
contain any watermark information due to the injected large noise and strong denoising operation.

The mediator dataset X̂ can be seen as being drawn from the same ”non-watermarked” distribu-
tion as X , which is different from X ′ of the ”watermarked” distribution. Therefore, it can help
discriminate watermarking images from non-watermarked images and build connections between
them. This is achieved in the next step, as detailed below.

4.3 MODEL TRAINING

With the watermarked data x′ and non-watermarked data x̂, the adversary can train a GAN model
to add or remove watermarks. This GAN model consists of a generator G and a discriminator D: G
is used to generate x from x′ (watermark removal) or generate x′ from x (watermark forging); D is
used to discriminate whether the input is drawn from the distribution of watermarked images x′ or
the distribution of non-watermarked images x̂. Below, we describe these two attacks.

Watermark removal attack. In this attack, the generator G is built to obtain x from x′, i.e., x =
G(x′), where x′ and x should be visually indistinguishable. x generated by G should make D
believe it is from the same non-watermarked image distribution as x̂, because x should be a non-
watermarked image. Meanwhile, D should recognize x as a watermarked image, since it is very
close to x′. Therefore, the loss functions LG for G and LD for D are:

LD = −Ex̂∈X̂D(x̂) + Ex′∈X ′D(G(x′))

+ wDEx̂∈X̂ ,x′∈X ′∇αx′+(1−α)x̂D(αx′ + (1− α)x̂),

LGx = Ex′∈X ′ [L1(G(x′), x′) +MSE(G(x′), x′)

+ LPIPS(G(x′), x′)],

LGD = −wGEx′∈X ′D(G(x′)), LG = LGD + wxLGx ,

2The adversary can collect watermarked content with his own account as well because our method shows
strong few-shot power, which can be found in our experiments. The adversary can adopt very few samples to
fit an unseen watermark.

5
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Table 3: Results on CelebA. The bit string length is 32 bits. Best results in Bold. Second best results
with Underline.

Methods Original Watermark Remove Watermark Forge
Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP

CenterCrop

100.00% 4.25 30.7 0.94 0.96

59.89% - - - 0.90 48.33% - - - 0.93
GaussianNoise 99.92% 53.80 24.97 0.71 0.86 52.28% 47.07 28.64 0.75 0.89
GaussianBlur 100.00% 25.09 26.26 0.84 0.86 52.10% 21.18 28.17 0.88 0.89

JPEG 99.27% 17.42 28.40 0.89 0.89 52.19% 9.96 33.36 0.94 0.90
Brightness 100.00% 4.26 19.70 0.87 0.95 52.28% 0.39 21.16 0.91 0.98

Gamma 100.00% 4.43 22.93 0.88 0.96 52.32% 0.26 25.71 0.93 0.99
Hue 99.99% 5.93 26.84 0.93 0.94 52.21% 1.60 32.06 0.98 0.97

Contrast 100.00% 4.26 24.28 0.85 0.95 52.33% 0.25 27.62 0.90 0.98
DMs 67.82% 73.30 20.61 0.62 0.69 48.78% 68.91 20.89 0.64 0.70
DMl 47.20% 82.38 15.76 0.34 0.67 45.96% 79.06 15.81 0.34 0.68

VAESD 65.32% 43.21 19.57 0.66 0.76 49.36% 40.50 19.84 0.68 0.77
VAEC 54.36% 115.79 17.42 0.43 0.72 53.90% 115.19 17.47 0.43 0.72

Warfare 51.98% 9.93 26.61 0.91 0.90 99.11% 8.75 24.92 0.90 0.92

where wD, wG , and wx are the weights for losses and α is a random variable between 0 and 1 (Ar-
jovsky et al., 2017)3. L1 is the L1-norm, MSE is the mean squared error loss, and LPIPS is the
perceptual loss (Zhang et al., 2018). They can guarantee the quality of the generated image x.

Watermark forging attack. In this attack, the generator G is built to obtain x̂′ from x̂, i.e., x̂′ =
G(x̂), where x̂′ and x̂ should be visually indistinguishable. x̂′ is the watermarked version of x̂.
x̂′ generated by G should make D believe it is from the same watermarked image distribution as
x′, because x̂′ should be a watermarked image. But D should recognize x̂′ as a non-watermarked
image, since it is very close to x̂. The loss functions LG for G and LD for D are:

LD = −Ex′∈X ′D(x′) + Ex̂∈X̂D(G(x̂))
+ wDEx̂∈X̂ ,x′∈X ′∇αx′+(1−α)x̂D(αx′ + (1− α)x̂),

LGx = Ex̂∈X̂ [L1(G(x̂), x̂) +MSE(G(x̂), x̂) + LPIPS(G(x̂), x̂)],
LGD = −wGEx̂∈X̂D(G(x̂)), LG = LGD + wxLGx .

The notations are the same as these in the watermark removal attack. It is easy to find that for both
types of attacks, the training framework can be seen as a unified one, because the adversary only
needs to replace x′ with x̂ or replace x̂ with x′, to switch to another attack.

4.4 WARFARE-PLUS WITH HIGHER TIME EFFICIENCY

In Warfare, we adopt a pre-trained diffusion model to purify the watermarked data and obtain
the mediator images. This brings additional time cost, which reduces the overall time efficiency
of our proposed method. Additionally, advanced watermarking schemes in the future which can
defend against diffusion denoising will be resistant to our method as well. To further improve the
time efficiency and enhance the attacking effectiveness, we propose Warfare-Plus by revising
the data pre-processing process. We find that the purified images are not essential in our attack
framework. Therefore, we directly adopt an open-sourced Stable Diffusion 1.5 (SD1.5) (sd1) to
generate images without conditional prompts as the mediator images. Compared with Warfare,
we only improve the data pre-processing step and keep other steps unchanged.

5 EVALUATIONS

5.1 EXPERIMENT SETUP

Datasets. We mainly consider two datasets: CIFAR-10 and CelebA (Liu et al., 2015). CIFAR-10
contains 50,000 training images and 10,000 test images with a resolution of 32*32. CelebA is a
celebrity faces dataset, which contains 162,770 images for training and 19,867 for testing, resized
at a resolution of 64*64 in our experiments. We randomly split the CIFAR-10 training set into two
disjoint parts, one of which is to train the service provider’s model and another is used by the ad-
versary. Similarly, we randomly pick 100,000 images for the service provider and 10,000 images
for the adversary from the CelebA training set. Furthermore, we also consider a more complex
dataset with high resolution (256*256), LSUN (Yu et al., 2015). Furthermore, we also collect some
generated images from Stable Diffusion (Rombach et al., 2022) to verify the effectiveness of our
method in more complex situations. Details can be found in Appendix G. To enhance the connec-
tions with AIGC, we evaluate our method on generative model generated images in Section 5.4 and
Appendix C, in which we consider images generated by GANs, conditional diffusion models, and
popular Stable Diffusion models.

3We slightly modify the discriminator loss for large-resolution images to stabilize the training process.
Details are in Appendix A.
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Watermarking Schemes. Considering the watermark’s expandability to multiple users, we mainly
adopt the post hoc manner, i.e., adding user-specific watermarks to the generated images. We adopt
StegaStamp (Tancik et al., 2020), a state-of-the-art and robust method for embedding bit strings into
given images, which is proved to be the most effective watermarking embedding method against
various removal attacks (Zhao et al., 2023a). On the other hand, watermarking schemes, such
as RivaGAN (Zhang et al., 2019), SSL (Fernandez et al., 2022), and Tree-Ring (Wen et al.,
2023) have been shown to be not robust (Zhao et al., 2023a; An et al., 2024). Therefore, we
only consider breaking watermarking schemes, which have not been broken before. Another
post hoc scheme is Stable Signature (Fernandez et al., 2023), which is proposed for Stable Diffusion
models, specifically. The model owner trains a latent decoder for Stable Diffusion models, which
can add a pre-fixed bit string to the generated image. We also provide two case studies to explore
the prior manner, which directly generates images with watermarks for our case studies. We follow
previous works (Fei et al., 2022; Zhao et al., 2023b) to embed a secret watermark to WGAN-div (Wu
et al., 2018) and EDM (Karras et al., 2022).

Baselines. To the best of our knowledge, Warfare is the first work to remove or forge a watermark
in images under a pure black-box threat model. Therefore, we consider some potential baseline
attack methods under the same assumptions and attacker’s capability, i.e., having only watermarked
images. These baseline methods can be classified into three groups. (1) Image transformation meth-
ods: we consider modifying the properties of the given image, such as resolution, brightness, and
contrast. We also consider image compression (e.g., JPEG) and image disruptions (e.g., Gaussian
blurring, adding Gaussian noise). (2) Diffusion model methods (Li, 2023): we directly adopt a
pre-trained unconditional diffusion model (DiffPure (Nie et al., 2022)) to modify the given image,
which does not require to train a diffusion model from scratch and does not need clean images. (3)
VAE model methods (Zhao et al., 2023a): we directly adopt two different VAE models. One is
from the Stable Diffusion (Rombach et al., 2022), which is named VAESD. Another one is trained
on CelebA, which is named VAEC. Specifically, both diffusion models and VAE models are not
trained or fine-tuned for watermark removal or forge due to the black-box threat model. We do
not adopt guided diffusion models or conditional diffusion models as (Li, 2023) did as well. When
attacking Stable Signature, we use a pretrained diffusion model based on ImageNet and the VAE
from Stable Diffusion 1.4, as the generated images have larger resolution. When using the diffusion
model, we set the noise scale as 75 and set the number of sampling step as 15. The results from
pre-trained diffusion models are various on different datasets, which are discussed in Appendix D.
For watermark removal, the watermarked images are inputs for the attacks; for watermark forge, the
clean images are inputs for the attacks. We also evaluate two attacks designed to both remove and
forge watermarks on the AIGC dataset: (4) the surrogate decoder attack (An et al., 2024), and (5)
the averaging attack (Yang et al., 2024), each reproduced with the authors’ default configurations.

Implementation. We adopt DiffPure (Nie et al., 2022) as the diffusion model used in the second
step of Warfare without any fine-tuning. The diffusion model used in DiffPure depends on the
domain of watermarked images. For example, if the watermarked images are human faces from
CelebA and FFHQ, we use a diffusion model trained on CelebA. For Stable Signature and Tree-
Ring, we use a pretrained diffusion model based on ImageNet in Warfare, and directly adopt an
open-sourced Stable Diffusion 1.5 (SD1.5) (sd1) to generate images without conditional prompts
as the mediator images in Warfare-Plus. As the adversary does not have any knowledge of
the watermarking scheme, it is important to decide which checkpoint should be used in the attack.
We provide a simple way to help the adversary select a checkpoint during the training process in
Appendix B. More details can be found in Appendix A, including hyperparameters and bit strings.

Metrics. To fairly evaluate our proposed Warfare, we consider five metrics to measure its per-
formance from different perspectives. To determine the quality of the watermark removal (forging)
task, we adopt Bit Acc, which can be calculated as Bit Acc(m,m′) = |m|−HD(m,m′)

|m| ×100%, where
HD(·, ·) is the Hamming Distance. If Bit Acc(m,m′) ≥ τ , verification will pass. Otherwise, it will
fail. In our experiments, τ = 80%. To evaluate the quality of the images generated by Warfare
and the baselines, we adopt the Fréchet Inception Distance (FID) (Heusel et al., 2017), the peak
signal-to-noise ratio (PSNR) (Horé & Ziou, 2010), and the structural similarity index (SSIM) (Horé
& Ziou, 2010). Furthermore, we consider the semantic information inside the images, which is eval-
uated by CLIP (Radford et al., 2021). For the FID, PSNR, SSIM, and CLIP scores, we compute the
results between clean images and watermarked images for the watermarking scheme, and between
clean images and images after removal or forge attacks. For watermark removal, a lower bit accu-
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Table 4: Results of attacking Stable Signature on Stable Diffusion 2.1.

Method Origin Watermark Remove Watermark Forge
Bit Acc FID Bit Acc FID Bit Acc FID

DM

100% 7.65

48.29% 8.77 46.94% 5.71
VAE 52.69% 8.72 48.78% 2.94

Averaging 99.95% 11.48 50.10% 11.95
Surrogate 99.87% 8.08 51.89% 0.98
Warfare 49.22% 8.07 99.08% 0.78

Warfare-Plus 49.95% 8.45 97.03% 1.22

racy is better. For watermark forging, a higher bit accuracy is better. For all tasks, a higher PSNR,
SSIM, and CLIP score is better. And a lower FID is better.

5.2 ABLATION STUDY

In this section, we explore the generalizability of Warfare under the views of the length of the
embedding bits and the number of collected images. In Table 2, we show the results of Warfare
at different lengths of embedded bits. The results indicate that Warfare is robust for different
secret message lengths. Specifically, when the length of the embedded bits increases, Warfare can
still achieve good performance on watermark removing or forging and make the transferred images
keep high quality and maintain semantic information. In Table 1, we present the results when the
adversary uses the different numbers of collected images as his training data. The results indicate
that even with limited data, the adversary can remove or forge a specific watermark without harming
the image quality, which proves that our method can be a real-world threat. Therefore, our proposed
Warfare has outstanding flexibility and generalizability under a practical threat model. We further
prove its extraordinary few-shot generalizability for unseen watermarks in Section 5.3.

5.3 RESULTS ON POST HOC MANNERS

Here, we focus on post hoc manners, i.e., adding watermarks to AIGC with an embedding model.
Because the post hoc watermarking scheme can freely change the embedding watermarks, we eval-
uate Warfare under few-shot learning to show the capability of adapting to unseen watermarks.

Results on CelebA. We consider two different lengths of the embedding bits, i.e., 32-bit and 48-bit.
Furthermore, we do not consider the specific coding scheme, including the source coding and the
channel coding. Tables 3 and 7 compare Warfare and the baseline methods on the watermark
removal task and the watermark forging task, respectively. We notice that the watermark embedding
method is robust against various image transformations. Using image transformations cannot simply
remove or forge a specific watermark in the given images4. For methods using diffusion models, we
consider two settings, i.e., adding large noise to the input (DMl) and adding small noise to the input
(DMs). Especially, we use the same setting as DMl in the second step of Warfare to generate
images. Although diffusion models can easily remove the watermark from the given images under
both settings, the generated images are visually different from the input images, causing a low
PSNR, SSIM, and CLIP score. Furthermore, the FID indicates that the diffusion model will cause
a distribution shift compared to the clean dataset. Nevertheless, we find that DMl and DMs can
maintain high image quality while successfully removing watermarks on other datasets, which we
discuss in Appendix D. The results make us reflect on the generalizability of diffusion models on
different datasets and watermarking schemes. However, evaluating all accessible diffusion models
on various datasets and watermarking schemes will take months. Therefore, we leave it as future
work to deeply study the diffusion models in the watermarking removal task. On the other hand,
forging a specific unknown watermark is non-trivial and impossible for both image transformation
methods and diffusion models.

Our Warfare gives an outstanding performance in both tasks and maintains good image quality
as well. However, we notice that as the length of the embedded bit string increases, it becomes
more challenging to forge or remove the watermark. That is the reason that under 48-bit length, our
Warfare has a little performance drop on both tasks with respect to bit accuracy and image quality.
We provide visualization results in the following content to prove images generated by Warfare

4We omit the results with image transformations in the following tables to save space.
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are still visually close to the given image under a longer embedding length. More importantly,
Warfare is time-efficient compared to diffusion model methods. The results are in Appendix E.

Few-Shot Generalization. In real-world applications, large companies can assign a unique wa-
termark for every account or change watermarks periodically. Therefore, it is important to study
the few-shot power of Warfare, i.e., fine-tuning Warfare with several new data with an unseen
watermark to achieve outstanding watermark removal or forging abilities for the unseen watermark.
In our experiments, we mainly consider embedding a 32-bit string into clean images. Then, we
fine-tune the model in Table 3 to fit new unseen watermarks. In Table 8, we present the results
under 10, 50, and 100 training data for watermark removal and forging. The results indicate that the
watermark removal task is much easier than the watermark forging task. Furthermore, with more
accessible data, both bit accuracy and image quality can be improved. It is worth noticing that, even
with limited data, Warfare can successfully remove or forge an unseen watermark and maintain
high image quality. The results prove that our proposed method has strong few-shot generalization
power to meet practical usage.

Besides, we provide evaluation results on prior watermarking strategies in Appendix C. To better
compare the image quality of Warfare with other baselines, we show the visualization results
in Appendix H. In Appendix I, we discuss the potential defenses to mitigate the attacks. Overall,
Warfare shows good effectiveness on both types of attack for different watermarking schemes.

5.4 WARFARE AND WARFARE-PLUS ON AIGC DATASET

Beyond real-world data distributions, an even more critical area of focus is watermarking AIGC.
Compared to the datasets used in our earlier experiments, AI-generated images often feature higher
resolutions and more intricate details. Thus, it is essential to evaluate both the effectiveness and
efficiency of our method in this context. In this section, we target Stable Signature, a watermarking
scheme specifically designed for Stable Diffusion models, and present the results in Table 4. Both
the averaging attack and surrogate detector attack fail to break the Stable Signature. The findings
support our claim that our method is the first to offer a practical, black-box solution for both re-
moval and forgery AIGC watermarking schemes with high attack success and image quality. Even
when training GAN models on high-resolution datasets, we achieve models that perform well in
both preserving image quality and removing (or forging) watermarks. However, the time cost in-
creases significantly as image resolution grows. Table 11 provides a detailed breakdown of the
computational overhead for each attack step, highlighting that the data preprocessing phase is a bot-
tleneck that impacts the efficiency of Warfare. To address this, we propose Warfare-Plus,
an enhanced version of Warfare. While Warfare-Plus requires longer training times to en-
sure GAN convergence, it significantly reduces the preprocessing time. Compared to Warfare,
Warfare-Plus decreases the overall time cost—including preprocessing, model training, and in-
ference—by 80% to 85%, while maintaining strong attack performance. For visual confirmation,
Appendix H includes sample images to illustrate the image quality. These results confirm that both
Warfare and Warfare-Plus preserve image quality effectively, allowing for the flexible gen-
eration of watermarked and non-watermarked images.

6 LIMITATIONS AND CONCLUSIONS

In this paper, we consider a practical threat to AIGC protection and regulation schemes, which
are based on the state-of-the-art robust and invisible watermarking technologies. We introduce
Warfare and its variant Warfare-Plus, a unified attack framework to effectively remove or
forge watermarks over AIGC while maintaining good image quality. With our method, the adversary
only requires watermarked images without their corresponding clean ones, making it a real-world
threat. Through comprehensive experiments, we prove that it has strong few-shot generalization
abilities to fit unseen watermarks, which makes it more powerful. Furthermore, we show that it can
easily replace a watermark in the collected data with another new one, in Appendix F. We discuss the
potential usage of Warfare and Warfare-Plus for larger-resolution and more complex images,
in real-world scenarios. Further improvement over Warfare and Warfare-Plus is probable
with more advanced GAN structures and training strategies.
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A EXPERIMENT SETTINGS

Model Structures. For CIFAR-10 and CelebA, we choose different architectures for generators and
discriminators to stabilize the training process. Specifically, when training models on CIFAR-10, we
use the ResNet-based generator architecture (Zhu et al., 2017) with 6 blocks. As the CelebA images
have higher resolution, we use the ResNet-based generator architecture (Zhu et al., 2017) with 9
blocks. For the discriminators, we use a simple model containing 4 convolutional layers for CIFAR-
10. And for CelebA, a simple discriminator cannot promise a stable training process. Therefore,
we use a ResNet-18 (He et al., 2016). To improve the quality of generated images, we follow the
residual training manner, that is, the output from the generators will be added to the original input.

Hyperparameters. We use different hyperparameters for CIFAR-10 and CelebA, respectively.
When training models on CIFAR-10, we use RMSprop as the optimizer for both the generator
and the discriminator. The learning rate is 0.0001, and the batch size is 32. We set wD = 10, and
the total number of training epochs is 1,000. We update the generator’s parameters after 5 times of
updating of the discriminator’s parameters. For CelebA, we adopt Adam as our model optimizer.
The learning rate is 0.003, and the batch size is 16. We replace the discriminator loss with the one
from StyleGAN (Karras et al., 2019) with wD = 5, and the total number of training epochs is 1,000.
We update the generator’s parameters after updating the discriminator’s parameters. We present wG
and wx in Table 5 used in our experiments. We choose the best model based on the image quality.

Baseline Settings. For image transformation methods, we mainly adopt torchvision to implement
attacks. To adjust brightness, contrast, and gamma, the changing range is randomly selected from
0.5 to 1.5. To adjust the hue, the range is randomly selected from -0.1 to 0.1. For center-cropping,
we randomly select the resolution from 32 to 64. For the Gaussian blurring, we randomly choose the
Gaussian kernel size from 3, 5, and 7. For adding Gaussian noise, we randomly choose σ from 0.0
to 0.1. For JPEG compression, we randomly selected the compression ratio from 50 to 100. When
evaluating the results of image transformation methods, we run multiple times and use the average
results. For diffusion methods DMl, we set the sample step as 30 and the noise scale as 150. For
diffusion methods DMs, we set the sample step as 200 and the noise scale as 10. Specifically, we
use DMl in the second step of Warfare. Considering using diffusion models to generate images
is very time-consuming, we randomly select 1,000 images from the test set to obtain the results for
diffusion models.

Stable Signature. The diffusion model used in Stable Signature is Stable Diffusion 2.1
(SD2.1) (sd2). During the generation process, we adopt the unconditional generation approach by
setting the prompt empty to obtain images with 512*512 resolution. We sample 10,000 watermarked
images for our attack method.

Embedded Bits. In Table 6, we list the bit strings embedded in the images in our experiments.

B SELECT A CORRECT CHECKPOINT

It is important to choose the correct checkpoint because it is closely associated with the attack
performance. However, when the adversary does not have any information about the watermarking
scheme, it is unavailable to determine the best checkpoint with Bit Acc as metrics. However, after
plotting the bit accuracy in Figure 2, we find that the performances of different checkpoints in the
later period are close and acceptable for a successful attack under the Bit ACC metrics. Therefore,
we choose the best checkpoint from the later training period based on the image quality metrics,
including the FID, SSIM, and PSNR, in our experiments. It is to say, our selection strategy does not
violate the threat model, where the adversary can only obtain watermarked images.
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Experiment Watermark Remove Watermark Forge
wG wx wG wx

CIFAR-10 4bit 500 10 500 5
CIFAR-10 8bit 800 15 500 10

CIFAR-10 16bit 500 40 150 40
CIFAR-10 32bit 100 40 100 40

CIFAR-10 5000 data 800 15 500 10
CIFAR-10 10000 data 800 15 600 20
CIFAR-10 15000 data 500 15 500 10
CIFAR-10 20000 data 800 15 500 15
CIFAR-10 25000 data 800 15 500 10

CelebA 32bit 10 120 1 10
CelebA 48bit 10 200 1 10

Few-Shot 10 Images 10 200 1 10
Few-Shot 50 Images 10 200 1 10

Few-Shot 100 Images 10 200 1 10
WGAN-div 10 120 1 10

EDM 1 10 100 1
Stable Signature (Warfare) 10 5 10 100

Stable Signature (Warfare-Plus) 10 10 10 100

Table 5: Hyperparameter settings in our experiments for watermark removal and watermark forging.

Experiment Bit String
CIFAR-10 4bit 1000
CIFAR-10 8bit 10001000

CIFAR-10 16bit 1000100010001000
CIFAR-10 32bit 10001000100010001000100010001000

CelebA 32bit 10001000100010001000100010001000
CelebA 48bit 100010001000100010001000100010001000100010001000

Few-Shot 11100011101010101000010000001011
WGAN-div 10001000100010001000100010001000

EDM 0100010001000010111010111111110011101000001111101101010110000000
Stable Signature 111010110101000001010111010011010100010000100111

Table 6: Selected bit strings in our experiments.

Specifically, as training GANs are challenging, we applied several approaches to stabilize the train-
ing process, improve the performance, and ease the usage. First, we adopt a residual manner in
GAN structure, as introduced in Appendix A. We increase or decrease the model size based on the
resolution of input images. It helps us to obtain outputs with higher quality. Second, we use the
discriminator loss from StyleGAN to further stabilize the training process of the discriminator. We
further adopt alternate optimization strategies to avoid overfitting of the discriminator. Third, our
training script supports Exponential Moving Average (EMA), which is a widely used trick in GAN
training. With the above methods, we train our GANs more smoothly and stably. As shown in
Figures 2 and 4, the performance of GANs is relatively stable. Besides, we will provide experiment
code to make these results reproducible.

C ADDITIONAL RESULTS

We focus on prior methods, i.e., directly embedding watermarks into generative models. We fol-
low the previous methods (Fei et al., 2022) and (Zhao et al., 2023b) to embed a secret bit string
into a WGAN-div and an EDM as a watermark, respectively. Therefore, all generated images con-
tain a pre-defined watermark, but we cannot have the corresponding clean images. That is to say,
we cannot obtain the PSNR, SSIM, and CLIP scores as previously. So, we only evaluate the FID
and the bit accuracy in our experiments. Specifically, we train the WGAN-div with 100,000 wa-
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(a) Watermark Removal (b) Watermark Forging

Figure 2: Bit Acc for different tasks during the training stage on CelebA.

Table 7: Results of different attacks on CelebA. The bit string length is 48 bits.

Methods Original Watermark Remove Watermark Forge
Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP

DMs

100.00% 13.59 27.13 0.90 0.93

71.54% 78.67 20.21 0.60 0.69 49.35% 69.09 20.92 0.64 0.71
DMl 53.75% 82.94 15.67 0.33 0.67 50.99% 81.66 15.82 0.34 0.68

VAESD 67.38% 50.35 19.11 0.64 0.74 50.60% 40.50 19.84 0.68 0.77
VAEC 49.90% 116.75 17.35 0.42 0.71 49.09% 115.19 17.47 0.43 0.72

Warfare 54.36% 19.98 25.29 0.88 0.88 94.61% 12.14 23.04 0.87 0.90

termarked images randomly selected from the training set of CelebA. We directly use the models
provided by (Zhao et al., 2023b), which are trained on FFHQ embedded with a 64-bit string. For
Warfare, we use the WGAN-div and EDM to generate 10,000 samples as the accessible data.
In Table 9, we show the results of different attacks to remove or forge the watermark. First, we
find that embedding a watermark in the generative model will cause the generated images to have
a different distribution from the clean images, making the FID extremely high. Second, EDM can
generate high-quality images even under watermarking, causing a lower FID. However, we find that
the embedded watermark by (Zhao et al., 2023b) is less robust, which can be removed by blurring
and JPEG compression. It could be because they made some trade-off between image quality and
robustness. For both, Warfare can successfully remove and forge the specific watermark in the
generated images and maintain the same image quality as the generative model. The visualization
results can be found in Appendix H.

D DIFFUSION MODELS FOR WATERMARK REMOVAL

In our experiments, we find that the pre-trained diffusion models will not promise a similar output as
the input image without the guidance on CelebA. However, when we evaluate the diffusion models
on another dataset, LSUN-bedroom (Yu et al., 2015), we find that even under a very large noise
scale, the output of the diffusion model is very close to the input image, and the watermark has been
successfully removed. The visualization results can be found in Figure 3, where we use 30 sample
steps and 150 noise scales for DMl and use 200 sample steps and 10 noise scales for DMs, which
are the same as the settings on CelebA. The numerical results in Table 10 prove that the diffusion
model can maintain high image quality under large inserted noise.

We think the performance differences on CelebA and LSUN are related to the resolution and im-
age distribution. Specifically, images in CelebA are 64 * 64 and only contain human faces. The
diversity of faces is not too high. However, images in LSUN are 256 * 256 and have different dec-
oration styles, illumination, and perspective, which means the diversity of bedrooms is very high.
Therefore, transforming an image into another image in LSUN is more challenging than doing that
in CelebA. This could be the reason that diffusion models cannot produce an output similar to that
of CelebA. This limitation is critical for an attack based on diffusion models. Therefore, we appeal
to comprehensively evaluate the performance of the watermark removal task for various datasets.

The above results prove that a pre-trained diffusion model alone can remove watermarks. However,
the limitation that the generation quality is unstable, unreliable, and changing with different data dis-
tribution is also clear. Besides, watermark forging is impossible with a pre-trained diffusion model.
Therefore, we propose to use GANs in our method, building a unified framework for watermark
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Table 8: Few-shot generalization ability of Warfare on unseen watermarks on CelebA.

# of Samples
(bit length = 32bit)

Original Watermark Remove Watermark Forge
Bit Acc FID PSNR SSIM CLIP Bit Acc FID↓ PSNR↑ SSIM↑ CLIP↑ Bit Acc ↑ FID↓ PSNR↑ SSIM↑ CLIP↑

10
100.00% 4.14 30.69 0.94 0.96

49.98% 46.90 23.19 0.81 0.83 72.64% 12.27 22.43 0.89 0.91
50 53.31% 19.74 24.47 0.87 0.86 83.18% 11.89 28.37 0.94 0.93

100 53.27% 14.30 25.51 0.89 0.87 93.47% 12.43 26.57 0.92 0.91

Table 9: Results of attacking content watermarks from the WGAN-div and EDM.

Methods
WGAN-div EDM

Original Watermark Remove Watermark Forge Original Watermark Remove Watermark Forge
Bit Acc FID Bit Acc FID Bit Acc FID Bit Acc FID Bit Acc FID Bit Acc FID

DMs

99.66% 60.20

67.12% 100.93 49.17% 68.79

99.99% 8.68

51.03% 78.08 51.14% 79.75
DMl 47.16% 117.80 46.20% 83.36 51.69% 58.39 51.31% 60.00

VAESD 67.32% 45.86 49.29% 19.98 49.69% 28.38 49.71% 26.77
VAEC 55.11% 106.94 54.07% 44.59 48.88% 137.81 48.94% 138.19

Warfare 52.12% 69.88 95.72% 5.84 64.56% 19.58 90.75% 5.98

removal and forging. Our method is proved to achieve a better result with lower FID and effectively
build a unified framework for both types of attacks.

E TIME COST VS DIFFUSION MODELS

To compare the time cost for generating one image with a given one, we record the total time cost for
1,000 images on one A100. The batch size is fixed to 128. For DMl, the total time cost is 5,231.72
seconds. For DMs, the total time cost is 2325.01 seconds. For Warfare, the total time cost is 0.46
seconds. Therefore, our method is very fast and efficient.

We evaluate the time cost of attacking the Stable Signature watermarking scheme on 512×512 reso-
lution images with 8 A6000 GPUs. During the data preprocessing phase, we employ a pre-trained
diffusion model to remove watermarks for 10,000 images generated by the watermarked Stable Dif-
fusion 2.1, taking a total runtime of 42.4 hours. In the GAN training phase, we achieve a forging
accuracy of 99% in just 5 epochs, with a total runtime of 1.3 hours, and achieve a removal accuracy
of 49% in 18 epochs, with a total runtime of 4.7 hours. During inference, it takes 1.84 seconds for
our GAN to forge or remove the watermark of 10,000 images. Therefore, compared with diffusion-
based method, Warfare brings performance improvement with about 1.3 (4.7) hours additional
time overhead to forge (remove) watermark. The results can be found in Table 11. Notably, with
the few-shot generalization abilities of our method, an attacker can fine-tune a pre-trained GAN us-
ing only 10 to 100 samples to remove or forge different watermarks, reducing data preprocessing
and GAN training costs by 99%. On the other hand, to better reduce the time cost, we propose
Warfare-Plus. The results prove that Warfare-Plus requires less time to achieve the same
attacking performance. Therefore, our method has better scalability, generalizability and efficiency
in a long-term evaluation.

F REPLACE A WATERMARK WITH NEW ONE

We further consider another attack scenario, where the adversary wants to replace the watermark in
the collected images with one specific watermark used by other users or companies. In this case,
the adversary first trains a generator Gr to remove the watermark in the collected image x. Then,
the adversary trains another generator Gf to forge the specific watermark. Finally, to replace the
watermark in x with the new watermark, the adversary only needs to obtain x′ = Gf (Gr(x)). We
evaluate the performance of Warfare in this scenario on CelebA. Specifically, Gr is the generator
in our few-shot experiment. And Gf is the generator in our CelebA 32bit experiment. It is to say
that the existing watermark in the collected images is “11100011101010101000010000001011”,
and the adversary wants to replace it with “1000100010001 0001000100010001000”. The details
can be found in our main paper. As for the results, we calculate PSNR, SSIM, CLIP score, and FID
between x′ and clean images. And we also compute the bit accuracy of x′ for the new watermark.
The FID is 18.67. The PSNR is 24.97. The SSIM is 0.90. The CLIP score is 0.92. And the bit
accuracy is 98.86%. The results prove that Warfare can easily replace an existing watermark in
the images with a new watermark.
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Figure 3: The first column is clean images. The second is watermarked images. The third is the
output of DMl. The fourth is the output of DMs.

Table 10: Numerical results of watermark removal with diffusion models under different noise scales
and sample steps.

Diffusion Model Setting
(bit length = 32bit) Original Watermark Remove

Sample Step Noise Scale Bit Acc FID PSNR SSIM CLIP Bit Acc FID PSNR SSIM CLIP
30 150

100.00% 10.67 39.49 0.98 0.99

51.81% 75.52 20.15 0.58 0.88
50 150 51.50% 84.14 18.92 0.55 0.86

100 150 50.47% 95.27 16.69 0.49 0.83
200 10 56.16% 73.01 22.11 0.72 0.84
200 30 53.03% 98.00 19.37 0.59 0.80
200 50 53.81% 108.71 17.63 0.52 0.78

G LARGE-RESOLUTION AND OUT-OF-DISTRIBUTION IMAGES

G.1 LARGE-RESOLUTION AND COMPLEX REAL-WORLD IMAGES

We focus on CelebA in our main paper, which contains human faces in a resolution of 64 * 64.
In this part, we illustrate the results of our method on larger resolution and more complex images.
To evaluate our method on such images, LSUN-bedroom (Yu et al., 2015) is a good choice, in
which the image resolution is 256 * 256. Similarly to the CelebA experiment settings, we randomly
select 10,000 images for Warfare, and the bit length is 32. As watermark removal is easy to do
with only diffusion models, forging is more challenging and critical. Therefore, we aim to forge a
specific watermark on the clean inputs.

In Figure 4, we illustrate the bit accuracy during the training stage of Warfare. Although accuracy
increases with increasing training steps, we find that it is difficult to achieve accuracy over 80%. If
we increase the number of training steps, the accuracy will be stable around 75%. While Warfare
is still effective for large-resolution and complex images, we think its ability is constrained, due
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Method Data Preprocessing GAN Training Inference Total
Diffusion-base - - 42.4 hrs 42.4 hrs

Warfare 42.4 hrs Remove: 4.7 hrs
Forge: 1.3 hrs 1.84 s Remove: 47.1 hrs

Forge: 43.7 hrs

Warfare-Plus 1.68 hrs Remove: 4.96 hrs
Forge: 7.05 hrs 1.84 s Remove: 6.64 hrs

Forge: 8.73 hrs

Table 11: Time cost of attacking the Stable Signature watermarking scheme on 512×512 resolution
images. We evaluate the time cost when attacking 10,000 images. hrs stands for hours. s stands for
seconds.

Figure 4: Bit Acc with training epoch increasing.

to the limited training data and a small generator structure. Our future work will be to improve
its effectiveness for more complex data. In Figure 5, we compare the images before and after
Warfare. It is impossible for human eyes to figure out what are clean images, which shows that
Warfare can maintain impressive image quality even for large-resolution and complex real-world
images.

G.2 GENERALIZE TO AIGC AND OUT-OF-DISTRIBUTION IMAGES

We first extend Warfare to latent diffusion models. We use only 100 images generated by Stable
Diffusion 1.5 watermarked by the post hoc manner to fine-tune the Warfare models in Table 7.
The reason that we adopt the post hoc watermarking manner is that it can easily assign different
watermarks for users, which cannot be achieved by the prior methods. Then, we evaluate the wa-
termark attacks on 1,000 generated images by Stable Diffusion 1.5. For watermark removal, the bit
accuracy decreases from 99.98% to 51.86% with FID 23.53. For watermark forging, the bit accuracy
is 80.07% with FID 39.38. Although our results are based on few-shot learning, instead of directly
training on massive images generated by Stable Diffusion, the results still show the generalizability
of Warfare. Second, we evaluate the zero-shot capability of Warfare with Tiny ImageNet for
models from Table 7. The bit accuracy for watermark removal is about 90% and about 70% for wa-
termark forging. Although the zero-shot capability is limited, it is easy to improve the performance
with 100 samples to fine-tune the model, obtaining about 50% bit accuracy for removal and 90% bit
accuracy for forging. Therefore, Warfare can easily be generalized to other domains.
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Figure 5: Clean images and corresponding outputs from Warfare. The top two rows are clean
images.

H OTHER VISUALIZATION RESULTS

In this section, we show the other visualization results in our experiments. First, we show Figure 6
in a larger resolution. In Figure 7, we present the visualization results for the few-shot experiments.
The results indicate that with more training samples, image quality can be improved. And, even with
a few samples, Warfare can learn the embedding pattern. In Figure 8, we show the visualization
results of WGAN-div and EDM, respectively. The attack goal is to forge a specific watermark. In
Figure 9, we present the high-resolution images for LSUN to prove the effectiveness of Warfare
on larger and more complex photos. In Figure 10, we present the high-resolution images generated
by Stable Diffusion 1.5 to show the generalizability of Warfare for AI-generated content based
on advanced generative models. The results indicate that Warfare can generate images with the
specific watermark, keeping high quality simultaneously. In Figures 11 and 12, we illustrate the
images to visualize the quality based on Warfare, attacking Stable Signature. In Figures 13 and 14,
we show the visualization results of Warfare-Plus. The results indicate that Warfare-Plus
achieves a comparable image quality against Warfare with less computational overhead.

I POTENTIAL DEFENSES FOR SERVICE PROVIDERS

Although our method is an effective method for removing or forging a specific watermark in im-
ages, there are some possible defense methods against our attack. First, large companies can assign
a group of watermarks to an account to identify the identity. When adding watermarks to images, the
watermark can be randomly selected from the group of watermarks, which can hinder the adversary
from obtaining images containing the same watermark. However, such a method requires a longer
length of embedded watermarks to meet the population of users, which will decrease image quality
because embedding a longer watermark will damage the image. We provide a case study to verify
such a defense. In our implementation, we choose to use two bit strings for one user, i.e., m1

is ’10001000100010001000100010001000’ and m2 is ’11100011101010101000010000001011’.
Note that the Hamming Distance between m1 and m2 is 12, which means that there are 12 bits
in m1 and m2 are different. We assume that m1 and m2 will be used with equal probability. There-
fore, half of the collected data contain m1 and others contain m2. We evaluate Warfare on this
collected dataset. For the watermark removal attack, the bit accuracy for m1 after Warfare is
71.04%. And the bit accuracy for m2 after Warfare is 64.87%. Note that the ideal bit accuracy
after the removal attack is (32−12)/32∗100% = 62.50%. Therefore, our method can maintain the
attack success rate to some degree. For the watermark forging attack, the bit accuracy for m1 after
Warfare is 87.53%. And the bit accuracy for m2 after Warfare is 69.21%. We notice that the
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(a) Watermark Removal

(b) Watermark Forging

Figure 6: The first column is clean images. The second is watermarked images. The third is the
output of DMl. The fourth is the output of DMs. The fifth is the output of Warfare. The sixth is
the difference between the first and second columns. The seventh is the difference between the first
and third columns. The eighth is the difference between the first and fourth columns. The ninth is
the difference between the first and fifth columns. The tenth is the difference between the second
and fifth columns.

ideal bit accuracy for the forging attack is (32 − 12 + 6)/32 ∗ 100% = 81.25%, which means that
26 bits can be correctly recognized. The results indicate that the generator does not equally learn
m1 and m2. We think it is because of the randomness in the training process. On the other hand, the
results indicate that such a defense can improve the robustness of the watermark. However, we find
Warfare can still remove or forge one of the two watermarks. This means that such a defense can
only alleviate security problems instead of addressing them thoroughly.

Another defense is to design a more robust watermarking scheme, which can defend against re-
moval attacks from diffusion models. Because Warfare requires diffusion models to remove the
watermarks. However, with Warfare-Plus, such robust watermarking schemes can be broken.
The two methods mentioned above have the potential to defend against Warfare but have different
shortcomings, such as decreasing image quality, requiring a newly designed coding scheme, and
non-robust against Warfare-Plus. Therefore, Warfare and Warfare-Plus will be a threat
for future years.

J SOCIAL IMPACT

The advent of AI-generated content has ushered in an era marked by unparalleled creativity and ef-
ficiency, but this technological leap is not without its ethical and legal ramifications. For example, a
very recent case where Taylor Swift’s fake photos are circulated on X, which are made by generative
models. On the other hand, the Gemini AI model conducted by Google Inc., is believed to generate
biased content, by making white famous people black. Clearly, the ethical dilemma lies in recogniz-
ing the owner of content, as well as discerning the ethical implications of content manipulation. This
resonates not only with the creative industries but extends to broader societal implications, particu-
larly in the context of misinformation and deepfakes. To mitigate the harm from fake content and
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(a) Watermark Removal

(b) Watermark Forging

Figure 7: The first column is clean images. The second is watermarked images. The third is the
output of Warfare under the 50-sample setting in the few-shot experiment. The fourth is the output
of Warfare under the 100-sample setting in the few-shot experiment. The fifth is the difference
between the first and second columns. The sixth is the difference between the first and third columns.
The seventh is the difference between the first and fourth columns.

biased content and better attribute the owner of the generated content, big companies, like OpenAI
and Adobe, have developed and used watermarking methods, such as C2PA, in their products, such
as DALL·E 3.

The deployment of content watermarking technologies emerges as a potential solution to safeguard
intellectual property in the realm of AI-generated content. However, this introduces its own set
of ethical considerations, when considering its robustness. While content watermarking provides
a mechanism for tracing the origin of content and protecting the rights of creators, it concurrently
raises concerns about potential attacks against such technologies to escape from being watermarked
or forge another’s watermark.

Significantly, one of the vital parts of the effectiveness of content watermarking technologies is
contingent upon their resilience to attacks aimed at their removal or forgery. As shown in our paper,
the adversary can manipulate the existing watermarks in the generated content to achieve malicious
purposes, including unauthorized use, manipulation of AI-generated content, and framing up others.
Addressing these vulnerabilities requires a comprehensive understanding of potential attacks and
the development of robust watermarking techniques that can withstand sophisticated adversarial
attempts.
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(a) WGAN-div

(b) EDM

Figure 8: Visualization results for prior watermarking methods. The first column is clean images.
The second is the output of DMl. The third is the output of DMs. The fourth is the output of
Warfare.

Based on our experiments, we can find that the removal or forgery of watermarks not only under-
mines the protection of intellectual property but also amplifies the risks associated with the misuse
of AI-generated content. The malicious alteration of content, coupled with the absence of reli-
able watermarking, exacerbates the challenges associated with content verification and attribution.
Consequently, mitigating the threat of attacks on content watermarks is paramount for ensuring the
integrity and trustworthiness of AI-generated content in various domains, including journalism, en-
tertainment, and education. This asks us to develop more advanced content watermarking methods.

Specifically, there are two benefits brought by our attack. First, in Appendix I, we prove that the
group-watermarking method is promising against Warfare. It provides the big companies with a
lightweight scheme to improve their current watermarking methods, without developing new mod-
els. Second, our attack could become a red-teaming evaluation method to help companies develop

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 9: Visualization results of LSUN-bedroom. The first row is clean images. The second is the
output of Warfare.

Figure 10: Visualization results of images generated by SD1.5. The first row is clean images. The
second is the output of Warfare.

more robust and secure watermarking schemes. Developers can adopt our method to test their cur-
rent watermarking method and conduct specific adjustment to further defend attacks.

In conclusion, we think that the proposed Warfare will cause some malicious users to freely make
AIGC for commercial use and frame other users by spreading illegal AIGC with forged watermarks.
On the other hand, we think besides these negative impacts, our work will encourage others to
explore a more robust and reliable watermark for AIGC, which has a positive impact on society. It
can be achieved only after we have a deeper study on attacks.
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Figure 11: Visualization results of images generated by SD2.1. The first two rows are watermarked
images by Stable Signature. The last two rows are the output of Warfare to remove the watermark.

Figure 12: Visualization results of images generated by SD2.1. The first two rows are clean images.
The last two rows are the output of Warfare to forge the watermark.

Figure 13: Visualization results of Warfare-Plus. The first row is watermarked images by Stable
Signature. The last row is the output of Warfare-Plus to remove the watermark.
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Figure 14: Visualization results of Warfare-Plus. The first row is clean images. The last row is
the output of Warfare-Plus to forge the watermark.
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