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ABSTRACT

Federated multi-task learning (FMTL) aims to simultaneously learn multiple re-
lated tasks across clients without sharing sensitive raw data. However, in the
decentralized setting, existing FMTL frameworks are limited in their ability to
capture complex task relationships and handle feature and sample heterogeneity
across clients. To address these challenges, we introduce a novel sheaf-theoretic-
based approach for FMTL. By representing client relationships using cellular
sheaves, our framework can flexibly model interactions between heterogeneous
client models. We formulate the sheaf-based FMTL optimization problem using
sheaf Laplacian regularization and propose the Sheaf-FMTL algorithm to solve
it. We show that the proposed framework provides a unified view encompassing
many existing federated learning (FL) and FMTL approaches. Furthermore, we
prove that our proposed algorithm, Sheaf-FMTL, achieves a sublinear conver-
gence rate in line with state-of-the-art decentralized FMTL algorithms. Extensive
experiments demonstrate that Sheaf-FMTL exhibits communication savings by
sending significantly fewer bits compared to decentralized FMTL baselines.

1 INTRODUCTION

The growing demand for privacy-preserving distributed learning algorithms has steered the research
community towards federated learning (FL) (McMahan et al., 2017), a learning paradigm that al-
lows several clients, such as mobile devices or organizations, to cooperatively train a model without
revealing their raw data. By aggregating locally computed updates rather than raw data, FL aims to
learn a global model that benefits from the different data distributions inherently present across the
participating clients. Despite its promise, conventional FL faces significant hurdles when dealing
with client data heterogeneity. In fact, while the global model may perform well on average, the
statistically heterogeneous clients’ data have been shown to affect the model’s existence and con-
vergence (Sattler et al., 2020; Li et al., 2020b). These challenges are exacerbated in a decentralized
environment where coordination is limited and direct control over the client models is not feasible.
Recently, there have been several attempts to bring personalization into FL to learn distinct local
models (Wang et al., 2019; Fallah et al., 2020; Hanzely & Richtárik, 2020) since learning a per-
sonalized model per client is more suitable than a single global model to tackle data heterogeneity.
These models are specifically learned to fit the heterogeneous local data distribution via techniques
such as federated multi-task learning (FMTL) (Smith et al., 2017; Dinh et al., 2022) that model the
interactions between the different personalized local models.

FMTL generalizes the FL framework by allowing the simultaneous learning of multiple related but
distinct tasks across several clients. Unlike traditional FL, which focuses on training a single global
model, FMTL acknowledges that different clients may be interested in solving distinct tasks that are
related but not identical. By leveraging task relatedness, FMTL aims to improve the performance of
individual task models through shared knowledge while maintaining task-specific uniqueness. This
approach not only enhances the generalization performance of the models on individual tasks by
leveraging shared information but also contributes to tackling the non-independent and identically
distributed (non-IID) nature of data across clients. FMTL considers the different objectives and
data distributions across clients, customizing models to perform optimally on each task while still
benefiting from the federated structure of the problem as well as the similarity between these tasks.
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However, existing FMTL frameworks are not without limitations. A major concern is the oversim-
plified view of task interdependencies, where relationships between tasks are often modeled using
simple fixed scalar weights. This approach captures only the basic notion of task relatedness but fails
to represent more intricate and higher-order dependencies that may exist among tasks. As a result,
these models may overlook subtle interconnections and dynamic patterns of interdependence, lead-
ing to suboptimal knowledge sharing and reduced performance in heterogeneous and decentralized
environments. For a comprehensive understanding of scenarios where task similarities are naturally
defined in vector spaces, kindly refer to Appendix F. Furthermore, a critical issue with the current
FMTL frameworks is the assumption that the models have the same size, which limits the applica-
bility of FMTL in the case of different model sizes. Last but not least, to the best of our knowledge,
apart from MOCHA (Smith et al., 2017), which requires the presence of a server, the interactions
between the tasks are assumed to be known and not learned during training. Therefore, to address
these challenges, we seek to answer the following question:

“How can we effectively model and learn the complex interactions between various
tasks/models in an FMTL decentralized setting, even in the presence of different model sizes?”

To answer this question, the concept of sheaves provides a novel lens through which the interactions
between clients in a decentralized FMTL setting can be modeled. The mathematical notion of a sheaf
initially invented and developed in algebraic topology, is a framework that systematically organizes
local observations in a way that allows one to make conclusions about the global consistency of
such observations (Robinson, 2014; 2013; Riess & Ghrist, 2022). As such requirements are a central
part of FL problems, it is natural to ask how one could utilize a sheaf-based framework to find an
effective solution to the above question. Given an underlying topology of the client relationships,
we employ the notion of a cellular sheaf that captures the underlying geometry, enabling a richer and
more nuanced multi-task learning environment. Sheaves enable the representation of local models
as sections over the underlying space, offering a structured way to capture the relationships between
tasks/models in FMTL settings. As an inherent feature of the sheaf-based framework, our approach
can support heterogeneity over local models. More specifically, our framework naturally facilitates
learning models with different model dimensions. Moreover, sheaves are inherently distributed in
nature and hence facilitate decentralized training. A sheaf data structure consists of vector spaces
and linear mappings between them. In this work, we model the underlying space as a graph, and
vector spaces are defined over vertices and edges, capturing pairwise interactions. Crucially, we are
required to learn these maps that constitute the sheaf structure, as a decision variable of our problem.
Learning these maps is instrumental in comparing heterogeneous models by projecting them onto a
common space.

Contributions. This paper introduces a novel unified approach that fundamentally rethinks FMTL
and gives it a new interpretation by incorporating principles from sheaf theory. In what follows, we
summarize our main contributions

• Our proposed framework demonstrates a high degree of flexibility as it addresses the chal-
lenges arising from both feature and sample heterogeneity in the context of FMTL exploit-
ing sheaf theory. It may be regarded as a comprehensive and unified framework for FMTL,
as it encompasses a multitude of existing frameworks, including personalized FL (Hanzely
& Richtárik, 2020), conventional FMTL (Dinh et al., 2022), hybrid FL (Zhang et al., 2024),
and conventional FL (McMahan et al., 2017).

• To the best of our knowledge, this is the first work that proposes to solve the FMTL in
a decentralized setting while modelling higher-order relationships among heterogeneous
clients. Furthermore, unlike existing decentralized FMTL frameworks, we learn the inter-
actions between the clients as part of our optimization framework.

• Our algorithm, coined Sheaf-FMTL, exhibits high communication efficiency, as the size
of shared vectors among clients is significantly smaller in practice compared to the original
models. Furthermore, exchanging a modified version of the clients’ models provides an
additional layer of privacy.

• A detailed convergence analysis of our proposed algorithm shows that the average squared
norm of the objective function gradient decreases at a rate of O(1/K), where K is the
number of iterations, recovering the convergence rate of state-of-the art FMTL (Smith et al.,
2017; Dinh et al., 2022).
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• Extensive simulation results demonstrate the performance of our proposed algorithms on
several benchmark datasets compared to state-of-the-art approaches.

2 RELATED WORK

Federated Learning (FL). FL is designed to train models on decentralized user data without sharing
raw data. While numerous FL algorithms (McMahan et al., 2017; Karimireddy et al., 2020; Li et al.,
2020a; Lin et al., 2020; Elgabli et al., 2022) have been proposed, most of them typically follow a
similar iterative procedure where a server sends a global model to clients for updates. Then, each
client trains a local model using its data and sends it back to the server for aggregation to update
the global model. However, due to significant variability in locally collected data across clients,
data heterogeneity poses a serious challenge. A prevalent assumption within FL literature is that the
model size is the same across clients. However, recent works (Zhang et al., 2024; Liu et al., 2022b)
have highlighted the significance of incorporating heterogeneous model sizes in FL frameworks in
the presence of a parameter server.

Personalized FL (PFL). To address the challenges arising from data heterogeneity, PFL aims to
learn individual client models through collaborative training, using different techniques such as
local fine-tuning (Wang et al., 2019; Yu et al., 2020), meta-learning (Fallah et al., 2020; Chen et al.,
2018; Jiang et al., 2019), layer personalization (Arivazhagan et al., 2019; Liang et al., 2020; Collins
et al., 2021), model mixing (Hanzely & Richtárik, 2020; Deng et al., 2020a), and model-parameter
regularization (T Dinh et al., 2020; Li et al., 2021; Huang et al., 2021; Liu et al., 2022a). One way
to personalize FL is to learn a global model and then fine-tune its parameters at each client using
a few stochastic gradient descent steps, as in (Yu et al., 2020). Per-FedAvg (Fallah et al., 2020)
combines meta-learning with FedAvg to produce a better initial model for each client. Algorithms
such as FedPer (Arivazhagan et al., 2019), LG-FedAvg (Liang et al., 2020), and FedRep (Collins
et al., 2021) involve layer-based personalization, where clients share certain layers while training
personalized layers locally. A model mixing framework for PFL, where clients learn a mixture of
the global model and local models was proposed in (Hanzely & Richtárik, 2020). In (T Dinh et al.,
2020), pFedMe uses an L2 regularization to restrict the difference between the local and global
parameters.

Heterogeneous FL (HFL). Unlike traditional FL paradigms that assume uniform model structures
across all clients, HFL accommodates variations in model sizes, layers, and computational capabil-
ities, thereby enabling more flexible and inclusive participation. One of the primary challenges in
HFL is ensuring effective knowledge sharing and aggregation among clients with disparate models.
To tackle this, many HFL approaches leverage knowledge distillation techniques, where a public
dataset or a subset of data is used to distill knowledge from heterogeneous local models into a
unified global model (Li & Wang, 2019; Zhu et al., 2021). For instance, FedMD (Li & Wang,
2019) employs model distillation to allow clients with different model architectures to contribute
to a shared global model without necessitating architectural alignment. Additionally, techniques
such as adaptive model aggregation (Zhai et al., 2024) and model compatibility layers (Setayesh
et al., 2023) have been proposed to facilitate the seamless integration of diverse model updates. An-
other significant aspect of HFL is the consideration of clients’ varying computational resources and
communication capabilities. Moreover, recent advancements have introduced the use of parameter-
efficient fine-tuning methods to support heterogeneity in model architectures (Chen et al., 2024).

Federated Multi-Task Learning (FMTL). FMTL aims to train separate but related models simul-
taneously across multiple clients, each potentially focusing on different but related tasks. It can
be viewed as a form of PFL by considering the process of learning one local model as a single
task. Multi-task learning was first introduced into FL in (Smith et al., 2017). The authors proposed
MOCHA, an FMTL algorithm that jointly learns the local models as well as a task relationship
matrix, which captures the relations between tasks. In the context of FMTL, task similarity can be
represented through graphs, matrices, or clustering. In (Sattler et al., 2020), clustered FL, an FL
framework that groups participating clients based on their local data distribution was proposed. The
proposed method tackles the issue of heterogeneity in the local datasets by clustering the clients
with similar data distributions and training a personalized model for each cluster. FedU, an FMTL
algorithm that encourages model parameter proximity for similar tasks via Laplacian regularization,
was introduced in (Dinh et al., 2022). In (SarcheshmehPour et al., 2023), the authors leverage a
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Figure 1: Schematic illustration of the sheaf-based modeling of FMTL.

generalized total variation minimization approach to cluster the local datasets and train the local
models for decentralized collections of datasets with an emphasis on clustered FL. A more in-depth
comparison between PFL, HFL, and FMTL can be found in Appendix C.

Sheaves. A major limitation in FMTL over a graph, e.g., FMTL with graph Laplacian regularization
in (Dinh et al., 2022) and FMTL with generalized total variance minimization in (SarcheshmehPour
et al., 2023), that we wish to address in this work, is their inability to deal with feature heterogeneity
between clients. In contrast, sheaves, a well-established notion in algebraic topology, can inherently
model higher-order relationships among heterogeneous clients. Despite the limited appearance of
sheaves in the engineering domain, their importance in organizing information/data distributed over
multiple clients/systems has been emphasized in the recent literature (Robinson, 2014; 2013; Riess
& Ghrist, 2022). In fact, sheaves can be considered as the canonical data structure to systematically
organize local information so that useful global information can be extracted (Robinson, 2017). The
above-mentioned graph models with node features lying in some fixed space can be considered as
the simplest examples of sheaves, where such a graph is equivalent to a constant sheaf structure that
directly follows from the graph. Motivated by these ideas, our work focuses on using the generality
of sheaves to propose a generic framework for FMTL with both data and feature heterogeneity over
nodes, generalizing the works of (Dinh et al., 2022; SarcheshmehPour et al., 2023). The analogous
generalization of the graph Laplacian in the sheaf context is the sheaf Laplacian. In the context
of distributed optimization, (Hansen & Ghrist, 2019) consider sheaf Laplacian regularization with
sheaf constraints, i.e., Homological Constraints, and the resulting saddle-point dynamics.

3 SHEAF-BASED FEDERATED MULTI-TASK LEARNING (SHEAF-FMTL)

3.1 FMTL PROBLEM SETTING

We consider a connected network of N clients modeled by a graph G = (V, E), where V = [N ] =
{1, . . . , N} is the set of clients, and E ⊆ V × V represents the set of edges, i.e., the set of pairs of
clients that can communicate with each other. Each client i ∈ V has a local loss function fi : Rdi →
R and only has access to its own local data distribution Di. Client i can only communicate with the
set of its neighbors defined as Ni = {j ∈ V|(i, j) ∈ E} whose cardinality is |Ni| = δi. In this work,
we aim to fit different models, i.e., θi ∈ Rdi , ∀i ∈ [N ], to the local data of clients, while accounting
for the interactions between these models. Finally, let θ = [θT

1 , . . . ,θ
T
N ]T ∈ Rd be the stack of the

local decision variables {θi}Ni=1, where d =
∑N

i=1 di.

3.2 A SHEAF THEORETIC APPROACH OF THE FMTL PROBLEM

A “cellular sheaf” F of R-vector spaces over a simple graph G = (V, E), i.e., without loops and
multiple edges, consists of the following assignments
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• For each i ∈ V , a vector space F(i) = Rdi of dimension di,

• for each edge e = (i, j) ∈ E , a vector space F(e) = Rdij of dimension dij , and

• for each edge e ∈ E and a vertex i ∈ V that is incident to the edge e, a linear transformation
Fi⊴e : F(i) → F(e).

We shall refer to F(i) and F(e) as stalks over i and e, respectively, and the map Fi⊴e as the
restriction map from i to e. Also, given an edge e = (i, j) ∈ E , we denote the matrix representation
of Fi⊴e, with respect to a chosen basis such as the standard basis, by Pij . With an abuse of notation,
we use Fi⊴e and Pij interchangeably, as required, in the remainder of the paper.

Naturally associated with such a sheaf structure are the dual maps, F∗
i⊴e : F(e) → F(i), of the

restriction maps. Note that we are using the identification of the dual of a finite-dimensional vector
space with itself. It is a standard fact that the matrix representation of the dual map F∗

i⊴e is given
by the transpose of Pij . Similarly, with an abuse of notation, we shall also use F∗

i⊴e and P T
ij

interchangeably.

For each i ∈ V , F(i) is the space in which the local model of client i is parameterized, i.e., θi ∈
F(i). A choice {θi}i∈V of local models lies in the total space C0(F) :=

⊕
i∈V F(i). Note that, we

do not assume di and dj to be the same for i ̸= j. In particular, different clients can have different
model sizes that could arise from feature heterogeneity and/or different learning tasks. Also note
that an element of C0(F) is not fully observable by a single client, as assumed in the FL setting.

Therefore, any two models can be compared via the restriction maps, provided they share an edge.
More specifically, as can be seen from Figure 1, for two clients i and j such that e = (i, j) ∈ E ,
F(e) can be considered as the “disclose space” in which models θi and θj are compared via the
projections Fi⊴e (θi) = Pij and Fj⊴e (θj) = Pji. Here, the local models θi are assigned to the
vertices (the clients), while the restriction maps Pij project the local models onto the edge space
capturing the shared features or relationships between the clients.

We refer the reader to Appendix B for an interpretation of this viewpoint in the context of linear
models. Given a choice of local models, the overall comparison of these models is done in the total
space C1(F) :=

⊕
e∈E F(e) of the disclose spaces. The total discrepancy of such a choice of local

models, as measured by comparing their projections onto the disclose spaces, can be formalized via
the Laplacian quadratic form associated with the so-called “sheaf Laplacian”, the analogous to the
graph Laplacian. To define the Laplacian in the sheaf setting, we first need to orient the edges and
define the “co-boundary map” δ : C0(F) → C1(F).

From now onwards, we shall fix an orientation for each edge and write e = (i, j) for an oriented
edge. For such an oriented edge e = (i, j), write e+ = j and e− = i. Our discussion is not
subjective to the choice of orientation; however, one can choose a canonical orientation associated
with an ordering of the vertices, e.g., when vertices are indexed by numbers, by choosing e+ =
max{i, j} and e− = min{i, j} for an unoriented edge e = {i, j}. Given such an orientation, the co-
boundary map δ is given as follows. For θ = (θi)i∈V , the co-boundary of θ, δ (θ) = (δ (θ)e)e∈E ∈
C1(F), is defined by

δ (θ)e = Fe+⊴e (θe+)−Fe−⊴e (θe−) . (1)

As in the case of restriction maps, one also has the dual δ∗ : C1(F) → C0(F) of the co-boundary
map δ. The sheaf Laplacian LF : C0(F) → C0(F) associated with the cellular sheaf F is then
given by LF = δ∗ ◦ δ. For a given θ, the sheaf Laplacian is defined as LF (θ) =

(
LF (θ)j

)
j∈V

,

where LF (θ)j =
∑

i∈V Lj,i (θi) is given by

Lj,i =


∑
i⊴e

F∗
i⊴e ◦ Fi⊴e, if i = j,

−F∗
j⊴e ◦ Fi⊴e, if e = (i, j) ∈ E ,

0, otherwise.

(2)

In particular, based on the ordering of V that is used to stack the local models, and the chosen bases
for F(i)’s and F(e)’s , LF is a block matrix structure indexed by V , whose (j, i) block can be
directly obtained from (2). More specifically, with an abuse of notation, writing Lj,i in terms of its
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matrix representation, we have that

Lj,i =


∑

j′∈Ni

P T
ij′Pij′ , if i = j,

−P T
jiPij , if e = (i, j) ∈ E ,

0, otherwise.

(3)

In fact, one can write the matrix representation of the co-boundary map, P , as follows. It has a
block structure whose rows are indexed by edges and columns are indexed by vertices. Then, the
submatrix Pe,i that corresponds to row e ∈ E and column i ∈ V is given by

Pe,i =

{
Pij , if e = (i, j)
−Pij , if e = (j, i),
0, otherwise.

(4)

From the definition LF = δ∗ ◦ δ, one can get the matrix form of LF as LF = P TP . Assuming
the matrix representation of LF , we often write LF (θ) = LF θ = P TPθ. Note that this block
structure aligns well with the distributed optimization goal of the FMTL setting.

The significance of the sheaf Laplacian LF is characterized by the consensus property given by

ker(LF ) =
{
(θi)i∈V ∈ C0(F) | Fi⊴e (θi) = Fj⊴e (θj) for e = (i, j) ∈ E

}
. (5)

In other words, ker(LF ) consists of the choices of local models that are in global consensus so that
any two comparable local models θi and θj agree when projected onto the disclose space F(e),
where e = (i, j) ∈ E . Accordingly, the global consensus constraint on θ ∈ C0(F) is given by
LF θ = 0.

Similar to that of a graph Laplacian, the sheaf Laplacian quadratic form QF (θ) = θTLF θ quan-
tifies by how much a given θ deviates from the constraint LF θ = 0. The following lemma shows
that the sheaf Laplacian quadratic form measures the total discrepancy between the projections of
the local models onto the edge spaces, summed over all edges in the graph.

Lemma 3.1.

θTLF θ =
∑

e=(i,j)∈E

∥Fi⊴e (θi)−Fj⊴e (θj)∥2 =
∑

e=(i,j)∈E

∥Pijθi − Pjiθj∥2 . (6)

Proof. The details of the proof are deferred to Appendix G.

Next, we show that θ being a global section, i.e., θ ∈ ker(LF ), is equivalent to θ minimizing the
sheaf Laplacian quadratic form.

Lemma 3.2.

ker(LF ) = argmin
θ∈C0(F)

QF (θ) = argmin
θ∈C0(F)

θTLF θ. (7)

Proof. The proof is provided in Appendix G.

In the context of FMTL, a cellular sheaf is a structured way to assign information to each client
(node) and their connections (edges) in a network as follows

• Nodes (Clients): Each client i has its own local model θi ∈ Rdi .

• Edges (Interaction space): Each connection between clients i and j has a shared space
F(e) ∈ Rdij .

• Restriction Maps: The mappings Pij : Rdi → Rdij project the local model of client i
into the shared space with client j. This projection facilitates meaningful comparisons
and collaborations between clients, ensuring that heterogeneous models can still interact
effectively within the network.

6
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This setup allows us to systematically ensure that the models of connected clients align within their
shared interaction spaces, promoting consistency and cooperation across the network. To formu-
late the FMTL optimization problem, we aim to minimize the combined objectives of individual
client losses and a regularization term that enforces consistency across client models. Specifically,
each client seeks to minimize its own loss function based on its local data, while the regularization
term penalizes discrepancies between connected clients in their shared interaction spaces. Building
upon this, we can express the regularization term more succinctly using the sheaf Laplacian matrix
LF (P ). This matrix encapsulates the structural relationships and shared interaction spaces between
clients, allowing us to reformulate the optimization problem in a compact and mathematically ele-
gant manner as follows

min
θ,P

Ψ(θ,P ) = f(θ) +
λ

2
θTLF (P )θ, (8)

where f(θ) =
∑N

i=1 fi(θi) and LF (P ) is the sheaf Laplacian for the choices of the restriction
maps. The sheaf Laplacian regularization term λ

2θ
TLF (P )θ enforces consistency between the

projections of the local models onto the edge space, promoting collaboration among the clients. A
more in-depth discussion on the rationale behind using Sheaf theory to model clients’ interaction
in the context of FMTL can be found in Appendix A. In Appendix D, we show that our proposed
framework is very general and covers many special cases previously introduced in the literature.

3.3 PROPOSED ALGORITHM & CONVERGENCE ANALYSIS

Note that problem (8) arising from the sheaf formulation can be re-written as follows

min
{θi}i∈V ,

{Pij}(i,j)∈E

N∑
i=1

fi(θi) +
λ

2

N∑
i=1

∑
j∈Ni

∥Pijθi − Pjiθj∥2 , (9)

where ∥ · ∥ is the Euclidean norm, and ∀(i, j) ∈ E , Pij is a matrix with size (dij , di) such that dij =
dji. In (9), we propose to jointly learn the models {θi}i∈V and the matrices {Pij}(i,j)∈E . The matrix
Pij can be seen as an encoding or compression matrix since it maps the higher-dimensional vector
θi to a lower-dimensional space with dimension dij , effectively retaining only the most important
features or information shared between the two clients i and j. Hence, the term (Pijθi − Pjiθj)
captures the dissimilarity or discrepancy between the two vectors θi and θj in this shared subspace.
Remark 3.3. In (9), the hyperparameter λ controls the impact of the models of neighboring clients
on each local model. When λ > 0, the minimization of the regularization term promotes the prox-
imity among the models of neighboring clients. On the other hand, if λ = 0, (9) reduces to an
individual learning problem, wherein each client independently learns its local model θi solely
from its local data, without engaging in any collaborative efforts with the other clients. Finally,
as λ → ∞, (9) boils down to the classical FL problem where the aim is to learn a global model
(Hanzely & Richtárik, 2020).

Next, we propose a communication-efficient algorithm to solve (9) by adopting an iterative optimiza-
tion approach. Since the objective function is assumed to be differentiable, we can use gradient-
based optimization methods. More specifically, we will use alternating gradient descent (AGD)
updates for {θi}i∈[N ] and {Pij}(i,j)∈E , respectively. At iteration (k + 1), client i sends P k

ijθ
k
i and

receives {P k
jiθ

k
j }j∈Ni

from its neighbours, to update its model θi, using one gradient descent step

θk+1
i =θk

i −α

∇fi(θ
k
i )+λ

∑
j∈Ni

(P k
ij)

T (P k
ijθ

k
i −P k

jiθ
k
j )

 . (10)

Then, client i sends P k
ijθ

k+1
i and receives {P k

jiθ
k+1
j }j∈Ni

from its neighbours, to be able to update
its matrices {Pij}j∈Ni , using one gradient descent step, according to

P k+1
ij =P k

ij−ηλ(P k
ijθ

k+1
i −P k

jiθ
k+1
j )(θk+1

i )T , (11)

where α and η are two learning rates. Note that, in our proposed algorithm, neighbouring clients
only share vectors and no matrix exchange is needed in both updates (10) and (11). Our proposed
method is summarized in Algorithm 1.
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Algorithm 1 Sheaf-based Federated Multi-Task Learning (Sheaf-FMTL)

Parameters: number of clients N , number of iterations K, learning rates (α, η), regularization
parameter λ.
Initialization: initial models {θ0

i }Ni=1, initial matrices {P 0
ij}(i,j)∈E .

for k = 0, . . . ,K do
for client i = 1, . . . , N in parallel do

▷ Sends P k
ijθ

k
i and receives P k

jiθ
k
j from each neighbour j ∈ Ni

▷ Updates its model

θk+1
i =θk

i −α

∇fi(θ
k
i )+λ

∑
j∈Ni

(P k
ij)

T (P k
ijθ

k
i −P k

jiθ
k
j )

 .

▷ Sends P k
ijθ

k+1
i and receives P k

jiθ
k+1
j from each neighbour j ∈ Ni

▷ Updates its matrix

P k+1
ij =P k

ij−ηλ(P k
ijθ

k+1
i −P k

jiθ
k+1
j )(θk+1

i )T .

end for
end for

Remark 3.4. Note that each neighbour of the node i is required to send the vector Pjiθj in order
to update θi and Pij as per (10) and (11). The dimension of Pjiθj is dij , which in practice could be
much smaller than dj , the size of θj . For example, a reasonable choice of dij is dij = min(di, dj).
Hence, our proposed algorithm is more communication-efficient than sending the models {θi}i∈V .

Next, we turn to analyzing the convergence of Sheaf-FMTL. To this end, we start by making the
following standard assumptions.

Assumption 1 (Smoothness). ∀i ∈ [N ], the function fi is assumed to be L-smooth, i.e., there exists
L > 0 such that ∀i ∈ [N ], ∀θ1,θ2, ∥∇fi(θ2)−∇fi(θ1)∥ ≤ L∥θ2 − θ1∥.

Assumption 2 (Bounded domain). There exists Dθ > 0 such that ∥θ∥ ≤ Dθ.

Assumptions 1-2 are key assumptions that are often used in the context of distributed optimization
(Karimireddy et al., 2020; Li et al., 2020a; Deng et al., 2020b; 2023). In particular, Assumption 2 is
commonly used in the convex-concave minimax literature (Deng et al., 2020b; 2023). The following
theorem establishes the convergence rate of the Sheaf-FMTL algorithm.

Theorem 3.5. Let Assumptions 1 and 2 hold, and the learning rates α and η satisfy the conditions
α < 2

NL and η < 2
λD2

θ
, respectively. Then, the averaged gradient norm is upper bounded as follows

1

K

K−1∑
k=0

∥∇Ψ(θk,P k)∥2 ≤ 1

ρK
(Ψ(θ0,P 0)−Ψ⋆), (12)

where ρ = min
{
α
(
1− αNL

2

)
, η

(
1− ηλD2

θ

2

)}
and Ψ⋆ is the optimal value of Ψ.

Proof. The proof can be found in Appendix H.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To validate our theoretical foundations, we numerically evaluate the performance of our proposed
algorithm Sheaf-FMTL using two experiments: (i) the clients have the same model size in Section
4.2, and (ii) the clients have different model sizes in Section 4.3.
Datasets. In the first experiment, we examine two datasets: Rotated MNIST and Heterogeneous
CIFAR-10. A detailed description of the datasets can be found in Appendix I.1. In appendix J,

8
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Figure 2: Test accuracy as a function of the number of communication rounds and the number
of transmitted bits for the Rotated MNIST dataset (top), and the Heterogenous CIFAR-10 dataset
(bottom).

we report additional results using four more datasets. In the second experiment, we used modified
versions of the Vehicle and School datasets by randomly dropping features of the local datasets to
make the model size different across clients. More details on the generation of these two datasets
can be found in Appendix I.2.

Baselines. In the first experiment, we compare to the dFedU algorithm (Dinh et al., 2022). We
implement our proposed algorithm using a mini-batch stochastic gradient in (10) to make the com-
parison fair. In the second one, we compare to a stand-alone baseline where each client trains on
each local dataset without communicating with the rest of the clients. To the best of our knowl-
edge, Sheaf-FMTL is the only algorithm solving the FMTL problem over decentralized topology
with the clients having different model sizes, hence the comparison to a stand-alone baseline in the
second experiment. More details on the experimental Settings can be found in Appendix I.2.

4.2 EXPERIMENT 1: SAME MODEL SIZE

Figure 2 illustrates the performance of the proposed Sheaf-FMTL algorithm and dFedU on the
Rotated MNIST and Heterogeneous CIFAR-10 datasets, respectively, showcasing the test accuracy
as a function of the number of communication rounds and the total number of transmitted bits. We
consider two values for γ = {0.01, 0.03} such that the projection space dimension is γd. In Figure
2(a), we can see that Sheaf-FMTL manages to achieve similar test accuracies as dFedU. On the
other hand, Figure 2(b) shows that Sheaf-FMTL achieves higher test accuracy with fewer trans-
mitted bits compared to the baseline, demonstrating its ability to learn effectively while minimizing
communication overhead. For the Rotated MNIST dataset, using γ = 0.01 leads to almost simi-
lar test accuracy as dFedU, while it requires 100× less in terms of the number of transmitted bits
to achieve this accuracy. For the Heterogeneous CIFAR-10, Sheaf-FMTL requires slightly more
communication rounds than dFedU but the benefit in terms of communication overhead is evident
as it requires exchanging significantly less number of bits.

As illustrated in Table 1, Sheaf-FMTL incurs additional storage and computational costs due to
the maintenance and training of restriction maps. Specifically, each restriction map requires storing

9
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Figure 3: Test accuracy/MSE as a function of the number of iterations for (a) Modified Vehicle
dataset, and (b) Modified School dataset.

Table 1: Comparative analysis of storage, computational overheads, and communication costs.

Method Storage
per client

Compute per
iteration per client

Communication per
iteration per client

Sheaf-FMTL di +
∑

j∈Ni

dij × di O(di × dij)
∑

j∈Ni

dij

dFedU di O(di)
∑

j∈Ni

di

a matrix of size dij ×di, leading to a cumulative storage requirement of O(|E|×dij ×di) across the
network. Computationally, updating these maps involves matrix multiplications and gradient calcu-
lations, adding a complexity of O(dij × di) per edge per iteration. However, these costs are signifi-
cantly offset by the substantial communication savings achieved, particularly when dij is chosen to
be a small fraction of di, making Sheaf-FMTL a viable option in resource-rich FL environments
such as cross-silo FL settings. For a more detailed analysis of the scalability of Sheaf-FMTL with
more complex data and larger parameter spaces, including neural networks, as well as strategies to
mitigate computational and storage overheads, please refer to Appendix E.

4.3 EXPERIMENT 2: DIFFERENT MODEL SIZES

Figure 3 compares the performance of the proposed Sheaf-FMTL algorithm with the local training,
i.e., training each model independently without communication with other clients, on two modified
versions of the Vehicle and School datasets by plotting the test accuracy as a function of the number
of iterations. We can see that Sheaf-FMTL demonstrates a clear advantage over the local training
for both datasets. This observation highlights the effectiveness of Sheaf-FMTL in leveraging the
shared information across clients while preserving the individual characteristics of their local mod-
els, a key feature of FL. By utilizing the sheaf structure to capture the relationships between the local
models, Sheaf-FMTL enables more efficient and accurate learning than the local approach when
the model size is different across clients.

5 CONCLUSION

In this work, we introduced a novel sheaf-based framework for federated multi-task learning that ef-
fectively tackles challenges arising from data and sample heterogeneity across clients. By leveraging
cellular sheaves, our approach can flexibly model complex interactions between client models, even
in the presence of varying feature spaces and model sizes. The proposed Sheaf-FMTL algorithm
is communication-efficient, preserves client privacy, and provides a unified view subsuming various
existing FL methods. Theoretically, we analyzed the convergence properties of Sheaf-FMTL, es-
tablishing a sublinear convergence rate in line with state-of-the-art decentralized FMTL algorithms.
Empirically, extensive experiments on benchmark datasets demonstrated the communication savings
of Sheaf-FMTL compared to the baseline dFedU.
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A SHEAF-THEORETIC APPROACH IN FMTL

A.1 RATIONALE FOR ADOPTING SHEAF THEORY IN FMTL

Sheaf theory provides a powerful mathematical framework for modelling and analyzing complex
relationships in FMTL. The adoption of this approach in our context is motivated by several key
advantages

1. Heterogeneity modeling. FMTL often involves clients with different data distributions,
model architectures, or task objectives. Sheaf theory allows us to capture these heteroge-
neous relationships in a structured and mathematically rigorous manner.

2. Local-Global consistency. Sheaves provide a natural way to ensure consistency between
local (client-specific) and global (network-wide) information. This is crucial in FMTL
scenarios where we aim to leverage network information to improve local performance.

3. Flexible representation. The sheaf structure allows for representing varying degrees of
similarity or difference between clients. This nuanced representation is more sophisticated
than traditional approaches that often assume uniform relationships across the network.

A.2 THE INTERACTION SPACE AND CLIENT RELATIONSHIPS

The interaction space, denoted as F(e), plays a central role in our sheaf-theoretic approach to FMTL.
It serves as a shared space where local models θi and θj are projected using restriction maps Pij and
Pji, respectively. The projection into this interaction space provides a measure of client relationships
for the following reasons

1. Common feature capture. The interaction space captures the common or comparable
features between clients, analogous to how principal component analysis (PCA) captures
the most important features of a dataset.

2. Consistency enforcement. Our approach enforces consistency between the projections of
local models onto the interaction space. This is mathematically represented by the sheaf
Laplacian term λ

2θ
TLF (P )θ, which penalizes discrepancies between the projections of

local models.

3. Collaboration encouragement. By minimizing the sheaf Laplacian term, local models
are encouraged to collaborate effectively, leveraging shared information to improve overall
performance.

A.3 RESTRICTION MAPS AND THEIR INTERPRETATIONS

The restriction maps, represented by matrices Pij , are fundamental to our sheaf-theoretic approach.
These maps project local models θi onto the interaction space F(e). The intuition behind these
maps can be understood as follows

1. Feature selection. Pij acts as a feature selection matrix, identifying common or compara-
ble features between clients i and j.

2. Information sharing. The restriction maps facilitate information sharing between clients
by projecting local models onto a common space, enabling effective collaboration even
when local models have different dimensions or feature sets.

3. Model comparison. In heterogeneous settings where clients have different model sizes,
traditional FL methods relying on direct model aggregation or comparison fail. The re-
striction maps allow for meaningful comparisons by projecting onto a common space.

A.4 DIMENSIONAL CONSIDERATIONS AND TRADE-OFFS

The dimensions of the restriction map Pij are determined by the dimensions of the local model θi
and the interaction space F(e). If θi ∈ Rdi and the interaction space has dimension dij , then Pij is
of size dij × di. The choice of dij involves a trade-off
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• Smaller dij: Results in a more compact representation of shared information, leading to
communication savings.

• Larger dij: Allows for more flexibility in capturing relationships between local models
but increases communication costs.

In practice, the choice of dij can be guided by factors such as the estimated overlap in feature
spaces between clients, computational resources available, and the desired balance between model
expressiveness and communication efficiency.

A.5 COMPARATIVE ADVANTAGES OVER TRADITIONAL FMTL METHODS

Our sheaf-theoretic approach offers several advantages over traditional FMTL methods

1. Heterogeneity handling. Unlike many traditional FMTL methods that assume homoge-
neous models across clients, our approach naturally accommodates heterogeneous model
architectures and task objectives.

2. Nuanced relationships. Traditional methods often assume uniform relationships between
clients. Our approach allows for more nuanced modelling of inter-client relationships
through the interaction space and restriction maps.

3. Privacy preservation. By working in the interaction space rather than directly sharing
model parameters, our method potentially offers enhanced privacy compared to traditional
FMTL approaches.

B INTERPRETATION OF dij AND Pij

In this appendix, we provide an interpretation of the restriction maps Pij = Fi⊴e for the case when
the local models are given by linear or logistic regression. We describe how to choose dij and Pij

in a meaningful way and the constraints that can be imposed on them.

Consider a network of N clients, where each client i has a local model parameterized by θi ∈ Rdi .
In the case of linear regression, the local model of client i is given by fi(θi;xi) = θT

i xi, where
xi ∈ Rdi is the input feature vector. For logistic regression, the local model is given by fi(θi;xi) =
σ(θT

i xi), where σ(·) is the sigmoid function.

Interpretation of Pij . Consider two clients i, j ∈ V such that e = (i, j) ∈ E . The restriction
maps Pij and Pji aim to capture the relationships between the local models θi and θj by projecting
them to a common interaction space F(e). In the context of linear or logistic regression, Pij and
Pji can be interpreted as feature selection matrices that identify the common or comparable features
between the two clients.

Let Pij ∈ Rdij×di and Pji ∈ Rdij×dj be the restriction maps for clients i and j, respectively, where
dij = dimF(e) is the dimension of the interaction space. The restriction maps should satisfy the
following condition

Pijθi ≈ Pjiθj , (13)

which ensures that the projected models in the interaction space are comparable.

To impose the condition in (13), we consider the following regularizer term

Qij = ∥Pijθi − Pjiθj∥2 , (14)

which we aim to minimize. By adding the regularizer terms for all neighboring clients and then
summing over all clients, we obtain the overall regularizer

Q(θ) =

N∑
i=1

∑
j∈Ni

∥Pijθi − Pjiθj∥2 , (15)

which is exactly the sheaf quadratic form for the choice Fi⊴e = Pij for e = (i, j) ∈ E .
Choice of dij . The dimension of the interaction space, dij , determines the size of the restriction
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maps Pij and Pji. In practice, dij can be chosen based on the number of common or comparable
features between clients i and j. A smaller value of dij implies a more compact representation of
the shared information between the two clients, while a larger value allows for more flexibility in
capturing the relationships between the local models.

C DIFFERENTIATING PFL, HFL, AND FMTL

FL has evolved to encompass various paradigms that address specific challenges inherent in decen-
tralized data environments. Among these, PFL, HFL, and FMTL stand out due to their distinct ob-
jectives and methodologies. In what follows, we elaborate on the nuances between these paradigms.

C.1 OBJECTIVE

FMTL, PFL, and HFL each pursue distinct goals within the FL landscape. FMTL aims to enable
collaborative learning across multiple related tasks, ensuring that each task benefits from shared
knowledge while maintaining task-specific optimizations. In contrast, PFL focuses on optimizing
a single shared model that is then personalized for each client, enhancing performance tailored to
individual client needs. This can be achieved by introducing an L2 regularization term that restricts
the difference between the local and global parameters. HFL seeks to facilitate collaboration among
clients that may have heterogeneous models, allowing the integration of these models without re-
quiring uniformity in their structures.

C.2 TASK DIVERSITY

FMTL supports multiple distinct yet related tasks across different clients, leveraging the similari-
ties between tasks to improve overall learning efficiency and performance. PFL, on the other hand,
operates under the assumption of a common task distributed among clients, with each client develop-
ing personalized adaptations of the shared model to better suit their specific data and requirements.
HFL is designed to handle potentially heterogeneous models among clients, enabling collaboration
without the necessity of explicitly modeling the relationships between clients.

C.3 MODEL ARCHITECTURE

In terms of model architecture, FMTL is flexible in accommodating different architectures for each
task or client, provided that the relationships between tasks are effectively modeled to facilitate
knowledge sharing. PFL typically relies on a common base model that is augmented with per-
sonalized layers or adaptations for each client, ensuring a balance between shared knowledge and
individual customization. HFL explicitly manages varying model architectures across clients by
employing techniques such as knowledge distillation, which allows for the transfer of information
between heterogeneous models without requiring a uniform architectural framework.

C.4 KNOWLEDGE SHARING MECHANISM

The mechanisms for knowledge sharing vary significantly among FMTL, PFL, and HFL. FMTL
leverages the relationships between tasks to enable effective knowledge transfer across related tasks,
enhancing the learning process through shared insights. PFL shares a global model baseline that
serves as the foundation for each client’s personalized model, ensuring that the core knowledge
is distributed while allowing for individual customization. HFL utilizes advanced techniques like
knowledge distillation to transfer information between heterogeneous models, ensuring that valuable
knowledge is shared even when clients operate with different model architectures.

D SPECIAL CASES

In this appendix, we show how some previous works can be considered as special cases of the present
work. Most of the works that we refer to, except (Zhang et al., 2024), consider the same model size
for all the clients. Thus, unless otherwise stated, we assume in the rest of this subsection that all
the local models are assumed to have the same size p ∈ N, i.e., ∀i ∈ V,θi ∈ Rp. In particular, we
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chose ∀i ∈ V and ∀e ∈ E , F(i) = F(e) = Rp. In Table 2, we summarize the connections of our
framework to state-of-the-art FL approaches.

Table 2: Connection of the Sheaf-FMTL framework to state-of-the-art FL.

FL Framework Restriction Maps Choice
Conventional FMTL Pij =

√
aijIp

Conventional FL Pij = Ip
Personalized FL P0i = Pi0 = Ip, Pij = 0p

Hybrid FL P0i = Πi,Pi0 = Idi
,Pij = 0p

Next, we show in detail how the choices of the sheaf maps, Pij , made in Table 2 recover some of
the existing FL frameworks.
Connection with conventional FMTL (Dinh et al., 2022). In conventional FMTL, we aim to solve
the problem

min
{θi}i∈V

N∑
i=1

fi(θi) +
λ

2

N∑
i=1

∑
j∈Ni

aij ∥θi − θj∥2 , (16)

where the weights {aij} are assumed to be known in advance. This problem is a special case
associated with the sheaf F arising by choosing Fi⊴e = Pij =

√
aijIp, where Ip is the p × p

identity map/matrix. The dimension of the projection space is dij = p for all edges (i, j). For this
particular choice of the sheaf F , the associated Laplacian quadratic form is precisely

QF (θ) = θTLF θ =
∑
i,j◁e

aij ∥θi − θj∥2 =
∑

(i,j)∈E

aij ∥θi − θj∥2 . (17)

Replacing this into (9), we get the conventional FMTL problem (16).
Connection with conventional FL (Ye et al., 2020). Setting the restriction maps to be Pij = Ip
and dij = p, ∀(i, j) ∈ [N ]× [N ]. Then, the sheaf Laplacian regularization is given by

QF (θ) =
∑

(i,j)∈E

∥θi − θj∥2 . (18)

Hence, (9) reduces to

min
{θi}i∈V

N∑
i=1

fi(θi) +
λ

2

∑
(i,j)∈E

∥θi − θj∥2 (19)

Taking λ → ∞, as pointed out in Remark 3.3, one recovers the conventional FL problem

min
{θi}i∈V

N∑
i=1

fi(θi)

s.t θi = θj ,∀(i, j) ∈ E . (20)

Connection with personalized FL (Hanzely et al., 2020). Introducing the client 0, e.g., a server,
where f0 ≜ 0 and θ0 = θ̄. Furthermore, let P0i = Pi0 = Ip, ∀i ∈ [N ], and Pij = 0p, ∀(i, j) ∈
[N ]× [N ], where 0p is the p× p zero map/matrix. Hence, the set of neighbours of client 0 is N0 =
[N ], and the set of each client i ∈ [N ] is Ni = {0}. We observe that this amounts to choosing the
constant sheaf over the graph that connects each client to the server. Then, the associated Laplacian
quadratic form can be written as

QF (θ) =
∑
i∈N0

∥P0iθ0 − Pi0θi∥2 =

N∑
i=1

∥∥θ̄ − θi
∥∥2 . (21)
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Therefore, (9) reduces to the personalized FL objective (Hanzely et al., 2020, Eq. (2))

min
{θi}i∈V

N∑
i=1

fi(θi) +
λ

2

N∑
i=1

∥∥θi − θ̄
∥∥2 . (22)

Connection with hybrid FL (Zhang et al., 2024). In this case, a communication framework is
established between a server (with index 0) and a set of clients (i ∈ [N ]), with each client connected
solely to the server. The server has access to all features, while clients are constrained by their local
features. Hence, for each client i, di ≤ d0, where θi ∈ Rdi and θ0 ∈ Rd0 are the models of client i
and the server, respectively. Let Πi denote binary matrices that prune the server model to align with
the client local model, referred to as the selection matrices. Given the above description, we have
F(i) = Rdi and F(e) = Rdi for every i ∈ [N ] and edge of the form e = (i, 0). The associated
restriction maps are P0i = Πi and Pi0 = Idi

, for i ∈ [N ] and Pij = 0p, ∀(i, j) ∈ [N ]× [N ]. With
these choices, the Laplacian quadratic form of this sheaf is equal to the regularizer term

QF (θ,Π) =

N∑
i=1

∥θi −Πiθ0∥2 . (23)

Replacing this into (9), we get the hybrid FL objective (Zhang et al., 2024, Eq. (6) given µ1 = 0).

E SCALABILITY OF SHEAF-FMTL

Complex datasets necessitate models with substantial parameter counts to achieve optimal perfor-
mance. The sheaf-based approach scales to these high-dimensional settings by leveraging the projec-
tion mechanism to distill essential shared information, thereby reducing the effective dimensionality
required for inter-client communication. This ensures that even as the underlying data complexity
increases, the communication overhead remains manageable compared to the baseline dFedU. While
Sheaf-FMTL offers significant advantages in terms of communication efficiency, it introduces ad-
ditional computational and storage burdens due to the maintenance and updating of restriction maps
as illustrated in Table 1. To ensure that Sheaf-FMTL remains scalable and efficient in handling
complex and large-scale FL scenarios, the following strategies can be employed

• Sparse restriction maps. Sparsity constraints on the restriction maps can be implemented
to reduce the number of active parameters, thereby lowering both storage and computa-
tional requirements.

• Low-rank approximations. Low-rank matrix approximations for restriction maps can be
used to significantly decrease the computational complexity and storage footprint without
substantially compromising performance.

F REAL-WORLD APPLICATIONS OF SHEAF-FMTL

In this appendix, we explore practical scenarios where task similarities are inherently defined within
vector spaces, making them well-suited for the application of Sheaf-FMTL. By examining repre-
sentation learning and feature vector similarities in multi-modal tasks, we illustrate how our sheaf-
theoretic framework effectively captures and leverages complex task relationships. These examples
showcase the applicability of Sheaf-FMTL in diverse FL environments.

F.1 REPRESENTATION LEARNING AND EMBEDDING SPACES

In many ML applications, tasks are associated with high-dimensional data that can be effectively
represented through embeddings in vector spaces. These embeddings capture semantic, syntactic,
or feature-based relationships between tasks, facilitating the modeling of task similarities as vector
operations. For example, if we consider the Natural Language Processing (NLP) field, then tasks
such as sentiment analysis, topic classification, and named entity recognition can be embedded in
a semantic space using techniques like Word2Vec or BERT. The proximity of these task vectors in

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

the embedding space reflects their semantic relatedness. Similar NLP tasks often share underlying
linguistic structures. By representing these tasks as vectors, Sheaf-FMTL can capture and leverage
their shared characteristics to enhance collaborative learning.

F.2 FEATURE VECTOR SIMILARITIES IN MULTI-MODAL TASKS

In multi-modal learning scenarios, tasks often involve integrating and processing data from different
modalities (e.g., text, image, audio). Task similarities can be defined based on the feature vectors
extracted from these modalities, enabling Sheaf-FMTL to model interactions across diverse data
sources. For example, if we consider multi-modal sentiment analysis, then tasks that analyze senti-
ment from text, images, and audio can have their respective feature vectors embedded in a unified
vector space. The similarities between these feature vectors can indicate shared sentiment character-
istics across modalities. Sheaf-FMTL can utilize these vector similarities to facilitate collaborative
learning, enhancing sentiment detection accuracy by leveraging cross-modal information. Another
example is healthcare applications, where tasks involving the analysis of patient data from various
sources (e.g., medical imaging, electronic health records, genomic data) can define task similarities
based on the integrated feature vectors representing different data modalities. By modeling these
similarities in vector space, Sheaf-FMTL can improve personalized treatment recommendations
through effective knowledge sharing across related healthcare tasks.

G SUPPORTING LEMMAS

Lemma G.1.

θTLF θ =
∑

e=(i,j)∈E

∥Fi⊴e (θi)−Fj⊴e (θj)∥2 =
∑

e=(i,j)∈E

∥Pijθi − Pjiθj∥2 . (24)

Proof. Using the block matrix structure of LF from equation (3), we can expand the quadratic form
as follows

θTLF θ

=
∑
i∈V

∑
j∈V

θT
i Li,jθj

=
∑
i∈V

θT
i

∑
j∈Ni

P T
ijPij

θi − 2
∑

e=(i,j)∈E

θT
i P

T
ijPjiθj

=
∑

e=(i,j)∈E

(
θT
i P

T
ijPijθi + θT

j P
T
jiPjiθj − 2θT

i P
T
ijPjiθj

)
=

∑
e=(i,j)∈E

(
∥Pijθi∥2 + ∥Pjiθj∥2 − 2 ⟨Pijθi,Pjiθj⟩

)
=

∑
e=(i,j)∈E

∥Pijθi − Pjiθj∥2 . (25)

Recalling that Fi⊴e and Pij are used interchangeably to denote the restriction map from vertex i to
edge e = (i, j), we obtain

θTLFθ =
∑

e=(i,j)∈E

∥Pijθi − Pjiθj∥2 =
∑

e=(i,j)∈E

∥Fi⊴e (θi)−Fj⊴e (θj)∥2 . (26)

Lemma G.2.

ker(LF ) = argmin
θ∈C0(F)

QF (θ) = argmin
θ∈C0(F)

θTLF θ. (27)
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Proof. Let θ ∈ ker(LF ). Then, LFθ = 0. By the definition of QF (θ), we have

QF (θ) = θTLFθ = 0.

Therefore, θ ∈ argminθ∈C0(F) QF (θ).

Conversely, let θ ∈ argminθ∈C0(F) QF (θ). Then, QF (θ) = 0, which implies

0 = QF (θ) =
∑

e=(i,j)∈E

∥Fi⊴e (θi)−Fj⊴e (θj)∥2 . (28)

Thus, we get
Fi⊴e (θi) = Fj⊴e (θj) ∀e = (i, j) ∈ E . (29)

This concludes the proof.

H PROOF OF THEOREM 3.5

We start by introducing the matrices Jij ∈ Rdij×di having all its entries equal to one. Then, let us
define the block matrix H such that Hij = Jij if (i, j) ∈ E , and Hij = 0, otherwise. Then, θ and
P can be updated using the following updates

θk+1 = θk − α(∇f(θk) + λ(P k)TP kθk), (30)

P k+1 = H ⊙
(
P k − ηλP kθk+1(θk+1)T

)
, (31)

where ⊙ is the Hadamard product and the matrix H is introduced to preserve the block structure of
P by zeroing out the entries that do not correspond to edges in the graph.

Next, we analyze the convergence of the Sheaf-FMTL algorithm by studying the descent steps in
θ and P separately. This approach allows us to establish bounds on the decrease of the objective
function Ψ(θ,P ) in each descent step.
Theorem H.1. Let Assumptions 1 and 2 hold. Assume the learning rates α and η satisfy the condi-
tions α < 2

NL and η < 2
λD2

θ
, respectively. Then, the averaged gradient norm is upper bounded as

follows

1

K

K−1∑
k=0

∥∇Ψ(θk,P k)∥2 ≤ 1

ρK
(Ψ(θ0,P 0)−Ψ⋆), (32)

where ρ = min
{
α
(
1− αNL

2

)
, η

(
1− ηλD2

θ

2

)}
and Ψ⋆ is the optimal value of Ψ.

Proof. Using the Lipschitz continuity of the gradient of f(θ)

f(θk+1) ≤ f(θk) + ⟨∇f(θk),θk+1 − θk⟩+ NL

2
∥θk+1 − θk∥2. (33)

Adding and subtracting λ
2θ

k+1(P k)TP kθk+1 to both sides of the inequality, we get

Ψ(θk+1,P k)

= f(θk+1) +
λ

2
θk+1(P k)TP kθk+1

≤ f(θk) + ⟨∇f(θk),θk+1 − θk⟩+ NL

2
∥θk+1 − θk∥2 + λ

2
θk+1(P k)TP kθk+1

= f(θk) + ⟨∇f(θk),θk+1 − θk⟩+ NL

2
∥θk+1 − θk∥2 + λ

2
θk+1(P k)TP kθk+1

− λ

2
θk(P k)TP kθk +

λ

2
θk(P k)TP kθk

= f(θk) + ⟨∇f(θk),θk+1 − θk⟩+ NL

2
∥θk+1 − θk∥2 + λ

2
(θk+1 − θk)T (P k)TP kθk+1

+
λ

2
θk(P k)TP kθk

= Ψ(θk,P k) + ⟨∇θΨ(θk,P k),θk+1 − θk⟩+ NL

2
∥θk+1 − θk∥2, (34)
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where the last equality follows from the definition of Ψ(θ,P ).

Using the update rule for θk+1, we have

⟨∇θΨ(θk,P k),θk+1 − θk⟩
= ⟨∇f(θk) + λ(P k)TP kθk,−α(∇f(θk) + λ(P k)TP kθk)⟩
= −α∥∇f(θk) + λ(P k)TP kθk∥2

= −α∥∇θΨ(θk,P k)∥2. (35)

On the other hand, we have

∥θk+1 − θk∥22
= α2∥∇f(θk) + λ(P k)TP kθk∥2

= α2∥∇θΨ(θk,P k)∥2. (36)

Substituting (35) and (36) back into (34), we obtain

Ψ(θk+1,P k) ≤ Ψ(θk,P k)− α

(
1− αNL

2

)
∥∇θΨ(θk,P k)∥2. (37)

By choosing α < 2
NL , we ensure that the term 1− αNL

2 is positive.

From the definition of Ψ(θ,P ), we have

Ψ(θk+1,P k+1) = f(θk+1) +
λ

2
(θk+1)T (P k+1)TP k+1θk+1. (38)

Using the update rule for P k+1, i.e., P k+1 = H ⊙ (P k − ηλP kθk+1(θk+1)T ), we can write

(P k+1)TP k+1

= (H ⊙ (P k − ηλP kθk+1(θk+1)T ))T (H ⊙ (P k − ηλP kθk+1(θk+1)T ))

⪯ (P k − ηλP kθk+1(θk+1)T )T (P k − ηλP kθk+1(θk+1)T ), (39)

where the inequality follows from the fact that the Hadamard product with H zeros out some entries,
which can only decrease the Frobenius norm.

Expanding the right-hand side, we get

(P k − ηλP kθk+1(θk+1)T )T (P k − ηλP kθk+1(θk+1)T )

= (P k)TP k − 2ηλ(P k)TP kθk+1(θk+1)T + η2λ2(P k)TP kθk+1(θk+1)Tθk+1(θk+1)T (40)

Substituting this back into the expression for Ψ(θk+1,P k+1), we obtain

Ψ(θk+1,P k+1)

≤ f(θk+1) +
λ

2
(θk+1)T (P k)TP kθk+1 − ηλ2(θk+1)T (P k)TP kθk+1(θk+1)Tθk+1

+
η2λ3

2
(θk+1)T (P k)TP kθk+1(θk+1)T (θk+1)(θk+1)Tθk+1. (41)

Since the gradient of Ψ with respect to P is given by ∇PΨ(θ,P ) = λPθθT , we can compute the
following norm

∥∇PΨ(θk+1,P k)∥2F
= Tr((λP kθk+1(θk+1)T )T (λP kθk+1(θk+1)T ))

= λ2 Tr(θk+1(θk+1)T (P k)TP kθk+1(θk+1)T )

= λ2(θk+1)T (P k)TP kθk+1(θk+1)Tθk+1, (42)

where we have used the cyclic nature of the trace operator Tr(·).
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Therefore, we have the following bound

Ψ(θk+1,P k+1)

≤ Ψ(θk+1,P k)− η

(
1− ηλ

2
∥θk+1∥2

)
∥∇PΨ(θk+1,P k)∥2

≤ Ψ(θk+1,P k)− η

(
1− ηλD2

θ

2

)
∥∇PΨ(θk+1,P k)∥2, (43)

where we have used Assumption 2.

Hence, to ensure
(
1− ηλD2

θ

2

)
is positive, we choose the value of η to be η < 2

λD2
θ

. Combining the
inequalities (37) and (43), we get

Ψ(θk+1,P k+1)

≤ Ψ(θk,P k)− α

(
1− αNL

2

)
∥∇θΨ(θk,P k)∥2 − η

(
1− ηλD2

θ

2

)
∥∇PΨ(θk+1,P k)∥2.

(44)

Summing up these inequalities from k = 0 to K − 1, we obtain

Ψ(θK ,PK)

≤ Ψ(θ0,P 0)− α

(
1− αNL

2

)K−1∑
k=0

∥∇θΨ(θk,P k)∥2 − η

(
1− ηλD2

θ

2

)K−1∑
k=0

∥∇PΨ(θk+1,P k)∥2.

(45)

Let Ψ⋆ be the optimal value of Ψ, and we define ρ = min
{
α
(
1− αNL

2

)
, η

(
1− ηλD2

θ

2

)}
. Then,

rearranging the terms, we can write

1

K

K−1∑
k=0

∥∇Ψ(θk,P k)∥2 ≤ 1

ρK
(Ψ(θ0,P 0)−Ψ(θK ,PK)) ≤ 1

ρK
(Ψ(θ0,P 0)−Ψ⋆), (46)

where we have used that Ψ⋆ ≤ Ψ(θK ,PK) and ∥∇Ψ(θk,P k)∥2 = ∥∇θΨ(θk,P k)∥2 +
∥∇PΨ(θk,P k)∥2.

I ADDITIONAL EXPERIMENTAL DETAILS

I.1 DATASETS

A summary of the datasets and the tasks used in Section 4.2 is presented in Table 3. These datasets
are real-world datasets created in federated environments with varying degrees of heterogeneity. A
detailed description of the datasets along with their specific data partitioning schemes is provided in
Table 4. To further quantify the Non-IIDness in our data partitions, we have incorporated quantita-
tive metrics assessing the degree of Non-IIDness across different datasets in Table 5.

• Rotated MNIST (R-MNIST). Following similar techniques as outlined in (Liu et al.,
2022a), we shuffle and then evenly separate the original MNIST dataset between 40 clients.
Next, we randomly divide the clients into four groups, each containing 10 clients. We then
apply rotations of {0°, 90°, 180°, 270°} to each group respectively. Therefore, clients
within the same group share identical image rotations, resulting in the formation of four
distinct clusters. The MNIST dataset is available under the CC BY-SA 3.0 license.

• Heterogeneous CIFAR-10 (H-CIFAR-10). The original CIFAR-10 dataset is split among
30 clients, and heterogeneity is introduced by assigning each client a random number of
samples from 5 randomly selected classes out of the 10 available classes, following a simi-
lar approach as in (T Dinh et al., 2020; Liu et al., 2022a). The CIFAR-10 dataset is available
under the MIT license.
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• Human Activity Recognition. The dataset is composed of data gathered from the ac-
celerometers and gyroscopes of smartphones used by 30 individuals, each performing one
of six activities: walking, walking upstairs, walking downstairs, sitting, standing, or ly-
ing down. In this dataset, the data from each individual/client is treated as a unique task,
with the primary objective being to differentiate between these activities. To identify each
activity appropriately, feature vectors with 561 elements representing various time and fre-
quency domain variables are used in the analysis. The dataset (Anguita et al., 2013) is
licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0) license.

• Vehicle Sensor. The dataset involves collecting data from a network of 23 wireless sen-
sors, including acoustic (microphones), seismic (geophones), and infrared (polarized IR
sensors), strategically placed along a specific road segment. This dataset aims to facilitate
binary classification for identifying two types of vehicles: the Assault Amphibian Vehicle
(AAV) and the Dragon Wagon (DW). Each sensor, treated as a unique task or client, gathers
acoustic and seismic data encapsulated in a 100-dimensional feature vector, representing
the recordings as vehicles pass by. The Vehicle dataset was originally made public by its
authors as a research dataset (Duarte & Hu, 2004).

• Google Glass Eating and Motion (GLEAM). The dataset is collected using Google Glass
from 38 individuals. It captures high-resolution sensor data to identify specific activities
such as eating. This extensive dataset, consisting of 27,800 entries, each with a 180-
dimensional feature vector, records head movements for binary classification to determine
if the wearer is eating or not. The data includes accelerometer, gyroscope, and magne-
tometer readings, analyzed for statistical, spectral, and temporal characteristics to distin-
guish eating from other activities like walking, talking, and drinking. The GLEAM dataset,
released by its original authors (Rahman et al., 2015), is available for non-commercial use.

• School. The dataset, originally introduced in (Goldstein, 1991), seeks to forecast the exam
results of 15,362 students from 139 secondary schools. The dataset contains information
for each school, with student numbers ranging from 22 to 251, and each student is described
using a 28-dimensional feature vector. This vector contains information about the school’s
ranking, the student’s birth year, and the availability of free meals at the school. The dataset
has been made publicly available in (Zhou et al., 2011).

Table 3: Summary of the datasets and tasks used in our empirical setup.

Dataset Task # Clients/Tasks Input Dimension
R-MNIST Classification 40 28× 28× 1
H-CIFAR-10 Classification 30 32× 32× 3
HAR Classification 30 561
Vehicle Sensor Classification 23 100
GLEAM Classification 38 180
School Regression 139 28

I.2 EXPERIMENTAL SETTINGS

In the first experiment, we use a train/test split ratio of 75%/25% for all datasets as done in (Smith
et al., 2017). For the classification task, the model used in all experiments is the multinomial logistic
regression model with L2-regularized cross-entropy as the loss function. Similar to (Dinh et al.,
2022), we reduce the data size by 80% for half of the clients to mimic the real-world FL setting
where some clients have small datasets and can benefit from collaboration. For the regression task,
we consider a linear model and the loss function to be the regularized L2 loss. For dFedU, the
weights {aij}, defined in (16), are taken to be aij = 1, ∀(i, j) ∈ E .

For each experiment, we report both the average test accuracy/MSE and its corresponding one stan-
dard error shaded area based on five runs. Since all models have the same size d, we choose the
projection space dimension to be γd, where γ ∈ (0, 1]. In our experiments, the graph topology is
based on the Erdős-Rényi model, where we randomly generate a network consisting of N clients
with a connectivity ratio p = 0.15 for Rotated MNIST and Heterogenous CIFAR-10 datasets, and
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Table 4: Data partitioning strategies across datasets where nk is the number of training samples of
client k.

Dataset Data split Domain
distribution

Label
distribution

R-MNIST min nk = 1500
max nk = 1500

4 groups with distinct
rotation angles

Uniform distribution
within each rotation group

H-CIFAR-10 min nk = 1515
max nk = 1839

Not explicitly
divided into domains

Each client has data
from 5 random classes

HAR min nk = 210
max nk = 306

All activity
classes per client

Uniform across activity
classes within each client

Vehicle Sensor min nk = 872
max nk = 1933

Same label set with
different feature distributions

Balanced across vehicle
classes per sensor

GLEAM min nk = 699
max nk = 776

All activity classes
with uniform distribution

Balanced between eating
and non-eating classes

School min nk = 15
max nk = 175

Shared regression task
with uniform feature sets

Continuous targets with
varying distributions per school

Table 5: Degree of non-IIDness across datasets.

Dataset Non-IID Metric Description
R-MNIST Rotation angle variance High domain heterogeneity

with 4 distinct rotation groups

H-CIFAR-10 Label distribution High label distribution
skew among clients

HAR Inter-client variability High heterogeneity due to unique
individual data per client

Vehicle Sensor Feature distribution High feature heterogeneity
across different sensors

GLEAM Label distribution Low heterogeneity
with balanced labels

School Continuous targets variance Moderate to high heterogeneity based
on inter-school performance variability

p = 0.2 for the rest of datasets. Both learning rates are chosen small to satisfy the conditions in The-
orem 3.5. Furthermore, Sheaf-FMTL uses the same global learning rate (α) as dFedU to update
the models for a fair comparison. The linear maps are initialized randomly from a normal distribu-
tion with a mean of 0 and a variance of 1. The values of the regularization parameter (λ) used for
every dataset are listed in Table 6.

For the second experiment, we generate the modified datasets as follows. To mimic the fact that
each client has a different model size, we randomly drop a set of features with a drop factor sampled
from the uniform distribution U([0, 0.4]). As an illustration, the model size distribution across the
number of clients in the modified Vehicle dataset is plotted in Figure 4.

Table 6: Regularization parameters used during training.

Dataset HAR Vehicle GLEAM School R-MNIST H-CIFAR-10

Regularization parameter (λ) 0.05 0.001 0.001 0.01 0.001 0.001
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Figure 4: Model size distribution across clients in the modified Vehicle dataset.

I.3 HARDWARE & CODE

Our experiments were carried out on a system equipped with an Intel(R) Xeon(R) CPU operating
at 2.20GHz with 2 cores and 12 GB of RAM. The algorithms are implemented in Python using
PyTorch (Paszke et al., 2019), and NetworkX (Hagberg et al., 2008).

J SUPPLEMENTARY EXPERIMENTAL RESULTS

Figure 5 compares the performance of our proposed Sheaf-FMTL method with dFedU on four
datasets: (a) the Vehicle dataset, (b) the School dataset, (c) the HAR dataset and (d) the GLEAM
dataset using γ = {0.1, 0.3}. The experiments evaluate the performance of the model in terms
of communication rounds and transmitted bits. For instance, Sheaf-FMTL requires more com-
munication rounds for the Vehicle dataset to achieve similar test accuracy compared to dFedU. As
the number of communication rounds increases, the performance gap between the two methods nar-
rows. However, when examining the number of transmitted bits, Sheaf-FMTL demonstrates a clear
advantage, requiring fewer bits to reach higher accuracy levels. For example, Sheaf-FMTL with
γ = 0.1 reaches a test accuracy of 0.85 with just 72 transmitted Kbits, while dFedU requires over 450
Kbits to approach this accuracy. Similar trends are observed for the other datasets. Sheaf-FMTL
recovers the same performance as dFedU in terms of test accuracy with a slight drop in test accuracy
for the HAR and School datasets. Hence, the sheaf-based approach effectively captures the hetero-
geneous relationships among clients, achieving the same test accuracy using fewer transmitted bits
than the baseline dFedU.

K LIMITATIONS AND FUTURE WORK

In this section, we highlight some of the limitations of our approach, while outlining several potential
directions for future work.

Dimension of the projection space. The current work assumes a fixed dimension for the projection
spaces associated with the edges in the sheaf structure. However, the optimal dimension may depend
on factors such as the complexity of the client models and the relationships between the tasks. Future
work could explore methods for automatically learning or finding the dimension of the projection
spaces.

Restriction maps. The proposed framework uses linear maps for the restriction and lifting opera-
tions between the client and edge spaces. While this allows for efficient computation, it may limit
the ability to capture complex relationships between the tasks. Investigating the use of non-linear
restriction maps could potentially improve the capabilities of the sheaf-based FMTL framework.
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Figure 5: Test/MSE accuracy as a function of the number of communication rounds and the number
of transmitted bits for the Vehicle dataset (first row), the School dataset (second row), the HAR
dataset (third row), and the GLEAM dataset (bottom).

Storage requirement of the restriction maps. Our proposed method requires the storage of addi-
tional Pij matrices that are of size di×dij . While this may not be considered an issue in a cross-silo
FL setting where the clients or organizations involved typically have more substantial computa-
tional and storage capabilities, this can be seen as a limitation to clients in massively distributed FL
scenarios, e.g., mobile devices or IoT devices.
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Relaxing Assumption 2. The theoretical analysis in the paper relies on Assumption 2, which as-
sumes the models are bounded. Relaxing or removing this assumption would broaden the applica-
bility of the theoretical results.
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