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ABSTRACT
Many AI red-teaming frameworks target Large Language Models
(LLMs) and other generative systems via direct access or through
Application Programmable Interfaces (API)s. These approaches
do not always reflect the complexities of real-world deployments.
Production AI applications often incorporate content moderation,
guardrails, user interface constraints, and other filtering mecha-
nisms, which can alter both user inputs and system outputs. To
capture the full-range AI system flow, we present Witty Gerbil
Chrome Extension, a browser-based testing solution coupled with
a Python orchestration back-end. By automating AI interactions
directly in the browser, our framework preserves production safe-
guards and transforms, providing a more realistic picture of overall
system risk. This paper outlines the architecture, operation modes,
and limitations of this extension, emphasizing the importance of
holistic AI evaluations that include user-facing layers in addition
to core model testing.

CCS CONCEPTS
• Software and its engineering→ Software creation and man-
agement; • Security and privacy → Domain-specific security and
privacy architectures; Software security engineering; • Comput-
ing methodologies→ Natural language generation; Discourse,
dialogue and pragmatics; • Human-centered computing →
HCI design and evaluation methods.
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1 INTRODUCTION
Red-teaming for Large Language Models (LLMs) and other gen-
erative AI systems is crucial to evaluate vulnerabilities such as
bias, prompt injection, and the generation of malicious content [1].
However, traditional testing that focuses solely on the raw model
or its API endpoints overlooks the real-world controls applied in
production. These include content moderation filters, specialized
guardrails, and user interface constraints [2].

To address this gap, we introduce theWitty Gerbil Chrome Ex-
tension, which orchestrates AI interactions directly in the browser.
By automating the user journey, this extension preserves the front-
end transformations, system prompts, and other production-layer
protections that can alter both inputs and outputs. A Python back-
end supports the extension by providing dynamic prompts, session
control, and data logging. This architecture effectively captures the
full user experience, reflecting a more realistic risk profile than can
be achieved through model- or API-only assessments.

2 BACKGROUND AND RELATEDWORK
Existing AI red-teaming solutions typically focus on direct model
calls or well-defined APIs. Frameworks such as Garak [3], PyRIT
[4], and ARTKit [5] automate adversarial probing without front-
end transformations. To move closer to realistic usage scenarios,
some systems integrate with web traffic proxies such as Burp Suite
(PyRIT-Ship [6]), intercepting requests as they traverse the network.
Although valuable, these setups can be cumbersome and do not
mimic genuine user interaction.

3 HOLISTIC APPROACH TO AI TESTING
To illustrate where this tool adds value, we now place it in the
broader context of AI Safety and Security. Holistic AI security eval-
uations are most effective when embedded in broader Responsible
AI (RAI) initiatives that incorporate cross-business unit governance
and oversight, secure AI application development, ongoingmonitor-
ing of the AI systems in production, evaluation, and testing of the
models and associated applications, and more. This work focuses
primarily on the testing and evaluation portion of the program.

3.1 Evaluation Phases
We recommend a three-phase evaluation approach:

(1) Model Benchmarking: Evaluatemodel performance, ethics,
and safety concerns using curated datasets. This is typically
done directly on the raw model or via minimal API wrap-
pers, with much of the process automated as part of a broader
model registry and pipeline.
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(2) Red-Teaming: Investigate and probe the entire AI system,
including any guardrails, content moderation, or prompt en-
gineering layers, to uncover vulnerabilities such as prompt
injection, jailbreaks, or system prompt manipulations. This
phase also considers advanced threats such as embedding in-
version [7, 8] and data poisoning [9], broadening the scope of
potential security concerns. Much of this phase is automated
or carried out using specialized tools.

(3) Expert Manual Testing: Conduct in-depth, manual evalua-
tions by expert analysts to detect subtle or context-specific
vulnerabilities that automated tools may overlook. Insights
from the first two phases guide more targeted and sophisti-
cated attacks during this final stage.

4 ARCHITECTURE AND IMPLEMENTATION
Figure 1 shows the overall design: a Chrome extension injected into
the webpage for DOM manipulation, plus a Python back-end for
orchestration.

4.1 Chrome Extension (Front-end)
DOM Monitoring: Watches for changes in the chat interface, cap-
turing AI output and user prompts.
Interaction Simulation: Automatically inserts new prompts and
sends to the assistant, mimicking an actual user.
UI Overlay: Presents configuration options (e.g., “max turns”) and
allows testers to upload datasets of adversarial prompts.

4.2 Python back-end
Session Management: Tracks conversation turns and terminates
runs after a specified limit.
Dynamic Prompt Generation: Adapts new prompts based on the
conversation context, pursuing an objective (e.g., eliciting policy-
violating content).
Data Logging: Stores user queries, system responses, and metadata
for later review or auditing.

5 EVALUATION MODES
5.1 Guided Red-Teaming
Testers receive suggested prompts designed to push the system
toward an adversarial objective. Each suggestion can be edited
before sending, balancing automation with human oversight.

5.2 Fully Automated Conversations
Allows long-running interactions without human intervention. The
extension repeatedly sends newly generated prompts, captures
replies, and updates the conversation state until a maximum turn
limit is reached.

5.3 Automated Benchmarking
A fully automated mode that iterates over a dataset provided by
the user. A dataset of the resulting conversation is available for
download afterward.

6 LIMITATIONS
• Browser Lock-In:Only supports Chromium-based browsers
at present.

• ComplexWeb Interfaces:Highly dynamic pages may need
manual CSS or JavaScript selectors.

• Performance: Browser automation incurs more overhead
than direct API calls which may result in longer benchmark
run times.

• Single Generator Model: Currently relies on OpenAI GPT-
4o for prompt generation.

• No Early Stopping: If the adversarial goal is met early,
the system still proceeds until the specified turn count is
reached.

7 FUTUREWORK
Planned enhancements include Firefox and Safari compatibility,
multi-model support in the Python back-end, intelligent stopping
criteria (e.g., halting once an attack objective is fulfilled), and inte-
grated analytics for real-time scoring of red-team success.

8 CONCLUSION
TheWitty Gerbil Chrome Extension represents a significant advance-
ment in AI system evaluation by enabling testing that more accu-
rately reflects real-world usage conditions and potential risks. By
operating directly within the browser environment that end users
experience, it captures the full stack of content filtering, guardrails,
and user interface elements that may influence AI system behavior.
This approach enables security teams to uncover the true risk pro-
file of deployed AI systems by evaluating not just the core model,
but the entire user-facing system including front-end protections,
rate limiting, content filtering, and other production safeguards.

The extension’s architecture, combining a lightweight browser-
based front-end with a powerful Python orchestration back-end,
provides a flexible framework for both manual and automated test-
ing scenarios. This design enables systematic discovery of potential
vulnerabilities while maintaining the authentic context of actual
user interactions. Beyond its immediate applications in security
testing, Witty Gerbil Chrome Extension establishes a foundation
for developing more sophisticated automated testing approaches
that can comprehensively assess AI systems in their production
environments, advancing the field of AI red-teaming and security
evaluation.

AVAILABILITY
The Chrome extension and Python orchestration script are available
at:

https://github.com/Witty-Gerbil/witty_chrome_extension

The repository includes instructions for installing the extension,
running the Python script, and configuring both automated and
manual tests. Contributions are welcomed and encouraged. This
work is released under the MIT License (see the LICENSE file in
the repository for details).

https://github.com/Witty-Gerbil/witty_chrome_extension
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Figure 1: Architecture of the Witty Gerbil Extension: JavaScript injection for capturing and generating user-like input, with
Python orchestration managing session flow and data logging.
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