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Abstract

Personalized decentralized learning is a promising
paradigm for distributed learning, enabling each node
to train a local model on its own data and collaborate
with other nodes to improve without sharing any data.
However, this approach poses significant privacy risks,
as nodes may inadvertently disclose sensitive informa-
tion about their data or preferences through their col-
laboration choices. In this paper, we propose Private
Personalized Decentralized Learning (PPDL), a novel
approach that combines secure aggregation and corre-
lated adversarial multi-armed bandit optimization to pro-
tect node privacy while facilitating efficient node selec-
tion. By leveraging dependencies between different arms,
represented by potential collaborators, we demonstrate
that PPDL can effectively identify suitable collaborators
solely based on aggregated models. Additionally, we
show that PPDL surpasses previous non-private methods
in model performance on standard benchmarks under
label and covariate shift scenarios.

1 Introduction

Collaborative machine learning is a recent paradigm
where multiple actors train a joint model without re-
vealing their local datasets [1]. Instead, only the locally
trained model parameters are shared among the actors. In
applications pertaining to sensitive data, e.g., healthcare
and banking, where it may be challenging to collect the
data in a single location, collaborative learning has the
potential to unlock a plethora of novel collaborations.
Collaborative learning is typically distinguished with re-
gard to the underlying network topology. To this end,
federated learning (FL) refers to a star topology where
an orchestrating parameter server receives model updates
from the actors, aggregates the updates, and broadcasts
the aggregate. Decentralized learning (DL) constitutes
arbitrary network topologies without an orchestrator, i.e.,
actors in the network learn by exchanging model updates
within their neighborhood [2]. Actors within DL are
typically referred to as nodes.

There are inherent risks and limitations with FL, such
as that it may be challenging to find a trustworthy third
party due to regulations or the desire for autonomy (e.g.
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for hospitals, banks, or other big corporations). Further,
FL scales poorly in the number of nodes due to the com-
munication bottleneck and the server constitutes a single-
point-of-failure [2]. This has motivated research on fully
decentralized systems, which eliminate the need for a
central server. Instead, model parameters are directly
communicated between peers in the learning setup using
a communication protocol, such as gossip learning [3].
However, this approach is not well-suited for non-iid
settings, where multiple distinct learning objectives may
be present. In such cases, node selection during training
is crucial for achieving efficient and effective learning.

The idea of each node identifying useful peers in the
network to train a personalized model was proposed
in [4]. Therein, nodes jointly learn a collaboration graph,
via an alternating optimization method, that dictates
whom to communicate to. A score-based method, decen-
tralized adaptive clustering (DAC), was presented in [5]
where each node scores its neighboring peers based on
the the empirical loss, obtained by evaluating the re-
ceived model parameters on the local dataset. While
DAC manages to find beneficial nodes and identifies het-
erogeneous clusters in the network, model parameters
from the nodes’ training updates are still communicated
over the network in plain text and the peers receiving
the updates must hence be trusted. As such, DAC is
vulnerable to inference attacks. This raises the question
of how to ensure the privacy of the model parameters
in decentralized machine learning systems. In many
privacy-critical applications, differential privacy [6] is
used in conjunction with FL to protect the data of nodes.
Although this adds a layer of privacy, it comes at the
expense of a deterioration in model performance.

In this work, we overcome this problem and intro-
duce a communication-efficient and privacy-preserving
algorithm named Private Personalized Decentralized
Learning (PPDL). We use multi-armed bandits to find
beneficial collaborators and secure aggregation [7, 8] to
hide individual updates. Our method works in a server-
less decentralized setting, but can also apply to standard
FL. We protect against inference attacks by only observ-
ing aggregated models.In our proposed method, a peer
only observes an aggregate of model parameters, which
substantially lessens the risk of inference attacks as com-
pared to previous works.

Since a node only receives an aggregate of the pa-
rameter updates of M nodes at a given point in time,

Proceedings of the 5th Northern Lights Deep Learning Conference (NLDL), PMLR 233, 2024.
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it cannot infer a score on the similarity of any one of
the peers in the aggregate (as in DAC); such a score
can only be computed for the aggregate. Instead, our
solution exploits dependencies between different group
selections and makes use of adversarial multi-armed ban-
dit optimization to efficiently find the subsets of peers
that are beneficial for collaboration. Our experimental
evaluations demonstrate that our approach offers a com-
petitive solution for personalized decentralized learning
that preserves data privacy under covariate shift and la-
bel shift and efficiently finds the beneficial collaborators
within the network. Our solution has a communication
efficiency and performance similar to that of previous
methods, but adds a higher level of privacy.

2 Decentralized learning by finding
useful collaborations

Problem formulation. We consider several DL tasks
over a network of K nodes, each with a private data
distribution Di over the inputs x ∈ X and labels y ∈ Y .
Each node i ∈ [K] has a model fi with parameters wi ∈
Rd and a loss function ℓ(fi(wi;x), y) : Rd×X×Y → R.
Each note wants to minimize its expected loss over its
data,

w⋆
i = arg min

wi∈Rd
E(x,y)∼Di

[ℓ(fi(wi;x), y)] . (1)

A challenge is to find similar nodes to collaborate with,
without sharing data. If the distributions are substan-
tially dissimilar, collaboration may result in decreased
performance compared to local training without collab-
oration. In situations where some of the other nodes in
the network have similar local data distributions, it may
be beneficial to collaborate towards the goal in (1) by
means of exchanging and aggregating model parameters.

However, revealing details of node data may be dif-
ficult or impossible due to privacy reasons. To ad-
dress this issue, we propose a method for identifying
nodes with similar local datasets in a private manner.
We assume the nodes communicate over a network
G = (N , E) where N = {1, . . . ,K} are the nodes and
E = {(i, j) : i, j ∈ N , i ̸= j} are the edges between
the nodes. The neighborhood of node i ∈ N is denoted
by Ni = {j : (i, j) ∈ E , j ∈ N}. Like [5, 9], node i
want to find a set of nodes Mi ⊆ Ni to exchange models
with. In each round, the learning proceeds as follows.
First, each node i ∈ N selects a set Mi ⊆ Ni to receive
model updates from. Second, the nodes in Mi submit
their local models securely to node i by using secure
aggregation, e.g., [8]. Third, node i computes the ag-
gregated model from the nodes in Mi and aggregates it
with its local model after which local training is initiated
using the updated model.

Privacy. Although FedAvg is commonly advertised as
being private, recent results have demonstrated attacks
able to recover training data from the models [10]. To

protect the nodes from such attacks, we utilize secure
aggregation to ensure that a node who queried multiple
model parameters from a subset of its neighbors only get
to observe an aggregate of those models. The design of
secure aggregation schemes is outside of the scope of this
work but may be achieved for arbitrary networks by using
Shamir’s secret sharing scheme [11] as demonstrated
in [8]. For our purposes, we assume that a node i queries
a set M(t)

i ⊆ Ni of size M in round t ∈ [T ] and observes
only the aggregate w̄

(t)
i =

∑
j∈M(t)

i
βjwj where βj ≥

0 satisfy
∑

j∈M(t)
i

βj = 1. Consequently, node i is

presented with Ci =
(|Ni|

M

)
different groups of nodes

to choose among where we assume |Ni| ≥ M for all
i ∈ [N ]. For example, in a fully connected network
consisting of K = 100 nodes and secure aggregation
schemes where M = 2 and M = 3, we have 4,851 and
156,849 different groups, respectively.

Multi-armed bandits. We have a challenging group-
selection problem with many groups and few rounds.
A node can only evaluate a group by its local accuracy,
which is stochastic and non-stationary due to other nodes’
actions. We use an online learning approach and model
the problem for each node as an adversarial multi-armed
bandit with Ci arms and T rounds [12].

The performance of a bandit algorithm is measured
by pseudo-regret, which compares the expected re-
wards of the best arm and the algorithm. For adver-
sarial bandits, the pseudo-regret per round decreases as
O(

√
Ci/T ) [13]. This means a large Ci, as in our case,

an algorithm cannot be expected to perform well in a few
rounds. However, this assumes independent rewards; if
rewards are dependent, pulling an arm can give informa-
tion about other arms and reduce exploration [14].

In our problem, some groups share nodes. The num-
ber of groups that share u nodes with a given group is(
M
u

)(
N−M−1
M−u

)
. For example, in a fully connected net-

work with N = 100 and M = 3, there are 13,680 and
288 groups that share one and two nodes, respectively,
with a given group. So, selecting one group out of the
156,849 could inform about 13,968 groups. To leverage
this idea, we use of pseudo-rewards, as presented in [14].

Let the different groups available to node i be indexed
from 1, . . . , Ci and, w.l.o.g., let the reward from choos-
ing group j ∈ [Ci] at time t satisfy r

(t)
j ∈ [0, 1]. We

define the pseudo-rewards s
(t)
l,j (α

(t)
j ) ∈ [0, 1] as an up-

per bound on the expected reward on r
(t)
l given that we

observe r
(t)
j for j ∈ [Ci] and l ∈ [Ci] \ {j}. This is

mathematically represented as:

E
[
r
(t)
l |r(t)j = α

(t)
j

]
≤ s

(t)
l,j (α

(t)
j ). (2)

For j = l, we let s
(t)
j,j = r

(t)
j . Note that setting

s
(t)
l,j (α

(t)
j ) = 1 for all j, l ∈ [Ci], l ̸= j and t ∈ [T ],

results in recovering the uncorrelated multi-armed bandit
setting. Note that the inequality in (2) must be satis-
fied in order to achieve zero-regret asymptotically in the
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number of rounds [14]. However, as our objective is
to simply identify nodes with similar local data distribu-
tions within a fixed number of training rounds, the choice
of pseudo-reward in (2) will mainly serve to trade-off
between exploitation and exploration.

To use the correlated bandit framework in our set-
ting, we notice that groups with large overlap have
many parameters in common in the aggregation step,
hence, it seems plausible that also their expected re-
wards should be closer than groups with less overlap.
Therefore, we design the pseudo-rewards between two
groups to be decreasing in the number of overlapping
nodes. Furthermore, it is expected that the discrep-
ancy in accuracy between groups with large overlap de-
creases over time, hence the time dependency in (2). Let
ul,j ∈ {0, . . . ,M − 1} denote the number of overlap-
ping nodes between group l and group j. We consider
pseudo-rewards of the form

s
(t)
l,j (α

(t)
j ) = min

{
α
(t)
j +

q(t)

ul,j
, 1

}
(3)

where q : [T ] → R+ is a non-increasing function in time,
i.e., q(t2) ≤ q(t1) for t2 > t1. We make this choice
as the variance between node models is anticipated to
decrease as models converge.

2.1 Private multi-armed bandits for node
selection

In this section, we present our bandit algorithm for a
node. For ease of notation, we omit the node index. Let
k(t) ∈ [Ci] be the group chosen at time t and let nk(t)(t)
be the number of times it has been chosen. The reward
from choosing group j ∈ [Ci] is defined as µj(t) =∑t

τ=1 1{k(τ)=j}r(τ)
j

nj(t)
and the pseudo-reward for group l ∈

[Ci] \ {j} when group j ∈ [Ci] is selected, is given

by ϕl,j(t) =
∑t

τ=1 1{k(τ)=j}s(τ)
l,j (r

(τ)
j )

nj(t)
. We reduce the

problem size by selecting only competitive arms, i.e.,
arms whose minimum pseudo-rewards are higher than
the maximum reward. To this end, we define the set
of significant arms as S(t)

i = {j ∈ [Ci] : nj(t) >
t/N} and let k̄(t) = argmax

l∈S(t)
i

µl(t). The set of
empirically competitive arms is defined as

A(t)
i =

{
j ∈ [Ci] : min

l∈S(t)
i

ϕj,l(t) ≥ µk̄(t)(t)

}
∪ {k̄(t)}.

(4)
Note that A(t)

i is not monotonically decreasing in t as
arms may be non-competitive in one round and com-
petitive in the next. Once A(t)

i has been obtained, an
arbitrary multi-armed bandit algorithm may be applied
over the set of arms. As we consider adversarial rewards,
we employ the Tsallis-Inf algorithm that is known to
achieve a pseudo-regret with the optimal scaling [15],
where large q(t) encourages exploration whereas a small
q(t) encourages exploitation.

3 Experiments
Our code is made available upon publication to encour-
age reproducibility 1. All experiments were carried out
on an Nvidia 3090 Ti GPU. We conduct experiments on
various cluster configurations and employ the CIFAR-10
and Fashion-MNIST datasets, which are commonly used
in the literature for decentralized machine learning eval-
uations on covariate and label shift, see Section 3.1 [16].
We follow previous work [5, 9] and assume a fully con-
nected graph among the nodes. Our algorithm aims to
find a sub-graph for each node that maximizes its lo-
cal task performance. In other words, we want to find
the best collaborators for each node based on its local,
private data.

Baselines. In all experiments we use decentralized
adaptive clustering (DAC) [5] as a baseline for compari-
son, as it is most similar to our work. In addition, we also
make comparisons to a random gossip communication
protocol (denoted Random) and an oracle (denoted Or-
acle) that has perfect information of cluster assignments
and only communicates (randomly) within these. More-
over, we also compare with local training on the nodes
where no communication is allowed (denoted Local).

Covariate shift. To evaluate the performance of our
method under non-iid data distributions, we replicate
some of the experiments outlined in [5] for covariate
shift with 100 nodes by dividing the data uniformly into
four partitions, each with images rotated 0°, 90°, 180°
and 270°, respectively. We also experiment with hetero-
geneous cluster sizes by dividing the data into clusters
of 0°, 180°, 350° and 10° rotation, with 70, 20, 5 and 5
nodes in each cluster, respectively.

Label shift. Moreover, we also conduct experiments
on label shift. As in [5], for the CIFAR-10 dataset we
divide the data into two clusters based on labels, one for
animal images and one for vehicle images. Additionally,
we extend the experiments on label shift where we par-
tition the data such that each node only has two labels,
and these labels are grouped into clusters of five, where
each cluster contains 20 nodes with the same two labels.

In our experiments, we evaluate all models on a test set
with the same distributional shift as the training set for
each node in the network. This is because the goal is to
solve the local learning task for each node as effectively
as possible. We use early stopping locally on each node.

Model and data. We use the same CNN architec-
ture as [5], with three convolutional and two fully con-
nected layers. We simulate 100 nodes for CIFAR-10
and Fashion-MNIST, and average results over three runs.
Each node has equal data samples, uses the Adam op-
timizer and batch size of 8, and samples M = 3 other
nodes per round. We train for three local epochs and 200
rounds. We use two q(t) in (3): constant (PPDL) and
exponentially decaying (PPDL-var), tuned by validation.
We also tune learning rates using a validation set.

1https://github.com/edvinli/ppdl
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(a) PPDL (b) DAC

(c) Random (d) Oracle

Figure 1. Heatmaps visualising how often node x communicates with node y for the four different methods on the CIFAR-10
dataset with 5 clusters.

Table 1. CIFAR-10 label shift test accuracy with 5 clusters.

Method Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Mean

PPDL 74.70 68.51 73.78 77.74 74.60 73.87
PPDL-var 71.82 80.40 78.72 82.06 76.05 77.81
DAC 79.41 76.83 78.52 80.58 76.94 78.46
Random 68.90 63.31 66.70 69.98 69.92 67.76
Local 77.11 88.79 82.60 61.83 68.32 75.73
Oracle 88.65 91.25 84.69 81.54 79.62 85.15

Table 2. Test accuracies for covariate shift on CIFAR-10
and Fashion-MNIST, with varying node numbers per cluster
(70,20,5,5). Mean values over clusters are also provided.

CIFAR-10
Method 0° 180° 350° 10° Mean

PPDL 52.37 45.21 50.60 51.03 49.80
PPDL-var 54.63 47.27 51.84 53.30 51.76
DAC 53.70 47.73 52.84 51.35 51.41
Random 54.85 44.70 52.64 52.43 51.16
Local 34.06 31.64 29.92 32.68 31.91
Oracle 55.04 46.80 38.35 38.00 44.55

Fashion-MNIST
PPDL 84.62 81.81 81.01 82.11 82.39
PPDL-var 80.68 81.12 80.42 80.66 80.72
DAC 82.48 80.44 79.85 80.43 80.80
Random 84.26 79.61 78.42 78.99 80.32
Local 78.72 76.83 77.40 77.26 77.55
Oracle 83.00 81.93 79.01 79.76 80.93

Table 3. Test accuracies for covariate shift on CIFAR-10 and
Fashion-MNIST, with the same number of nodes per cluster
(25). Mean values over clusters are also provided.

CIFAR-10
Method 0° 90° 180° 270° Mean

PPDL 43.48 43.31 43.73 43.10 43.40
PPDL-var 45.06 44.05 44.60 43.14 44.22
DAC 45.21 45.08 45.18 45.78 45.31
Random 41.35 41.19 42.39 41.46 41.60
Local 32.01 32.34 31.47 33.07 32.22
Oracle 49.47 49.66 49.57 48.43 49.28

Fashion-MNIST
PPDL 80.69 81.12 80.43 80.66 80.73
PPDL-var 80.81 81.71 82.36 80.19 81.26
DAC 78.83 79.51 78.69 79.02 79.01
Random 80.20 80.72 79.3 79.99 80.05
Local 78.84 79.36 79.98 77.04 78.81
Oracle 82.86 83.18 84.25 83.79 83.52
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Table 4. CIFAR-10 label shift test accuracy with ’animal’ and
’vehicle’ clusters.

Method Vehicles Animals Mean

PPDL 51.86 36.31 43.81
PPDL-var 52.86 36.33 44.60
DAC 52.78 33.87 43.32
Random 44.79 30.00 37.40
Local 51.10 35.11 43.11
Oracle 57.17 39.74 48.45

Covariate shift. Tables 2 and 3 show the results of
our covariate shift experiments with two cluster setups.
Our method, PPDL, performs similarly to DAC, but with
secure aggregation for privacy. Random favors large clus-
ters and penalizes small ones, as seen in Table 2. DAC
and PPDL avoid collaborating with “poisonous” nodes
by their sampling schemes, improving test accuracy in
the 180° cluster. Oracle has low test accuracies for small
clusters, likely due to limited data (only 5 nodes per clus-
ter). For the smallest clusters, 350° and 10°, PPDL and
DAC find similar nodes in the large 0° cluster, improving
performance. Thus, DAC and PPDL increase perfor-
mance and fairness for smaller clusters that differ from
large ones. The Fashion-MNIST results are less different
between methods, likely due to the easier problem than
CIFAR-10. Also, rotating images may not be challeng-
ing for small CNNs, as they can learn rotation-invariant
representations with enough data. We analyze harder
label shift problems ne

Label shift. The results of our label shift experiment
with two clusters (animals and vehicles) are presented in
Table 4. We observe that both PPDL and DAC perform
well, with PPDL achieving superior results. The highest
accuracy is achieved with PPDL-var, in which q(t) is
exponentially decayed. We note that Random performs
worse than local training without collaboration, likely
due to model poisoning caused by nodes communicating
with incorrect clusters. For Random, the node models
learn different representations for the different clusters,
and when merging models from two distinct clusters,
the resulting model is inferior due to the significant dis-
similarity between the models, a phenomenon known as
client drift. Both DAC and PPDL are able to mitigate
this problem by identifying useful collaborators.

The results of our five-cluster experiment on CIFAR-
10 are presented in Table 1, where each cluster consists
of two unique labels. We observe that Random performs
worse than the Local baseline on average also in this
setting. Our experiments also reveal a high degree of
variance within a cluster for the Local baseline, which
can be attributed to the small size of node data. In con-
trast, the PPDL and DAC methods perform comparably
and are able to correctly identify beneficial collaborators,
as depicted in Figure 1.

4 Related work

Decentralized learning. Previous studies have demon-
strated the effectiveness of gossip algorithms, as high-
lighted in references such as [3, 17, 18]. Furthermore,
collaborative gossip algorithms, where nodes possess dis-
tinct local tasks, have been investigated in the context of
multi-task learning (MTL) as seen in [4, 19]. While gos-
sip learning has been demonstrated to be effective in con-
vex optimization, its application in non-convex optimiza-
tion, which is required for training deep neural networks,
has not been as extensively studied. One of the first
works that explored the use of gossip-based optimization
for non-convex deep learning was conducted on convo-
lutional neural networks (CNNs) in [20]. The authors
demonstrated that high accuracies could be achieved at
low communication costs using a decentralized and asyn-
chronous framework. However, it is important to note
that gossip learning is not well-suited for non-iid settings,
where several distinct learning objectives may be present.
Indeed, a protocol based on random communication be-
tween nodes does not take into consideration the benefits
of node selection during training.

In centralized FL, methods based on hard clustering
[21–23] can efficiently identify node clusters, but they
limit the collaboration of nodes to their own clusters.
This prevents nodes from utilizing useful information
from similar clusters in forming a global model. Re-
cent works have advanced decentralized learning of deep
neural networks on non-iid data. [9] used expectation-
maximization, while [24] improved node selection and
communication cost with gradient-based cosine similar-
ity and model pruning. [25] identified similar nodes by
empirical loss, but only allowed hard clustering. [5]
proposed a decentralized adaptive clustering algorithm
that used empirical loss similarity to discover beneficial
peers, but without privacy guarantees for model weights.
This probability vector is then used for sampling similar
nodes in the next communication round for each node,
allowing for soft cluster assignments and communication
within the entire graph. Empirical results demonstrate
the effectiveness of this method in identifying clusters
of nodes and improving the performance of the models.
Although this method identifies useful node collabora-
tions, there are a lot of privacy risks as model weights
are being shared without any privacy guarantees.

Secure aggregation. Secure aggregation is a method
to enhance node privacy in FL by protecting against
server inference attacks [7, 26]. The idea relies on ran-
dom masking of the node models, before uploaded to
the server, such that the masks cancel out when mod-
els are aggregated. Extensions based on secret sharing
schemes [11] have been proposed, e.g., [27]. For de-
centralized learning, where the communication topology
may be arbitrary, only few works have considered pri-
vacy. One protocol for secure aggregation over arbitrary
networks is presented in [8]. Specifically, for node i, the
scheme consists of two phases: i) node j ∈ Ni broad-
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casts a public key that is used to privately collect shares
of a random mask generated by node l ∈ Ni, ii) node i
receives the masked models and the aggregated shares
of the random masks at from each node and reconstructs
the aggregated masks to recover the aggregated model.
Note that all of the above schemes require the models
to be mapped to a finite field, an operation that may im-
pact the training. A step towards avoiding this step for
secure aggregation over connected graphs was recently
proposed in [28].

Multi-armed bandits. Random node sampling in
FL and DL can be improved by biasing towards nodes’
local losses [29]. Multi-armed bandits for node selec-
tion were introduced in [30] with rewards based on node
latency and objective to minimize training time. Exten-
sions for model averaging [31], asynchronous FL [32],
and dropout and fairness handling [33] were proposed.
However, multi-armed bandits may perform poorly when
the number of arms is large or dependent. Dependency-
based clustering [34] and pseudo-reward shrinking [14]
are two methods to exploit dependencies and reduce the
number of arms.

5 Conclusions and future work
We introduce Private Personalized Decentralized
Learning (PPDL), a novel privacy-preserving node se-
lection approach for personalized decentralized deep
learning based on adversarial multi-armed bandits. Our
approach uses secure aggregation to hide individual node
metrics and exploits node dependencies to sample groups
of collaborators efficiently. To the best of our knowledge,
this is the first privacy-preserving node selection scheme
for decentralized learning. We show that PPDL achieves
comparable performance to existing (non-private) tech-
niques on multiple experiments, while also providing
privacy protection with secure aggregation.

For future research, it would be interesting to explore
aggregation methods for models trained on different
datasets in order to enhance the robustness of nodes to
merging with other clusters. Another direction is to un-
derstand how privacy is affected by the number of nodes
participating in the secure aggregation. Intuitively, as
shown in, e.g., Section V.A in [8], privacy improves with
larger group sizes.
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