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Abstract—Natural language provides a flexible interface for
specifying robot tasks, but language-conditioned reward learning
often assumes that instructions are unambiguous and directly
informative. In reality, human language is frequently ambiguous
— and may specify not just what to do, but also what matters in
the environment. In this work, we propose a method that leverages
this duality: we use large language models (LLMs) to extract state
feature-level relevance masks from language and demonstrations,
and train a reward function that is both conditioned on clarified
task language and explicitly invariant to irrelevant parts of the
state. We show that this approach improves generalization and
sample efficiency in inverse reinforcement learning, particularly
in settings with ambiguous instructions, distractor objects, or
limited data. Our results highlight that disambiguating language
with contextual demonstrations — and using language to guide
both goal inference and state abstraction — enables more robust
reward learning from natural instructions.

Inverse Reinforcement Learning, Multi-Modal Feedback,
Language Conditioning, Reward Learning

I. INTRODUCTION

In robotics, natural language provides a flexible and intu-
itive interface for specifying the tasks. However, language-
conditioned reward learning typically assumes language in-
structions are clear and unambiguous. In practice, human
language is often inherently ambiguous – an instruction can
specify not only what the robot should do but also which
elements of the environment matter for the task. Addressing
this ambiguity is essential for effective reward learning from
limited demonstrations and generalization to novel tasks or
contexts.

Language-conditioned reward learning has gained significant
interest in recent robotics literature. Fu et al. [9] show that
learning a reward model conditioned on language yields
behavior that transfers to novel tasks, whereas directly training
a language-conditioned policy was less effective. Poddar et
al. [23] learns a latent space that maps language instructions
into hidden states to condition the reward model. Although
language is frequently used as an additional modality in robot
learning, existing approaches typically treat language simply
as another input to a policy or reward model, without explicitly
structuring the learning around the state features indicated as
important by language. Consequently, these models implicitly
infer feature relevance, which can lead to spurious correlations.

To address this gap, we propose a method that leverages the
duality of language instructions in reward learning: their ability
to specify tasks as well as to indicate relevant environmental
state features. Specifically, our approach uses large language
models (LLMs) to extract explicit relevance masks at the state
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Fig. 1: Overview. For a robotic task, language can specify not only
what to do, but also what matters in the environment. When there are
multiple objects (e.g., vase and laptop) and human in the environment,
an instruction “stay away from the laptop” states that ’laptop’ is
the only important feature. Even for ambiguous instructions such as
“stay away”, when combined with a contextual demonstration (blue
trajectory), the instruction can be clarified to include the missing
referent, e.g., laptop.

feature level from language instructions and demonstrations
during training. These masks identify which environmental
features are task-relevant according to the provided instruction.
Using these masks, we train a reward function conditioned
on language instructions that explicitly ignores irrelevant state
features. At inference time, our model can handle not only
clear instructions but also ambiguous language instructions
clarified by a single demonstration per instruction.

We introduce Masked Inverse Reinforcement Learning
(Masked IRL), a framework that integrates human demon-
strations and language instructions to explicitly guide feature
selection for reward learning. Masked IRL leverages language-
derived masks to dynamically gate relevant features in the
reward function. For example, given the instruction “stay
away from the table” in the scene in Fig. 1, our model
explicitly ignores laptop-related features and irrelevant end-
effector coordinates while emphasizing the vertical distance
between the robot and table surface. We propose a masking loss
that penalizes variations in reward predictions resulting from
perturbations in state features indicated as irrelevant by the
language. This builds upon the concept of contextual reliability
by Ghosal et al. [10], explicitly training models to identify and
ignore spurious or contextually irrelevant features.

By explicitly leveraging multimodal human feedback,
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Masked IRL substantially reduces demonstration requirements,
improves sample efficiency, and enhances generalization by
focusing solely on relevant task features. We empirically
validate our approach using a PyBullet simulation environment
with a Franka Emika Panda robotic arm. Our experiments
highlight Masked IRL’s effectiveness in settings with am-
biguous language instructions, distractor objects, and limited
demonstration data, demonstrating improved data efficiency,
robustness, and generalization relative to standard IRL methods.
In summary, our contributions are:

• A method using large language models (LLMs) to dis-
ambiguate language instructions and explicitly extract
state-feature relevance masks from instructions paired
with demonstrations.

• Masked IRL, an IRL framework that conditions rewards
on clarified instructions and explicitly enforces invariance
to irrelevant state features via a novel masking loss.

• Empirical validation of Masked IRL’s effectiveness on sim-
ulated robotic manipulation tasks, demonstrating improved
generalization, robustness, and data efficiency compared
to traditional language-conditioned IRL approaches.

II. RELATED WORK

A. Reward Learning from Human Feedback

Inverse reinforcement learning (IRL) learns reward functions
from expert demonstrations. Early works [19], [8], [1], [30]
have shown promising results in robotics but suffer a trade-off
between the number of expert demonstrations and identifiabil-
ity [20], [26], i.e., the required amount of demonstrations to
identify the true objective function is huge. One fundamental
limitation of IRL is that we can only train one reward function
given a set of demonstrations, thereby requiring N set of
demonstrations and N training processes to train N different
reward functions. Bobu et al. [3] separates feature learning
and reward learning, and uses human trajectory similarity
queries to learn a task-agnostic feature space. However, they
still require multiple demonstration sets for different user
preferences and cannot generalize to unseen preferences.
Beyond demonstrations alone, incorporating various modalities
of human feedback (e.g., pairwise trajectory comparisons,
language) has been shown to improve reward learning efficiency
or reduce human’s cognitive effort. Reinforcement learning
from human feedback (RLHF) methods [6], [5] use pairwise
human preferences to guide reward learning, but these methods
often require thousands of human feedback to learn a single
reward function [14]. Previous works [18], [28], [15] leverage
API-based LLMs to generate a reward function as a code
or predict weights on sub-rewards. Yu et al. [28] use an
LLM as a Reward Translator, mapping high-level instructions
into dense reward functions that standard RL can optimize.
Recent works [23], [27] combine pairwise comparisons with
language. Poddar et al. [23] highlight the need for personalized
reward learning, arguing that aggregating human preferences
can obscure individual human preferences. Their method learns
a variational latent user model that personalizes rewards to
individual users. Yang et al. [27] incorporates comparative
language feedback, where humans describe which trajectory is

better and why. Their model embeds trajectory-language pairs
into a shared space, enabling iterative refinement of the reward
function.

B. Language-Conditioned Learning in Robotics

Integrating natural language with robot learning has gained
significant interest as a way to bridge human intent with robots.
Recent methods leverage language as a conditioning signal in
policy learning and reward modeling. Fu et al. [9] propose
a language-conditioned reward learning approach in which
IRL is used to ground language commands, showing that
the resulting reward functions transfer better to novel tasks.
In parallel, systems like LILAC [7] allow human operators
to provide online language corrections during task execution.
While such approaches have shown promising results, they
often use language merely as an auxiliary input without
explicit structure for feature selection. Language has become
an essential modality for training robots, as it enables humans
to specify goals, provide feedback, and guide behavior. One
prominent approach is to condition policies or reward functions
on language instructions. Ahn et al. [2] introduce the Say-
Can framework, which grounds high-level instructions using a
large language model (LLM) and constrains execution using
a value function, allowing robots to follow abstract human
commands. Huang et al. [11] show that LLMs can serve as
zero-shot planners by generating structured action sequences
from instructions, while Huang et al. [12] introduce Inner
Monologue, a framework that integrates environment feedback
into LLM planning, significantly improving long-horizon task
execution. Incorporating LLMs into robotic control has also
gained traction. Liang et al. [17] propose Code-as-Policies
(CaP), in which LLMs generate executable code (Python
functions) for robotic policies, allowing for interpretable,
structured control. This approach enables robots to generalize
to unseen instructions by modifying their behavior through
high-level program synthesis.

Beyond LLM-based planning, recent work has explored
language-conditioned reward learning. Yu et al. [28] intro-
duce Language to Rewards, where an LLM parses high-
level instructions and outputs a parametric reward function,
bridging natural language and robotic reinforcement learning.
Karamcheti et al. [16] propose Voltron, a vision-language
model for representation learning that aligns video frames
with text descriptions, facilitating language-driven imitation
learning. Hwang et al. [13] learn a success detector or
a reward function that understands semantic grounding of
robot motions. Other approaches integrate demonstrations with
corrective language feedback to directly gate task-irrelevant
features [7]. In such systems, language helps the robot focus
on task-relevant features, thereby reducing the number of
demonstrations needed and improving generalization. This
multimodal feedback approach is especially promising in
robotics, where safety and efficiency are paramount. Our work
builds on these ideas by combining demonstration data with
language instructions to guide a feature gating mechanism,
leading to a reward model that is both data-efficient and robust.
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C. Abstractions in Robot Learning

Another limitation of IRL comes from the spurious correla-
tions of features. In many robotic tasks, not all sensory features
are relevant for determining the reward. Ghosal et al.[10] aim
to dynamically choose which features to rely on based on the
current task or context. They have explored conditional gating
mechanisms where a context variable modulates the importance
of each input feature. Such approaches encourage sparsity in
the feature set, thereby reducing the effective dimensionality of
the learning problem. In robotics, this is particularly valuable
since different tasks may require attention to different subsets of
sensor modalities or object attributes. By integrating contextual
reliability, one can obtain a more robust and interpretable model
that adapts to the nuances of each task. Feature relevance varies
with context, making contextual feature selection an essential
component of robust learning. Unlike static feature selection,
contextual feature selection dynamically selects which features
are relevant based on auxiliary information such as the task
or environment. In robotics, contextual feature selection is
crucial for multi-task learning. Some skill learning frameworks
enable robots to dynamically select relevant object attributes
for different tasks, reducing learning complexity and improving
generalization. Peng et al. [20] deals with overparameterization
of reward by iteratively generating features and learning a
reward on top of the current feature set. Peng et al. [20] uses
language-guided contrastive explanations to iteratively extract
and validate semantically meaningful features for the reward
function. [21] uses background knowledge of language models
to build state representations for unseen tasks. We aim to learn
which state features matter under different user preferences,
thereby improving sample efficiency and interpretability.

III. PROBLEM FORMULATION

We consider the problem of learning reward functions that
capture the unknown preferences held by a human given a
small number of user demonstrations and language.

A. Preliminaries

We model our problem as a Markov Decision Process M =
⟨S,A, T ,R⟩ with states s ∈ S, actions a ∈ A, transition
probability T : S×A×S → [0, 1], and rewardsR : S×A → R.
A solution to the MDP is a policy π : S → A that specifies what
actions the robot should take in different states. The reward
function is typically parameterized (e.g. a neural network)
Rθ(s), and is intended to capture the human’s preference
for how the robot should perform the task. To optimize task
performance, the robot seeks a trajectory τ = {s0, . . . , sT }
that maximizes the cumulative reward Rθ(τ) =

∑
st∈τ Rθ(s

t)
and executes the corresponding actions.

B. Maximum Entropy Inverse RL (MaxEnt IRL)

In practice, the reward function Rθ is typically unknown to
the robot or very challenging to manually specify. Thus, in IRL
the robot’s goal is to learn this reward function from human
feedback, such as demonstrations. Given a dataset of human-
demonstrated trajectories D = {τi}Ni=1, the robot treats them

as evidence of the human’s preferred behavior and attempts
to infer the reward parameters θ that explain the underlying
objective. We adopt the maximum entropy (MaxEnt) framework
for modeling human decision-making [30], [8], where the
human is assumed to be a noisily optimal agent who selects
trajectories with probability proportional to their exponentiated
reward:

p(τ | θ) = eRθ(τ)∫
τ̄
eRθ(τ̄)dτ̄

∝ exp(Rθ(τ)) (1)

This model captures the intuition that while humans generally
act optimally, suboptimal trajectories are still possible, but
occur with exponentially lower probability as their reward
decreases [30]. To recover the reward parameters, we maximize
the log-likelihood of the demonstrations:

θ∗ = argmax
θ

L(θ) = argmax
θ

∑
τ∈D

log p(τ | θ) . (2)

Since the partition function in the denominator is intractable
to compute exactly, we follow prior work [8], [4] and use
importance sampling to approximate it. Once the reward is
learned, the robot can act according to the policy that optimizes
it. While MaxEnt IRL provides a principled framework for
inferring rewards from demonstrations, learning a flexible
reward function directly from high-dimensional states typically
demands thousands of demonstrations per task [29], [24], [25],
which is costly and impractical to scale. With limited data,
learned rewards often capture spurious correlations between
state features that accidentally co-occur with task success rather
than reflecting true human intent. This fundamentally limits
generalization, particularly in environments with distractors,
ambiguous cues, or structural variations.

To address this, we propose leveraging natural language as
an additional, structured form of supervision. Our key insight is
that language plays a dual role in reward learning: 1) it conveys
information about the human’s intent, enabling a shared reward
model to generalize across tasks via language conditioning;
and 2) it implicitly communicates which aspects of the state
are task-relevant, providing a signal for filtering out irrelevant
environmental variation. By exploiting this natural duality,
we learn a language-conditioned reward function that both
shares structure across tasks and ignores spurious correlations,
resulting in more generalizable rewards from significantly fewer
demonstrations.

IV. METHOD

We present Masked Inverse Reinforcement Learning for
Language Conditioned Reward Learning (Masked IRL), a
method which leverages demonstrations paired with human
language instructions to learn a language-conditioned reward
function. Our approach exploits language’s two distinct signals:
language commands condition the preference captured by
the reward model, and a language-informed masking loss is
used to enforce invariance to task-irrelevant state aspects. We
generate this mask directly from language commands and
implement a masking loss that forces the reward function to
ignore spurious state elements. By combining this masking loss
with a language-conditioned architecture, Masked IRL achieves



4

improved sample efficiency, requiring fewer demonstrations to
learn generalizable rewards.

A. Preliminaries
We assume the human maintains a set of ground truth

state features ϕ(s) which are only known to the human, not
the observing agent. We assume the ground truth reward
for preference i is a function of these features, R∗

i (ϕ(s)),
where R∗

i (τ) =
∑

st∈τ R∗
i (ϕ(s

t)). Given a set of training
preferences Ptrain = {1, 2, ..., N}, we collect a training dataset
D = {τi, ℓi}Ni=1, where each paired demonstration τi and
language command ℓi correspond to preference i ∈ Pi. We aim
to learn a general reward function Rθ(s|ℓj) that captures the
ground truth reward for a new preference j where j /∈ Ptrain.
Our goal is to learn a reward function that can generalize to
unseen preferences given just a single language command ℓj .
Since we lack access to the ground truth state features, our
inferred reward is state-based Rθ(τ |ℓj) =

∑
st∈τ Rθ(s

t|ℓj).
We assume that all ground truth training and test preferences
are functions of the same set of ground truth human features,
representing a consistent intermediate representation unknown
to the agent. We use language commands in our training
dataset in two distinct ways. First we condition our model
on these language inputs, following established practices in
prior methods. Novel to our approach is our second usage – we
convert language commands into state-based masks that inform
a specialized training loss, promoting invariance to irrelevant
state elements.

B. Language for State Masking
We extract state relevance from language by translating

language commands into binary feature masks. For each
demonstration-language pair {τ, ℓ} ∈ D we use language
command ℓ to generate a binary mask m ∈ {0, 1}d, where
d is the dimension of the input state s. Each mask element
is 1 for state indices relevant to the specified preference, and
0 otherwise. We augment our dataset with these language-
generated masks to create D′ = {τi, ℓi,mi}Ni=1. These masks
are produced by leveraging large language models ..

To ensure that the reward model is invariant to features
deemed irrelevant by the language command, we introduce a
masking loss. Let s(j) denote a perturbed version of state s ∈ τ ,
where element j is modified (such as through the addition of
Gaussian noise) and all other elements remain unchanged. The
masking loss becomes

Lmask(θ) =
∑

τ,ℓ,m∈D′

∑
s∈τ

d∑
j=1

(
1−mj

)(
Rθ(s

(j) | ℓ)−Rθ(s | ℓ)
)2

,

(3)
where mj represents the jth element of m. This loss term
penalizes changes in the reward when irrelevant features are
perturbed, forcing the reward model to ignore these features.

The final training loss becomes

J (θ) = LIRL(θ) + λLmask(θ), (4)

where λ > 0 is a hyperparameter controlling the trade-off
between fitting the demonstrations and enforcing invariance to
irrelevant state elements.
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Fig. 2: Network Architecture. We condition the reward model on
language instructions using FiLM layers. The conditioned reward
model infers a scalar reward of a robot’s 9-dim state.

C. Masked IRL for Language Conditioned Reward Learning

We pair our masking loss with a language-conditioned
architecture to additionally leverage the intent captured by
language instructions. Specifically, we apply Feature-wise
Linear Modulation (FiLM) [22] to the first fully connected
(FC) layer of the reward model (see Fig. 2) to condition
the reward model based on the language inputs. This FiLM
layer applies language-dependent affine transformations to
intermediate network features, allowing language commands to
dynamically modulate reward components directly. As opposed
to simply concatenating the language command with the input
state, FiLM targets conditioning input to explicitly modulate
intermediate network features, providing the ability to scale
features, negate them, or shut them off entirely. This method
enables using language for a dual purpose: both as a gating
mechanism that filters out irrelevant state aspects, and as an
adaptation function that adjusts intermediate feature weights
based on the preference captured in language. Algorithm 1
shows the training procedure for Masked IRL.

D. Clarifying Ambiguous Language Instructions

For ambiguous language instructions, we systematically
generate the instructions within two types: (1) referent omitted
and (2) expression omitted. Referent omitted instructions do
not include the object that the user actually cares about, and
only include instructions such as “stay away”, “stay close”,
and “carry it upright”. Expression omitted instructions have
the information about what object the user wants to refer to,
but does not mention how the user wants the relationship
between the robot and the object to be. For instance, “table”,
“laptop”, or “human” can be expression omitted instructions.
To generate state masks from ambiguous instructions, we
provide the information of a demonstration trajectory as tabular
data in text, along with the instruction to an LLM. We use
Chain-of-thought reasoning to let LLM generate the response
step-by-step, including its reasoning process to generate the
clarified language instruction. For instance, given the instruction
‘stay away’ and a demonstration where the robot moves away
from the table, the LLM might reason: ‘The robot avoids the
table. Therefore, the instruction likely refers to avoiding the
table.’ The clarified instruction becomes ‘stay away from the
table’, which is then mapped to a binary mask emphasizing
the end effector’s z position and de-emphasizing human or
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laptop locations. Then, we query the LLM again to convert
the clarified language instruction into a 9-dim state mask that
represents the importance of each state dimension.
Algorithm 1: Masked IRL with Language Conditioning

Input: Demonstrations {(τi, θi)}Ni=1, training
trajectories T , language encoder E, reward
network R, learning rate η, iterations I , batch
size B, masked loss weight λ, noise scale σ.

for epoch 1 to I do
Shuffle demo and training indices
for each minibatch b of size B do

Form demo inputs: Xb
d = {(s̄i, ci)} and

compute cost Cb
d = R(Xb

d)
Form training inputs Xb

t = {(s̄j , cj)} with cost
Cb

t = R(Xb
t )

Compute maxent loss:

Lb
IRL = mean(Cb

d) + log
(
mean(exp(−Cb

t ))
)

Perturb demo states:
s̄′i = s̄i + ϵ, ϵ ∼ N (0, σ2I) (only in
dimensions where Π(θi) = 0);

Compute perturbed cost C ′
d
b = R({s̄′i, ci}) and

masked loss:

Lb
mask = mean

(∣∣Cb
d − C ′

d
b
∣∣)

Update parameters:
θ ← θ − η∇

(
Lb

IRL + λLb
mask

)
end

end
return θ.

V. EXPERIMENTS

We evaluate our method on a robotic task to move a coffee
from a start to a goal location in a PyBullet simulator, where
there is a human, a table, and a laptop in the environment.
Each state consists of the position and rotation of the robot’s
end effector, objects (table and laptop), and a human in the
environment. In each task, only a subset of features is relevant
to the reward. Human instructions (e.g., “stay away from the
laptop”) are provided to guide the feature gating.

A. Dataset.

We generate a dataset of 100 start-goal pairs for a task of
moving a coffee mug, each with 100 robot trajectories, in
PyBullet simulator. We also generate 242 language instructions
that are mapped into ground truth reward functions that
define human preferences. For clear language instructions,
we construct the dataset with 193 train instructions and 49
test instructions. Each instruction has a corresponding 5-
dim theta value that describes human’s ground truth reward
function. We use GPT-4o API to infer the state mask only
from each clear instruction, without any information about the
ground truth reward. For inferring state masks from ambiguous
instructions, we pair each instruction with its corresponding
expert demonstration and pass the information of the language

instruction and demonstration to GPT-4o as described in
Section IV-D. We train each model with 1 to 10 demonstrations
per human preference.

B. Baselines

Traditional IRL learns a single reward function from demon-
strations, without contextual modulation. This often results in
a reward model that uses all features indiscriminately, making
it vulnerable to spurious correlations when demonstrations
cover multiple tasks or environments. To demonstrate the
effectiveness of masking loss, we compare Masked IRL and
MaxEnt IRL on two different types of reward model - single
model and multiple model. We refer to ‘single model’ as a
language-conditioned reward model, regardless of the usage
of masking loss. ‘Multiple model’ refers to a set of language-
unconditioned reward models, where each element of the set
is a reward model that corresponds to a specific language
instruction, i.e., user preference.
For multiple model approaches, we compare:

• MaxEnt IRL (No Language, multiple model). We train a
3-layer MLP that inputs a 9-dimensional state and outputs
a scalar reward value for each state. We train this baseline
with standard maximum entropy loss.

• Masked IRL (No Language, multiple model). Same
architecture as the baseline but uses the weighted masking
loss in addition to the maximum entropy loss for training.

For single model approaches, we compare:
• MaxEnt IRL (Language-conditioned, single model).

The 3-layer MLP reward model is conditioned on language
embedding using FiLM. We use the standard maximum
entropy loss function to train this model.

• Masked IRL (Language-conditioned, single model).
Same architecture as the baseline but uses the weighted
masking loss in addition to the maximum entropy loss
for training.

For multiple model methods, we only evaluate on seen human
preferences, since unseen human preferences do not have
any corresponding trained reward model. However, for single
model methods, we evaluate on unseen human preferences, i.e.,
language instructions.

C. Evaluation Metrics.

We evaluate all models by calculating the average win rate,
where the average win rate measures how often our learned
reward model correctly prefers better trajectories compared
to ground-truth preferences. We run all experiments with 5
different random seeds (12345, 23451, 34512, 45123, and
51234) and show the average and standard error across seeds.

D. Results

The effectiveness of Masking Loss on Multiple Model.
Fig. 4 shows the effect of having masking loss in multiple
model methods. Interestingly, the performance improvement
by using masking loss is maximized when the number of valid
features for the ground truth reward of the simulated human is
minimized to 1. As the number of valid features increases, the
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Fig. 3: Experiment Results. (a) shows the average win rate of single model methods and compares the performance between Masked IRL
and MaxEnt IRL. (b) shows the average win rate of single model methods given 10 demonstrations per user preference as training proceeds.
(c) shows the learning curve in case given 1 demonstrations per user preference. All error bars show the standard error across 5 different
seeds (12345, 23451, 34512, 45123, and 51234). ‘MEIRL‘ in the figures denote MaxEnt IRL.

Fig. 4: Multiple model performance per feature counts. Comparing
Masked IRL to MaxEnt IRL for multiple model baselines, the average
win rate is improved the most when there are least number of valid
features in the ground truth reward of the simulated human. As the
number of valid features increase from 1 to 5, the performance gap
between Masked IRL and MaxEnt IRL decreases.

gap between Masked IRL and MaxEnt IRL decreases. This is
a desired behavior because when all features are valid, i.e., all
state dimensions are relevant to the instruction,
The effectiveness of Masking Loss on Single Model. Fig. 3 (a)
shows the average win rate over the number of demonstrations.
As the number of demonstrations increases, both Masked
IRL and MaxEnt IRL shows an overall trend of increasing
performance. In all numbers of demonstrations, Masked IRL
outperforms MaxEnt IRL. As shown in Fig. 3 (b), Masked
IRL not only converges to a higher average win rate, but also
converges faster than MaxEnt IRL. Also, Fig. 3 (c) shows an
interesting result that given a single demonstration per user
preference, Masked IRL shows more stable performance with
lower variance while generalizing better to unseen preferences.
Performance on ambiguous instructions. When we use our
Masked IRL single model trained with 10 demonstrations
per human preference to evaluate trajectories given a single
ambiguous language instruction and an expert demonstration
to disambiguate language, we get an average win rate of
63.1% on the instructions. The lower performance compared
to the performance on clear test instructions may be due to

the inaccuracy of clarifying ambiguous instructions to clear
instructions using LLMs.
Future Work and Limitations Although our Masked IRL
framework effectively improves generalization and sample
efficiency, several limitations remain. First, our reliance on
LLMs introduces potential inaccuracies in generating rele-
vance masks, particularly when instructions are ambiguous
or nuanced, which can affect the overall robustness of the
reward model. Future work could explore methods for refining
mask accuracy through interactive human feedback or advanced
prompting strategies. Additionally, our current evaluations focus
on relatively constrained robotic tasks; extending the approach
to more complex, dynamic, or multi-agent environments
could further validate the generality of Masked IRL. Lastly,
investigating ways to integrate explicit uncertainty estimation
in the masking process could enhance the reliability of our
approach in real-world deployments.
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