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ABSTRACT

Classical search algorithms have long underpinned modern artificial intelligence.
In this work, we tackle the challenge of inference-time control in diffusion mod-
els—adapting generated outputs to meet diverse test-time objectives—using prin-
ciples from classical search. We propose a general framework that orchestrates
local and global search to efficiently navigate the generative space. It performs
compute-efficient global exploration using breadth-first and depth-first tree search
and employs a theoretically grounded, scalable local search via annealed Langevin
MCMC. We evaluate our approach on a range of challenging domains, including
planning, offline reinforcement learning, and image generation, and observe signifi-
cant gains in both performance and efficiency over baseline methods. These results
demonstrate that classical search offers a principled and practical foundation for
inference-time scaling in diffusion models. By jointly scaling local and global
search for the first time, our framework establishes a new Pareto frontier across
challenging decision-making domains.

1 INTRODUCTION

Classical search algorithms have laid the foundation for modern artificial intelligence (Russell &
Norvig, 2009). In discrete settings, graph search algorithms are widely used to explore the state
space. Breadth-first search (BFS) (Moore, 1959) and depth-first search (DFS) (Tarjan, 1972) traverse
the search tree in a fixed order. To better leverage problem-specific information, best-first search
methods (Pearl, 1984), such as A* (Hart et al., 1968), use a heuristic to evaluate and prioritize states.
Alternatively, local search methods, such as hill-climbing (Russell & Norvig, 2009, Sec. 4.1), explore
neighboring states. More recent techniques like gradient descent and Markov Chain Monte Carlo
(MCMC) have become widely adopted in optimization and probabilistic inference, underpinning
many modern AI models.

Diffusion models (Ho et al., 2020) have shown impressive performance in generative modeling for
continuous domains such as images (Dhariwal & Nichol, 2021), videos (Ho et al., 2022). They are
also increasingly used in robotics and decision-making (Liu et al., 2024; Black et al., 2024; Team
et al., 2024) to generate diverse actions (Chi et al., 2023). However, generated samples may not
always align with physical laws (Song et al., 2023) or human intent (Wallace et al., 2024), and the
vast generative space often necessitates multiple trials to produce satisfactory outputs (Xie et al.,
2025). To address this, we scale up inference-time compute using strategic search methods that
navigate the generative manifold for high-quality samples. We formalize sample evaluation using a
verifier function f(x0) defined on ground truth samples, which measures the quality of the sample.
Such verifiers could be reward functions (Xu et al., 2023a), Q-functions (Lu et al., 2023), classifier
conditions p(c|x0) (Ye et al., 2024; Dhariwal & Nichol, 2021), and VLMs (Huang et al., 2023).

To efficiently search the generative space of diffusion models, we revisit classical search principles.
To capture diverse modes in the complex distributions generated by diffusion models, we view
sampling as traversing a search tree, employing BFS and DFS to progressively explore states during
denoising. Similar to best-first search, we evaluate intermediate states xt with the verifier f(x0|t),
prioritizing high-quality paths and efficiently allocating compute via branching and backtracking.
To go refine the base distribution and obtain higher-quality samples, we perform local search via
Langevin MCMC, exploring the neighborhood of current samples under guidance from both the
verifier gradient and the diffusion model’s “score function” (Vincent, 2011). By jointly optimizing
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Figure 1: Illustration of our search framework. Bottom left: direct sampling results in samples with low
verifier scores. Bottom middle: global search identifies high score modes within the base distribution. Bottom
right: local search further optimizes the samples for higher quality, driven by the gradient signal.

the compositional objective of the diffusion model and the verifier (Du et al., 2023), our local search
surpasses the capabilities of the base model. An overview of our framework is shown in Fig. 1.

Recent works scale diffusion model inference via particle-based SMC (Kim et al., 2025; Singhal
et al., 2025a; Wu et al., 2023a; Li et al., 2024) and tree-based methods (Guo et al., 2025; Li et al.,
2025b), which explores the diffusion sampling process with a fixed schedule. We generalize the
particle-based methods (Kim et al., 2025; Singhal et al., 2025a; Li et al., 2024) with a BFS-based
framework, clarifying prior design choices and providing an improved BFS baseline. Inspired by
DFS, we add adaptive backtracking to allocate compute adaptively, surpassing BFS in efficiency
and adaptivity. The adaptive backtrack schedule also outperforms the fixed noise injection in Ma
et al. (2025), highlighting the importance of adaptivity in inference scaling. While global search
remains limited to base-distribution modes, scaling local search with Langevin MCMC explores
high-reward regions in neighborhoods of the base model samples, proving effective in challenging
decision-making tasks. Finally, we jointly scale local and global search with the classical AI search
principles, demonstrating superior performance over prior methods, which scale local and global
search in isolation.

Our key contributions are summarized as follows:

i) For global tree search, we elucidate the design space of prior BFS-style methods and provide
an improved BFS design. We further present the first adaptive DFS algorithm for diffusion
inference scaling, offering superior efficiency and adaptivity.

ii) We introduce a theoretically grounded local search method using annealed Langevin MCMC,
demonstrating superior performance in challenging domains.

iii) We propose a unified framework for inference scaling that integrates both global and local search
within the classical AI search paradigm. By jointly scaling local and global search for the first
time, we advance the Pareto frontier of inference-time scaling across diverse domains.

2 RELATED WORKS

Here, we provide a brief overview of inference-time scaling with diffusion models. For a more
comprehensive literature review and discussion of concurrent works, see Appendix B.

Particle-based scaling methods. Recent works (Kim et al., 2025; Singhal et al., 2025a) propose
SMC-style particle filtering methods, scaling inference compute by increasing the number of particles
and improving efficiency via resampling. Kim et al. (2025) propose biasing the transition kernel
using verifier gradients and incorporating both the proposal and base transition probabilities during
resampling. Similarly, tree-search-based methods (Li et al., 2024; 2025b; Guo et al., 2025) evaluate
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intermediate nodes and select promising candidates. Both approaches can be seen as special cases
of our BFS tree search framework, which denoise a set of particles in parallel, applying branching
and filtering based on intermediate reward signals. SoP (Ma et al., 2025) proposes searching over
sampling paths by adding M noise samples to each noisy particle and then denoising, thereby
exploring neighboring sampling paths. Although this procedure modifies the denoising process, all
particles still follow the same fixed denoising schedule. In addition to linear BFS-style algorithms, we
also propose DFS-style algorithms with non-linear adaptive backtracking through noise injection and
a score-dependent backtracking schedule, demonstrating superior performance over prior methods.

Concurrent with our work, Jain et al. (2025) additionally incorporate value backup from MCTS
into the tree search for diffusion models, leveraging information from previous sampling paths, and
enabling adaptive compute allocation with the design of an anytime algorithm. Lee et al. (2025)
propose backtracking by sending fully denoised particles to all noise levels. The adaptive termination
condition is designed based on the reward distribution of the denoised particles to ensure sufficient
exploration. In contrast, our DFS determines backtrack noise level by the score of the particle, thus
reducing excessive compute consumption on easy instances. In discrete diffusion models, Dang
et al. (2025) introduce Particle Gibbs Sampling for inference scaling, which outperforms SMC-based
approaches (Singhal et al., 2025a). However, their method is not directly applicable to our setting.

Gradient-based guidance methods. To sample from a conditional distribution, classifier guidance
(Dhariwal & Nichol, 2021) utilizes the gradient from a trained noise-dependent classifier to compute
the conditional score function (Song et al., 2020b). However, such noise-dependent classifier requires
additional training and data collection. To use classifiers defined on clean samples, training-free
guidance methods (Ye et al., 2024; Chung & Ye, 2022; Song et al., 2023; Yu et al., 2023; He et al.,
2023) approximates noisy conditional probability using the denoised output x0|t. Such methods are
inheritability biased due to their first order approximation. Different from prior methods that rely
on the conditional diffusion process, we sample from the compositional distribution via annealed
Langevin MCMC, which provides asymptotically exact sampling without any training.

3 BACKGROUNDS

3.1 DIFFUSION PROBABILISTIC MODELS

Suppose we have D-dimensional random variable x0 ∈ RD with distribution p0(x0). Diffusion
models (Ho et al., 2020; Song et al., 2020a) and the more general flow models (Lipman et al., 2022;
Albergo & Vanden-Eijnden, 2022) are generative models that turn noise into data via a stochastic
process {xt}Tt=0. The forward “noising” process with t > s can be defined as:

q(xt|xs) = N
(
x;
αt
αs

xs, α
2
t

(
σ2
t

α2
t

− σ2
s

α2
s

)
I

)
. (1)

where αt, σt are referred as the noise schedule with α0 = σT = 1, αT = σ0 = 0. We can thus write
the random variables xt as an interpolation between data and noise (Ma et al., 2024):

xt = αtx0 + σtϵ ,

and denote qt(xt) as the marginal distribution of xt. To model the reverse “denoising” process, we
train the model using the denoising objective (Ho et al., 2020):

L(θ) = Et,x0,ϵ [ϵθ(xt, t)− ϵ] ,

which is equivalent of learning the score function of qt(xt) (Vincent, 2011), as the ground truth of
ϵθ(xt, t) is −σt∇xt log qt(xt). To generate samples, we transform noise into data via the reverse
transition kernel pθ(xt−1|xt). In practice, we either sample xt−1 using deterministic samplers like
DDIM (Song et al., 2020a):

xt−1 =
αt−1

αt
(xt − σtϵθ(xt, t)) + σt−1ϵθ(xt, t)

or stochastic samplers like DDPM (Ho et al., 2020; Nichol & Dhariwal, 2021):

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))) .
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3.2 COMPOSITIONAL AND CONTROLLABLE GENERATION OF DPMS

Given a base diffusion model with data distribution p0(x0), one may wish to sample x0 with
some constraints or conditions f(x0). Exact diffusion sampling from the composed distribution
p̃0(x0) ∝ p0(x0)f(x0) would require training a time-dependent f on data generated by p0 (Dhariwal
& Nichol, 2021; Lu et al., 2023), which may not be applicable in practice. Thus, we adopt optimization
based methods to approximate the target distribution.

Compositional generation via annealed Langevin MCMC. When sampling from a compositional
distribution composed of multiple probability distributions, p̃0(x0) ∝ p0(x0)p̂0(x0), Du et al. (2023)
proposes annealed Langevin MCMC sampling. In this approach, a sequence of annealed distributions
q̃t(xt) ∝ qt(xt)q̂t(xt) is constructed with q̂t corresponds to the diffusion process of p̂0, and samples
are drawn using Langevin dynamics (Welling & Teh, 2011):

xi+1
t = xit + η∇x log q̃t(x

i
t) +

√
2ηϵi , ϵi ∼ N (0, I) . (2)

Since the distribution of xit converges to q̃t(xt) asymptotically as i → ∞, η → 0, we can sample
from p̃0(x0) following the annealing path {q̃t}Tt=0 with q̃0 = p̃0. Moreover, since the score of q̃t can
be directly computed by composing the score of two distributions:

∇x log q̃t(xt) = ∇x log qt(xt) +∇xt log q̂t(xt) ,

thus do not require extra training. We point out that the product distribution q̃t(xt) does not represent
a valid diffusion process, thus inverse diffusion sampling via∇x log q̃t is impossible.

Controllable generation through training-free guidance. During the sampling process, training-
free guidance propose to update xt using gradient ascent

x̃t = xt +∆t , ∆t = ρt∇xt log f(x0|t) + µtαt∇x0|t log f(x0|t) . (3)

where x0|t = E[x0|xt] = xt−σtϵθ(xt,t)
αt

. This method approximates the intractable posterior with the
posterior mean: Ex0|xt [f(x0)] ≈ f(E[x0|xt]). To enhance the guidance strength, Yu et al. (2023)
propose to apply a recurrence strategy, which first samples xt−1 via pθ(xt−1|xt), add the guidance
gradient, then add noise back to xt through the forward process qt(xt|xt−1):

xit−1 ∼ pθ(·|xit) , x̃it−1 = xit−1 +
αt−1

αt
∆t , xi+1

t ∼ qt(·|x̃it−1) , i = 1, 2, · · · , Nrecur , (4)

with Nrecur being the total number of recurrence steps.

4 METHODS

Problem Formulation. Given a pretrained diffusion model ϵθ(xt, t) with a base distribution p0(x0),
at test-time, we often wish to optimize the generation process to satisfy task-specific objectives.
For example, RL may require generating high-value actions, image synthesis may seek constraint-
satisfying images, and trajectory generation may demand physically valid outputs. In this paper, we
are interested in how to scale test-time inference to follow such objectives.

We consider an inference-time scaling strategy that adjusts the sampling process based on a verifier
function. Specifically, we define a verifier f(x0) : RD → R+ which specifies the degree to which
samples optimize a specified objective. We then aim to bias sampling toward regions of the sample
space where f(x0) is high. This leads to the objective of sampling from a compositional distribution
that combines the original model distribution with the verifier:

p̃0(x0) ∝ p0(x0)f(x0)
λ , (5)

where λ controls the weight of verifier scores.

Since exact sampling from the distribution is often impractical, we aim to search the manifold for the
target samples at inference time, both globally and locally. First, we explore the diverse modes in the
complex generative landscape of diffusion models through global graph search algorithms. However,
global search alone can not generate samples beyond the pretrained model. We then propose to
search the vicinity of the sample using hill-climbing style local search methods, guided by the verifier
gradient. By combining local search with global search, we can avoid being stuck in local optima,
advancing the performance of the base model by sampling beyond the pretrained modes.
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Figure 2: Illustration of global tree search algorithms.

4.1 GLOBAL SEARCH FOR MODE IDENTIFICATION

To efficiently explore the modes of a diffusion model, we represent the Markov chain of its denoising
process as a fixed-depth tree, where the transition kernel p̃θ(xt−1|xt) may correspond to either
deterministic or stochastic samplers. This abstraction enables the use of classical tree-search heuristics
to design compute-efficient exploration methods.

A simple baseline is best-of-N (BoN) sampling: generate N independent trajectories and select the
one with the highest verifier score at the final step. While straightforward, this approach discards
valuable information from intermediate stages. To improve efficiency, inspired by best-first search
(Pearl, 1984), we evaluate intermediate particles using the denoised estimate x0|t. This allows
dynamic allocation of computation based on particle quality, using techniques such as branching and
backtracking. We next describe two representative efficient search strategies—breadth-first search
(BFS) and depth-first search (DFS)—adapted for diffusion model sampling. By prioritizing the
expansion of nodes with higher score estimates and backtracking from low-quality regions of the
tree, we can more effectively navigate the generative space and identify high-quality modes. An
illustration of the tree search methods is provided in Fig. 2.

4.1.1 UNIFIED BFS-STYLE LINEAR SEARCH

Inspired by breadth-first search (BFS), which expands nodes level by level, we denoise a set of
particles in parallel at each noise level. We score each intermediate particle

{
xkt
}N
k=1

using estimates
of its verifier score f(xk0|t), and dynamically reallocate computation by sampling more children
nkt for high-scoring nodes. We provide a general design space for schedules, scoring functions,
and resampling strategies that unifies previous tree-search-based and particle-based baselines such
as SVDD (Li et al., 2024), DAS (Kim et al., 2025), and FK-steering (Singhal et al., 2025b). The
pseudocode is shown in Alg. 3, and more details can be found in Sec. D.1.

Tempering. To mitigate score estimation bias in early steps, Kim et al. (2025) increases weights on
smaller time steps with τT < τT−1 · · · < τ0, re-weighting scores with τtf(xk0|t). Li et al. (2024)
samples only from the top-scoring particle, i.e., τt = ∞. We consider three different tempering
design choices: Constant : τt = τ, Increase : τt =

(
(1 + γ)T−t − 1

)
τ, Inf : τt =∞ .

Scoring. Following Kim et al. (2025); Singhal et al. (2025b), we propose to evaluate intermediate par-
ticles f̂(xkt ) using functions of the estimated rewards f(xk0|s) along the sampling path s ∈ [t, T ]. This
approach accounts for reward variation during sampling by considering not only the current reward
but also its trajectory. Specifically, we define the following scoring functions f̂(xkt ) based on f(xk0|s)
for s ≥ t: Current : τtf(xk0|t), Difference : τtf(x

k
0|t)−τt+1f(x

k
0|t+1), Max : maxs≥t τsf(x

k
0|s).

Resampling. Given f̂(xkt ), we allocate particles as
(
n1t , · · · , nNt

)
= Resample

(
N ;w1

t , · · · , wNt
)
,

where nkt is the number of children for xkt and wkt = softmaxf̂(xkt ) is the softmax score of particle k.
Multinomial resampling (Singhal et al., 2025b) samples nkt independently from the multinomial dis-
tributionwkt , but suffers from large variance. Kim et al. (2025) adopts the Srinivasan sampling process
(SSP) resampling (Alg. 4) for reduced variance. We compare the baseline Multinomial resampling
and the variance-reduced SSP (Kim et al., 2025); see Gerber et al. (2020) for other methods.
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Prior methods can be seen as special cases of BFS: SVDD (Li et al., 2024) = BFS (Inf, Current,
Multinomial); DAS (w/o grad) (Kim et al., 2025) = BFS (Increase, Difference, SSP)1; FK-steering
(Singhal et al., 2025a) = BFS (Constant, Max, Multinomial). Ablations (Sec. 5.1) show SSP
resampling is key for performance, and our improved BFS (Increase, Max, SSP) consistently
outperforms prior methods in global search efficiency.

4.1.2 DFS-STYLE NON-LINEAR SEARCH

Depth-first search (DFS) explores one branch of the search tree as deeply as possible before back-
tracking. In our setting, this corresponds to iteratively denoising a single particle until its verifier
score drops below a predefined threshold: f(x0|t) ≤ δt, where δt is a threshold representing the
quality requirement of the users.

Once the constraint is violated, the algorithm backtracks by reintroducing noise, moving to a higher
noise level tnext = t + ∆T using the forward diffusion process q(xtnext |xt) in Eq. 1. This allows
the model to restart the denoising process from a different region of the manifold, encouraging
exploration of diverse modes. Compared with the fixed noise injection schedule used in SoP (Ma
et al., 2025), DFS adopts a score-adaptive exploration strategy that enables early backtracking for
global restarts and prevents excessive compute from being allocated to easy problem instances.
Together, these mechanisms enable more adaptive and computationally efficient global search.

A key strength of DFS is its ability to allocate compute adaptively: difficult prompts and low-quality
trajectories naturally trigger more backtracking and exploration, while easier instances are solved
more directly. This dynamic behavior is driven purely by the verifier signal, without needing to know
the difficulty in advance as in Snell et al. (2024). Also, the threshold acts as a control knob for users
to balance output quality and computation resources, where higher threshold automatically scales
compute for better output. As shown in Sec. 5.2, this adaptive strategy leads to substantial gains in
efficiency and performance over prior methods, and even our improved BFS implementation. The
pseudocode is in Alg. 5 and more details can be found in Sec. D.2.

4.2 SCALING LOCAL SEARCH VIA LANGEVIN MCMC WITH VERIFIER GRADIENT

Global search can efficiently discover the high score modes within the base diffusion model, but
struggles to generate higher quality samples with refined details and from low density regions. Thus,
we aim to sample from the compositional distribution p̃0 in Eq. 5 for higher quality samples. To
optimize the compositional objective, we conduct local-search with hill-climbing methods, aiming to
find the local maximum with high p̃0. Specifically, we view the sampling problem as compositional
optimization in measure space (Wibisono, 2018), and follow the gradient flow of KL-divergence,
performing Langevin MCMC steps (details see Appendix. C.1).

Similar to annealed Langevin MCMC in Du et al. (2023), we could construct a series of annealed
functions f̂t(xt) with f̂0(x0) = f(x0). Then we sample from the distributions q̃t(xt) ∝ qt(xt)f̂(xt)
through Langevin MCMC in Eq. 2 (details see Appendix. C.2). Alternatively, training-free guidance
in Eq. 3 utilizes the gradient of f(x0|t) to optimize xt, which can be computed directly using the
diffusion model output. However, naive gradient updates have been observed to produce OOD and
adversarial samples (Shen et al., 2024). In Ye et al. (2024), recurrence (Eq. 4) was found to help
avoid adversarial samples in challenging guidance tasks, though its theoretical underpinnings remain
poorly understood. We unify these two approaches by demonstrating that training-free guidance
with recurrence, in the continuous limit, constitutes an instance of Langevin MCMC. For details see
Appendix. C.3, and a rigorous convergence bound is in Theorem. 1.

Proposition 1. In the continuous limit where the number of diffusion denoising steps T → ∞,
training-free guidance with recurrence is equivalent to running Langevin MCMC on a series of
annealed distributions {q̃t(xt)}Tt=0, with q̃0(x0) = p̃0(x0) ∝ p0(x0)f(x0)

λ.

Thus, the recurrence step (without guidance) can be interpreted as Langevin MCMC applied to the
original distribution of the diffusion model qt(xt), and the guidance term ∆t in Eq. 3 then serves

1The original implementation of DAS uses a verifier–gradient–guided proposal kernel and incorporates both
the proposal probability and the base model probability during resampling. For a fair comparison, we disable the
gradients of all methods in Sec. 5.1, and provide additional results in Sec. E.1
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as defining a practical annealing path f̂t(xt) that bias the sampling path towards high reward areas
beyond the modes of the base model. We are the first to propose this theoretical unification of the
two lines of work, providing insights into efficient local search of diffusion models via gradients.

We implement local search by parameterizing the reverse transition kernel p̃θ(xt−1|xt) as a sequence
of Langevin MCMC steps (Eq. 2), followed by a denoising step using DDIM (Eq. 11) or DDPM
(Eq. 12); see Appendix C.5 for details. Unlike classifier-guidance or naive training-free guidance,
which apply only gradient guidance in the denoising step, our approach incorporates explicit Langevin
MCMC steps. In Sec. 5.3, we scale the number of local search steps for the first time and observe
substantial improvements over pretrained models across multiple tasks.

5 EXPERIMENTS

In this section, we apply inference-time scaling with our search strategy across a range of domains. In
Sec. 5.1, we present a strengthened BFS baseline that outperforms previous particle-based methods.
In Sec. 5.2, we demonstrate the adaptivity and efficiency of our DFS method. In Sec. 5.3, we scale up
local search in challenging decision-making domains, highlighting the importance of jointly scaling
local and global search. In Sec. 5.4, we propose a double-verifier strategy to mitigate the reward
hacking problem in inference-scaling.

5.1 ELUCIDATING THE DESIGN SPACE OF BFS

In this section, we explore the design choices of BFS, and present an improved BFS (Increase, Max,
SSP) over prior particle-based or tree-search-based methods (Singhal et al., 2025b; Kim et al., 2025;
Guo et al., 2025; Li et al., 2024; 2025b), where we disable the gradient guidance in DAS (Kim et al.,
2025) as in other methods. We also compare with SoP (Ma et al., 2025) which adopts noise injection.
To ensure a fair comparison, we directly use the official implementation of FK-steering (Singhal et al.,
2025a), with the ImageReward (Xu et al., 2023a) verifier and prompts from the ImageReward paper2.
For ablation of design choices, we use the SD v1.5 model. For more details, see Appendix E.1.

Table 1: Ablation of BFS design choices. For each section, we vary one design choice while keeping the others
fixed. Left: Resampling methods (with Constant tempering, Max scoring). Center: Scoring functions (with
SSP resampling, Constant tempering). Right: Tempering schedules (with SSP resampling, Max scoring).

Resampling Scoring Tempering
N BoN Multinomial SSP Current Difference Max Increase Inf Constant
4 0.702± 0.057 0.743± 0.037 0.834± 0.041 0.812± 0.037 0.823± 0.036 0.834± 0.041 0.882± 0.029 0.667± 0.076 0.834± 0.041
8 0.896± 0.031 0.926± 0.042 1.032± 0.035 0.996± 0.029 1.013± 0.032 1.032± 0.035 1.087± 0.031 0.775± 0.087 1.032± 0.035

As mentioned in Sec.4.1.1, we experiment with different resampling, scoring, and tempering design
choices. We begin with BFS (Constant, Max, Multinomial) and evaluate various resampling
strategies. As shown in Table 1 (left), SSP significantly outperforms naive multinomial resampling,
and we adopt it in our design. We then assess scoring functions and tempering schedules under SSP
resampling, as reported in Table 1 (center) and 1 (right). Here, we observe modest improvements
with Max scoring and Increase tempering, leading to our final design: BFS (Increase, Max, SSP).

Table 2: Comparison of our BFS with prior methods
Model N BoN FK (Singhal et al., 2025a) DAS (w/o grad) (Kim et al., 2025) TreeG (Guo et al., 2025) SVDD (Li et al., 2024) SoP (Ma et al., 2025) DSearch (Li et al., 2025b) BFS (ours)

SD v1.5 4 0.702 ± 0.057 0.743 ± 0.037 0.878 ± 0.028 0.860 ± 0.033 0.667 ± 0.076 0.688 ± 0.024 0.836 ± 0.032 0.882 ± 0.029
SD v1.5 8 0.891 ± 0.031 0.926 ± 0.042 1.052 ± 0.033 1.023 ± 0.018 0.775 ± 0.087 0.884 ± 0.022 1.011 ± 0.019 1.087 ± 0.031
SD XL 4 1.085 ± 0.013 1.131 ± 0.022 1.181 ± 0.023 1.152 ± 0.023 1.036 ± 0.062 1.076 ± 0.014 1.139 ± 0.018 1.194 ± 0.024
SD XL 8 1.198 ± 0.021 1.251 ± 0.011 1.265 ± 0.019 1.261 ± 0.021 1.225 ± 0.027 1.185 ± 0.012 1.252 ± 0.019 1.291 ± 0.018

FLUX.1 4 1.113 ± 0.015 1.145 ± 0.017 1.194 ± 0.013 1.178 ± 0.018 1.069 ± 0.035 1.104 ± 0.011 1.169 ± 0.022 1.203 ± 0.013

To compare our improved BFS (Increase, Max, SSP) with prior baselines, we additionally exper-
iment with the SDXL model (Podell et al., 2023) and FLUX.1 dev3, which differs from the model
used in our ablations. As shown in Table 2, our improved BFS consistently outperforms previous
methods across compute budgets and models. Among the baselines, DAS with out gradient guidance
(Kim et al., 2025) exhibits the smallest performance gap due to a similar design space with SSP
resampling, while SoP (Ma et al., 2025) underperforms in global search efficiency because it allocates
compute uniformly across all particles during the noising and denoising process when searching
over paths. In the following experiments, we use the improved BFS as our strengthened baseline.

2We follow the settings of Table 1 in Singhal et al. (2025a)
3https://huggingface.co/black-forest-labs/FLUX.1-dev
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5.2 ADAPTIVE AND EFFICIENT INFERENCE-SCALING WITH DFS

DFS Pareto Curve DFS Compute by Difficulty Level

Compute Difficulty

Figure 3: CompBench text-to-image results with DFS. Left: the Pareto curve of DFS, with DFS-δ denotes
DFS with threshold δt = δ. Right: average compute allocation by DFS for prompts of increasing difficulty.

In this section, we evaluate the adaptivity and efficiency of DFS on the CompBench dataset (Huang
et al., 2023), using the SSD-1B model (Gupta et al., 2024) and a VLM (Li et al., 2022) as our verifier.
Through these experiments, we address the following questions:

• Can DFS outperform Best-of-N and prior particle-based methods? As shown in Fig. E.2 (left),
DFS consistently outperforms Best-of-N and also our improved BFS design across different
compute budgets, with up to 30% less computational cost.

• Can DFS adjust compute allocation with different thresholds? We evaluate DFS across a wide
range of practical threshold values (0.5, 0.7, and 0.9) and find that lower thresholds automatically
allocate less compute, while higher thresholds scale up compute for better quality. DFS consistently
outperforms baseline methods across all threshold choices, demonstrating the robustness of our
method for different hyperparameters.

• Can DFS dynamically adjust compute allocation for different instances? We measure the computa-
tional cost of DFS on prompts of varying difficulty under fixed thresholds, where the difficulty of
a prompt is defined as the average score of the base model over four random samples. As shown
in Fig. 3 (right), harder prompts with lower scores naturally consume more compute, without
requiring prior knowledge of difficulty as in Snell et al. (2024). This adaptive design reduces
compute waste on easy instances and allocates additional compute to achieve greater improvement
on harder problems, as evidenced by the score increase in Fig. 3 (right).

The detailed setup is provided in Appendix E.2, where we provide visualizations in Fig. 7 and
comparisons with SoP (Ma et al., 2025) in Fig. 8. Unlike linear-search methods that use a fixed
exploration schedule, DFS offers higher efficiency and adaptivity, which may be of independent
interest to the broader community.

5.3 JOINT SCALING LOCAL AND GLOBAL SEARCH

Although global search methods such as BFS and DFS can efficiently explore the generative space of
the diffusion model, they are restricted to the modes of the base distribution and therefore cannot
exceed the capabilities of the base model. To optimize the compositional objective in Eq. 5 and
sample from high-reward regions beyond the base model, we propose scaling up local search steps
via annealed Langevin MCMC, introducing a new scaling dimension for diffusion models. We
validate the effectiveness of scaling local search in challenging decision-making domains, such as
long-horizon planning and offline RL.

Baselines. To evaluate the effectiveness of scaling local search steps, we compare our method with
particle-based DAS (Kim et al., 2025), which also leverages verifier gradients but only incorporates
gradient guidance without recurrent local search. We also compare against the state-of-the-art
training-free guidance method TFG (Ye et al., 2024), which performs multiple recurrence steps but
lacks any global search. For fairness, compute is measured as the total NFEs of both local and global
search. As shown in the following experiments, scaling local and global search separately yields
suboptimal performance, whereas our joint scaling strategy establishes a new Pareto frontier.
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5.3.1 LONG HORIZON PLANNING
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Parero Curves with Different Local Search Steps Parero Curves with BFS and DFS

Figure 4: Pareto curves of local search. Left: Pareto curves of best-of-N with different local search steps,
where BoN-i denotes i local search steps. Right: Pareto curves of BFS and DFS with 6 local search steps.

Figure 5: Illustration of Maze lay-
out and task, with failed trajec-
tory (left) and successfual sample
(right).

Diffusion models have been widely adopted in planning for trajectory
synthesis (Ubukata et al., 2024). We evaluate long-horizon planning
in a challenging PointMaze environment, using the base model
trained following Diffuser (Janner et al., 2022), with the verifier
defined as the total number of collisions between the trajectory
and maze walls (see Appendix E.3 for details). (Luo et al., 2024;
Marcucci et al., 2023). As shown in Fig. 5 (left), naive sampling
without local search often resulted in failed trajectories that violates
the maze layout in some of the segments. When scaling up local
search steps as in Fig. 5 (right), we are able to generate successful
plans free of violation.

To evaluate the compute efficiency of recurrent steps, we observe in Fig. 4 (left) that scaling up local
search with BoN improves the overall Pareto frontier and significantly outperforms baseline methods.
Scaling local search only as in TFG (Ye et al., 2024) is efficient with a low compute budget but fails
to scale with increased compute, as local search alone can become trapped in local optima. DAS
(Kim et al., 2025) is more efficient than the corresponding BoN-0 baseline without local search, but
underperforms best-of-N when more local search steps are used. In Fig. 4 (right), we show that local
search can be combined with global search techniques such as BFS and DFS to further improve
scaling efficiency, demonstrating the flexibility of our framework.

5.3.2 OFFLINE REINFORCEMENT LEARNING

Table 3: Performance on D4RL locomotion tasks, highlighting results within 5% of the maximum.

Dataset Environment IQL SfBC DD Diffuser D-QL QGPO TFG DAS TTS(ours)
Medium-Expert HalfCheetah 86.7 92.6 90.6 79.8 96.1 93.5 90.2± 0.2 93.3± 0.3 93.9± 0.3
Medium-Expert Hopper 91.5 108.6 111.8 107.2 110.7 108.0 100.2± 3.5 105.4± 5.1 104.4± 3.1
Medium-Expert Walker2d 109.6 109.8 108.8 108.4 109.7 110.7 108.1± 0.1 111.4± 0.1 111.4± 0.1

Medium HalfCheetah 47.4 45.9 49.1 44.2 50.6 54.1 53.1± 0.1 53.4± 0.1 54.8± 0.1
Medium Hopper 66.3 57.1 79.3 58.5 82.4 98.0 96.2± 0.5 71.3± 2.7 99.5± 1.7
Medium Walker2d 78.3 77.9 82.5 79.7 85.1 86.0 83.2± 1.4 83.9± 0.9 86.5± 0.2

Medium-Replay HalfCheetah 44.2 37.1 39.3 42.2 47.5 47.6 45.0± 0.3 42.2± 0.1 47.8± 0.4
Medium-Replay Hopper 94.7 86.2 100.0 96.8 100.7 96.9 93.1± 0.1 96.7± 3.0 97.4± 4.0
Medium-Replay Walker2d 73.9 65.1 75.0 61.2 94.3 84.4 69.8± 4.0 63.8± 2.0 79.3± 9.7

Average (Locomotion) 76.9 75.6 81.8 75.3 86.3 86.6 82.1 80.2 86.1

Recently, diffusion models have emerged as a powerful action prior in robotics due to their ability to
model complex and multimodal distributions (Chi et al., 2023). However, these diffusion policies
are typically trained on offline datasets and struggle to adapt to reinforcement learning or test-time
requirements. Following Peters et al. (2010), we formulate the offline RL problem as sampling
from a Q-regularized distribution: π∗(a|s) ∝ µ(a|s)eβQψ(s,a), where Qψ is a learned Q-function
representing preferences over actions, and µ is the behavior policy, which we model using a diffusion
prior. We approach this problem from the inference-scaling perspective, composing off-the-shelf
pretrained diffusion policy with ground-truth Q-functions without training.
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Among the baselines, Diffuser (Janner et al., 2022), QGPO (Lu et al., 2023), and D-QL (Wang et al.,
2022) require additional joint training of the diffusion model and Q-function. To demonstrate the
effectiveness of our method test-time search (TTS), we allow TFG (Ye et al., 2024) and DAS (Kim
et al., 2025) to use up to twice the compute of TTS. Since we use a small number of particles, we
simply adopt BoN for global search of TTS and searched for the number of local search steps, with
detailed hyper-parameters in Table 10. As shown in Table 3, TTS achieves performance comparable
to training-based baselines, while DAS and TFG struggles on the Medium and Medium-Replay
datasets where the model’s capabilities are limited. Details see Sec. E.4.

Table 4: Results for policy distil-
lation with TTS

Environment TTS-distill DPPO

Halfcheetah 51.6± 0.7 47.8
Hopper 98.8± 0.8 92.8

Walker2d 86.3± 0.5 82.7

Advancing Online Learning with Policy Distillation. To enhance
the capabilities of the base model, we fine-tune it on actions gener-
ated by TTS and subsequently evaluate its one-shot sampling per-
formance. We adapt the Medium datasets by replacing the original
actions with those produced by TTS (see Sec. E.4.1 for details). Per-
haps surprisingly, this simple offline distillation outperforms SOTA
diffusion-based online RL methods such as DPPO (Ren et al., 2024),
as shown in Table 4. Compared with other offline RL methods such as PA-RL (Mark et al., 2024),
which also finetune the policy using optimized actions, our approach relies solely on pretrained
verifiers and does not require iterative joint updates of the Q-function and policy. This enables
more flexible composition of pretrained foundation models for verification and further highlights
the effectiveness of inference scaling compared with naive action optimization. To the best of our
knowledge, this is the first work to demonstrate self-improvement via inference scaling for diffusion
models using pretrained verifiers, a direction that may be of independent interest.

5.4 MITIGATING REWARD HACKING WITH DOUBLE VERIFIER

In this section, we show that reward hacking and over-optimization can be mitigated by a
double-verifier strategy: employing separate verifiers for local and global search. As observed
in Shen et al. (2024), training-free guidance with verifier gradients is vulnerable to adversarial
reward hacking: gradient guidance often over-optimize the verifier, causing it to classify them as
belonging to the target class despite being out-of-distribution (OOD). Inspired by double-Q learning
in reinforcement learning (Van Hasselt et al., 2016), we propose a double-verifier approach, assigning
distinct verifiers to local and global search to efficiently reduce overestimation.

Table 5: Results for ImageNet conditional generation with double-verifier using BoN and BFS.

BoN-single BoN-double BFS-single BFS-double

N FID↓ Acc↑ MSP↑ FID↓ Acc↑ MSP↑ FID↓ Acc↑ MSP↑ FID↓ Acc↑ MSP↑
4 171.5 31.8% 0.161 151.2 37.5% 0.164 156.2 36.1% 0.169 145.5 44.3% 0.181
8 155.7 35.8% 0.165 127.8 49.2% 0.184 133.3 46.5% 0.183 118.2 55.9% 0.214

We evaluate the proposed double-verifier on the challenging conditional ImageNet generation task,
generating target-class samples from an unconditional model guided by a pretrained classifier defined
only on clean samples. We report the FID and class accuracy of 256 samples. We also report the
MSP score (Hendrycks & Gimpel, 2016), with higher MSP score indicating less OOD samples. For
double-verifier, we use two distinct ImageNet classifiers for local4 and global search5 respectively.
We use another classifier6 for evaluating class accuracy to avoid reward hacking. As shown in
Table 5, using double-verifier significantly improves performance over single verifier with 2x less
compute. Also, double-verifier significantly reduces OOD samples indicated by the higher MSP
score, improving robustness alongside efficiency. Visualizations and details see Appendix. E.5.

6 LIMITATIONS AND CONCLUSION

In this work, we present a unified and principled framework for inference-time scaling of diffusion
models, jointly scaling local and global search. A potential limitation of our approach is that inference-
time scaling still requires additional hyperparameters. To address this, heuristics such as evolutionary
search can be adopted during hyperparameter tuning, which we leave for future work.

4https://huggingface.co/google/vit-base-patch16-224
5https://huggingface.co/google/vit-base-patch16-384
6https://huggingface.co/facebook/deit-small-patch16-224
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A APPENDIX OVERVIEW

In Sec. B, we provide a in-depth review of literature related to inference-time scaling and diffusion
models. In Sec. C, we elaborate on local search with Langevin MCMC, and in Sec. D we provide the
pseudo code and design of global search algorithms BFS and DFS. In Sec. E, we provide the details
of all the experiments.

B ADDITIONAL RELATED WORKS

B.1 DISCUSSIONS ON CONCURRENT WORKS

Adaptive Bi-directional Cyclic Diffusion (ABCD) (Lee et al., 2025) introduces a search-based
inference-scaling framework that combines elements of both DFS and BFS. Unlike DFS, which relies
on a quality threshold to determine backtracking, ABCD maintains a set of particles and backtracks by
propagating them across all noise levels. The termination criterion is based on whether backtracking
to higher noise levels improves sample quality. Compared with DFS, ABCD achieves smaller score
estimation errors since particles are evaluated after full denoising, and it explores the generative space
more thoroughly by combining BFS and DFS. However, ABCD cannot adaptively allocate compute
across different instances due to its fixed termination condition, and it expends unnecessary compute
on easier instances because it denoises a full set of particles regardless of sample quality.

EvoSearch (He et al., 2025) proposes evolutionary search to scale inference compute for image
and video generation. At selected timesteps, particles are fully denoised; high-scoring particles are
retained, while low-scoring ones are perturbed via noise injection. This method improves over the
FK-steering baseline (Singhal et al., 2025a).

In contrast, our work develops a uniform and principled framework grounded in classical search
heuristics. BFS and DFS serve as fundamental building blocks for more advanced search methods,
and, crucially, we are the first to scale local search using annealed Langevin MCMC. This local
search can be seamlessly combined with global search strategies, a joint scaling approach that we
show is critical for success in challenging decision-making domains.

B.2 INFERENCE-TIME SCALING WITH CLASSICAL SEARCH

We now review the use of classical search for inference-time scaling, including applications beyond
diffusion models.

Inference-time compute scaling, often viewed as “slow thinking,” has long-standing roots in cognitive
science, where it corresponds to “system 2” reasoning (Kahneman, 2011; Sloman, 1996). In early
work, Newell et al. (1959; 1972) formalized problem solving as tree search in combinatorial spaces.
More recently, Yao et al. (2023) proposed tree-of-thoughts reasoning for LLMs, enabling exploration
along multiple reasoning paths using BFS and DFS as strategic search primitives.

B.3 INFERENCE SCALING IN DIFFUSION MODELS WITHOUT DIFFERENTIABLE OPTIMIZATION

We next provide a more detailed overview of gradient-free inference-scaling approaches in diffusion
models.

Inference-time compute for diffusion models is largely determined by the number of denoising steps.
Xu et al. (2023b) proposed recursive restart sampling to mitigate cumulative errors, effectively scaling
the number of denoising steps. More recently, Singhal et al. (2025a); Kim et al. (2025) introduced
Sequential Monte Carlo (SMC) approaches (Wu et al., 2023a; Zhao et al., 2024), which can be inter-
preted as BFS-style algorithms from our tree-sampling perspective, since they search over all nodes
at the same depth before denoising further. Notably, SMC style methods propose to use a different
proposal transition kernel such as the gradient guided sampler N

(
µθ(xt) +∇xt log f(x0|t), σt

)
,

which we disable during our global search experiments. Their implementations differ mainly in the
choice of scoring functions and resampling strategies, with Kim et al. (2025) proposing an increasing
tempering schedule. Li et al. (2025b); Guo et al. (2025) proposed beam-search style tree search
methods, where Li et al. (2025b) proposed to adopt dynamic beam-size and tree-width during the
sampling process. Ma et al. (2025) further explored inference-time scaling for image generation
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via a combination of local zero-order search and global path search, experimenting with different
verifiers (oracle, self-supervised, and task-aligned) and analyzing verifier-task alignment. However,
they did not systematically evaluate and improve the compute efficiency of search methods, while we
demonstrate significantly improved efficiency with our novel design in search methods. Additionally,
Yoon et al. (2025) proposed a Monte Carlo Tree Search-based diffusion framework tailored for
trajectory synthesis, which denoises different trajectory segments at distinct steps. More recently,
Jain et al. (2025) proposed to integrate the value backup in MCTS into the tree sampling and search
of diffusion models, which can utilize information from low noise states and previous sampling paths.
For diffusion language models, Dang et al. (2025) proposed particle Gibbs sampling methods that
outperform naive SMC (Singhal et al., 2025a) approaches.

Beyond search-based methods, Li et al. (2025a) leverage the in-context learning abilities of foundation
models to enable revision during sampling. Their approach exploits multimodal VLM capabilities to
provide feedback on intermediate generations and trains the model to condition on both prior samples
and corresponding feedback.

B.4 GRADIENT GUIDANCE OF DIFFUSION MODELS

We review guidance methods for diffusion models that leverage gradients from verifiers or classifiers.

To sample from a conditional distribution
p̃0(x0) ∝ p0(x0) p(c|x0),

where p denotes a classifier, one can define a conditional diffusion process {q̃t(xt)}Tt=0 with initial
distribution p̃0. The corresponding conditional score function is

∇xt log q̃t(xt) = ∇xt log qt(xt) +∇xt log pt(c|xt),
where pt(c|xt) = Ex0|xt [p(c|x0)]. Classifier guidance (Dhariwal & Nichol, 2021) trains a noise-
dependent classifier pt(c|xt) on noisy samples, using data from the diffusion model together with the
base classifier. However, this training procedure is computationally expensive and impractical when
the base diffusion model cannot generate target-class samples.

Training-free guidance methods (Ye et al., 2024; Chung & Ye, 2022; Song et al., 2023; Yu et al.,
2023; He et al., 2023) approximate the intractable pt(c|xt) with p(c|x0|t) = p(c|Ex0|xt [x0]), which
can be interpreted as a first-order approximation. These methods introduce bias, though recurrence
has been shown to mitigate out-of-distribution artifacts and improve performance in classifier-guided
generation (Ye et al., 2024). Nevertheless, the theoretical foundations and scaling behavior of
recurrent guidance remain largely unexplored.

In this work, we instead adopt Langevin MCMC sampling in place of score-based ODE sampling.
This approach guarantees asymptotic exactness using only the base verifier, without requiring
additional training. Relatedly, Du et al. (2024) proposed annealed energy-based models (EBMs)
combined with iterative MCMC for inference scaling and reasoning, but their method cannot be
applied to pretrained diffusion models and verifiers. For the first time, we establish a connection
between annealed Langevin MCMC and recurrent guidance, thereby enabling inference scaling with
pretrained foundation models.

C DETAILS ABOUT LOCAL SEARCH WITH LANGEVIN MCMC

In this section we provide a comprehensive and detailed overview of (annealed) Langevin MCMC
based methods used in local search, as well as proving Proposition. 1.

C.1 LANGEVIN MCMC AS GRADIENT FLOW IN MEASURE SPACE

Following Wibisono (2018), the Langevin SDE in sample space corresponds to gradient flow of the
KL-divergence in measure space. Here we provide a brief overview.

Define our target distribution that we wish to sample from as ν, and the distribution of our current
sample as ρ. We define the KL-divergence (relative entropy) as:

Hν(ρ) =

∫
ρ log

ρ

ν
. (6)
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Thus, sampling from ν can be seen as minimizing H , since the minimum of H is achieved at ρ = ν
with Hν(ρ) = 0. Furthermore, ν is the only stationary point of H even for multimodal distributions.
Thus we can sample from ν when optimizing H via gradient based methods.

We have the gradient flow of H in Eq. 6 follows the following PDE:
∂ρ

∂t
= ∇ · (ρ∇(− log ν)) + ∆ρ , (7)

which is known as the Fokker-Planck equation. Here, ρ = ρ(x, t) is a smooth positive density
evolving through time, driven by the dynamics of the sample x. The dynamics in sample space
corresponding to Eq. 7 is the Langevin SDE:

dxt = ∇ log ν(xt)dt+
√
2dwt . (8)

where (xt)t≥0 is a stochastic process with measure ρt, and (wt)t≥0 is standard Brownian motion.
That is, if xt ∼ ρt evolves according to the dynamics in Eq. 8, then the measure ρ(x, t) = ρt evolves
according to the PDE in Eq. 7, conducting gradient optimization in measure space.

In practice, we implement Eq. 8 through discretization, which is known as the unadjusted Langevin
algorithm (ULA):

xi+1 = xi + η∇xi log ν(x
i) +

√
2ηϵi , (9)

with ϵi ∼ N (0, I). When η → 0, the ULA converges to Langevin SDE, providing exact sampling.

Previous works (Durmus & Moulines, 2015; Cheng & Bartlett, 2018) show that ULA can efficiently
converge to the target measure ν if ν is log-concave and smooth. However, when facing complex and
multimodal distributions, we can only guarantee convergence to the concave vicinity.

C.2 ANNEALED LANGEVIN MCMC SAMPLING

Langevin MCMC have been used to perform implicit sampling in energy-based models (Du &
Mordatch, 2019) and score-based models (Song & Ermon, 2020). However, these methods suffer
from inaccurate score estimation and low density regions (Song & Ermon, 2020). In Song & Ermon
(2020) they propose to perturb the data with gaussian noise, eventually smoothing the data distribution:

q(xt) =

∫
x0

p0(x0)N (xt;x0, σ
2
t I) ,

and creating a sequence of annealed distributions {q(xt)}Tt=0 which converges to p0(x0). Since they
are smoothed by gaussian noise, we can improve the mixing time of Langevin MCMC on multimodal
distributions by sampling from these intermediate distributions, sharing similar spirits with simulated
annealing (Kirkpatrick et al., 1983).

In Du et al. (2023), they extend this method to compositional generation of diffusion models.
Specifically, we consider sampling from a product distribution pprod

0 (x0) ∝ p10(x0)p
2
0(x0), where

p10(x0) and p20(x0) are distributions of different diffusion models. Since we have access to the
score functions ∇xt log q

1
t (xt) and ∇xt log q

2
t (xt) through the diffusion model, we can construct a

sequence of annealing distributions q̃prod
t (xt) such that:

∇xt log q̃
prod
t (xt) = ∇xt log q

1
t (xt) +∇xt log q

2
t (xt) .

By sampling from the sequence
{
q̃prod
t (xt)

}
, we can arrive at q̃prod

0 (x0) which is equal to pprod
0 (x0).

A key difference from sampling from
{
q̃prod
t (xt)

}
and direct diffusion sampling is that the diffusion

process with pprod
0 (x0) defined as

qprod
t (xt) =

∫
x0

pprod
0 (x0)q(xt|x0)

is different from q̃prod
t (xt). The score of qprod

t (xt) can be derived as:

∇xt log q
prod
t (xt) = ∇xt log

(∫
x0

p10(x0)p
2
0(x0)q(xt|x0)

)
,
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which is not equal to

∇xt log q̃
prod
t (xt) = ∇xt log

(∫
x0

p10(x0)q(xt|x0)

)
+∇xt log

(∫
x0

p20(x0)q(xt|x0)

)
,

and thus intractable to compute directly.

A key distinction between annealed Langevin MCMC sampling and reverse diffusion sampling is
that we run multiple Langevin MCMC steps on the same noise level, while reverse diffusion goes
from high noise level to low noise level via denoising. A minimal pseudo code is shown in Alg. 1.

Algorithm 1 Annealed Langevin MCMC sampling

Input: sequence of annealing distributions {q̃t(xt)}Tt=0, number of MCMC steps N , step size
{ηt}Tt=0. (Optional) reverse transition kernel {p̃θ(xt−1|xt)}Tt=0.
Init: x0

T ∼ N (0, I)
for t = T, · · · , 1 do

for i = 0, 1, · · · , N − 1 do
Perform Langevin MCMC steps:

xi+1
t = xit + ηt∇xt log q̃t(x

i
t) +

√
2ηtϵ

i
t , ϵit ∼ N (0, I) .

end for
(Optional) transit to next time step: x0

t−1 ∼ p̃θ(·|xNt ). If no reverse kernel initialize x0
t−1 = xNt .

end for
Return x0

C.3 ANNEALED LANGEVIN MCMC WITH RECURRENT TRAINING-FREE GUIDANCE

In this section, we prove the connection between annealed Langevin MCMC (Alg. 1) and training-free
guidance (Alg. 2) in Proposition. 1. We divide the proof into two parts. In Sec. C.3.1 we prove the
equivalence between naive recurrence steps and Langevin MCMC. Then in Sec. C.3.2, we prove
that adding the guidance term is defining an annealing path that biases towards high score regions.
Finally, we provide a rigorous convergence analysis in Sec. C.3.3.

C.3.1 EQUIVALENCE BETWEEN LANGEVIN MCMC AND NAIVE RECURRENCE

Consider the diffusion process with the following stochastic interpolant (Ma et al., 2024):
xt = αtx0 + σtϵ .

We denote the score function of qt(xt) as∇xt log qt(xt) = s(xt, t). Recall the forward process in
Eq. 1:

xt =
αt
αt−1

xt−1 +

√
α2
t

(
σ2
t

α2
t

−
σ2
t−1

α2
t−1

)
ϵ . (10)

In a recurrence step in Line. 5, we first solve xit−1 from xit using the learned score function s(xit, t),
then add noise to xit−1 to obtain the recurrent sample xi+1

t , where the superscript denotes the
recurrence step index: i = 0, 1, · · · , Nrecur. Depending on different solvers, we have different
formulations of xi+1

t .

DDIM sampler. When using DDIM (Song et al., 2020a) sampler, we have the reverse step as:

xt−1 =
αt−1

αt
xt + σ2

t

(
αt−1

αt
− σt−1

σt

)
s(xt, t) , (11)

where s(xt, t) is the score function∇xt log qt(xt). Thus, we have:

xi+1
t =

αt
αt−1

xit−1 + αt

√
σ2
t

α2
t

−
σ2
t−1

α2
t−1

ϵi

= xit + σ2
t

(
1− αt

αt−1

σt−1

σt

)
s(xit, t) + σt

√
1− α2

t

α2
t−1

σ2
t−1

σ2
t

ϵi .
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Denote λt = log αt
σt

, then we have:

xi+1
t = xit + σ2

t

(
1− eλt−λt−1

)
s(xit, t) + σt

√
1− e2(λt−λt−1)ϵi

= xit + σ2
t

(
1− eλt−λt−1

)
s(xit, t) + σt

√
(1− eλt−λt−1) (1 + eλt−λt−1)ϵi ,

where 1 + eλt−λt−1 → 2 when T →∞ and denoising step size approaches 0, as λt − λt−1 → 0.

DDPM sampler. In DDPM (Ho et al., 2020), we parametrize the posterior distribution as:
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) , (12)

where the posterior mean is:

µθ(xt, t) =
αt−1

αt
xt +

(
σ2
t

αt−1

αt
− σ2

t−1

αt
αt−1

)
s(xt, t) .

Ho et al. (2020) parameterizes the posterior variance as Σθ(xt, t) = βtI or Σθ(xt, t) = β̃tI:

βt = α2
t

(
σ2
t

α2
t

−
σ2
t−1

α2
t−1

)
,

β̃t =
σ2
t−1

σ2
t

βt ,

while Nichol & Dhariwal (2021) propose to train the posterior variance as Σθ(xt, t) =

exp
(
v log βt + (1− v) log β̃t

)
.

Thus, a backward step can be written as:

xt−1 =
αt−1

αt
xt +

(
σ2
t

αt−1

αt
− σ2

t−1

αt
αt−1

)
s(xt, t) + Σ

1/2
θ (xt, t)ϵpost ,

where ϵpost denotes the noise added in the posterior sampling step. Then, we can write the recurrence
step as:

xi+1
t = xit +

(
σ2
t − σ2

t−1

α2
t

α2
t−1

)
s(xit, t) + Σ

1/2
θ (xit, t)ϵ

i
post + αt

√
σ2
t

α2
t

−
σ2
t−1

α2
t−1

ϵiforward

= xit + βts(x
i
t, t) +

√
Σθ(xt, t) + βtIϵ

i ,

where Σθ(xt, t)→ βtI when T →∞, and the denoising step size approaches 0.

Flow-Matching sampler. In flow-matching models (Ma et al., 2024; Esser et al., 2024), the noise
schedule is αt = 1− t, σt = t, with t ∈ [0, 1]. The denoising step can be written as:

xt−∆t = xt − vθ(xt, t)∆t

= xt −
−ts(xt, t)− xt

1− t
∆t

= (1 +
∆t

1− t
)xt +

t∆t

1− t
s(xt, t)

Then, the forward process in Eq. 10 can be written as:

xt =
1− t

1− (t−∆t)
xt−∆t +

√
∆t (2t−∆t− 2t2 + 2t∆t)

1− t+∆t
ϵ .

Thus, the recurrence equation can be written as:

xi+1
t = xit +

t∆t

1− t+∆t
s(xt, t) +

√
∆t (2t−∆t− 2t2 + 2t∆t)

1− t+∆t
ϵi

= xit +
t∆t

1− t+∆t
s(xt, t) +

√
2t∆t (1− t+∆t)−∆t2

1− t+∆t
ϵi

Putting together. In general, we can write the recurrence step as:

xi+1
t = xit + atrts(x

i
t, t) +

√
2atϵ

i . (13)
with at → 0 and rt → 1 as the denoising step size approaches 0:
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• For DDIM sampler, we have at = 1
2α

2
t

(
σ2
t

α2
t
− σ2

t−1

α2
t−1

)
and rt = 2

1+eλt−λt−1
.

• For DDPM sampler, we have at = 1
2α

2
t

(
σ2
t

α2
t
− σ2

t−1

α2
t−1

)
and 1 ≤ rt ≤ 2

1+
σ2
t−1

σ2t

.

• For flow-matching sampler, we have at = t∆t
1−t and 1 ≤ rt ≤ 1 + ∆t

t(1−t)

Thus, it can be seen as a approximation of the ULA in Eq. 9, and also a discretization of the Langevin
SDE in Eq. 8.

C.3.2 ANNEALED LANGEVIN MCMC WITH GUIDANCE

When applying training free guidance (Ye et al., 2024) during the recurrence, we have:

xi+1
t = xit + atrts(x

i
t, t) +

√
2atϵ

i +∆(xt, t) ,

where at, bt are the coefficients of the recurrence equation in Eq. 13 without guidance. In general,
∆t = ρt∇xt log f(x0|t) + µtαt∇x0|t log f(x0|t), where ρt, µt controls the guidance strength. We
then show that the guidance term can be considered as the score function of a set of annealed verifiers{
f̂(xt)

}T
t=0

.

When considering ‘variance guidance’ in Line. 7, we have ∆var = ρt∇xt log f(x0|t). Thus, we
can define f̂ var

t (xt) = f(x0|t), which satisfies f̂ var
0 (x0) = f(x0). Similarly, for ‘mean guidance’ in

Line. 8, we have
∆mean = µtαt∇x0|t log f(x0|t)

= µt
σ2
t

Σ0|t
∇xt log f(x0|t) ,

where the second Equation follows from Lemma 3.3 in Ye et al. (2024). Thus, there exists a set of
functions f̂mean

t (xt) such that∇xt log f̂
mean
t (xt) =

σ2
t

Σ0|t
∇xt log f(x0|t), and we can see that when

t → 0,∇xt log f̂
mean
t (xt) = ∇x0

log f(x0). If we additionally incorporate the ‘implicit dynamics’
in Line. 4, our arguments still stands since the smoothed objective f̃(x) = Eδ∼N (0,I)f(x+ γ̄σtδ)
converges to f with t→ 0 and σt → 0.

Combining the two terms together, we have ∆t = ct∇xt log f̂t(xt) with f̂t = f̂ var
t · f̂mean

t . Thus,
recurrence with guidance can be written as:

xi+1
t = xit + atrts(x

i
t, t) +

√
2atϵ

i + ct∇xt log f̂t(xt)

= xit + atrt∇xt log qt(xt)f̂t(xt)
ct/atrt +

√
2atϵ

i ,

Thus, we have defined the annealing path as q̃t(xt) = qt(xt)f̂t(xt)
ct/atrt , t = 1, 2, · · · , T .

C.3.3 CONVERGENCE ANALYSIS

In this section, we provide a rigorous convergence analysis of recurrence to the target distribution
q̃t(xt).
Theorem 1. Suppose q̃t(xt) has bounded support, is α-strongly log-concave and L-log-smooth, and
−∇2 log q̃t is M -Lipschitz. Denote xNrecur

t as the sample after Nrecur steps of recurrence, we can
bound the Wasserstein distance between the distribution of xNrecur

t and q̃t as:

W2(p(x
Nrecur
t ), q̃t) = O

(√
λt−1 − λt + e−2λt − e−2λt−1 + (1− e−2λt + e−2λt−1)Nrecur

)
,

where λt = log αt
σt

is half of the log SNR.

Proof. Recall recurrence is equivalent to the following recursion equation, with at, rt being sampler-
dependent parameters in Eq. 13:

xi+1
t = xit + atrt∇xt log q̃t(x

i
t) +
√
2atϵ

i

= xit + at∇xt log q̃t(x
i
t)
rt +
√
2atϵ

i .
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Thus, recurrence is equivalent to running unadjusted Langevin algorithm (ULA) on the tempered
distribution ptempered ∝ q̃rtt . Using Lemma 1 and Lemma 2 from Wibisono (2018), given the regularity
conditions on q̃t, we can bound the discretization error from ULA as:

W2(p
tempered, p(xNrecur

t )) = O
(
at + (1− at)Nrecur

)
= O

(
σ2
t

α2
t

−
σ2
t−1

α2
t−1

+ (1− σ2
t

α2
t

+
σ2
t−1

α2
t−1

)Nrecur

)
= O

(
e−2λt − e−2λt−1 + (1− e−2λt + e−2λt−1)Nrecur

)
.

To bound W2(p
tempered, q̃t), we first bound the TV distance as TV(ptempered, q̃t).

Denote Z(rt) =
∫
q̃t(x)

rtdx, and ψ(r) = logZ(r). We have:

KL(ptempered, q̃t)

= Eptempered [rt log q̃t − ψ(rt)− log q̃t]

≤ O
(
(rt − 1)Eptempered [log q̃t − ψ′(r)] + ψ′′(r)(rt − 1)2

)
,

where the last step is using Taylor expansion. Since ψ′(r) = Eptempered [log q̃t] and ψ′′(r) =

Varptempered [log q̃t]. Using the Pinsker inequality, we have TV(ptempered, q̃t) ≤ 1
2

√
KL(ptempered, q̃t) ≤

O
(
(rt − 1)

√
Varptempered [log q̃t]

)
= O(rt−1), given the finiteness of Varptempered [log q̃t] under bounded

support.

Following Proposition 7.10 in Villani (2003) for distributions with bounded support, we have:

W2(p
tempered, q̃t)

= O
(√

TV(ptempered, q̃t)

)
= O

(√
rt − 1

)
= O

√1−min

(
αtσt−1

αt−1σt
,
σ2
t−1

σ2
t

)
= O

(√
log

σt
σt−1

+max

(
log

αt−1

αt
, log

σt
σt−1

))

= O
(√

log
αt−1

αt
+ log

σt
σt−1

)
= O

(√
λt−1 − λt

)
,

where we recall the definition of rt in Eq. 13.

Putting together the bound on W2(p
tempered, p(xNrecur

t )) and W2(p
tempered, q̃t), we obtain our desired

bound.

C.4 RELATIONSHIP BETWEEN LANGEVIN MCMC AND GRADIENT ASCENT

In training-free guidance, most prior works only apply gradient ascent without recurrence. Here we
provide a theoretical analysis of both methods.

Recall the KL-divergence objective in Eq. 6, which can be further decomposed when we are sampling
from a compositional distribution of p0(x0) and verifier f(x0), with ν ∝ p0 · f :

Hν(ρ) = Eρ[− log f ] +Hp0(ρ) + logZ .

where Z =
∫
p0f is a normalization constant. Thus, gradient ascent is optimizing the verifier

objective Eρ[− log f ], while Langevin MCMC in Eq. 13 is optimizing the divergence between current
sample and base distribution Hp0(ρ). This explains why naive gradient updates leads to OOD
samples, and recurrence effectively mitigates this issue, acting as a contraction force pulling the
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sample back to the original manifold. However, since we start from p0 as the distribution of our initial
sample, sometimes we can omit the recurrence if the guidance strength is small. But if we wish to
traverse different modes with multiple gradient updates, introducing recurrence helps to avoid OOD
during optimization.

C.5 IMPLEMENTING LOCAL SEARCH WITH TFG HYPER-PARAMETER SPACE

Due to the equivalence between annealed Langevin MCMC and training-free guidance with recur-
rence, we can implement local search with Langevin MCMC using the TFG framework of Ye et al.
(2024), efficiently searching the hyperparameters. Here we provide a overview of the algorithm and
design space. Following Sec. C.3, every iteration of recurrence in Line. 5 is equivalent to an annealed
Langevin MCMC step, thus Nrecur is equal to the number of local search steps.

Algorithm 2 Training-Free Guidance
1: Input: Unconditional diffusion model ϵθ , verifier f , guidance strength ρ,µ, γ̄, number of steps

T,Nrecur, Niter
2: xT ∼ N (0, I)
3: for t = T, · · · , 1 do
4: Define function f̃(x) = Eδ∼N (0,I)f(x+ γ̄σtδ)
5: for r = 1, · · · , Nrecur do
6: x0|t = (xt − σtϵθ(xt, t))/αt

7: ∆var = ρt∇xt log f̃(x0|t)

8: ∆mean = ∆mean + µtαt∇x0|t log f̃(x0|t +∆mean) ▷Iterate Niter times starting from ∆mean = 0

9: xt−1 = Sample(xt,x0|t, t) +
αt−1

αt
(∆var +∆mean) ▷ Sample follows DDIM or DDPM

10: xt ∼ N
(

αt
αt−1

xt−1, α
2
t

(
σ2
t

α2
t
− σ2

t−1

α2
t−1

)
I

)
▷ Recurrent strategy

11: end for
12: end for
13: Output: Conditional sample x0

For time varying schedules ρt, µt, we follow Ye et al. (2024) and propose to use either the ‘increase’
schedule:

st = T
αt/αt−1∑T
t=1 αt/αt−1

, (14)

where we increase the guidance strength as we denoise: sT < sT−1 < · · · < s1; or the ‘constant’
schedule

st = 1 , (15)

which uses constant parameters throughout the denoising process. Thus, the time-varying schedules
can be computed as ρt = stρ̄ and µt = stµ̄, and we only need to determine the average ρ̄ and µ̄.

D GLOBAL SEARCH OF DENOISING DIFFUSION MODELS

In this section, we provide details about the global search algorithms: BFS and DFS.

D.1 BFS-BASED SEARCH

We present the pseudo code for BFS in Alg. 3. In practice, we can evaluate and resample the particles
at a fixed subset of time steps, with detailed hyper-parameters in the details of each experiment.

D.1.1 OVERVIEW OF DESIGN SPACE

Tempering. When estimating the particle score via the denoised output f(xk0|t), for larger t the
estimation often has larger bias, due to the fact that E[f(x0)|xt] ̸= f(E[x0|xt]) = f(x0|t). Thus,
we propose to re-weight the score estimates with a tempering schedule τt before scoring the particles.
For a increasing schedule τT < τT−1 < · · · < τ1 < τ0, the estimated scores have more influence at
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Algorithm 3 Diffusion BFS

Diffusion input: diffusion model ϵθ with diffusion time steps T and proposal transition kernel
{p̃θ(xt−1|xt)}Nt=1. Verifier f .
BFS input: Tempering schedule τt. Budget of particles N . Scoring function and resampling
method.
Init: Random sample N particles xkT ∼ N (0, I), k = 1, 2, · · ·N .
for t = T, · · · , 1 do

for k = 1, 2, · · · , N do
Estimation. Estimate the conditional mean: xk0|t =

xkt−σtϵθ(x
k
t ,t)

αt
. Compute the verifier

score estimate f(xk0|t).
Scoring. Score the particles according to the scoring functions:

Current : f̂(xkt ) = τtf(x
k
0|t),

Difference : f̂(xkt ) = τtf(x
k
0|t)− f̂

k
prev,

Max : f̂(xkt ) = max
(
τtf(x

k
0|t), f̂

k
prev

)
.

Resampling. Compute the weights

(w1
t , w

2
t , · · · , wNt ) = softmax

(
f̂(x1

t ), f̂(x
2
t ), · · · f̂(xNt )

)
,

and resample the children

(n1t , n
2
t · · · , nNt ) = Resample(N ;w1

t , w
2
t , · · · , wNt ),

where Resample can be Multinomial resampling or SSP resampling (Alg.4).
end for
for k = 1, · · · , N do

Sample nkt children particles from xkt : xjt−1 ∼ p̃θ(·|xkt ) , j = 1, 2, · · · , nkt
end for
Update the score buffers for computing the Difference and Max score at next timestep.

f̂kprev =


f̂
(
xparent(k)
t

)
if scoring function is Max

τtf
(
xparent(k)
0|t

)
if scoring function is Difference

end for
Return x0 = argmaxx1

0,··· ,xN0 f(x
k
0)

smaller time steps with higher weights, where the estimation has less bias. For the increasing temper-
ing schedule, we simply adopt the design in DAS (Kim et al., 2025) with τt =

(
(1 + γ)T−t − 1

)
τ ,

with γ searched in {0.008, 0.024}. We also consider the deterministic particle selection in SVDD (Li
et al., 2024) where we only retain the highest scoring particle, which can be seen as τt =∞. For the
constant tempering schedule we simply set τt = τ , without any tempering on different time steps.

Scoring. Given the score estimates f(x0|t), one can construct scoring rules based on the scores

of the entire path
{
f(xk0|s)

}t
s=T

. In traditional sequential-monte-carlo (SMC) based methods, the

score is computed as the difference between two consecutive evaluations: f̂(xkt ) = τtf(x
k
0|t) −

τt+1f(x
k
0|t+1). However, in FK-steering (Singhal et al., 2025a), they pointed out that the difference

potential is unfair for sample path that saturates earlier, reaching a high reward at earlier time steps.
Thus they propose the max scoring: f̂(xkt ) = maxs≥t τtf(x

k
0|s). We also consider the simple

baseline of current score: f̂(xkt ) = τtf(x
k
0|t).
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Resampling. Given the scores f̂(xkt ), we can compute the softmax logits of particles via
{
wkt
}N
k=1

=

softmax
{
f̂(xkt )

}N
k=1

. Then, we resample the particles according to the logits, and obtain the number

of children for each particle nkt . The sets
{
nkt
}N
k=1

should satisfy the following constraints:

N∑
k=1

nkt =N

E[nkt ] =Nwkt

Most previous approaches simply adopt the multinomial resampling, with
{
nkt
}N
k=1

∼
Multinomial

(
N ;
{
wkt
}N
k=1

)
. However, this sampling process introduces large variance since every

component is sampled independently. To reduce variance, for example, residual resampling only
resamples the residuals ñkt from N −R with weights w̃kt =

Nwkt−[Nwkt ]
N−R , where R =

∑N
k=1[Nw

k
t ].

Then, we obtain nkt = [Nwkt ] + ñkt . This way we reduce the randomness in nkt .

The SSP resampling views the sampling process as randomized rounding on the expectations Nwkt ,
with pseudo code from Gerber et al. (2020) shown below in Alg. 4.

Algorithm 4 SSP resampling

Inputs: u ∈ [0, 1]N and (ξ1, . . . , ξN ) ∈ RN+ such that ξn = Nwnt with wnt being the softmax
weight of the n-th particle, and we have

∑N
n=1 ξn = N ∈ N.

Output:
(
Y 1

ssp(u), . . . , Y
N

ssp(u)
)
∈ NN such that

∑N
n=1 Y

n
ssp(u) =

∑N
n=1 ξn.

Initialization:
(
Y 1

ssp(u), . . . , Y
N

ssp(u)
)
← (ξ1, . . . , ξN ), (n,m, k)← (1, 2, 1)

Iterate the following steps until
(
Y 1

ssp(u), . . . , Y
N

ssp(u)
)
∈ NN :

(1) Let δ be the smallest number in (0, 1) such that at least one of Y nssp(u) + δ or Y mssp(u)− δ is an
integer, and let ϵ be the smallest number in (0, 1) such that at least one of Y nssp(u) − ϵ or
Y mssp(u) + ϵ is an integer.

(2) If uk ≤ ϵ/(δ + ϵ) set (Y nssp(u), Y
m

ssp(u)) ← (Y nssp(u) + δ, Y mssp(u) − δ); otherwise set
(Y nssp(u), Y

m
ssp(u))← (Y nssp(u)− ϵ, Y mssp(u) + ϵ).

(3) Update n and m as follows:
1. If

(
Y nssp(u), Y

m
ssp(u)

)
∈ N2, (n,m)← (m+ 1,m+ 2);

2. If Y nssp(u) ∈ N and Y mssp(u) ̸∈ N set (n,m)← (m,m+ 1);
3. if Y nssp(u) ̸∈ N and Y mssp(u) ∈ N set (n,m)← (n,m+ 1).

(4) k ← k + 1

There are more variance reduced sampling methods such as systematic resampling and stratified
resampling, and we adopt the Srinivasan sampling process (SSP) resampling as our design choice.
For other variance-reduced methods, the performance is similar to SSP resampling, all outperforming
naive multinomial resampling.

D.1.2 OVERVIEW OF PRIOR METHODS

Here, we provide an overview of prior methods.

SVDD (Li et al., 2024). In SVDD, the best sample is selected at each time step, from which M
children are generated. This approach can be viewed as a variant of BFS with τ =∞ andM particles.
Nodes are evaluated using the current score estimate f(x0|t).

TreeG (Guo et al., 2025). In TreeG, particles are ranked and the top M are either selected directly or
resampled based on their scores to obtain M samples. From each selected particle, K children are
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sampled, resulting in an effective tree width of KM . Particles are evaluated using their current score
f(x0|t). They also consider adding Gaussian noise to x0|t to approximate the posterior distribution
p(x0|xt). However, the posterior distribution is intractable as it is not a Gaussian distribution,
and exact Gaussian approximation requires computing the variance using the Jacobian of the score
function (see Ye et al. (2024)).

DAS (Kim et al., 2025). In DAS, the authors propose an exponentially increasing tempering schedule
as the default, given by τt = (1 + γ)T−t − 1, and also introduce an adaptive tempering schedule.
They adopt advanced SSP resampling instead of multinomial resampling, and evaluate particles
based on the difference in rewards from the previous evaluation, similar to SMC methods. In
the original implementation, DAS also modify the transition kernel with verifier gradients τ =
N
(
xt−1;µθ(xt) + λ∇xt log f(x0|t)

)
, and include the log ratio in the resampling weights: wit =

log pθ(x
i
t−1|xit)− log τ(xit−1|xit)+λ log f(xit)−λ log f(xit−1). For a fair comparison, we disable

the gradients in the BFS experiments in Table. 2, and provide additional results in Table. 7.

FK-steering (Singhal et al., 2025a). In FK, the authors propose several options for evaluating
intermediate particles, including difference, max, and sum, with max adopted as the default. In the
official implementation, multinomial resampling is used, which may lead to suboptimal performance.

SoP (Ma et al., 2025). In search-over-paths (SoP), we start with N samples and denoise them to
a low noise level σ. After that, we sample M i.i.d noise for each of the noisy particles and run the
forward process from σ to σ +∆f , and then denoise from σ +∆f to σ +∆f −∆b. After that we
select the top N particles and repeat the above process until σ = 0. Although the noise injection is
similar to the backtracking in DFS, we point out that SoP adopts a fixed schedule and all particles
remain at the same noise level, which is different from our adaptive DFS.

DSearch (Li et al., 2025b). In DSearch, the authors improve upon beam-search based tree search by
dynamically adjust the beam-size and tree width during sampling. At lower noise levels, we adopt
larger beam-size and lower tree width, facilitating more local exploration. This approach improves
the diversity of the generated samples.

D.2 DFS-BASED SEARCH

In this section, we provide the details and pseudo code for DFS in Alg. 5. To better utilize previously
explored sampling paths, we employ a buffer to store prior results. When the budget is exhausted and
no more backtracking is allowed, we retrieve the best sample from the buffer.

Similar to BFS, controlling the set of evaluation steps allows a trade-off between efficiency and
accuracy. Evaluating at earlier time steps introduces higher uncertainty but enables backtracking.
Additionally, adjusting the backtracking depth ∆T governs the search scope: a small ∆T reduces
computation and favors local search, while a larger ∆T enables broader exploration at the cost of
increased computation.

In practice, we set the evaluation steps to S =
{

1
2T,

1
4T
}

for image experiments to save compute,
and to S =

{
3
4T,

3
4T − 1, · · · , 1

}
for PointMaze experiments. We set the recurrence depth to T/2

for image tasks and T/4 for PointMaze, corresponding to the denoised steps at which samples are
first evaluated. The threshold schedule δt is also set to ‘increase’ as in Eq.14 in our PointMaze
experiments, enforcing tighter constraints for samples with lower noise. We use a simple constant
δt = δ schedule in our image experiments.

In our experiments, we observed that when backtracking to tnext = T—thus fully restarting—the
nonzero terminal SNR αT /σT in many diffusion schedules (Lin et al., 2024) can lead to cumulative
errors with repeated backtracking. Therefore, when backtracking to tnext = T , we initialize with
fresh Gaussian noise.
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Algorithm 5 Diffusion DFS

Diffusion input: diffusion model ϵθ with diffusion time steps T and proposal transition kernel
{p̃θ(xt−1|xt)}Nt=1. Verifier f .
DFS input: Budget for total number of backtrackingB = K, backtracking depth ∆T and threshold
{δt}Tt=1.
Init xT ∼ N (0, I), t = T . Init buffer with empty sets: buffer(t)← {} , t = 1, 2, · · · , T .
while t > 0 do

Compute the conditional mean x0|t =
xt−σtϵθ(xt,t)

αt
, and estimate the verifier score f(x0|t).

Add the score-sample pair to the buffer: buffer(t).add
(
f(x0|t) : xt

)
if f(x0|t) < δt and budget B > 0 then

Backtrack: tnext ← min(t+∆T , T ), xtnext ∼ q(xtnext |xt) with q in Eq. 1
Decrease the budget: B ← B − 1

else
if B = 0 then

Pop the best sample from buffer: xt ← buffer(t).max ▷ select the best sample from past
explorations

end if
Sample posterior: tnext ← t− 1, xtnext ∼ p̃θ(xt−1|xt)

end if
t← tnext, xt ← xnext

end while
Return x0

E EXPERIMENT DETAILS

In this section we provide the details of experimental setup and implementation for all our experiments.
We run our experiments on clusters with Nvidia A100 and RTX 4090 GPUs, with over 1000 GPU
hours used.

E.1 ABLATION OF BFS DESIGN SPACE

We directly adopt the official code base of FK-steering (Singhal et al., 2025a) and use the samping
methods provided in the code base of DAS (Kim et al., 2025). We use the ImageReward prompts as
in Singhal et al. (2025a) and report the average and standard deviation over 4 independent trials. For
the temperature and resampling interval, we directly follow the implementation of FK-steering. For
TreeG (Guo et al., 2025) we use a fixed branch out size of 2. For Dsearch (Li et al., 2025b) we set
the ratio b(T )

b(0) = 4 as in the original paper, and for SoP (Ma et al., 2025) we directly adopt the noise
levels of the original paper, and use Paths-2 for N = 4 and Paths-4 for N = 8. For the FLUX model,
we use the stochastic sampler from Wang & Yu (2025). The detailed hyper-parameters are below in
Table. 6:

Table 6: BFS implementation parameters

temperature 10
resampling interval [20,40,80]

sampling steps 100
num seeds 4

E.1.1 ADDITIONAL RESULTS FOR THE BFS EXPERIMENTS

In this section, we provide additional results of the BFS experiments.

In the original implementation of DAS (Kim et al., 2025), the proposal transition kernel is biased
with the verifier gradient τ = N

(
xt−1;µθ(xt) + λ∇xt log f(x0|t), σt

)
, and include the log ratio

in the resampling weights: wit = log pθ(x
i
t−1|xit)− log τ(xit−1|xit) + λ log f(xit)− λ log f(xit−1).
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In Table. 2, we disable all the gradients in global search methods for a fair comparison. Here we
provide the results using the original implementation with gradients (DAS-grad) in Table. 7. We
tune the KL coefficient so that the relative magnitude of the reward divided by the KL coefficient
remains consistent with the experiments in the original paper (Kim et al., 2025). We also evaluate our
BFS method with the gradient-biased kernel (BFS-grad), where we use the KL coefficient from the
DAS-grad method as the guidance strength, ensuring an identical transition kernel. From the results,
we observe that both ImageReward and HPS scores benefit from the additional gradient guidance,
with our BFS design enabling more efficient global exploration.

To validate the robustness of inference-scaling, we further evaluate the generated samples with Human
Preference Score (Wu et al., 2023b), and provide visualizations in Fig. 6.

BoN DAS (w/o grad) DAS-grad BFS (w/o grad) BFS-grad

Model N ImageReward HPS ImageReward HPS ImageReward HPS ImageReward HPS ImageReward HPS

SD v1.5 4 0.702± 0.057 0.264± 0.001 0.878± 0.028 0.265± 0.001 1.084± 0.052 0.269± 0.002 0.882± 0.029 0.265± 0.001 1.191± 0.041 0.271± 0.001
SD v1.5 8 0.896± 0.031 0.267± 0.001 1.052± 0.033 0.268± 0.001 1.197± 0.053 0.271± 0.001 1.087± 0.031 0.268± 0.001 1.302± 0.043 0.273± 0.002
SD XL 4 1.085± 0.013 0.273± 0.001 1.181± 0.023 0.275± 0.001 1.272± 0.047 0.277± 0.002 1.194± 0.024 0.275± 0.001 1.413± 0.038 0.278± 0.001
SD XL 8 1.198± 0.021 0.277± 0.001 1.265± 0.019 0.278± 0.001 1.485± 0.046 0.279± 0.001 1.291± 0.018 0.279± 0.001 1.532± 0.035 0.281± 0.001

Table 7: Additional BFS experiment results

(a) Direct sampling (b) BoN (c) DAS

(d) DAS-grad (e) BFS (f) BFS-grad

Figure 6: Visualizations for SD v1.5 generated samples, where direct sampling denotes sampling without
inference-scaling, and the number of particles is N=4 for other methods. Prompt: a beautiful painting of the
jungle in the morning with lots of smoke, fantasy art, matte painting.
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E.2 TEXT-TO-IMAGE COMPOSITIONAL GENERATION WITH DFS

We use the SSD-1B model7 which is distilled from SDXL, and we use the default sampling config-
uration with 50 steps of DDIM sampler. For DFS and BFS, we evaluate at time steps {25, 35, 45}
and set the backtrack depth ∆T = 25. For BFS we additionally sweep the temperature in range
{0.5, 1, 2, 4, 8} and report the best performance.

We provide example visualizations in Fig. 7.

(a) w/o inference scaling (b) w/ inference scaling

(c) Example from color dataset with prompt: a yellow book and a red vase

(d) w/o inference scaling (e) w/ inference scaling

(f) Example from texture dataset with prompt: a fabric hat and a glass mirror

(g) w/o inference scaling (h) w/ inference scaling

(i) Example from shape dataset with prompt: a round bagel and a square toaster
Figure 7: Example of inference-time scaling with CompBench Above shows the example prompts from
CompBench benchmark and images before and after inference scaling

Comparison with SoP. Compared with SoP (Ma et al., 2025), our DFS adopts an adaptive back-
tracking schedule, which enables efficient quality-dependent exploration and full restarts to escape

7https://huggingface.co/segmind/SSD-1B
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low quality modes. We provide the additional experiment results in Fig. 8. For SoP, we follow the
original backtracking schedule, and the uses Paths-2 for low compute and Paths-4 for scaling up more
compute, following the insights of Ma et al. (2025). We use δ = 0.7 for DFS.

Figure 8: Comparison of DFS with SoP

E.3 LONG HORIZON MAZE PLANNING

Maze environment. For all our maze experiments we use the OGBench PointMaze environment
(Park et al., 2024). We created our maze layout using the same protocol of Figure 5 in Marcucci
et al. (2023)8, but with a smaller size of 20x20 cells. Dataset is collected following the protocal in
OGBench (Park et al., 2024). We evaluate the model on the default task 1 of OGBench (Park et al.,
2024), which is navigating from bottom left to top right. Empirically we discover that the diffusion
model can perform well on short-horizon tasks without extra inference compute, but struggles heavily
in the long horizon tasks.

Model Training. We train the model following diffuser (Janner et al., 2022), where we use a temporal
U-Net to denoise the trajectory

τ =

[
s1 s2 · · · sH
a1 a2 · · · aH

]
.

Since our objective start and goal is more distant than trajectories in dataset, we sample at longer
horizons than training, which is enabled by the temporal U-Net architecture. We train the model for
1.2M steps using the same configuration as Janner et al. (2022). Model details are below in Table. 8.

Table 8: Hyper-parameters for maze model

hidden dimension multipliers [1,4,8,16]
training horizon 2000

sampling horizon 2800
training steps 1.2M

batch size 64
learning rate 1e-4

Inference. We found that the model performance saturates with 16 denoising steps, which we use for
all our experiments. For all the data points we report the average success rate with over 40 samples.

For verifier design, we use the ground-truth maze layout, and calculate the violation of each point in
the trajectory using the position coordinates. Specifically, if a point (x, y) is inside a maze wall box
with center (cx, cy) and half-width d, then the point loss can be calculated as the minimum distance
from the point to box walls:

L(x, y) = min (x− (cx − d), (cx + d)− x, y − (cy − d), (cy + d)− y) .
8https://github.com/mpetersen94/gcs/blob/main/models/maze.py
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(a) Ablation of threshold δ (b) Ablation of backtrack schedule
Figure 9: Ablation of DFS hyperparameters

and the total verifier score is computed as:

f(τ ) = exp

(
−

H∑
i=1

L(xi, yi)
2

)
.

So if all the points are free of violation in the trajectory, then f(τ ) = 1. We point out that this does
not indicate a successful plan as the connection between consecutive points (xi, yi)→ (xi+1, yi+1)
may violate the maze layout, and using only the verifier function can not generate a successful plan.

For local search, we search the hyper-parameters ρ̄ and µ̄ in Sec. C.5 with γ̄ = 0. For global search
with BFS we evaluate at steps {12, 8, 4}, and for DFS we evaluate at {12, 11, · · · , 1} with backtrack-
ing depth ∆T = 4. We also observe that increasing backtracking depth to 12 and evaluate at smaller
time steps {4, 3, 2, 1} helps to scale up the performance with more compute. The hyperparameter
search results are below in Table.9 and Fig. 9

N τ = 0.2 τ = 0.005 τ = 0.1

2 27.5± 4.3 32.5± 1.1 31.2± 4.2
4 42.5± 5.2 48.1± 1.1 45.5± 2.3
8 67.6± 1.1 71.2± 2.2 70.1± 1.1

Table 9: Hyperparameter search for temperature τ in PointMaze BFS

E.4 OFFLINE RL

Background. Diffusion policy (Chi et al., 2023) is widely used for action generation in robot
foundation models (Black et al., 2024; Liu et al., 2024). At inference time, policies can be guided by
human trajectory constraints (Wang et al., 2022) or LLM-based value functions (Nakamoto et al.,
2024). Exact diffusion sampling requires training a noise-dependent energy function (Lu et al.,
2023), but this can degrade pretrained knowledge and demands additional data—often impractical
in data-scarce robotic settings. In contrast, inference-scaling provides a more flexible approach,
allowing seamless composition of pretrained diffusion policies with Q-functions without retraining.

Setup. We follow the setup in Lu et al. (2023), and we directly use their pretrained diffusion model
and Q-function, omitting the time-dependent energy function. The diffusion model was trained to
generate action a given state s, and we sample with 15 steps of DDIM.

For hyper-parameter search, we disable the implicit dynamics and set γ̄ = 0, and use the ‘increase’
schedule for ρ and µ. For strength parameters ρ̄ and µ̄, we first search for the right magnitude. Then,
we also follow Lu et al. (2023) and search with step size [1,2,3,5,8,10] within the magnitude. Same
as Lu et al. (2023), we use 5 different seeds with 10 samples per seed for each task. To avoid over
fitting, we use different seeds for parameter search and evaluation. We report the hyper-parameters
and the performance within the parameter-searching dataset and evaluation dataset.
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For global search, we use 4 particles for Medium-Expert and Medium datasets, and 2 particles for
Medium-Replay datasets. Since the number of particles are small, we do not carry out BFS or DFS
methods and simply use Best-of-N. We point out that the number of particles we use are much smaller
than the 50 particles in Wang et al. (2022) and the 32 particles in Chen et al. (2023), highlighting the
effectiveness of local search.

Baseline. We compare our method to a variety of baselines, including traditional state-of-the-art
methods IQL (Kostrikov et al., 2021) and diffusion-based policies such as diffuser (Janner et al.,
2022), decision-diffuser (DD) (Ajay et al., 2022), Diffusion-QL (D-QL) (Wang et al., 2022), SfBC
(Chen et al., 2023) and QGPO (Lu et al., 2023). We directly take the numbers from Lu et al. (2023).

Among the baseline diffusion-based methods, both Diffuser (Janner et al., 2022) and QGPO (Lu
et al., 2023) requires training a noise-dependent guidance function, and D-QL (Wang et al., 2022)
requires updating the diffusion model during training using the Q-function iteratively, which needs to
back-propagate through the diffusion sampling chain, introducing high computation and memory
overheads. DD (Ajay et al., 2022) uses classifier-free guidance (Ho & Salimans, 2022) to generate
high-return trajectories that requires training a return-conditional model on labeled datasets, which
can be expensive to obtain in robotics where only demonstration data is available (Liu et al., 2024).

For our reproduced baselines, TFG (Ye et al., 2024) is allowed up to 8 recurrence steps and DAS
(Kim et al., 2025) up to 16 particles, resulting in a hyperparameter space and computational cost
approximately twice that of our method. We sweep across all configurations for the baseline methods
and report the best performance. For fair comparison we evaluate our method on different seeds used
for hyperparameter search, with the results shown in Table. 10.

Dataset Environment particles Nrecur Niter ρ̄ µ̄ Eval set Search set
Medium-Expert HalfCheetah 4 1 1 0.008 0.02 93.9± 0.3 94.3± 0.5
Medium-Expert Hopper 4 1 4 0.001 0.00 104.4± 3.1 109.4± 5.2
Medium-Expert Walker2d 4 1 1 0.005 0.10 111.4± 0.1 111.4± 0.2

Medium HalfCheetah 4 1 4 0.003 0.05 54.8± 0.1 54.8± 0.2
Medium Hopper 4 4 4 0.003 0.02 99.5± 1.7 100.1± 0.1
Medium Walker2d 4 1 6 0.003 0.08 86.5± 0.2 85.2± 3.2

Medium-Replay HalfCheetah 2 1 6 0.005 0.03 47.8± 0.4 48.4± 0.1
Medium-Replay Hopper 2 1 1 0.003 0.20 97.4± 4.0 100.4± 2.2
Medium-Replay Walker2d 2 2 4 0.003 0.03 79.3± 9.7 83.2± 2.8

Average 86.1 87.5

Table 10: Hyper-parameters on D4RL locomotion tasks with test-time scaling. We report the performance on
hyper-parameter search dataset and the evaluation dataset, highlighting the best number.

E.4.1 OFFLINE POLICY DISTILLATION

Setup. We adopt the Medium dataset from D4RL (Fu et al., 2020) and the corresponding pretrained
models from Lu et al. (2023) as in the previous section. For the dataset, we replace the action of each
state with the sample generated with test-time search (TTS), using the hyper-parameters in Table. 10.
We then finetune the models on the modified dataset with early-stopping. For evaluation of finetuned
models, we use 5 different seeds different from the seed used during training, with 10 samples per
seed. During evaluation, we sample from the finetuned diffusion model directly, without the presence
of any verifier. Detailed training hyper-parameters are below in Table. 11.

epochs 5
learning rate 1e-4

batch size 16384
eval every epoch 1
sampling steps 15

Table 11: Hyper-parameters for policy distillation
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For the Baseline DPPO (Ren et al., 2024), we directly adopt the numbers reported in their paper,
which uses the same Medium dataset and models as ours.

The training curves for policy finetuning are shown in Fig. 10. In both Hopper and Walker2d
environments, performance converges rapidly, within a single epoch over the dataset. Notably,
our method is significantly faster than online finetuning approaches, as it does not require online
data collection. Training one epoch on the full Medium dataset takes only about 4 minutes on a
single Nvidia RTX 4090 GPU, including the time for data generation via inference-scaling sampling,
whereas DPPO requires several hours to reach convergence.

Figure 10: Training curves for policy distillation

E.5 MITIGATING REWARD HACKING WITH DOUBLE VERIFIER

Experimental setup. We evaluate the proposed double-verifier on the challenging conditional
ImageNet generation task, generating target-class samples from an unconditional model guided by a
pretrained classifier. Specifically, we use two independent classifiers as verifiers910 for global and
local search. We report the Fréchet Inception Distance (FID) computed on 256 generated samples
against the corresponding ImageNet class, and measure class accuracy using a separate classifier11.
Since we only apply the global verifier sparsely, double-verfier introduces negligible computational
costs. For local search we search the hyper-parameters with step size [1,2,4,8,10], and for global
search with BFS, we search the temperature in [1.0,2.0,4.0]. For MSP score, we adopt a different
imagenet classifier 12.

For the MSP score (Hendrycks & Gimpel, 2016), it is defined as:

MSP(x) = max
c
p(c|x)

Thus, higher MSP score indicates higher confidence that the image belongs to one of the classes from
the dataset, which is less OOD.

Visualizations. Here we provide some visualizations of adversarial reward hacking and the effective-
ness of our double-verifier approach. As shown in Fig. 11, we can see the adversarial patches that
exploits the weakness of a single verifier, making the verifier to predict the images as belonging to
the wrong class.

F WALL-CLOCK TIME ANALYSIS

We conduct a wall-clock time analysis of our methods on the class-guided ImageNet generation task,
measuring the average per-sample runtime when generating 10 samples under similar GPU utilization
on a single RTX 4090. In DAS Kim et al. (2025) they only compute the verifier gradient while in our
local search we additionally incorporates the recurrence in the Langevin MCMC step. We observe
that wall-clock time is primarily dominated by the number of NFEs. Local search and DAS (Kim
et al., 2025) is slower due to the additional gradient computations, while DFS is slightly slower
because it generates particles sequentially, preventing full utilization of GPU batch parallelism.

9https://huggingface.co/google/vit-base-patch16-224
10https://huggingface.co/google/vit-base-patch16-384
11https://huggingface.co/facebook/deit-small-patch16-224
12https://huggingface.co/facebook/deit-base-patch16-224
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(a) Adversarial example with 0.96
class validity predicted by the lo-
cal search verifier

(b) Adversarial example with 0.95
class validity predicted by the lo-
cal search verifier

(c) Adversarial example with 0.98
class validity predicted by the lo-
cal search verifier

Figure 11: Examples of adversarial samples generated by gradient over-optimization Here we provide the
adversarial samples generated by gradient guidance on class 222 (kuvasz). Although the samples have high
probability of belonging to the target class as predicted by the verifier, they are caused by adversarial reward
hacking.

Method Settings NFEs of diffusion model Seconds

Direct sampling N=1 100 14
DAS N=1, 1 gradient step 100 26

Local search N=1, 1 additional local search step 200 40
Local search N=1, 2 additional local search steps 300 66

BoN N=4 400 55
BFS N=4 400 56
DAS N=4, 1 gradient step 400 106
DFS budget=4 210 29
BoN N=4, 2 additional local search steps 1200 260
BFS N=4, 2 additional local search steps 1200 261
DFS budget=4, 2 additional local search steps 620 136

Table 12: Wall-clock time analysis

G LLM USAGE STATEMENT

In this paper, LLMs are used exclusively for grammar checks, with no changes made to any technical
components.
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