

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INFERENCE-TIME SCALING OF DIFFUSION MODELS THROUGH CLASSICAL SEARCH

Anonymous authors

Paper under double-blind review

ABSTRACT

Classical search algorithms have long underpinned modern artificial intelligence. In this work, we tackle the challenge of inference-time control in diffusion models—adapting generated outputs to meet diverse test-time objectives—using principles from classical search. We propose a general framework that orchestrates local and global search to efficiently navigate the generative space. It performs compute-efficient global exploration using breadth-first and depth-first tree search and employs a theoretically grounded, scalable local search via annealed Langevin MCMC. We evaluate our approach on a range of challenging domains, including planning, offline reinforcement learning, and image generation, and observe significant gains in both performance and efficiency over baseline methods. These results demonstrate that classical search offers a principled and practical foundation for inference-time scaling in diffusion models. By jointly scaling local and global search for the first time, our framework establishes a new Pareto frontier across challenging decision-making domains.

1 INTRODUCTION

Classical search algorithms have laid the foundation for modern artificial intelligence (Russell & Norvig, 2009). In discrete settings, graph search algorithms are widely used to explore the state space. Breadth-first search (BFS) (Moore, 1959) and depth-first search (DFS) (Tarjan, 1972) traverse the search tree in a fixed order. To better leverage problem-specific information, best-first search methods (Pearl, 1984), such as A* (Hart et al., 1968), use a heuristic to evaluate and prioritize states. Alternatively, local search methods, such as hill-climbing (Russell & Norvig, 2009, Sec. 4.1), explore neighboring states. More recent techniques like gradient descent and Markov Chain Monte Carlo (MCMC) have become widely adopted in optimization and probabilistic inference, underpinning many modern AI models.

Diffusion models (Ho et al., 2020) have shown impressive performance in generative modeling for continuous domains such as images (Dhariwal & Nichol, 2021), videos (Ho et al., 2022). They are also increasingly used in robotics and decision-making (Liu et al., 2024; Black et al., 2024; Team et al., 2024) to generate diverse actions (Chi et al., 2023). However, generated samples may not always align with physical laws (Song et al., 2023) or human intent (Wallace et al., 2024), and the vast generative space often necessitates multiple trials to produce satisfactory outputs (Xie et al., 2025). To address this, we scale up *inference-time compute* using strategic search methods that navigate the generative manifold for high-quality samples. We formalize sample evaluation using a verifier function $f(\mathbf{x}_0)$ defined on *ground truth* samples, which measures the quality of the sample. Such verifiers could be reward functions (Xu et al., 2023a), Q-functions (Lu et al., 2023), classifier conditions $p(c|\mathbf{x}_0)$ (Ye et al., 2024; Dhariwal & Nichol, 2021), and VLMs (Huang et al., 2023).

To efficiently search the generative space of diffusion models, we revisit classical search principles. To capture diverse modes in the complex distributions generated by diffusion models, we view sampling as traversing a search tree, employing BFS and DFS to progressively explore states during denoising. Similar to best-first search, we evaluate intermediate states \mathbf{x}_t with the verifier $f(\mathbf{x}_{0:t})$, prioritizing high-quality paths and efficiently allocating compute via branching and backtracking. To go *refine* the base *distribution* and obtain higher-quality samples, we perform local search via Langevin MCMC, exploring the neighborhood of current samples under guidance from both the verifier gradient and the diffusion model’s “score function” (Vincent, 2011). By jointly optimizing

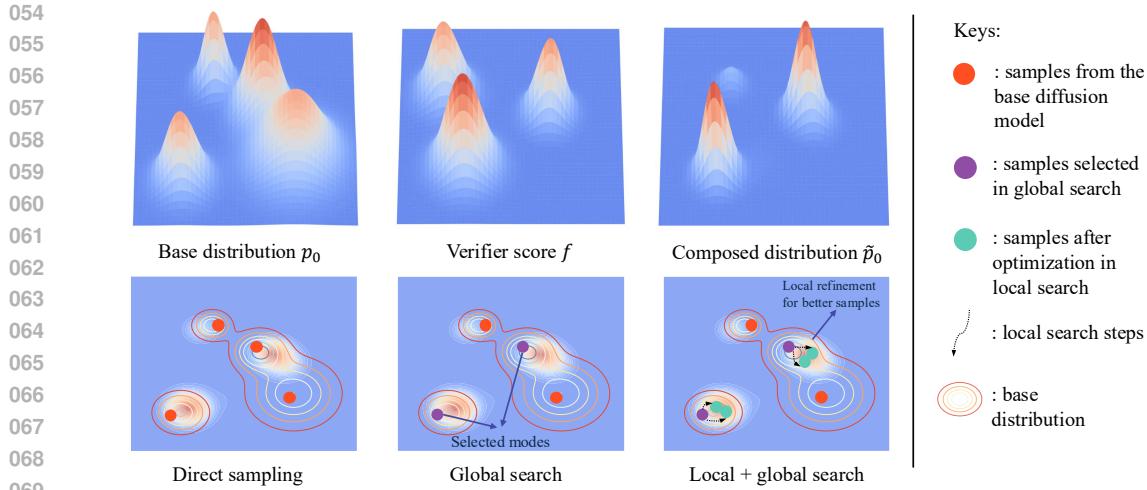


Figure 1: **Illustration of our search framework.** **Bottom left:** direct sampling results in samples with low verifier scores. **Bottom middle:** global search identifies high score modes within the base distribution. **Bottom right:** local search further optimizes the samples for higher quality, driven by the gradient signal.

the compositional objective of the diffusion model and the verifier (Du et al., 2023), our local search surpasses the capabilities of the base model. An overview of our framework is shown in Fig. 1.

Recent works scale diffusion model inference via particle-based SMC (Kim et al., 2025; Singhal et al., 2025a; Wu et al., 2023a; Li et al., 2024) and tree-based methods (Guo et al., 2025; Li et al., 2025b), which explores the diffusion sampling process with a fixed schedule. We generalize the particle-based methods (Kim et al., 2025; Singhal et al., 2025a; Li et al., 2024) with a BFS-based framework, clarifying prior design choices and providing an improved BFS baseline. Inspired by DFS, we add adaptive backtracking to allocate compute adaptively, surpassing BFS in efficiency and adaptivity. The adaptive backtrack schedule also outperforms the fixed noise injection in Ma et al. (2025), highlighting the importance of adaptivity in inference scaling. While global search remains limited to base-distribution modes, scaling local search with Langevin MCMC explores high-reward regions in neighborhoods of the base model samples, proving effective in challenging decision-making tasks. Finally, we jointly scale local and global search with the classical AI search principles, demonstrating superior performance over prior methods, which scale local and global search in isolation.

Our key contributions are summarized as follows:

- i) For global tree search, we elucidate the design space of prior BFS-style methods and provide an improved BFS design. We further present the first adaptive DFS algorithm for diffusion inference scaling, offering superior efficiency and adaptivity.
- ii) We introduce a theoretically grounded local search method using annealed Langevin MCMC, demonstrating superior performance in challenging domains.
- iii) We propose a unified framework for inference scaling that integrates both global and local search within the classical AI search paradigm. By jointly scaling local and global search for the first time, we advance the Pareto frontier of inference-time scaling across diverse domains.

2 RELATED WORKS

Here, we provide a brief overview of inference-time scaling with diffusion models. For a more comprehensive literature review and discussion of concurrent works, see Appendix B.

Particle-based scaling methods. Recent works (Kim et al., 2025; Singhal et al., 2025a) propose SMC-style particle filtering methods, scaling inference compute by increasing the number of particles and improving efficiency via resampling. Kim et al. (2025) propose biasing the transition kernel using verifier gradients and incorporating both the proposal and base transition probabilities during resampling. Similarly, tree-search-based methods (Li et al., 2024; 2025b; Guo et al., 2025) evaluate

108 intermediate nodes and select promising candidates. Both approaches can be seen as special cases
 109 of our BFS tree search framework, which denoise a set of particles in parallel, applying branching
 110 and filtering based on intermediate reward signals. **SoP** (Ma et al., 2025) proposes searching over
 111 sampling paths by adding M noise samples to each noisy particle and then denoising, thereby
 112 exploring neighboring sampling paths. Although this procedure modifies the denoising process, all
 113 particles still follow the same fixed denoising schedule. In addition to linear BFS-style algorithms, we
 114 also propose DFS-style algorithms with non-linear adaptive backtracking through noise injection and
 115 a score-dependent backtracking schedule, demonstrating superior performance over prior methods.

116 Concurrent with our work, Jain et al. (2025) additionally incorporate value backup from MCTS
 117 into the tree search for diffusion models, leveraging information from previous sampling paths, and
 118 enabling adaptive compute allocation with the design of an anytime algorithm. Lee et al. (2025)
 119 propose backtracking by sending fully denoised particles to all noise levels. The adaptive termination
 120 condition is designed based on the reward distribution of the denoised particles to ensure sufficient
 121 exploration. In contrast, our DFS determines backtrack noise level by the score of the particle, thus
 122 reducing excessive compute consumption on easy instances. In discrete diffusion models, Dang
 123 et al. (2025) introduce Particle Gibbs Sampling for inference scaling, which outperforms SMC-based
 124 approaches (Singhal et al., 2025a). However, their method is not directly applicable to our setting.

125 **Gradient-based guidance methods.** To sample from a conditional distribution, classifier guidance
 126 (Dhariwal & Nichol, 2021) utilizes the gradient from a trained noise-dependent classifier to compute
 127 the conditional score function (Song et al., 2020b). However, such noise-dependent classifier requires
 128 additional training and data collection. To use classifiers defined on clean samples, training-free
 129 guidance methods (Ye et al., 2024; Chung & Ye, 2022; Song et al., 2023; Yu et al., 2023; He et al.,
 130 2023) approximates noisy conditional probability using the denoised output $x_{0|t}$. Such methods are
 131 inheritability biased due to their first order approximation. Different from prior methods that rely
 132 on the conditional diffusion process, we sample from the compositional distribution via annealed
 133 Langevin MCMC, which provides asymptotically exact sampling without any training.

134 3 BACKGROUNDS

135 3.1 DIFFUSION PROBABILISTIC MODELS

136 Suppose we have D -dimensional random variable $\mathbf{x}_0 \in \mathbb{R}^D$ with distribution $p_0(\mathbf{x}_0)$. Diffusion
 137 models (Ho et al., 2020; Song et al., 2020a) and the more general flow models (Lipman et al., 2022;
 138 Albergo & Vanden-Eijnden, 2022) are generative models that turn noise into data via a stochastic
 139 process $\{\mathbf{x}_t\}_{t=0}^T$. The forward “noising” process with $t > s$ can be defined as:

$$140 q(\mathbf{x}_t | \mathbf{x}_s) = \mathcal{N} \left(\mathbf{x}; \frac{\alpha_t}{\alpha_s} \mathbf{x}_s, \alpha_t^2 \left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_s^2}{\alpha_s^2} \right) \mathbf{I} \right). \quad (1)$$

141 where α_t, σ_t are referred as the noise schedule with $\alpha_0 = \sigma_T = 1, \alpha_T = \sigma_0 = 0$. We can thus write
 142 the random variables \mathbf{x}_t as an interpolation between data and noise (Ma et al., 2024):

$$143 \mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon},$$

144 and denote $q_t(\mathbf{x}_t)$ as the marginal distribution of \mathbf{x}_t . To model the reverse “denoising” process, we
 145 train the model using the denoising objective (Ho et al., 2020):

$$146 L(\theta) = \mathbb{E}_{t, \mathbf{x}_0, \boldsymbol{\epsilon}} [\boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t) - \boldsymbol{\epsilon}],$$

147 which is equivalent of learning the score function of $q_t(\mathbf{x}_t)$ (Vincent, 2011), as the ground truth of
 148 $\boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t)$ is $-\sigma_t \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t)$. To generate samples, we transform noise into data via the reverse
 149 transition kernel $p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)$. In practice, we either sample \mathbf{x}_{t-1} using deterministic samplers like
 150 DDIM (Song et al., 2020a):

$$151 \mathbf{x}_{t-1} = \frac{\alpha_{t-1}}{\alpha_t} (\mathbf{x}_t - \sigma_t \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t)) + \sigma_{t-1} \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t)$$

152 or stochastic samplers like DDPM (Ho et al., 2020; Nichol & Dhariwal, 2021):

$$153 p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_\theta(\mathbf{x}_t, t), \boldsymbol{\Sigma}_\theta(\mathbf{x}_t, t)).$$

162
163

3.2 COMPOSITIONAL AND CONTROLLABLE GENERATION OF DPMs

164
165
166
167
168

Given a base diffusion model with data distribution $p_0(\mathbf{x}_0)$, one may wish to sample \mathbf{x}_0 with some constraints or conditions $f(\mathbf{x}_0)$. Exact diffusion sampling from the composed distribution $\tilde{p}_0(\mathbf{x}_0) \propto p_0(\mathbf{x}_0)f(\mathbf{x}_0)$ would require training a time-dependent f on data generated by p_0 (Dhariwal & Nichol, 2021; Lu et al., 2023), which may not be applicable in practice. Thus, we adopt optimization based methods to approximate the target distribution.

169
170
171
172
173

Compositional generation via annealed Langevin MCMC. When sampling from a compositional distribution composed of multiple probability distributions, $\tilde{p}_0(\mathbf{x}_0) \propto p_0(\mathbf{x}_0)\hat{p}_0(\mathbf{x}_0)$, Du et al. (2023) proposes annealed Langevin MCMC sampling. In this approach, a sequence of annealed distributions $\tilde{q}_t(\mathbf{x}_t) \propto q_t(\mathbf{x}_t)\hat{q}_t(\mathbf{x}_t)$ is constructed with \hat{q}_t corresponds to the diffusion process of \hat{p}_0 , and samples are drawn using Langevin dynamics (Welling & Teh, 2011):

174
175

$$\mathbf{x}_t^{i+1} = \mathbf{x}_t^i + \eta \nabla_{\mathbf{x}} \log \tilde{q}_t(\mathbf{x}_t^i) + \sqrt{2\eta} \epsilon^i, \quad \epsilon^i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \quad (2)$$

176
177
178

Since the distribution of \mathbf{x}_t^i converges to $\tilde{q}_t(\mathbf{x}_t)$ asymptotically as $i \rightarrow \infty$, $\eta \rightarrow 0$, we can sample from $\tilde{p}_0(\mathbf{x}_0)$ following the annealing path $\{\tilde{q}_t\}_{t=0}^T$ with $\tilde{q}_0 = \tilde{p}_0$. Moreover, since the score of \tilde{q}_t can be directly computed by composing the score of two distributions:

179

$$\nabla_{\mathbf{x}} \log \tilde{q}_t(\mathbf{x}_t) = \nabla_{\mathbf{x}} \log q_t(\mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log \hat{q}_t(\mathbf{x}_t),$$

180
181
182

thus do not require extra training. We point out that the product distribution $\tilde{q}_t(\mathbf{x}_t)$ does not represent a valid diffusion process, thus inverse diffusion sampling via $\nabla_{\mathbf{x}} \log \tilde{q}_t$ is impossible.

183
184

Controllable generation through training-free guidance. During the sampling process, training-free guidance propose to update \mathbf{x}_t using gradient ascent

185

$$\tilde{\mathbf{x}}_t = \mathbf{x}_t + \Delta_t, \quad \Delta_t = \rho_t \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0|t}) + \mu_t \alpha_t \nabla_{\mathbf{x}_{0|t}} \log f(\mathbf{x}_{0|t}). \quad (3)$$

186
187
188
189
190

where $\mathbf{x}_{0|t} = \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \frac{\mathbf{x}_t - \sigma_t \epsilon_{\theta}(\mathbf{x}_t, t)}{\alpha_t}$. This method approximates the intractable posterior with the posterior mean: $\mathbb{E}_{\mathbf{x}_0 | \mathbf{x}_t} [f(\mathbf{x}_0)] \approx f(\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t])$. To enhance the guidance strength, Yu et al. (2023) propose to apply a recurrence strategy, which first samples \mathbf{x}_{t-1} via $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)$, add the guidance gradient, then add noise back to \mathbf{x}_t through the forward process $q_t(\mathbf{x}_t | \mathbf{x}_{t-1})$:

191
192

$$\mathbf{x}_{t-1}^i \sim p_{\theta}(\cdot | \mathbf{x}_t^i), \quad \tilde{\mathbf{x}}_{t-1}^i = \mathbf{x}_{t-1}^i + \frac{\alpha_{t-1}}{\alpha_t} \Delta_t, \quad \mathbf{x}_t^{i+1} \sim q_t(\cdot | \tilde{\mathbf{x}}_{t-1}^i), \quad i = 1, 2, \dots, N_{\text{recur}}, \quad (4)$$

193
194

with N_{recur} being the total number of recurrence steps.

195
196

4 METHODS

197
198
199
200
201

Problem Formulation. Given a pretrained diffusion model $\epsilon_{\theta}(\mathbf{x}_t, t)$ with a base distribution $p_0(\mathbf{x}_0)$, at test-time, we often wish to optimize the generation process to satisfy task-specific objectives. For example, RL may require generating high-value actions, image synthesis may seek constraint-satisfying images, and trajectory generation may demand physically valid outputs. In this paper, we are interested in how to scale test-time inference to follow such objectives.

202
203
204
205
206

We consider an inference-time scaling strategy that adjusts the sampling process based on a verifier function. Specifically, we define a verifier $f(\mathbf{x}_0) : \mathbb{R}^D \rightarrow \mathbb{R}^+$ which specifies the degree to which samples optimize a specified objective. We then aim to bias sampling toward regions of the sample space where $f(\mathbf{x}_0)$ is high. This leads to the objective of sampling from a compositional distribution that combines the original model distribution with the verifier:

207

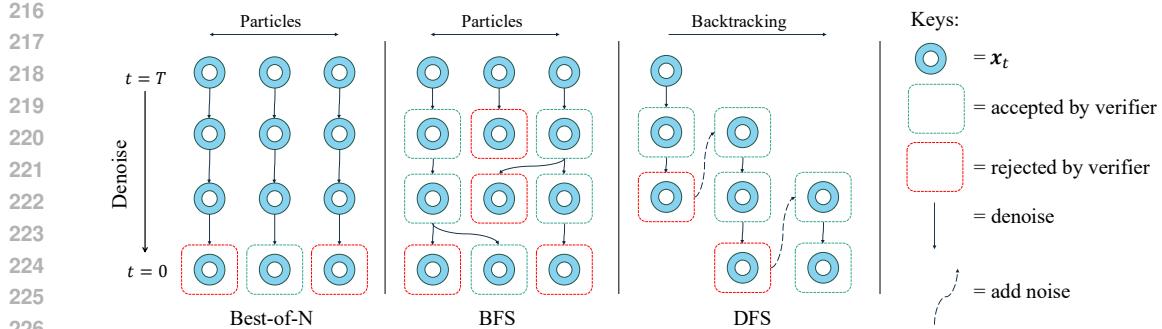
$$\tilde{p}_0(\mathbf{x}_0) \propto p_0(\mathbf{x}_0)f(\mathbf{x}_0)^{\lambda}, \quad (5)$$

208

where λ controls the weight of verifier scores.

210
211
212
213
214
215

Since exact sampling from the distribution is often impractical, we aim to search the manifold for the target samples at *inference time*, both *globally* and *locally*. First, we explore the diverse modes in the complex generative landscape of diffusion models through global graph search algorithms. However, global search alone can not generate samples beyond the pretrained model. We then propose to search the vicinity of the sample using hill-climbing style local search methods, guided by the verifier gradient. By combining local search with global search, we can avoid being stuck in local optima, advancing the performance of the base model by sampling beyond the pretrained modes.

Figure 2: **Illustration of global tree search algorithms.**

4.1 GLOBAL SEARCH FOR MODE IDENTIFICATION

To efficiently explore the modes of a diffusion model, we represent the Markov chain of its denoising process as a *fixed-depth tree*, where the transition kernel $\tilde{p}_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$ may correspond to either deterministic or stochastic samplers. This abstraction enables the use of classical tree-search heuristics to design compute-efficient exploration methods.

A simple baseline is best-of- N (BoN) sampling: generate N independent trajectories and select the one with the highest verifier score at the final step. While straightforward, this approach discards valuable information from intermediate stages. To improve efficiency, inspired by best-first search (Pearl, 1984), we evaluate intermediate particles using the denoised estimate $\mathbf{x}_{0|t}$. This allows dynamic allocation of computation based on particle quality, using techniques such as branching and backtracking. We next describe two representative efficient search strategies—breadth-first search (BFS) and depth-first search (DFS)—adapted for diffusion model sampling. By prioritizing the expansion of nodes with higher score estimates and backtracking from low-quality regions of the tree, we can more effectively navigate the generative space and identify high-quality modes. An illustration of the tree search methods is provided in Fig. 2.

4.1.1 UNIFIED BFS-STYLE LINEAR SEARCH

Inspired by breadth-first search (BFS), which expands nodes level by level, we denoise a set of particles in parallel at each noise level. We score each intermediate particle $\{\mathbf{x}_t^k\}_{k=1}^N$ using estimates of its verifier score $f(\mathbf{x}_{0|t}^k)$, and dynamically reallocate computation by sampling more children n_t^k for high-scoring nodes. We provide a general design space for schedules, scoring functions, and resampling strategies that unifies previous tree-search-based and particle-based baselines such as SVDD (Li et al., 2024), DAS (Kim et al., 2025), and FK-steering (Singhal et al., 2025b). The pseudocode is shown in Alg. 3, and more details can be found in Sec. D.1.

Tempering. To mitigate score estimation bias in early steps, Kim et al. (2025) increases weights on smaller time steps with $\tau_T < \tau_{T-1} \cdots < \tau_0$, re-weighting scores with $\tau_t f(\mathbf{x}_{0|t}^k)$. Li et al. (2024) samples only from the top-scoring particle, i.e., $\tau_t = \infty$. We consider three different tempering design choices: **Constant** : $\tau_t = \tau$, **Increase** : $\tau_t = ((1 + \gamma)^{T-t} - 1) \tau$, **Inf** : $\tau_t = \infty$.

Scoring. Following Kim et al. (2025); Singhal et al. (2025b), we propose to evaluate intermediate particles $\hat{f}(\mathbf{x}_t^k)$ using functions of the estimated rewards $f(\mathbf{x}_{0|s}^k)$ along the sampling path $s \in [t, T]$. This approach accounts for reward variation during sampling by considering not only the current reward but also its trajectory. Specifically, we define the following scoring functions $\hat{f}(\mathbf{x}_t^k)$ based on $f(\mathbf{x}_{0|s}^k)$ for $s \geq t$: **Current** : $\tau_t f(\mathbf{x}_{0|t}^k)$, **Difference** : $\tau_t f(\mathbf{x}_{0|t}^k) - \tau_{t+1} f(\mathbf{x}_{0|t+1}^k)$, **Max** : $\max_{s \geq t} \tau_s f(\mathbf{x}_{0|s}^k)$.

Resampling. Given $\hat{f}(\mathbf{x}_t^k)$, we allocate particles as $(n_t^1, \dots, n_t^N) = \text{Resample}(N; w_t^1, \dots, w_t^N)$, where n_t^k is the number of children for \mathbf{x}_t^k and $w_t^k = \text{softmax}(\hat{f}(\mathbf{x}_t^k))$ is the softmax score of particle k . **Multinomial** resampling (Singhal et al., 2025b) samples n_t^k independently from the multinomial distribution w_t^k , but suffers from large variance. Kim et al. (2025) adopts the Srinivasan sampling process (SSP) resampling (Alg. 4) for reduced variance. We compare the baseline **Multinomial** resampling and the variance-reduced **SSP** (Kim et al., 2025); see Gerber et al. (2020) for other methods.

Prior methods can be seen as special cases of BFS: SVDD (Li et al., 2024) = **BFS (Inf, Current, Multinomial)**; DAS (w/o grad) (Kim et al., 2025) = **BFS (Increase, Difference, SSP)**¹; FK-steering (Singhal et al., 2025a) = **BFS (Constant, Max, Multinomial)**. Ablations (Sec. 5.1) show **SSP** resampling is key for performance, and our improved **BFS (Increase, Max, SSP)** consistently outperforms prior methods in global search efficiency.

4.1.2 DFS-STYLE NON-LINEAR SEARCH

Depth-first search (DFS) explores one branch of the search tree as deeply as possible before backtracking. In our setting, this corresponds to iteratively denoising a single particle until its verifier score drops below a predefined threshold: $f(\mathbf{x}_{0|t}) \leq \delta_t$, where δ_t is a threshold representing the quality requirement of the users.

Once the constraint is violated, the algorithm backtracks by reintroducing noise, moving to a higher noise level $t_{\text{next}} = t + \Delta_T$ using the forward diffusion process $q(\mathbf{x}_{t_{\text{next}}} | \mathbf{x}_t)$ in Eq. 1. This allows the model to restart the denoising process from a different region of the manifold, encouraging exploration of diverse modes. Compared with the fixed noise injection schedule used in SoP (Ma et al., 2025), DFS adopts a score-adaptive exploration strategy that enables early backtracking for global restarts and prevents excessive compute from being allocated to easy problem instances. Together, these mechanisms enable more adaptive and computationally efficient global search.

A key strength of DFS is its ability to allocate compute adaptively: difficult prompts and low-quality trajectories naturally trigger more backtracking and exploration, while easier instances are solved more directly. This dynamic behavior is driven purely by the verifier signal, without needing to know the difficulty in advance as in Snell et al. (2024). Also, the threshold acts as a control knob for users to balance output quality and computation resources, where higher threshold automatically scales compute for better output. As shown in Sec. 5.2, this adaptive strategy leads to substantial gains in efficiency and performance over prior methods, and even our improved BFS implementation. The pseudocode is in Alg. 5 and more details can be found in Sec. D.2.

4.2 SCALING LOCAL SEARCH VIA LANGEVIN MCMC WITH VERIFIER GRADIENT

Global search can efficiently discover the high score modes within the base diffusion model, but struggles to generate higher quality samples with refined details and from low density regions. Thus, we aim to sample from the compositional distribution \tilde{p}_0 in Eq. 5 for higher quality samples. To optimize the compositional objective, we conduct local-search with hill-climbing methods, aiming to find the local maximum with high \tilde{p}_0 . Specifically, we view the sampling problem as compositional optimization in measure space (Wibisono, 2018), and follow the gradient flow of KL-divergence, performing Langevin MCMC steps (details see Appendix. C.1).

Similar to annealed Langevin MCMC in Du et al. (2023), we could construct a series of annealed functions $\hat{f}_t(\mathbf{x}_t)$ with $\hat{f}_0(\mathbf{x}_0) = f(\mathbf{x}_0)$. Then we sample from the distributions $\tilde{q}_t(\mathbf{x}_t) \propto q_t(\mathbf{x}_t) \hat{f}(\mathbf{x}_t)$ through Langevin MCMC in Eq. 2 (details see Appendix. C.2). Alternatively, training-free guidance in Eq. 3 utilizes the gradient of $f(\mathbf{x}_{0|t})$ to optimize \mathbf{x}_t , which can be computed directly using the diffusion model output. However, naive gradient updates have been observed to produce OOD and adversarial samples (Shen et al., 2024). In Ye et al. (2024), recurrence (Eq. 4) was found to help avoid adversarial samples in challenging guidance tasks, though its theoretical underpinnings remain poorly understood. We unify these two approaches by demonstrating that training-free guidance with recurrence, in the continuous limit, constitutes an instance of Langevin MCMC. For details see Appendix. C.3, and a rigorous convergence bound is in Theorem. 1.

Proposition 1. *In the continuous limit where the number of diffusion denoising steps $T \rightarrow \infty$, training-free guidance with recurrence is equivalent to running Langevin MCMC on a series of annealed distributions $\{\tilde{q}_t(\mathbf{x}_t)\}_{t=0}^T$, with $\tilde{q}_0(\mathbf{x}_0) = \tilde{p}_0(\mathbf{x}_0) \propto p_0(\mathbf{x}_0) f(\mathbf{x}_0)^\lambda$.*

Thus, the recurrence step (without guidance) can be interpreted as Langevin MCMC applied to the original distribution of the diffusion model $q_t(\mathbf{x}_t)$, and the guidance term Δ_t in Eq. 3 then serves

¹The original implementation of DAS uses a verifier–gradient–guided proposal kernel and incorporates both the proposal probability and the base model probability during resampling. For a fair comparison, we disable the gradients of all methods in Sec. 5.1, and provide additional results in Sec. E.1

as defining a practical annealing path $\hat{f}_t(\mathbf{x}_t)$ that bias the sampling path towards high reward areas beyond the modes of the base model. We are the *first* to propose this theoretical unification of the two lines of work, providing insights into efficient local search of diffusion models via gradients.

We implement local search by parameterizing the reverse transition kernel $\tilde{p}_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$ as a sequence of Langevin MCMC steps (Eq. 2), followed by a denoising step using DDIM (Eq. 11) or DDPM (Eq. 12); see Appendix C.5 for details. Unlike classifier-guidance or naive training-free guidance, which apply only gradient guidance in the denoising step, our approach incorporates explicit Langevin MCMC steps. In Sec. 5.3, we scale the number of local search steps for the first time and observe substantial improvements over pretrained models across multiple tasks.

5 EXPERIMENTS

In this section, we apply inference-time scaling with our search strategy across a range of domains. In Sec. 5.1, we present a strengthened BFS baseline that outperforms previous particle-based methods. In Sec. 5.2, we demonstrate the adaptivity and efficiency of our DFS method. In Sec. 5.3, we scale up local search in challenging decision-making domains, highlighting the importance of jointly scaling local and global search. In Sec. 5.4, we propose a double-verifier strategy to mitigate the reward hacking problem in inference-scaling.

5.1 ELUCIDATING THE DESIGN SPACE OF BFS

In this section, we explore the design choices of BFS, and present an improved **BFS (Increase, Max, SSP)** over prior particle-based or tree-search-based methods (Singhal et al., 2025b; Kim et al., 2025; Guo et al., 2025; Li et al., 2024; 2025b), where we disable the gradient guidance in DAS (Kim et al., 2025) as in other methods. We also compare with SoP (Ma et al., 2025) which adopts noise injection. To ensure a fair comparison, we directly use the official implementation of FK-steering (Singhal et al., 2025a), with the ImageReward (Xu et al., 2023a) verifier and prompts from the ImageReward paper². For ablation of design choices, we use the SD v1.5 model. For more details, see Appendix E.1.

Table 1: Ablation of BFS design choices. For each section, we vary one design choice while keeping the others fixed. **Left:** Resampling methods (with Constant tempering, Max scoring). **Center:** Scoring functions (with SSP resampling, Constant tempering). **Right:** Tempering schedules (with SSP resampling, Max scoring).

N	Resampling			Scoring			Tempering		
	BoN	Multinomial	SSP	Current	Difference	Max	Increase	Inf	Constant
4	0.702 ± 0.057	0.743 ± 0.037	0.834 ± 0.041	0.812 ± 0.037	0.823 ± 0.036	0.834 ± 0.041	0.882 ± 0.029	0.667 ± 0.076	0.834 ± 0.041
8	0.896 ± 0.031	0.926 ± 0.042	1.032 ± 0.035	0.996 ± 0.029	1.013 ± 0.032	1.032 ± 0.035	1.087 ± 0.031	0.775 ± 0.087	1.032 ± 0.035

As mentioned in Sec.4.1.1, we experiment with different resampling, scoring, and tempering design choices. We begin with **BFS (Constant, Max, Multinomial)** and evaluate various resampling strategies. As shown in Table 1 (left), **SSP** significantly outperforms naive multinomial resampling, and we adopt it in our design. We then assess scoring functions and tempering schedules under SSP resampling, as reported in Table 1 (center) and 1 (right). Here, we observe modest improvements with **Max** scoring and **Increase** tempering, leading to our final design: **BFS (Increase, Max, SSP)**.

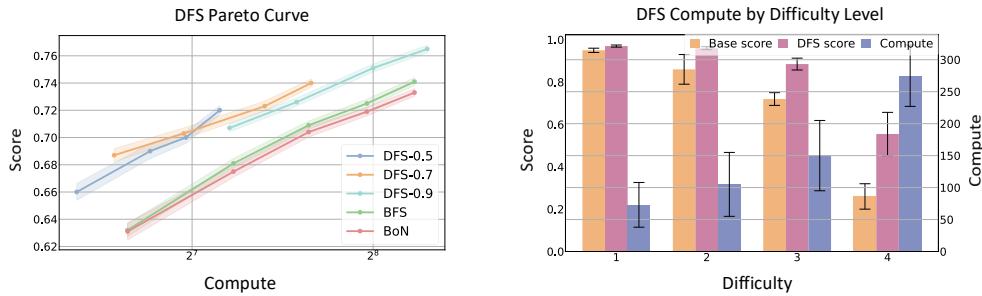
Table 2: Comparison of our BFS with prior methods

Model	N	BoN	FK (Singhal et al., 2025a)	DAS (w/o grad) (Kim et al., 2025)	TreedG (Guo et al., 2025)	SVDD (Li et al., 2024)	SoP (Ma et al., 2025)	DSearch (Li et al., 2025b)	BFS (ours)
SD v1.5	4	0.702 ± 0.057	0.743 ± 0.037	0.878 ± 0.028	0.860 ± 0.033	0.667 ± 0.076	0.688 ± 0.024	0.836 ± 0.032	0.882 ± 0.029
SD v1.5	8	0.891 ± 0.031	0.926 ± 0.042	1.052 ± 0.033	1.023 ± 0.018	0.775 ± 0.087	0.884 ± 0.022	1.011 ± 0.019	1.087 ± 0.030
SD XL	4	1.080 ± 0.013	1.131 ± 0.022	1.181 ± 0.023	1.152 ± 0.023	1.036 ± 0.062	1.070 ± 0.014	1.139 ± 0.018	1.194 ± 0.020
SD XL	8	1.198 ± 0.021	1.251 ± 0.011	1.265 ± 0.019	1.261 ± 0.021	1.225 ± 0.027	1.185 ± 0.012	1.252 ± 0.019	1.281 ± 0.018
FLUX.1	4	1.113 ± 0.016	1.145 ± 0.017	1.194 ± 0.013	1.178 ± 0.018	1.069 ± 0.035	1.104 ± 0.011	1.169 ± 0.022	1.203 ± 0.013

To compare our improved **BFS (Increase, Max, SSP)** with prior baselines, we additionally experiment with the SDXL model (Podell et al., 2023) and **FLUX.1 dev**³, which differs from the model used in our ablations. As shown in Table 2, our improved BFS consistently outperforms previous methods across compute budgets and models. Among the baselines, **DAS with out gradient guidance** (Kim et al., 2025) exhibits the smallest performance gap due to a similar design space with SSP resampling, while **SoP** (Ma et al., 2025) underperforms in global search efficiency because it allocates compute uniformly across all particles during the noising and denoising process when searching over paths. In the following experiments, we use the improved BFS as our strengthened baseline.

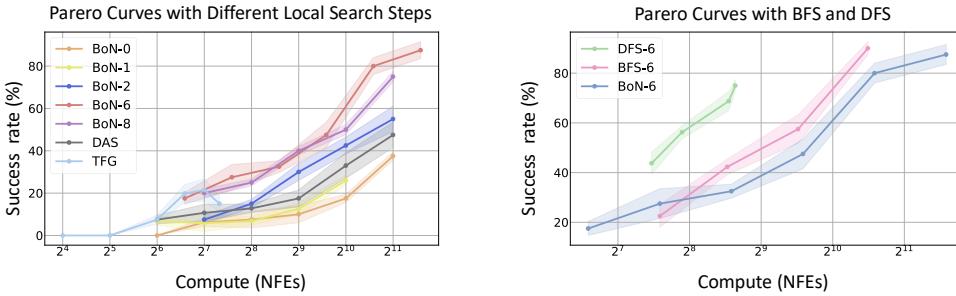
²We follow the settings of Table 1 in Singhal et al. (2025a)

³<https://huggingface.co/black-forest-labs/FLUX.1-dev>

378 5.2 ADAPTIVE AND EFFICIENT INFERENCE-SCALING WITH DFS
379390 Figure 3: **CompBench** text-to-image results with DFS. **Left:** the Pareto curve of DFS, with DFS- δ denotes
391 DFS with threshold $\delta_t = \delta$. **Right:** average compute allocation by DFS for prompts of increasing difficulty.392
393 In this section, we evaluate the adaptivity and efficiency of DFS on the CompBench dataset (Huang
394 et al., 2023), using the SSD-1B model (Gupta et al., 2024) and a VLM (Li et al., 2022) as our verifier.
395 Through these experiments, we address the following questions:

- 396 • *Can DFS outperform Best-of-N and prior particle-based methods?* As shown in Fig. E.2 (left),
397 DFS consistently outperforms Best-of-N and also our improved BFS design across different
398 compute budgets, with up to 30% less computational cost.
- 400 • *Can DFS adjust compute allocation with different thresholds?* We evaluate DFS across a wide
401 range of practical threshold values (0.5, 0.7, and 0.9) and find that lower thresholds automatically
402 allocate less compute, while higher thresholds scale up compute for better quality. DFS consistently
403 outperforms baseline methods across all threshold choices, demonstrating the robustness of our
404 method for different hyperparameters.
- 405 • *Can DFS dynamically adjust compute allocation for different instances?* We measure the computa-
406 tional cost of DFS on prompts of varying difficulty under fixed thresholds, where the difficulty of
407 a prompt is defined as the average score of the base model over four random samples. As shown
408 in Fig. 3 (right), harder prompts with lower scores naturally consume more compute, without
409 requiring prior knowledge of difficulty as in Snell et al. (2024). **This adaptive design reduces
410 compute waste on easy instances and allocates additional compute to achieve greater improvement
411 on harder problems, as evidenced by the score increase in Fig. 3 (right).**

412 The detailed setup is provided in Appendix E.2, where we provide visualizations in Fig. 7 and
413 comparisons with SoP (Ma et al., 2025) in Fig. 8. Unlike linear-search methods that use a fixed
414 exploration schedule, DFS offers higher efficiency and adaptivity, which may be of independent
415 interest to the broader community.417 5.3 JOINT SCALING LOCAL AND GLOBAL SEARCH
418419 Although global search methods such as BFS and DFS can efficiently explore the generative space of
420 the diffusion model, they are restricted to the modes of the base distribution and therefore cannot
421 exceed the capabilities of the base model. To optimize the compositional objective in Eq. 5 and
422 sample from high-reward regions beyond the base model, we propose scaling up local search steps
423 via annealed Langevin MCMC, introducing a new scaling dimension for diffusion models. We
424 validate the effectiveness of scaling local search in challenging decision-making domains, such as
425 long-horizon planning and offline RL.426 **Baselines.** To evaluate the effectiveness of scaling local search steps, we compare our method with
427 particle-based DAS (Kim et al., 2025), which also leverages verifier gradients but only incorporates
428 gradient guidance without recurrent local search. We also compare against the state-of-the-art
429 training-free guidance method TFG (Ye et al., 2024), which performs multiple recurrence steps but
430 lacks any global search. For fairness, compute is measured as the total NFEs of both local and global
431 search. As shown in the following experiments, scaling local and global search separately yields
suboptimal performance, whereas our joint scaling strategy establishes a new Pareto frontier.

432 5.3.1 LONG HORIZON PLANNING
433

434
435
436
437
438
439
440
441
442
443
444
445
446
Figure 4: **Pareto curves of local search.** **Left:** Pareto curves of best-of-N with different local search steps, where BoN- i denotes i local search steps. **Right:** Pareto curves of BFS and DFS with 6 local search steps.

447 Diffusion models have been widely adopted in planning for trajectory
448 synthesis (Ubuakata et al., 2024). We evaluate long-horizon planning
449 in a challenging PointMaze environment, using the base model
450 trained following Diffuser (Janner et al., 2022), with the verifier
451 defined as the total number of collisions between the trajectory
452 and maze walls (see Appendix E.3 for details). (Luo et al., 2024;
453 Marcucci et al., 2023). As shown in Fig. 5 (left), naive sampling
454 without local search often resulted in failed trajectories that violates
455 the maze layout in some of the segments. When scaling up local
456 search steps as in Fig. 5 (right), we are able to generate successful
457 plans free of violation.

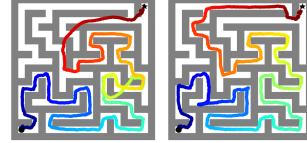
458 To evaluate the compute efficiency of recurrent steps, we observe in Fig. 4 (left) that scaling up local
459 search with BoN improves the overall Pareto frontier and significantly outperforms baseline methods.
460 Scaling local search only as in TFG (Ye et al., 2024) is efficient with a low compute budget but fails
461 to scale with increased compute, as local search alone can become trapped in local optima. DAS
462 (Kim et al., 2025) is more efficient than the corresponding BoN-0 baseline without local search, but
463 underperforms best-of-N when more local search steps are used. In Fig. 4 (right), we show that local
464 search can be combined with global search techniques such as BFS and DFS to further improve
465 scaling efficiency, demonstrating the flexibility of our framework.

466 5.3.2 OFFLINE REINFORCEMENT LEARNING
467

468 Table 3: Performance on D4RL locomotion tasks, highlighting results within 5% of the maximum.

Dataset	Environment	IQL	SfBC	DD	Diffuser	D-QL	QGPO	TFG	DAS	TTS(ours)
Medium-Expert	HalfCheetah	86.7	92.6	90.6	79.8	96.1	93.5	90.2 ± 0.2	93.3 ± 0.3	93.9 ± 0.3
Medium-Expert	Hopper	91.5	108.6	111.8	107.2	110.7	108.0	100.2 ± 3.5	105.4 ± 5.1	104.4 ± 3.1
Medium-Expert	Walker2d	109.6	109.8	108.8	108.4	109.7	110.7	108.1 ± 0.1	111.4 ± 0.1	111.4 ± 0.1
Medium	HalfCheetah	47.4	45.9	49.1	44.2	50.6	54.1	53.1 ± 0.1	53.4 ± 0.1	54.8 ± 0.1
Medium	Hopper	66.3	57.1	79.3	58.5	82.4	98.0	96.2 ± 0.5	71.3 ± 2.7	99.5 ± 1.7
Medium	Walker2d	78.3	77.9	82.5	79.7	85.1	86.0	83.2 ± 1.4	83.9 ± 0.9	86.5 ± 0.2
Medium-Replay	HalfCheetah	44.2	37.1	39.3	42.2	47.5	47.6	45.0 ± 0.3	42.2 ± 0.1	47.8 ± 0.4
Medium-Replay	Hopper	94.7	86.2	100.0	96.8	100.7	96.9	93.1 ± 0.1	96.7 ± 3.0	97.4 ± 4.0
Medium-Replay	Walker2d	73.9	65.1	75.0	61.2	94.3	84.4	69.8 ± 4.0	63.8 ± 2.0	79.3 ± 9.7
Average (Locomotion)		76.9	75.6	81.8	75.3	86.3	86.6	82.1	80.2	86.1

478 Recently, diffusion models have emerged as a powerful action prior in robotics due to their ability to
479 model complex and multimodal distributions (Chi et al., 2023). However, these diffusion policies
480 are typically trained on offline datasets and struggle to adapt to reinforcement learning or test-time
481 requirements. Following Peters et al. (2010), we formulate the offline RL problem as sampling
482 from a Q-regularized distribution: $\pi^*(a|s) \propto \mu(a|s) e^{\beta Q_\psi(s, a)}$, where Q_ψ is a learned Q-function
483 representing preferences over actions, and μ is the behavior policy, which we model using a diffusion
484 prior. We approach this problem from the inference-scaling perspective, composing off-the-shelf
485 pretrained diffusion policy with ground-truth Q-functions without training.



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
190

486 Among the baselines, Diffuser (Janner et al., 2022), QGPO (Lu et al., 2023), and D-QL (Wang et al.,
 487 2022) require additional joint training of the diffusion model and Q-function. To demonstrate the
 488 effectiveness of our method *test-time search (TTS)*, we allow TFG (Ye et al., 2024) and DAS (Kim
 489 et al., 2025) to use up to *twice* the compute of TTS. Since we use a small number of particles, we
 490 simply adopt BoN for global search of TTS and searched for the number of local search steps, with
 491 detailed hyper-parameters in Table 10. As shown in Table 3, TTS achieves performance comparable
 492 to training-based baselines, while DAS and TFG struggles on the Medium and Medium-Replay
 493 datasets where the model’s capabilities are limited. Details see Sec. E.4.

494 **Advancing Online Learning with Policy Distillation.** To enhance
 495 the capabilities of the base model, we fine-tune it on actions gener-
 496 ated by TTS and subsequently evaluate its one-shot sampling per-
 497 formance. We adapt the Medium datasets by replacing the original
 498 actions with those produced by TTS (see Sec. E.4.1 for details). Per-
 499 haps surprisingly, this simple offline distillation outperforms SOTA
 500 diffusion-based online RL methods such as DPPO (Ren et al., 2024),
 501 as shown in Table 4. Compared with other offline RL methods such as PA-RL (Mark et al., 2024),
 502 which also finetune the policy using optimized actions, our approach relies solely on pretrained
 503 verifiers and does not require iterative joint updates of the Q-function and policy. This enables
 504 more flexible composition of pretrained foundation models for verification and further highlights
 505 the effectiveness of inference scaling compared with naive action optimization. To the best of our
 506 knowledge, this is the first work to demonstrate self-improvement via inference scaling for diffusion
 507 models using pretrained verifiers, a direction that may be of independent interest.

508 5.4 MITIGATING REWARD HACKING WITH DOUBLE VERIFIER

509 In this section, we show that reward hacking and over-optimization can be mitigated by a
 510 double-verifier strategy: employing separate verifiers for local and global search. As observed
 511 in Shen et al. (2024), training-free guidance with verifier gradients is vulnerable to adversarial
 512 reward hacking: gradient guidance often over-optimize the verifier, causing it to classify them as
 513 belonging to the target class despite being out-of-distribution (OOD). Inspired by double-Q learning
 514 in reinforcement learning (Van Hasselt et al., 2016), we propose a *double-verifier* approach, assigning
 515 distinct verifiers to local and global search to efficiently reduce overestimation.

516 Table 5: Results for ImageNet conditional generation with *double-verifier* using BoN and BFS.

518 N	BoN-single			BoN-double			BFS-single			BFS-double		
	FID↓	Acc↑	MSP↑									
520 4	171.5	31.8%	0.161	151.2	37.5%	0.164	156.2	36.1%	0.169	145.5	44.3%	0.181
521 8	155.7	35.8%	0.165	127.8	49.2%	0.184	133.3	46.5%	0.183	118.2	55.9%	0.214

522 We evaluate the proposed double-verifier on the challenging conditional ImageNet generation task,
 523 generating target-class samples from an unconditional model guided by a pretrained classifier defined
 524 only on clean samples. We report the FID and class accuracy of 256 samples. We also report the
 525 MSP score (Hendrycks & Gimpel, 2016), with higher MSP score indicating less OOD samples. For
 526 double-verifier, we use two distinct ImageNet classifiers for local⁴ and global search⁵ respectively.
 527 We use another classifier⁶ for evaluating class accuracy to avoid reward hacking. As shown in
 528 Table 5, using double-verifier significantly improves performance over single verifier with 2x less
 529 compute. Also, double-verifier significantly reduces OOD samples indicated by the higher MSP
 530 score, improving robustness alongside efficiency. Visualizations and details see Appendix. E.5.

531 6 LIMITATIONS AND CONCLUSION

533 In this work, we present a unified and principled framework for inference-time scaling of diffusion
 534 models, jointly scaling local and global search. A potential limitation of our approach is that inference-
 535 time scaling still requires additional hyperparameters. To address this, heuristics such as evolutionary
 536 search can be adopted during hyperparameter tuning, which we leave for future work.

538 ⁴<https://huggingface.co/google/vit-base-patch16-224>

539 ⁵<https://huggingface.co/google/vit-base-patch16-384>

540 ⁶<https://huggingface.co/facebook/deit-small-patch16-224>

Table 4: Results for policy distillation with TTS

Environment	TTS-distill	DPPO
Halfcheetah	51.6 ± 0.7	47.8
Hopper	98.8 ± 0.8	92.8
Walker2d	86.3 ± 0.5	82.7

540 REFERENCES
541

542 Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
543 ditional generative modeling all you need for decision-making? *arXiv preprint arXiv:2211.15657*,
544 2022. 32

545 Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
546 *arXiv preprint arXiv:2209.15571*, 2022. 3

547 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai,
548 Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow model for
549 general robot control. *arXiv preprint arXiv:2410.24164*, 2024. 1, 31

550 Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via
551 high-fidelity generative behavior modeling. In *The Eleventh International Conference on Learning
552 Representations*, 2023. 32

553 Xiang Cheng and Peter Bartlett. Convergence of langevin mcmc in kl-divergence. In *Algorithmic
554 learning theory*, pp. 186–211. PMLR, 2018. 18

555 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
556 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The
557 International Journal of Robotics Research*, pp. 02783649241273668, 2023. 1, 9, 31

558 Hyungjin Chung and Jong Chul Ye. Score-based diffusion models for accelerated mri. *Medical
559 image analysis*, 80:102479, 2022. 3, 17

560 Meihua Dang, Jiaqi Han, Minkai Xu, Kai Xu, Akash Srivastava, and Stefano Ermon. Inference-
561 time scaling of diffusion language models with particle gibbs sampling. *arXiv preprint
562 arXiv:2507.08390*, 2025. 3, 17

563 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
564 in neural information processing systems*, 34:8780–8794, 2021. 1, 3, 4, 17

565 Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. *Advances
566 in neural information processing systems*, 32, 2019. 18

567 Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
568 Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Composi-
569 tional generation with energy-based diffusion models and mcmc. In *International conference on
570 machine learning*, pp. 8489–8510. PMLR, 2023. 2, 4, 6, 18

571 Yilun Du, Jiayuan Mao, and Joshua B. Tenenbaum. Learning Iterative Reasoning through Energy
572 Diffusion, June 2024. URL <http://arxiv.org/abs/2406.11179>. arXiv:2406.11179 [cs]. 17

573 Alain Durmus and Eric Moulines. Non-asymptotic convergence analysis for the unadjusted langevin
574 algorithm. *arXiv preprint arXiv:1507.05021*, 2015. 18

575 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
576 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
577 high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.
578 20

579 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
580 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020. 32

581 Mathieu Gerber, Nicolas Chopin, and Nick Whiteley. Negative association, ordering and convergence
582 of resampling methods, 2020. URL <https://arxiv.org/abs/1707.01845>. 5, 25

583 Yingqing Guo, Yukang Yang, Hui Yuan, and Mengdi Wang. Training-free guidance beyond dif-
584 ferentiability: Scalable path steering with tree search in diffusion and flow models, 2025. URL
585 <https://arxiv.org/abs/2502.11420>. 2, 7, 16, 25, 27

594 Yatharth Gupta, Vishnu V Jaddipal, Harish Prabhala, Sayak Paul, and Patrick Von Platen. Progressive
 595 knowledge distillation of stable diffusion xl using layer level loss. *arXiv preprint arXiv:2401.02677*,
 596 2024. 8

597 Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
 598 minimum cost paths. *IEEE transactions on Systems Science and Cybernetics*, 4(2):100–107, 1968.
 599 1

600 Haoran He, Jiajun Liang, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, and Ling Pan. Scaling
 601 image and video generation via test-time evolutionary search, 2025. URL <https://arxiv.org/abs/2505.17618>. 16

601 Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim, Wei
 602 Hsiang Liao, Yuki Mitsuji, J Zico Kolter, Ruslan Salakhutdinov, et al. Manifold preserving
 603 guided diffusion. *arXiv preprint arXiv:2311.16424*, 2023. 3, 17

604 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 605 examples in neural networks. *arXiv preprint arXiv:1610.02136*, 2016. 10, 33

606 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
 607 2022. 32

608 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 609 neural information processing systems*, 33:6840–6851, 2020. 1, 3, 20

610 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 611 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–8646,
 612 2022. 1

613 Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A com-
 614 pre-
 615 hensive benchmark for open-world compositional text-to-image generation. *Advances in Neural
 616 Information Processing Systems*, 36:78723–78747, 2023. 1, 8

617 Vineet Jain, Kusha Sareen, Mohammad Pedramfar, and Siamak Ravanbakhsh. Diffusion tree sampling:
 618 Scalable inference-time alignment of diffusion models. *arXiv preprint arXiv:2506.20701*, 2025. 3,
 619 17

620 Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
 621 flexible behavior synthesis. In *International Conference on Machine Learning*, pp. 9902–9915.
 622 PMLR, 2022. 9, 10, 30, 32

623 Daniel Kahneman. *Thinking, fast and slow*. macmillan, 2011. 16

624 Sunwoo Kim, Minkyu Kim, and Dongmin Park. Test-time alignment of diffusion models without
 625 reward over-optimization. In *The Thirteenth International Conference on Learning Representations*,
 626 2025. URL <https://openreview.net/forum?id=vi3DjUhFVm>. 2, 5, 6, 7, 8, 9, 10, 16, 24, 26,
 627 27, 28, 32, 33

628 Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
 629 *science*, 220(4598):671–680, 1983. 18

630 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
 631 q-learning. *arXiv preprint arXiv:2110.06169*, 2021. 32

632 Gyubin Lee, Truong Nhat Nguyen Bao, Jaesik Yoon, Dongwoo Lee, Minsu Kim, Yoshua Bengio,
 633 and Sungjin Ahn. Adaptive inference-time scaling via cyclic diffusion search, 2025. URL
 634 <https://arxiv.org/abs/2505.14036>. 3, 16

635 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 636 training for unified vision-language understanding and generation. In *International conference on
 637 machine learning*, pp. 12888–12900. PMLR, 2022. 8

638 Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Arsh Koneru, Yusuke Kato, Kazuki Kozuka,
 639 and Aditya Grover. Reflect-dit: Inference-time scaling for text-to-image diffusion transformers via
 640 in-context reflection. *arXiv preprint arXiv:2503.12271*, 2025a. 17

648 Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso
 649 Biancalani, Shuiwang Ji, Aviv Regev, Sergey Levine, et al. Derivative-free guidance in continuous
 650 and discrete diffusion models with soft value-based decoding. *arXiv preprint arXiv:2408.08252*,
 651 2024. 2, 5, 6, 7, 24, 25

652 Xiner Li, Masatoshi Uehara, Xingyu Su, Gabriele Scalia, Tommaso Biancalani, Aviv Regev, Sergey
 653 Levine, and Shuiwang Ji. Dynamic search for inference-time alignment in diffusion models. *arXiv
 654 preprint arXiv:2503.02039*, 2025b. 2, 7, 16, 26, 27

655 Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules and
 656 sample steps are flawed. In *Proceedings of the IEEE/CVF winter conference on applications of
 657 computer vision*, pp. 5404–5411, 2024. 26

658 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 659 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022. 3

660 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
 661 Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. *arXiv preprint
 662 arXiv:2410.07864*, 2024. 1, 31, 32

663 Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
 664 prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In
 665 *International Conference on Machine Learning*, pp. 22825–22855. PMLR, 2023. 1, 4, 10, 31, 32

666 Yunhao Luo, Chen Sun, Joshua B Tenenbaum, and Yilun Du. Potential based diffusion motion
 667 planning. *arXiv preprint arXiv:2407.06169*, 2024. 9

668 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
 669 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 670 transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer, 2024. 3, 19, 20

671 Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
 672 Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond
 673 scaling denoising steps. *arXiv preprint arXiv:2501.09732*, 2025. 2, 3, 6, 7, 8, 16, 26, 27, 29, 30

674 Tobia Marcucci, Mark Petersen, David von Wrangel, and Russ Tedrake. Motion planning around
 675 obstacles with convex optimization. *Science robotics*, 8(84):eadf7843, 2023. 9, 30

676 Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
 677 Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any class
 678 and backbone. *arXiv preprint arXiv:2412.06685*, 2024. 10

679 Edward F Moore. The shortest path through a maze. In *Proc. of the International Symposium on the
 680 Theory of Switching*, pp. 285–292. Harvard University Press, 1959. 1

681 Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists:
 682 Improving robotic foundation models via value guidance. In *8th Annual Conference on Robot
 683 Learning*, 2024. 31

684 Allen Newell, John C Shaw, and Herbert A Simon. Report on a general problem solving program. In
 685 *IFIP congress*, volume 256, pp. 64. Pittsburgh, PA, 1959. 16

686 Allen Newell, Herbert Alexander Simon, et al. *Human problem solving*, volume 104. Prentice-hall
 687 Englewood Cliffs, NJ, 1972. 16

688 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 689 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021. 3, 20

690 Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
 691 offline goal-conditioned rl. *arXiv preprint arXiv:2410.20092*, 2024. 30

692 Judea Pearl. *Heuristics: intelligent search strategies for computer problem solving*. Addison-Wesley
 693 Longman Publishing Co., Inc., 1984. 1, 5

702 Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In *Proceedings of*
 703 *the AAAI Conference on Artificial Intelligence*, volume 24, pp. 1607–1612, 2010. 9
 704

705 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 706 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 707 synthesis. *arXiv preprint arXiv:2307.01952*, 2023. 7

708 Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
 709 Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
 710 *arXiv preprint arXiv:2409.00588*, 2024. 10, 33

711 Stuart Russell and Peter Norvig. *Artificial Intelligence: A Modern Approach*. Prentice Hall Press,
 712 USA, 3rd edition, 2009. ISBN 0136042597. 1

713 Yifei Shen, Xinyang Jiang, Yifan Yang, Yezhen Wang, Dongqi Han, and Dongsheng Li. Understanding
 714 and improving training-free loss-based diffusion guidance. *Advances in Neural Information
 715 Processing Systems*, 37:108974–109002, 2024. 6, 10

716 Raghad Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 717 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 718 models. *arXiv preprint arXiv:2501.06848*, 2025a. 2, 3, 6, 7, 16, 17, 24, 26, 27

719 Raghad Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 720 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 721 models, 2025b. URL <https://arxiv.org/abs/2501.06848>. 5, 7

722 Steven A Sloman. The empirical case for two systems of reasoning. *Psychological bulletin*, 119(1):3,
 723 1996. 16

724 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling lilm test-time compute optimally
 725 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024. 6, 8

726 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 727 preprint arXiv:2010.02502*, 2020a. 3, 19

728 Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
 729 Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
 730 In *International Conference on Machine Learning*, pp. 32483–32498. PMLR, 2023. 1, 3, 17

731 Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribution,
 732 October 2020. URL <http://arxiv.org/abs/1907.05600>. arXiv:1907.05600. 18

733 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 734 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 735 arXiv:2011.13456*, 2020b. 3

736 Robert Tarjan. Depth-first search and linear graph algorithms. *SIAM journal on computing*, 1(2):
 737 146–160, 1972. 1

738 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 739 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
 740 policy. *arXiv preprint arXiv:2405.12213*, 2024. 1

741 Toshihide Ubukata, Jialong Li, and Kenji Tei. Diffusion model for planning: A systematic literature
 742 review. *arXiv preprint arXiv:2408.10266*, 2024. 9

743 Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
 744 learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.
 745 10

746 Cé'dric Villani. *Topics in optimal transportation*. Graduate studies in mathematics ; v. 58. American
 747 Mathematical Society, Providence, R.I, 2003. ISBN 082183312X. 22

748 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computa-
 749 tion*, 23(7):1661–1674, 2011. 1, 3

756 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 757 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 758 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 759 and *Pattern Recognition*, pp. 8228–8238, 2024. 1

760 Feng Wang and Zihao Yu. Coefficients-preserving sampling for reinforcement learning with flow
 761 matching. *arXiv preprint arXiv:2509.05952*, 2025. 27

763 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 764 class for offline reinforcement learning. *arXiv preprint arXiv:2208.06193*, 2022. 10, 31, 32

766 Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
 767 *Proceedings of the 28th international conference on machine learning (ICML-11)*, pp. 681–688.
 768 Citeseer, 2011. 4

769 Andre Wibisono. Sampling as optimization in the space of measures: The langevin dynamics as a
 770 composite optimization problem. In *Conference on learning theory*, pp. 2093–3027. PMLR, 2018.
 771 6, 17, 22

772 Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and
 773 asymptotically exact conditional sampling in diffusion models. *Advances in Neural Information*
 774 *Processing Systems*, 36:31372–31403, 2023a. 2, 16

776 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 777 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
 778 synthesis. *arXiv preprint arXiv:2306.09341*, 2023b. 28

779 Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng Yu, Ligeng Zhu, Chengyue Wu, Yujun Lin,
 780 Zhekai Zhang, Muyang Li, Junyu Chen, et al. Sana 1.5: Efficient scaling of training-time and
 781 inference-time compute in linear diffusion transformer. *arXiv preprint arXiv:2501.18427*, 2025. 1

783 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 784 Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
 785 *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp.
 786 15903–15935, 2023a. 1, 7

787 Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola. Restart
 788 sampling for improving generative processes. *Advances in Neural Information Processing Systems*,
 789 36:76806–76838, 2023b. 16

790 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 791 Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural*
 792 *information processing systems*, 36:11809–11822, 2023. 16

794 Haotian Ye, Haowei Lin, Jiaqi Han, Minkai Xu, Sheng Liu, Yitao Liang, Jianzhu Ma, James Y Zou,
 795 and Stefano Ermon. Tfg: Unified training-free guidance for diffusion models. *Advances in Neural*
 796 *Information Processing Systems*, 37:22370–22417, 2024. 1, 3, 6, 8, 9, 10, 17, 21, 23, 26, 32

797 Jaesik Yoon, Hyeonseo Cho, Doojin Baek, Yoshua Bengio, and Sungjin Ahn. Monte carlo tree
 798 diffusion for system 2 planning. *arXiv preprint arXiv:2502.07202*, 2025. 17

800 Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-
 801 free energy-guided conditional diffusion model. In *Proceedings of the IEEE/CVF International*
 802 *Conference on Computer Vision*, pp. 23174–23184, 2023. 3, 4, 17

803 Stephen Zhao, Rob Brekelmans, Alireza Makhzani, and Roger Grosse. Probabilistic inference in
 804 language models via twisted sequential monte carlo. *arXiv preprint arXiv:2404.17546*, 2024. 16

805
 806
 807
 808
 809

810 A APPENDIX OVERVIEW
811812 In Sec. B, we provide a in-depth review of literature related to inference-time scaling and diffusion
813 models. In Sec. C, we elaborate on local search with Langevin MCMC, and in Sec. D we provide the
814 pseudo code and design of global search algorithms BFS and DFS. In Sec. E, we provide the details
815 of all the experiments.
816817 B ADDITIONAL RELATED WORKS
818819 B.1 DISCUSSIONS ON CONCURRENT WORKS
820821 Adaptive Bi-directional Cyclic Diffusion (ABCD) (Lee et al., 2025) introduces a search-based
822 inference-scaling framework that combines elements of both DFS and BFS. Unlike DFS, which relies
823 on a quality threshold to determine backtracking, ABCD maintains a set of particles and backtracks by
824 propagating them across all noise levels. The termination criterion is based on whether backtracking
825 to higher noise levels improves sample quality. Compared with DFS, ABCD achieves smaller score
826 estimation errors since particles are evaluated after full denoising, and it explores the generative space
827 more thoroughly by combining BFS and DFS. However, ABCD cannot adaptively allocate compute
828 across different instances due to its fixed termination condition, and it expends unnecessary compute
829 on easier instances because it denoises a full set of particles regardless of sample quality.
830831 EvoSearch (He et al., 2025) proposes evolutionary search to scale inference compute for image
832 and video generation. At selected timesteps, particles are fully denoised; high-scoring particles are
833 retained, while low-scoring ones are perturbed via noise injection. This method improves over the
834 FK-steering baseline (Singhal et al., 2025a).
835836 In contrast, our work develops a uniform and principled framework grounded in classical search
837 heuristics. BFS and DFS serve as fundamental building blocks for more advanced search methods,
838 and, crucially, we are the first to scale local search using annealed Langevin MCMC. This local
839 search can be seamlessly combined with global search strategies, a joint scaling approach that we
840 show is critical for success in challenging decision-making domains.
841842 B.2 INFERENCE-TIME SCALING WITH CLASSICAL SEARCH
843844 We now review the use of classical search for inference-time scaling, including applications beyond
845 diffusion models.
846847 Inference-time compute scaling, often viewed as “slow thinking,” has long-standing roots in cognitive
848 science, where it corresponds to “system 2” reasoning (Kahneman, 2011; Sloman, 1996). In early
849 work, Newell et al. (1959; 1972) formalized problem solving as tree search in combinatorial spaces.
850 More recently, Yao et al. (2023) proposed tree-of-thoughts reasoning for LLMs, enabling exploration
851 along multiple reasoning paths using BFS and DFS as strategic search primitives.
852853 B.3 INFERENCE SCALING IN DIFFUSION MODELS WITHOUT DIFFERENTIABLE OPTIMIZATION
854855 We next provide a more detailed overview of gradient-free inference-scaling approaches in diffusion
856 models.
857858 Inference-time compute for diffusion models is largely determined by the number of denoising steps.
859 Xu et al. (2023b) proposed recursive restart sampling to mitigate cumulative errors, effectively scaling
860 the number of denoising steps. More recently, Singhal et al. (2025a); Kim et al. (2025) introduced
861 Sequential Monte Carlo (SMC) approaches (Wu et al., 2023a; Zhao et al., 2024), which can be interpreted
862 as BFS-style algorithms from our tree-sampling perspective, since they search over all nodes
863 at the same depth before denoising further. Notably, SMC style methods propose to use a different
864 proposal transition kernel such as the gradient guided sampler $\mathcal{N}(\mu_\theta(\mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0:t}), \sigma_t)$,
865 which we disable during our global search experiments. Their implementations differ mainly in the
866 choice of scoring functions and resampling strategies, with Kim et al. (2025) proposing an increasing
867 tempering schedule. Li et al. (2025b); Guo et al. (2025) proposed beam-search style tree search
868 methods, where Li et al. (2025b) proposed to adopt dynamic beam-size and tree-width during the
869 sampling process. Ma et al. (2025) further explored inference-time scaling for image generation
870

864 via a combination of local zero-order search and global path search, experimenting with different
 865 verifiers (oracle, self-supervised, and task-aligned) and analyzing verifier-task alignment. However,
 866 they did not systematically evaluate and improve the compute efficiency of search methods, while we
 867 demonstrate significantly improved efficiency with our novel design in search methods. Additionally,
 868 [Yoon et al. \(2025\)](#) proposed a Monte Carlo Tree Search-based diffusion framework tailored for
 869 trajectory synthesis, which denoises different trajectory segments at distinct steps. [More recently,](#)
 870 [Jain et al. \(2025\)](#) proposed to integrate the value backup in MCTS into the tree sampling and search
 871 of diffusion models, which can utilize information from low noise states and previous sampling paths.
 872 For diffusion language models, [Dang et al. \(2025\)](#) proposed particle Gibbs sampling methods that
 873 outperform naive SMC ([Singhal et al., 2025a](#)) approaches.

874 Beyond search-based methods, [Li et al. \(2025a\)](#) leverage the in-context learning abilities of foundation
 875 models to enable revision during sampling. Their approach exploits multimodal VLM capabilities to
 876 provide feedback on intermediate generations and trains the model to condition on both prior samples
 877 and corresponding feedback.

878 B.4 GRADIENT GUIDANCE OF DIFFUSION MODELS

880 We review guidance methods for diffusion models that leverage gradients from verifiers or classifiers.

881 To sample from a conditional distribution

$$883 \tilde{p}_0(\mathbf{x}_0) \propto p_0(\mathbf{x}_0) p(c|\mathbf{x}_0),$$

884 where p denotes a classifier, one can define a conditional diffusion process $\{\tilde{q}_t(\mathbf{x}_t)\}_{t=0}^T$ with initial
 885 distribution \tilde{p}_0 . The corresponding conditional score function is

$$886 \nabla_{\mathbf{x}_t} \log \tilde{q}_t(\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log p_t(c|\mathbf{x}_t),$$

887 where $p_t(c|\mathbf{x}_t) = \mathbb{E}_{\mathbf{x}_0|\mathbf{x}_t}[p(c|\mathbf{x}_0)]$. Classifier guidance ([Dhariwal & Nichol, 2021](#)) trains a noise-
 888 dependent classifier $p_t(c|\mathbf{x}_t)$ on noisy samples, using data from the diffusion model together with the
 889 base classifier. However, this training procedure is computationally expensive and impractical when
 890 the base diffusion model cannot generate target-class samples.

891 Training-free guidance methods ([Ye et al., 2024](#); [Chung & Ye, 2022](#); [Song et al., 2023](#); [Yu et al.,
 892 2023](#); [He et al., 2023](#)) approximate the intractable $p_t(c|\mathbf{x}_t)$ with $p(c|\mathbf{x}_{0|t}) = p(c|\mathbb{E}_{\mathbf{x}_0|\mathbf{x}_t}[\mathbf{x}_0])$, which
 893 can be interpreted as a first-order approximation. These methods introduce bias, though recurrence
 894 has been shown to mitigate out-of-distribution artifacts and improve performance in classifier-guided
 895 generation ([Ye et al., 2024](#)). Nevertheless, the theoretical foundations and scaling behavior of
 896 recurrent guidance remain largely unexplored.

897 In this work, we instead adopt Langevin MCMC sampling in place of score-based ODE sampling.
 898 This approach guarantees asymptotic exactness using only the base verifier, without requiring
 899 additional training. Relatedly, [Du et al. \(2024\)](#) proposed annealed energy-based models (EBMs)
 900 combined with iterative MCMC for inference scaling and reasoning, but their method cannot be
 901 applied to pretrained diffusion models and verifiers. For the first time, we establish a connection
 902 between annealed Langevin MCMC and recurrent guidance, thereby enabling inference scaling with
 903 pretrained foundation models.

905 C DETAILS ABOUT LOCAL SEARCH WITH LANGEVIN MCMC

907 In this section we provide a comprehensive and detailed overview of (annealed) Langevin MCMC
 908 based methods used in local search, as well as proving Proposition. 1.

910 C.1 LANGEVIN MCMC AS GRADIENT FLOW IN MEASURE SPACE

912 Following [Wibisono \(2018\)](#), the Langevin SDE in sample space corresponds to gradient flow of the
 913 KL-divergence in measure space. Here we provide a brief overview.

914 Define our target distribution that we wish to sample from as ν , and the distribution of our current
 915 sample as ρ . We define the KL-divergence (relative entropy) as:

$$917 H_\nu(\rho) = \int \rho \log \frac{\rho}{\nu}. \quad (6)$$

918 Thus, sampling from ν can be seen as minimizing H , since the minimum of H is achieved at $\rho = \nu$
 919 with $H_\nu(\rho) = 0$. Furthermore, ν is the only stationary point of H even for multimodal distributions.
 920 Thus we can sample from ν when optimizing H via gradient based methods.

921 We have the gradient flow of H in Eq. 6 follows the following PDE:

$$923 \quad \frac{\partial \rho}{\partial t} = \nabla \cdot (\rho \nabla (-\log \nu)) + \Delta \rho, \quad (7)$$

925 which is known as the Fokker-Planck equation. Here, $\rho = \rho(\mathbf{x}, t)$ is a smooth positive density
 926 evolving through time, driven by the dynamics of the sample \mathbf{x} . The dynamics in sample space
 927 corresponding to Eq. 7 is the Langevin SDE:

$$928 \quad d\mathbf{x}_t = \nabla \log \nu(\mathbf{x}_t) dt + \sqrt{2} d\mathbf{w}_t. \quad (8)$$

930 where $(\mathbf{x}_t)_{t \geq 0}$ is a stochastic process with measure ρ_t , and $(\mathbf{w}_t)_{t \geq 0}$ is standard Brownian motion.
 931 That is, if $\mathbf{x}_t \sim \rho_t$ evolves according to the dynamics in Eq. 8, then the measure $\rho(\mathbf{x}, t) = \rho_t$ evolves
 932 according to the PDE in Eq. 7, conducting gradient optimization in measure space.

933 In practice, we implement Eq. 8 through discretization, which is known as the unadjusted Langevin
 934 algorithm (ULA):

$$935 \quad \mathbf{x}^{i+1} = \mathbf{x}^i + \eta \nabla_{\mathbf{x}^i} \log \nu(\mathbf{x}^i) + \sqrt{2\eta} \mathbf{\epsilon}^i, \quad (9)$$

937 with $\mathbf{\epsilon}^i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. When $\eta \rightarrow 0$, the ULA converges to Langevin SDE, providing exact sampling.

938 Previous works (Durmus & Moulines, 2015; Cheng & Bartlett, 2018) show that ULA can efficiently
 939 converge to the target measure ν if ν is log-concave and smooth. However, when facing complex and
 940 multimodal distributions, we can only guarantee convergence to the concave vicinity.

942 C.2 ANNEALED LANGEVIN MCMC SAMPLING

944 Langevin MCMC have been used to perform implicit sampling in energy-based models (Du &
 945 Mordatch, 2019) and score-based models (Song & Ermon, 2020). However, these methods suffer
 946 from inaccurate score estimation and low density regions (Song & Ermon, 2020). In Song & Ermon
 947 (2020) they propose to perturb the data with gaussian noise, eventually smoothing the data distribution:

$$948 \quad q(\mathbf{x}_t) = \int_{\mathbf{x}_0} p_0(\mathbf{x}_0) \mathcal{N}(\mathbf{x}_t; \mathbf{x}_0, \sigma_t^2 \mathbf{I}),$$

950 and creating a sequence of annealed distributions $\{q(\mathbf{x}_t)\}_{t=0}^T$ which converges to $p_0(\mathbf{x}_0)$. Since they
 951 are smoothed by gaussian noise, we can improve the mixing time of Langevin MCMC on multimodal
 952 distributions by sampling from these intermediate distributions, sharing similar spirits with simulated
 953 annealing (Kirkpatrick et al., 1983).

955 In Du et al. (2023), they extend this method to compositional generation of diffusion models.
 956 Specifically, we consider sampling from a product distribution $p_0^{\text{prod}}(\mathbf{x}_0) \propto p_0^1(\mathbf{x}_0) p_0^2(\mathbf{x}_0)$, where
 957 $p_0^1(\mathbf{x}_0)$ and $p_0^2(\mathbf{x}_0)$ are distributions of different diffusion models. Since we have access to the
 958 score functions $\nabla_{\mathbf{x}_t} \log q_t^1(\mathbf{x}_t)$ and $\nabla_{\mathbf{x}_t} \log q_t^2(\mathbf{x}_t)$ through the diffusion model, we can construct a
 959 sequence of annealing distributions $\tilde{q}_t^{\text{prod}}(\mathbf{x}_t)$ such that:

$$960 \quad \nabla_{\mathbf{x}_t} \log \tilde{q}_t^{\text{prod}}(\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log q_t^1(\mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log q_t^2(\mathbf{x}_t).$$

962 By sampling from the sequence $\{\tilde{q}_t^{\text{prod}}(\mathbf{x}_t)\}$, we can arrive at $\tilde{q}_0^{\text{prod}}(\mathbf{x}_0)$ which is equal to $p_0^{\text{prod}}(\mathbf{x}_0)$.

963 A key difference from sampling from $\{\tilde{q}_t^{\text{prod}}(\mathbf{x}_t)\}$ and direct diffusion sampling is that the diffusion
 964 process with $p_0^{\text{prod}}(\mathbf{x}_0)$ defined as

$$966 \quad q_t^{\text{prod}}(\mathbf{x}_t) = \int_{\mathbf{x}_0} p_0^{\text{prod}}(\mathbf{x}_0) q(\mathbf{x}_t | \mathbf{x}_0)$$

969 is different from $\tilde{q}_t^{\text{prod}}(\mathbf{x}_t)$. The score of $q_t^{\text{prod}}(\mathbf{x}_t)$ can be derived as:

$$971 \quad \nabla_{\mathbf{x}_t} \log q_t^{\text{prod}}(\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log \left(\int_{\mathbf{x}_0} p_0^1(\mathbf{x}_0) p_0^2(\mathbf{x}_0) q(\mathbf{x}_t | \mathbf{x}_0) \right),$$

972 which is not equal to
 973

$$974 \nabla_{\mathbf{x}_t} \log \tilde{q}_t^{\text{prod}}(\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log \left(\int_{\mathbf{x}_0} p_0^1(\mathbf{x}_0) q(\mathbf{x}_t | \mathbf{x}_0) \right) + \nabla_{\mathbf{x}_t} \log \left(\int_{\mathbf{x}_0} p_0^2(\mathbf{x}_0) q(\mathbf{x}_t | \mathbf{x}_0) \right),$$

975 and thus intractable to compute directly.
 976

977 A key distinction between annealed Langevin MCMC sampling and reverse diffusion sampling is
 978 that we run multiple Langevin MCMC steps on the *same noise level*, while reverse diffusion goes
 979 from high noise level to low noise level via denoising. A minimal pseudo code is shown in Alg. 1.

980 **Algorithm 1** Annealed Langevin MCMC sampling

982 **Input:** sequence of annealing distributions $\{\tilde{q}_t(\mathbf{x}_t)\}_{t=0}^T$, number of MCMC steps N , step size
 983 $\{\eta_t\}_{t=0}^T$. (Optional) reverse transition kernel $\{\tilde{p}_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)\}_{t=0}^T$.
 984
Init: $\mathbf{x}_T^0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 985 **for** $t = T, \dots, 1$ **do**
 986 **for** $i = 0, 1, \dots, N-1$ **do**
 987 Perform Langevin MCMC steps:
 988
$$\mathbf{x}_t^{i+1} = \mathbf{x}_t^i + \eta_t \nabla_{\mathbf{x}_t} \log \tilde{q}_t(\mathbf{x}_t^i) + \sqrt{2\eta_t} \boldsymbol{\epsilon}_t^i, \quad \boldsymbol{\epsilon}_t^i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

 989 **end for**
 990 (Optional) transit to next time step: $\mathbf{x}_{t-1}^0 \sim \tilde{p}_\theta(\cdot | \mathbf{x}_t^N)$. If no reverse kernel initialize $\mathbf{x}_{t-1}^0 = \mathbf{x}_t^N$.
 991 **end for**
 992
 993 Return \mathbf{x}_0

995 C.3 ANNEALED LANGEVIN MCMC WITH RECURRENT TRAINING-FREE GUIDANCE

997 In this section, we prove the connection between annealed Langevin MCMC (Alg. 1) and training-free
 998 guidance (Alg. 2) in Proposition 1. We divide the proof into two parts. In Sec. C.3.1 we prove the
 999 equivalence between naive recurrence steps and Langevin MCMC. Then in Sec. C.3.2, we prove
 1000 that adding the guidance term is defining an annealing path that biases towards high score regions.
 1001 Finally, we provide a rigorous convergence analysis in Sec. C.3.3.

1003 C.3.1 EQUIVALENCE BETWEEN LANGEVIN MCMC AND NAIVE RECURRENCE

1005 Consider the diffusion process with the following stochastic interpolant (Ma et al., 2024):

$$1006 \mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}.$$

1007 We denote the score function of $q_t(\mathbf{x}_t)$ as $\nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t) = s(\mathbf{x}_t, t)$. Recall the forward process in
 1008 Eq. 1:

$$1009 \mathbf{x}_t = \frac{\alpha_t}{\alpha_{t-1}} \mathbf{x}_{t-1} + \sqrt{\alpha_t^2 \left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2} \right)} \boldsymbol{\epsilon}. \quad (10)$$

1012 In a recurrence step in Line 5, we first solve \mathbf{x}_{t-1}^i from \mathbf{x}_t^i using the learned score function $s(\mathbf{x}_t^i, t)$,
 1013 then add noise to \mathbf{x}_{t-1}^i to obtain the recurrent sample \mathbf{x}_t^{i+1} , where the superscript denotes the
 1014 recurrence step index: $i = 0, 1, \dots, N_{\text{recur}}$. Depending on different solvers, we have different
 1015 formulations of \mathbf{x}_t^{i+1} .

1016 **DDIM sampler.** When using DDIM (Song et al., 2020a) sampler, we have the reverse step as:

$$1018 \mathbf{x}_{t-1} = \frac{\alpha_{t-1}}{\alpha_t} \mathbf{x}_t + \sigma_t^2 \left(\frac{\alpha_{t-1}}{\alpha_t} - \frac{\sigma_{t-1}}{\sigma_t} \right) s(\mathbf{x}_t, t), \quad (11)$$

1020 where $s(\mathbf{x}_t, t)$ is the score function $\nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t)$. Thus, we have:

$$1021 \mathbf{x}_t^{i+1} = \frac{\alpha_t}{\alpha_{t-1}} \mathbf{x}_{t-1}^i + \alpha_t \sqrt{\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2}} \boldsymbol{\epsilon}^i$$

$$1022 = \mathbf{x}_t^i + \sigma_t^2 \left(1 - \frac{\alpha_t}{\alpha_{t-1}} \frac{\sigma_{t-1}}{\sigma_t} \right) s(\mathbf{x}_t^i, t) + \sigma_t \sqrt{1 - \frac{\alpha_t^2}{\alpha_{t-1}^2} \frac{\sigma_{t-1}^2}{\sigma_t^2}} \boldsymbol{\epsilon}^i.$$

1026 Denote $\lambda_t = \log \frac{\alpha_t}{\sigma_t}$, then we have:
 1027

$$\begin{aligned} 1028 \quad \mathbf{x}_t^{i+1} &= \mathbf{x}_t^i + \sigma_t^2 (1 - e^{\lambda_t - \lambda_{t-1}}) s(\mathbf{x}_t^i, t) + \sigma_t \sqrt{1 - e^{2(\lambda_t - \lambda_{t-1})}} \boldsymbol{\epsilon}^i \\ 1029 &= \mathbf{x}_t^i + \sigma_t^2 (1 - e^{\lambda_t - \lambda_{t-1}}) s(\mathbf{x}_t^i, t) + \sigma_t \sqrt{(1 - e^{\lambda_t - \lambda_{t-1}})(1 + e^{\lambda_t - \lambda_{t-1}})} \boldsymbol{\epsilon}^i, \end{aligned}$$

1031 where $1 + e^{\lambda_t - \lambda_{t-1}} \rightarrow 2$ when $T \rightarrow \infty$ and denoising step size approaches 0, as $\lambda_t - \lambda_{t-1} \rightarrow 0$.
 1032

1033 **DDPM sampler.** In DDPM (Ho et al., 2020), we parametrize the posterior distribution as:

$$1034 \quad p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_\theta(\mathbf{x}_t, t), \Sigma_\theta(\mathbf{x}_t, t)), \quad (12)$$

1035 where the posterior mean is:

$$1036 \quad \mu_\theta(\mathbf{x}_t, t) = \frac{\alpha_{t-1}}{\alpha_t} \mathbf{x}_t + \left(\sigma_t^2 \frac{\alpha_{t-1}}{\alpha_t} - \sigma_{t-1}^2 \frac{\alpha_t}{\alpha_{t-1}} \right) s(\mathbf{x}_t, t).$$

1039 Ho et al. (2020) parameterizes the posterior variance as $\Sigma_\theta(\mathbf{x}_t, t) = \beta_t \mathbf{I}$ or $\Sigma_\theta(\mathbf{x}_t, t) = \tilde{\beta}_t \mathbf{I}$:

$$\begin{aligned} 1040 \quad \beta_t &= \alpha_t^2 \left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2} \right), \\ 1041 \quad \tilde{\beta}_t &= \frac{\sigma_{t-1}^2}{\sigma_t^2} \beta_t, \end{aligned}$$

1045 while Nichol & Dhariwal (2021) propose to train the posterior variance as $\Sigma_\theta(\mathbf{x}_t, t) = \exp(v \log \beta_t + (1 - v) \log \tilde{\beta}_t)$.
 1046
 1047

1048 Thus, a backward step can be written as:

$$1049 \quad \mathbf{x}_{t-1} = \frac{\alpha_{t-1}}{\alpha_t} \mathbf{x}_t + \left(\sigma_t^2 \frac{\alpha_{t-1}}{\alpha_t} - \sigma_{t-1}^2 \frac{\alpha_t}{\alpha_{t-1}} \right) s(\mathbf{x}_t, t) + \Sigma_\theta^{1/2}(\mathbf{x}_t, t) \boldsymbol{\epsilon}_{\text{post}},$$

1050 where $\boldsymbol{\epsilon}_{\text{post}}$ denotes the noise added in the posterior sampling step. Then, we can write the recurrence
 1051 step as:

$$\begin{aligned} 1054 \quad \mathbf{x}_t^{i+1} &= \mathbf{x}_t^i + \left(\sigma_t^2 - \sigma_{t-1}^2 \frac{\alpha_t^2}{\alpha_{t-1}^2} \right) s(\mathbf{x}_t^i, t) + \Sigma_\theta^{1/2}(\mathbf{x}_t^i, t) \boldsymbol{\epsilon}_{\text{post}}^i + \alpha_t \sqrt{\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2}} \boldsymbol{\epsilon}_{\text{forward}}^i \\ 1055 &= \mathbf{x}_t^i + \beta_t s(\mathbf{x}_t^i, t) + \sqrt{\Sigma_\theta(\mathbf{x}_t, t) + \beta_t \mathbf{I}} \boldsymbol{\epsilon}^i, \end{aligned}$$

1056 where $\Sigma_\theta(\mathbf{x}_t, t) \rightarrow \beta_t \mathbf{I}$ when $T \rightarrow \infty$, and the denoising step size approaches 0.
 1057
 1058

1059 **Flow-Matching sampler.** In flow-matching models (Ma et al., 2024; Esser et al., 2024), the noise
 1060 schedule is $\alpha_t = 1 - t$, $\sigma_t = t$, with $t \in [0, 1]$. The denoising step can be written as:

$$\begin{aligned} 1061 \quad \mathbf{x}_{t-\Delta t} &= \mathbf{x}_t - \mathbf{v}_\theta(\mathbf{x}_t, t) \Delta t \\ 1062 &= \mathbf{x}_t - \frac{-ts(\mathbf{x}_t, t) - \mathbf{x}_t}{1-t} \Delta t \\ 1063 &= (1 + \frac{\Delta t}{1-t}) \mathbf{x}_t + \frac{t \Delta t}{1-t} s(\mathbf{x}_t, t) \end{aligned}$$

1064 Then, the forward process in Eq. 10 can be written as:

$$1065 \quad \mathbf{x}_t = \frac{1-t}{1-(t-\Delta t)} \mathbf{x}_{t-\Delta t} + \frac{\sqrt{\Delta t(2t-\Delta t-2t^2+2t\Delta t)}}{1-t+\Delta t} \boldsymbol{\epsilon}.$$

1066 Thus, the recurrence equation can be written as:

$$\begin{aligned} 1067 \quad \mathbf{x}_t^{i+1} &= \mathbf{x}_t^i + \frac{t \Delta t}{1-t+\Delta t} s(\mathbf{x}_t^i, t) + \frac{\sqrt{\Delta t(2t-\Delta t-2t^2+2t\Delta t)}}{1-t+\Delta t} \boldsymbol{\epsilon}^i \\ 1068 &= \mathbf{x}_t^i + \frac{t \Delta t}{1-t+\Delta t} s(\mathbf{x}_t^i, t) + \frac{\sqrt{2t\Delta t(1-t+\Delta t)-\Delta t^2}}{1-t+\Delta t} \boldsymbol{\epsilon}^i \end{aligned}$$

1069 **Putting together.** In general, we can write the recurrence step as:

$$1070 \quad \mathbf{x}_t^{i+1} = \mathbf{x}_t^i + a_t r_t s(\mathbf{x}_t^i, t) + \sqrt{2a_t} \boldsymbol{\epsilon}^i. \quad (13)$$

1071 with $a_t \rightarrow 0$ and $r_t \rightarrow 1$ as the denoising step size approaches 0:
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 • For DDIM sampler, we have $a_t = \frac{1}{2}\alpha_t^2 \left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2} \right)$ and $r_t = \frac{2}{1+e^{\lambda_t-\lambda_{t-1}}}$.
 1081
 1082 • For DDPM sampler, we have $a_t = \frac{1}{2}\alpha_t^2 \left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2} \right)$ and $1 \leq r_t \leq \frac{2}{1+\frac{\sigma_{t-1}^2}{\sigma_t^2}}$.
 1083
 1084 • For flow-matching sampler, we have $a_t = \frac{t\Delta t}{1-t}$ and $1 \leq r_t \leq 1 + \frac{\Delta t}{t(1-t)}$

1085
 1086 Thus, it can be seen as a approximation of the ULA in Eq. 9, and also a discretization of the Langevin
 1087 SDE in Eq. 8.

1089 C.3.2 ANNEALED LANGEVIN MCMC WITH GUIDANCE

1091 When applying training free guidance (Ye et al., 2024) during the recurrence, we have:

$$1092 \quad \mathbf{x}_t^{i+1} = \mathbf{x}_t^i + a_t r_t s(\mathbf{x}_t^i, t) + \sqrt{2a_t} \boldsymbol{\epsilon}^i + \Delta(\mathbf{x}_t, t),$$

1093 where a_t, b_t are the coefficients of the recurrence equation in Eq. 13 without guidance. In general,
 1094 $\Delta_t = \rho_t \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0|t}) + \mu_t \alpha_t \nabla_{\mathbf{x}_{0|t}} \log f(\mathbf{x}_{0|t})$, where ρ_t, μ_t controls the guidance strength. We
 1095 then show that the guidance term can be considered as the score function of a set of annealed verifiers
 1096 $\left\{ \hat{f}(\mathbf{x}_t) \right\}_{t=0}^T$.

1097 When considering ‘variance guidance’ in Line. 7, we have $\Delta_{\text{var}} = \rho_t \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0|t})$. Thus, we
 1098 can define $\hat{f}_t^{\text{var}}(\mathbf{x}_t) = f(\mathbf{x}_{0|t})$, which satisfies $\hat{f}_0^{\text{var}}(\mathbf{x}_0) = f(\mathbf{x}_0)$. Similarly, for ‘mean guidance’ in
 1099 Line. 8, we have

$$1102 \quad \Delta_{\text{mean}} = \mu_t \alpha_t \nabla_{\mathbf{x}_{0|t}} \log f(\mathbf{x}_{0|t}) \\ 1103 \quad = \mu_t \frac{\sigma_t^2}{\Sigma_{0|t}} \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0|t}),$$

1104 where the second Equation follows from Lemma 3.3 in Ye et al. (2024). Thus, there exists a set of
 1105 functions $\hat{f}_t^{\text{mean}}(\mathbf{x}_t)$ such that $\nabla_{\mathbf{x}_t} \log \hat{f}_t^{\text{mean}}(\mathbf{x}_t) = \frac{\sigma_t^2}{\Sigma_{0|t}} \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0|t})$, and we can see that when
 1106 $t \rightarrow 0, \nabla_{\mathbf{x}_t} \log \hat{f}_t^{\text{mean}}(\mathbf{x}_t) = \nabla_{\mathbf{x}_0} \log f(\mathbf{x}_0)$. If we additionally incorporate the ‘implicit dynamics’
 1107 in Line. 4, our arguments still stands since the smoothed objective $\tilde{f}(\mathbf{x}) = \mathbb{E}_{\boldsymbol{\delta} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} f(\mathbf{x} + \bar{\gamma} \sigma_t \boldsymbol{\delta})$
 1108 converges to f with $t \rightarrow 0$ and $\sigma_t \rightarrow 0$.

1109 Combining the two terms together, we have $\Delta_t = c_t \nabla_{\mathbf{x}_t} \log \hat{f}_t(\mathbf{x}_t)$ with $\hat{f}_t = \hat{f}_t^{\text{var}} \cdot \hat{f}_t^{\text{mean}}$. Thus,
 1110 recurrence with guidance can be written as:

$$1114 \quad \mathbf{x}_t^{i+1} = \mathbf{x}_t^i + a_t r_t s(\mathbf{x}_t^i, t) + \sqrt{2a_t} \boldsymbol{\epsilon}^i + c_t \nabla_{\mathbf{x}_t} \log \hat{f}_t(\mathbf{x}_t) \\ 1115 \quad = \mathbf{x}_t^i + a_t r_t \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t) \hat{f}_t(\mathbf{x}_t)^{c_t/a_t r_t} + \sqrt{2a_t} \boldsymbol{\epsilon}^i,$$

1116 Thus, we have defined the annealing path as $\tilde{q}_t(\mathbf{x}_t) = q_t(\mathbf{x}_t) \hat{f}_t(\mathbf{x}_t)^{c_t/a_t r_t}$, $t = 1, 2, \dots, T$.

1117 C.3.3 CONVERGENCE ANALYSIS

1118 In this section, we provide a rigorous convergence analysis of recurrence to the target distribution
 1119 $\tilde{q}_t(\mathbf{x}_t)$.

1120 **Theorem 1.** Suppose $\tilde{q}_t(\mathbf{x}_t)$ has bounded support, is α -strongly log-concave and L -log-smooth, and
 1121 $-\nabla^2 \log \tilde{q}_t$ is M -Lipschitz. Denote $\mathbf{x}_t^{N_{\text{recur}}}$ as the sample after N_{recur} steps of recurrence, we can
 1122 bound the Wasserstein distance between the distribution of $\mathbf{x}_t^{N_{\text{recur}}}$ and \tilde{q}_t as:

$$1126 \quad W_2(p(\mathbf{x}_t^{N_{\text{recur}}}), \tilde{q}_t) = \mathcal{O} \left(\sqrt{\lambda_{t-1} - \lambda_t} + e^{-2\lambda_t} - e^{-2\lambda_{t-1}} + (1 - e^{-2\lambda_t} + e^{-2\lambda_{t-1}})^{N_{\text{recur}}} \right),$$

1127 where $\lambda_t = \log \frac{\alpha_t}{\sigma_t}$ is half of the log SNR.

1128 Proof. Recall recurrence is equivalent to the following recursion equation, with a_t, r_t being sampler-
 1129 dependent parameters in Eq. 13:

$$1132 \quad \mathbf{x}_t^{i+1} = \mathbf{x}_t^i + a_t r_t \nabla_{\mathbf{x}_t} \log \tilde{q}_t(\mathbf{x}_t^i) + \sqrt{2a_t} \boldsymbol{\epsilon}^i \\ 1133 \quad = \mathbf{x}_t^i + a_t \nabla_{\mathbf{x}_t} \log \tilde{q}_t(\mathbf{x}_t^i)^{r_t} + \sqrt{2a_t} \boldsymbol{\epsilon}^i.$$

Thus, recurrence is equivalent to running unadjusted Langevin algorithm (ULA) on the tempered distribution $p^{\text{tempered}} \propto \tilde{q}_t^{r_t}$. Using Lemma 1 and Lemma 2 from [Wibisono \(2018\)](#), given the regularity conditions on \tilde{q}_t , we can bound the discretization error from ULA as:

$$\begin{aligned} W_2(p^{\text{tempered}}, p(\mathbf{x}_t^{N_{\text{recur}}})) &= \mathcal{O}(a_t + (1 - a_t)^{N_{\text{recur}}}) \\ &= \mathcal{O}\left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2} + (1 - \frac{\sigma_t^2}{\alpha_t^2} + \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2})^{N_{\text{recur}}}\right) \\ &= \mathcal{O}(e^{-2\lambda_t} - e^{-2\lambda_{t-1}} + (1 - e^{-2\lambda_t} + e^{-2\lambda_{t-1}})^{N_{\text{recur}}}). \end{aligned}$$

To bound $W_2(p^{\text{tempered}}, \tilde{q}_t)$, we first bound the TV distance as $\text{TV}(p^{\text{tempered}}, \tilde{q}_t)$.

Denote $Z(r_t) = \int \tilde{q}_t(x)^{r_t} dx$, and $\psi(r) = \log Z(r)$. We have:

$$\begin{aligned} \text{KL}(p^{\text{tempered}}, \tilde{q}_t) &= \mathbb{E}_{p^{\text{tempered}}} [r_t \log \tilde{q}_t - \psi(r_t) - \log \tilde{q}_t] \\ &\leq \mathcal{O}((r_t - 1) \mathbb{E}_{p^{\text{tempered}}} [\log \tilde{q}_t - \psi'(r)] + \psi''(r)(r_t - 1)^2), \end{aligned}$$

where the last step is using Taylor expansion. Since $\psi'(r) = \mathbb{E}_{p^{\text{tempered}}} [\log \tilde{q}_t]$ and $\psi''(r) = \text{Var}_{p^{\text{tempered}}} [\log \tilde{q}_t]$. Using the Pinsker inequality, we have $\text{TV}(p^{\text{tempered}}, \tilde{q}_t) \leq \frac{1}{2} \sqrt{\text{KL}(p^{\text{tempered}}, \tilde{q}_t)} \leq \mathcal{O}((r_t - 1) \sqrt{\text{Var}_{p^{\text{tempered}}} [\log \tilde{q}_t]}) = \mathcal{O}(r_t - 1)$, given the finiteness of $\text{Var}_{p^{\text{tempered}}} [\log \tilde{q}_t]$ under bounded support.

Following Proposition 7.10 in [Villani \(2003\)](#) for distributions with bounded support, we have:

$$\begin{aligned} W_2(p^{\text{tempered}}, \tilde{q}_t) &= \mathcal{O}\left(\sqrt{\text{TV}(p^{\text{tempered}}, \tilde{q}_t)}\right) \\ &= \mathcal{O}(\sqrt{r_t - 1}) \\ &= \mathcal{O}\left(\sqrt{1 - \min\left(\frac{\alpha_t \sigma_{t-1}}{\alpha_{t-1} \sigma_t}, \frac{\sigma_{t-1}^2}{\sigma_t^2}\right)}\right) \\ &= \mathcal{O}\left(\sqrt{\log \frac{\sigma_t}{\sigma_{t-1}} + \max\left(\log \frac{\alpha_{t-1}}{\alpha_t}, \log \frac{\sigma_t}{\sigma_{t-1}}\right)}\right) \\ &= \mathcal{O}\left(\sqrt{\log \frac{\alpha_{t-1}}{\alpha_t} + \log \frac{\sigma_t}{\sigma_{t-1}}}\right) \\ &= \mathcal{O}\left(\sqrt{\lambda_{t-1} - \lambda_t}\right), \end{aligned}$$

where we recall the definition of r_t in Eq. 13.

Putting together the bound on $W_2(p^{\text{tempered}}, p(\mathbf{x}_t^{N_{\text{recur}}}))$ and $W_2(p^{\text{tempered}}, \tilde{q}_t)$, we obtain our desired bound. \square

C.4 RELATIONSHIP BETWEEN LANGEVIN MCMC AND GRADIENT ASCENT

In training-free guidance, most prior works only apply gradient ascent without recurrence. Here we provide a theoretical analysis of both methods.

Recall the KL-divergence objective in Eq. 6, which can be further decomposed when we are sampling from a compositional distribution of $p_0(\mathbf{x}_0)$ and verifier $f(\mathbf{x}_0)$, with $\nu \propto p_0 \cdot f$:

$$H_\nu(\rho) = \mathbb{E}_\rho[-\log f] + H_{p_0}(\rho) + \log Z.$$

where $Z = \int p_0 f$ is a normalization constant. Thus, gradient ascent is optimizing the verifier objective $\mathbb{E}_\rho[-\log f]$, while Langevin MCMC in Eq. 13 is optimizing the divergence between current sample and base distribution $H_{p_0}(\rho)$. This explains why naive gradient updates leads to OOD samples, and recurrence effectively mitigates this issue, acting as a contraction force pulling the

sample back to the original manifold. However, since we start from p_0 as the distribution of our initial sample, sometimes we can omit the recurrence if the guidance strength is small. But if we wish to traverse different modes with multiple gradient updates, introducing recurrence helps to avoid OOD during optimization.

C.5 IMPLEMENTING LOCAL SEARCH WITH TFG HYPER-PARAMETER SPACE

Due to the equivalence between annealed Langevin MCMC and training-free guidance with recurrence, we can implement local search with Langevin MCMC using the TFG framework of [Ye et al. \(2024\)](#), efficiently searching the hyperparameters. Here we provide a overview of the algorithm and design space. Following Sec. C.3, every iteration of recurrence in Line. 5 is equivalent to an annealed Langevin MCMC step, thus N_{recur} is equal to the number of local search steps.

Algorithm 2 Training-Free Guidance

```

1: Input: Unconditional diffusion model  $\epsilon_\theta$ , verifier  $f$ , guidance strength  $\rho, \mu, \bar{\gamma}$ , number of steps
2:  $T, N_{\text{recur}}, N_{\text{iter}}$ 
3: for  $t = T, \dots, 1$  do
4:   Define function  $\tilde{f}(\mathbf{x}) = \mathbb{E}_{\delta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} f(\mathbf{x} + \bar{\gamma} \sigma_t \delta)$ 
5:   for  $r = 1, \dots, N_{\text{recur}}$  do
6:      $\mathbf{x}_{0|t} = (\mathbf{x}_t - \sigma_t \epsilon_\theta(\mathbf{x}_t, t)) / \alpha_t$ 
7:      $\Delta_{\text{var}} = \rho_t \nabla_{\mathbf{x}_t} \log \tilde{f}(\mathbf{x}_{0|t})$ 
8:      $\Delta_{\text{mean}} = \Delta_{\text{mean}} + \mu_t \alpha_t \nabla_{\mathbf{x}_{0|t}} \log \tilde{f}(\mathbf{x}_{0|t} + \Delta_{\text{mean}})$   $\triangleright$  Iterate  $N_{\text{iter}}$  times starting from  $\Delta_{\text{mean}} = \mathbf{0}$ 
9:      $\mathbf{x}_{t-1} = \text{Sample}(\mathbf{x}_t, \mathbf{x}_{0|t}, t) + \frac{\alpha_{t-1}}{\alpha_t} (\Delta_{\text{var}} + \Delta_{\text{mean}})$   $\triangleright$  Sample follows DDIM or DDPM
10:     $\mathbf{x}_t \sim \mathcal{N} \left( \frac{\alpha_t}{\alpha_{t-1}} \mathbf{x}_{t-1}, \alpha_t^2 \left( \frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2} \right) \mathbf{I} \right)$   $\triangleright$  Recurrent strategy
11:   end for
12: end for
13: Output: Conditional sample  $\mathbf{x}_0$ 

```

For time varying schedules ρ_t, μ_t , we follow [Ye et al. \(2024\)](#) and propose to use either the ‘increase’ schedule:

$$s_t = T \frac{\alpha_t / \alpha_{t-1}}{\sum_{t=1}^T \alpha_t / \alpha_{t-1}}, \quad (14)$$

where we increase the guidance strength as we denoise: $s_T < s_{T-1} < \dots < s_1$; or the ‘constant’ schedule

$$s_t = 1, \quad (15)$$

which uses constant parameters throughout the denoising process. Thus, the time-varying schedules can be computed as $\rho_t = s_t \bar{\rho}$ and $\mu_t = s_t \bar{\mu}$, and we only need to determine the average $\bar{\rho}$ and $\bar{\mu}$.

D GLOBAL SEARCH OF DENOISING DIFFUSION MODELS

In this section, we provide details about the global search algorithms: BFS and DFS.

D.1 BFS-BASED SEARCH

We present the pseudo code for BFS in Alg. 3. In practice, we can evaluate and resample the particles at a fixed subset of time steps, with detailed hyper-parameters in the details of each experiment.

D.1.1 OVERVIEW OF DESIGN SPACE

Tempering. When estimating the particle score via the denoised output $f(\mathbf{x}_{0|t}^k)$, for larger t the estimation often has larger bias, due to the fact that $\mathbb{E}[f(\mathbf{x}_0) | \mathbf{x}_t] \neq f(\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]) = f(\mathbf{x}_{0|t})$. Thus, we propose to re-weight the score estimates with a tempering schedule τ_t before scoring the particles. For a increasing schedule $\tau_T < \tau_{T-1} < \dots < \tau_1 < \tau_0$, the estimated scores have more influence at

1242 **Algorithm 3** Diffusion BFS

1243

1244 **Diffusion input:** diffusion model ϵ_θ with diffusion time steps T and proposal transition kernel
 $\{\tilde{p}_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)\}_{t=1}^N$. Verifier f .

1245 **BFS input:** Tempering schedule τ_t . Budget of particles N . Scoring function and resampling
 method.

1246 **Init:** Random sample N particles $\mathbf{x}_T^k \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, $k = 1, 2, \dots, N$.

1247 **for** $t = T, \dots, 1$ **do**

1248 **for** $k = 1, 2, \dots, N$ **do**

1249 **Estimation.** Estimate the conditional mean: $\mathbf{x}_{0|t}^k = \frac{\mathbf{x}_t^k - \sigma_t \epsilon_\theta(\mathbf{x}_t^k, t)}{\alpha_t}$. Compute the verifier
 score estimate $f(\mathbf{x}_{0|t}^k)$.

1250 **Scoring.** Score the particles according to the scoring functions:

1251 **Current** : $\hat{f}(\mathbf{x}_t^k) = \tau_t f(\mathbf{x}_{0|t}^k)$,

1252 **Difference** : $\hat{f}(\mathbf{x}_t^k) = \tau_t f(\mathbf{x}_{0|t}^k) - \hat{f}_{\text{prev}}^k$,

1253 **Max** : $\hat{f}(\mathbf{x}_t^k) = \max(\tau_t f(\mathbf{x}_{0|t}^k), \hat{f}_{\text{prev}}^k)$.

1254

1255 **Resampling.** Compute the weights

1256 $(w_t^1, w_t^2, \dots, w_t^N) = \text{softmax}(\hat{f}(\mathbf{x}_t^1), \hat{f}(\mathbf{x}_t^2), \dots, \hat{f}(\mathbf{x}_t^N))$,

1257 and resample the children

1258 $(n_t^1, n_t^2, \dots, n_t^N) = \text{Resample}(N; w_t^1, w_t^2, \dots, w_t^N)$,

1259 where Resample can be Multinomial resampling or SSP resampling (Alg.4).

1260 **end for**

1261 **for** $k = 1, \dots, N$ **do**

1262 Sample n_t^k children particles from \mathbf{x}_t^k : $\mathbf{x}_{t-1}^j \sim \tilde{p}_\theta(\cdot|\mathbf{x}_t^k)$, $j = 1, 2, \dots, n_t^k$

1263 **end for**

1264 Update the score buffers for computing the **Difference** and **Max** score at next timestep.

1265 $\hat{f}_{\text{prev}}^k = \begin{cases} \hat{f}(\mathbf{x}_t^{\text{parent}(k)}) & \text{if scoring function is Max} \\ \tau_t f(\mathbf{x}_{0|t}^{\text{parent}(k)}) & \text{if scoring function is Difference} \end{cases}$

1266 **end for**

1267 **Return** $\mathbf{x}_0 = \text{argmax}_{\mathbf{x}_0^1, \dots, \mathbf{x}_0^N} f(\mathbf{x}_0^k)$

1280

1281

1282

1283 smaller time steps with higher weights, where the estimation has less bias. For the increasing tempering
 1284 schedule, we simply adopt the design in DAS (Kim et al., 2025) with $\tau_t = ((1 + \gamma)^{T-t} - 1) \tau$,
 1285 with γ searched in $\{0.008, 0.024\}$. We also consider the deterministic particle selection in SVDD (Li
 1286 et al., 2024) where we only retain the highest scoring particle, which can be seen as $\tau_t = \infty$. For the
 1287 constant tempering schedule we simply set $\tau_t = \tau$, without any tempering on different time steps.

1288 **Scoring.** Given the score estimates $f(\mathbf{x}_{0|t})$, one can construct scoring rules based on the scores
 1289 of the entire path $\{f(\mathbf{x}_{0|s}^k)\}_{s=T}^t$. In traditional sequential-monte-carlo (SMC) based methods, the
 1290 score is computed as the difference between two consecutive evaluations: $\hat{f}(\mathbf{x}_t^k) = \tau_t f(\mathbf{x}_{0|t}^k) -$
 1291 $\tau_{t+1} f(\mathbf{x}_{0|t+1}^k)$. However, in FK-steering (Singhal et al., 2025a), they pointed out that the difference
 1292 potential is unfair for sample path that saturates earlier, reaching a high reward at earlier time steps.
 1293 Thus they propose the max scoring: $\hat{f}(\mathbf{x}_t^k) = \max_{s \geq t} \tau_t f(\mathbf{x}_{0|s}^k)$. We also consider the simple
 1294 baseline of current score: $\hat{f}(\mathbf{x}_t^k) = \tau_t f(\mathbf{x}_{0|t}^k)$.

1296 **Resampling.** Given the scores $\hat{f}(\mathbf{x}_t^k)$, we can compute the softmax logits of particles via $\{w_t^k\}_{k=1}^N =$
 1297 $\text{softmax} \left\{ \hat{f}(\mathbf{x}_t^k) \right\}_{k=1}^N$. Then, we resample the particles according to the logits, and obtain the number
 1298 of children for each particle n_t^k . The sets $\{n_t^k\}_{k=1}^N$ should satisfy the following constraints:
 1299

$$\sum_{k=1}^N n_t^k = N$$

$$\mathbb{E}[n_t^k] = N w_t^k$$

1300 Most previous approaches simply adopt the multinomial resampling, with $\{n_t^k\}_{k=1}^N \sim$
 1301 $\text{Multinomial} \left(N; \{w_t^k\}_{k=1}^N \right)$. However, this sampling process introduces large variance since every
 1302 component is sampled independently. To reduce variance, for example, residual resampling only
 1303 resamples the residuals \tilde{n}_t^k from $N - R$ with weights $\tilde{w}_t^k = \frac{N w_t^k - [N w_t^k]}{N - R}$, where $R = \sum_{k=1}^N [N w_t^k]$.
 1304 Then, we obtain $n_t^k = [N w_t^k] + \tilde{n}_t^k$. This way we reduce the randomness in n_t^k .
 1305

1306 The SSP resampling views the sampling process as randomized rounding on the expectations $N w_t^k$,
 1307 with pseudo code from [Gerber et al. \(2020\)](#) shown below in Alg. 4.
 1308

1309 **Algorithm 4** SSP resampling

1310 **Inputs:** $u \in [0, 1]^N$ and $(\xi_1, \dots, \xi_N) \in \mathbb{R}_+^N$ such that $\xi_n = N w_t^n$ with w_t^n being the softmax
 1311 weight of the n -th particle, and we have $\sum_{n=1}^N \xi_n = N \in \mathbb{N}$.
 1312 **Output:** $(Y_{\text{ssp}}^1(u), \dots, Y_{\text{ssp}}^N(u)) \in \mathbb{N}^N$ such that $\sum_{n=1}^N Y_{\text{ssp}}^n(u) = \sum_{n=1}^N \xi_n$.
 1313 Initialization: $(Y_{\text{ssp}}^1(u), \dots, Y_{\text{ssp}}^N(u)) \leftarrow (\xi_1, \dots, \xi_N)$, $(n, m, k) \leftarrow (1, 2, 1)$.
 1314 Iterate the following steps until $(Y_{\text{ssp}}^1(u), \dots, Y_{\text{ssp}}^N(u)) \in \mathbb{N}^N$:
 1315 **(1)** Let δ be the smallest number in $(0, 1)$ such that at least one of $Y_{\text{ssp}}^n(u) + \delta$ or $Y_{\text{ssp}}^n(u) - \delta$ is an
 1316 integer, and let ϵ be the smallest number in $(0, 1)$ such that at least one of $Y_{\text{ssp}}^n(u) - \epsilon$ or
 1317 $Y_{\text{ssp}}^n(u) + \epsilon$ is an integer.
 1318 **(2)** If $u_k \leq \epsilon/(\delta + \epsilon)$ set $(Y_{\text{ssp}}^n(u), Y_{\text{ssp}}^m(u)) \leftarrow (Y_{\text{ssp}}^n(u) + \delta, Y_{\text{ssp}}^m(u) - \delta)$; otherwise set
 1319 $(Y_{\text{ssp}}^n(u), Y_{\text{ssp}}^m(u)) \leftarrow (Y_{\text{ssp}}^n(u) - \epsilon, Y_{\text{ssp}}^m(u) + \epsilon)$.
 1320 **(3)** Update n and m as follows:
 1321 1. If $(Y_{\text{ssp}}^n(u), Y_{\text{ssp}}^m(u)) \in \mathbb{N}^2$, $(n, m) \leftarrow (m + 1, m + 2)$;
 1322 2. If $Y_{\text{ssp}}^n(u) \in \mathbb{N}$ and $Y_{\text{ssp}}^m(u) \notin \mathbb{N}$ set $(n, m) \leftarrow (m, m + 1)$;
 1323 3. if $Y_{\text{ssp}}^n(u) \notin \mathbb{N}$ and $Y_{\text{ssp}}^m(u) \in \mathbb{N}$ set $(n, m) \leftarrow (n, m + 1)$.
 1324 **(4)** $k \leftarrow k + 1$

1325 There are more variance reduced sampling methods such as systematic resampling and stratified
 1326 resampling, and we adopt the Srinivasan sampling process (SSP) resampling as our design choice.
 1327 For other variance-reduced methods, the performance is similar to SSP resampling, all outperforming
 1328 naive multinomial resampling.
 1329

1330 **D.1.2 OVERVIEW OF PRIOR METHODS**

1331 Here, we provide an overview of prior methods.
 1332

1333 **SVDD (Li et al., 2024).** In SVDD, the best sample is selected at each time step, from which M
 1334 children are generated. This approach can be viewed as a variant of BFS with $\tau = \infty$ and M particles.
 1335 Nodes are evaluated using the current score estimate $f(\mathbf{x}_{0|t})$.
 1336

1337 **TreeG (Guo et al., 2025).** In TreeG, particles are ranked and the top M are either selected directly or
 1338 resampled based on their scores to obtain M samples. From each selected particle, K children are
 1339

1350 sampled, resulting in an effective tree width of KM . Particles are evaluated using their current score
 1351 $f(\mathbf{x}_{0|t})$. They also consider adding Gaussian noise to $\mathbf{x}_{0|t}$ to approximate the posterior distribution
 1352 $p(\mathbf{x}_0|\mathbf{x}_t)$. However, the posterior distribution is intractable as it is not a Gaussian distribution,
 1353 and exact Gaussian approximation requires computing the variance using the Jacobian of the score
 1354 function (see [Ye et al. \(2024\)](#)).

1355 **DAS (Kim et al., 2025)**. In DAS, the authors propose an exponentially increasing tempering schedule
 1356 as the default, given by $\tau_t = (1 + \gamma)^{T-t} - 1$, and also introduce an adaptive tempering schedule.
 1357 They adopt advanced SSP resampling instead of multinomial resampling, and evaluate particles
 1358 based on the difference in rewards from the previous evaluation, similar to SMC methods. **In**
 1359 **the original implementation, DAS also modify the transition kernel with verifier gradients** $\tau =$
 1360 $\mathcal{N}(\mathbf{x}_{t-1}; \mu_\theta(\mathbf{x}_t) + \lambda \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0|t}))$, and include the log ratio in the resampling weights: $w_t^i =$
 1361 $\log p_\theta(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i) - \log \tau(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i) + \lambda \log f(\mathbf{x}_t^i) - \lambda \log f(\mathbf{x}_{t-1}^i)$. For a fair comparison, we disable
 1362 the gradients in the BFS experiments in Table. 2, and provide additional results in Table. 7.

1363 **FK-steering (Singhal et al., 2025a)**. In FK, the authors propose several options for evaluating
 1364 intermediate particles, including difference, max, and sum, with *max* adopted as the default. In the
 1365 official implementation, multinomial resampling is used, which may lead to suboptimal performance.
 1366

1367 **SoP (Ma et al., 2025)**. In search-over-paths (SoP), we start with N samples and denoise them to
 1368 a low noise level σ . After that, we sample M i.i.d noise for each of the noisy particles and run the
 1369 forward process from σ to $\sigma + \Delta f$, and then denoise from $\sigma + \Delta f$ to $\sigma + \Delta f - \Delta_b$. After that we
 1370 select the top N particles and repeat the above process until $\sigma = 0$. Although the noise injection is
 1371 similar to the backtracking in DFS, we point out that SoP adopts a fixed schedule and all particles
 1372 remain at the same noise level, which is different from our adaptive DFS.
 1373

1374 **DSearch (Li et al., 2025b)**. In DSearch, the authors improve upon beam-search based tree search by
 1375 dynamically adjust the beam-size and tree width during sampling. At lower noise levels, we adopt
 1376 larger beam-size and lower tree width, facilitating more local exploration. This approach improves
 1377 the diversity of the generated samples.

1377 D.2 DFS-BASED SEARCH

1379 In this section, we provide the details and pseudo code for DFS in Alg. 5. To better utilize previously
 1380 explored sampling paths, we employ a buffer to store prior results. When the budget is exhausted and
 1381 no more backtracking is allowed, we retrieve the best sample from the buffer.
 1382

1383 Similar to BFS, controlling the set of evaluation steps allows a trade-off between efficiency and
 1384 accuracy. Evaluating at earlier time steps introduces higher uncertainty but enables backtracking.
 1385 Additionally, adjusting the backtracking depth Δ_T governs the search scope: a small Δ_T reduces
 1386 computation and favors local search, while a larger Δ_T enables broader exploration at the cost of
 1387 increased computation.
 1388

1389 In practice, we set the evaluation steps to $\mathcal{S} = \{\frac{1}{2}T, \frac{1}{4}T\}$ for image experiments to save compute,
 1390 and to $\mathcal{S} = \{\frac{3}{4}T, \frac{3}{4}T - 1, \dots, 1\}$ for PointMaze experiments. We set the recurrence depth to $T/2$
 1391 for image tasks and $T/4$ for PointMaze, corresponding to the denoised steps at which samples are
 1392 first evaluated. The threshold schedule δ_t is also set to ‘increase’ as in Eq.14 in our PointMaze
 1393 experiments, enforcing tighter constraints for samples with lower noise. We use a simple constant
 1394 $\delta_t = \delta$ schedule in our image experiments.
 1395

1396 In our experiments, we observed that when backtracking to $t_{\text{next}} = T$ —thus fully restarting—the
 1397 nonzero terminal SNR α_T/σ_T in many diffusion schedules ([Lin et al., 2024](#)) can lead to cumulative
 1398 errors with repeated backtracking. Therefore, when backtracking to $t_{\text{next}} = T$, we initialize with
 1399 fresh Gaussian noise.
 1400

1401
 1402
 1403

1404 **Algorithm 5** Diffusion DFS

1405 **Diffusion input:** diffusion model ϵ_θ with diffusion time steps T and proposal transition kernel
 1406 $\{\tilde{p}_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)\}_{t=1}^N$. Verifier f .

1407 **DFS input:** Budget for total number of backtracking $B = K$, backtracking depth Δ_T and threshold
 1408 $\{\delta_t\}_{t=1}^T$.

1409 **Init** $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, $t = T$. Init buffer with empty sets: $\text{buffer}(t) \leftarrow \{\}$, $t = 1, 2, \dots, T$.

1410 **while** $t > 0$ **do**

1411 Compute the conditional mean $\mathbf{x}_{0|t} = \frac{\mathbf{x}_t - \sigma_t \epsilon_\theta(\mathbf{x}_t, t)}{\alpha_t}$, and estimate the verifier score $f(\mathbf{x}_{0|t})$.

1412 Add the score-sample pair to the buffer: $\text{buffer}(t).\text{add}(f(\mathbf{x}_{0|t}) : \mathbf{x}_t)$

1413 **if** $f(\mathbf{x}_{0|t}) < \delta_t$ and budget $B > 0$ **then**

1414 Backtrack: $t_{\text{next}} \leftarrow \min(t + \Delta_T, T)$, $\mathbf{x}_{t_{\text{next}}} \sim q(\mathbf{x}_{t_{\text{next}}} | \mathbf{x}_t)$ with q in Eq. 1

1415 Decrease the budget: $B \leftarrow B - 1$

1416 **else**

1417 **if** $B = 0$ **then**

1418 Pop the best sample from buffer: $\mathbf{x}_t \leftarrow \text{buffer}(t).\text{max}$ \triangleright select the best sample from past
 1419 explorations

1420 **end if**

1421 Sample posterior: $t_{\text{next}} \leftarrow t - 1$, $\mathbf{x}_{t_{\text{next}}} \sim \tilde{p}_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)$

1422 **end if**

1423 $t \leftarrow t_{\text{next}}$, $\mathbf{x}_t \leftarrow \mathbf{x}_{\text{next}}$

1424 **end while**

1425 Return \mathbf{x}_0

E EXPERIMENT DETAILS

In this section we provide the details of experimental setup and implementation for all our experiments. We run our experiments on clusters with Nvidia A100 and RTX 4090 GPUs, with over 1000 GPU hours used.

E.1 ABLATION OF BFS DESIGN SPACE

We directly adopt the official code base of FK-steering (Singhal et al., 2025a) and use the sampling methods provided in the code base of DAS (Kim et al., 2025). We use the ImageReward prompts as in Singhal et al. (2025a) and report the average and standard deviation over 4 independent trials. For the temperature and resampling interval, we directly follow the implementation of FK-steering. For TreeG (Guo et al., 2025) we use a fixed branch out size of 2. For Dsearch (Li et al., 2025b) we set the ratio $\frac{b(T)}{b(0)} = 4$ as in the original paper, and for SoP (Ma et al., 2025) we directly adopt the noise levels of the original paper, and use Paths-2 for $N = 4$ and Paths-4 for $N = 8$. For the FLUX model, we use the stochastic sampler from Wang & Yu (2025). The detailed hyper-parameters are below in Table. 6:

Table 6: BFS implementation parameters

temperature	10
resampling interval	[20,40,80]
sampling steps	100
num seeds	4

E.1.1 ADDITIONAL RESULTS FOR THE BFS EXPERIMENTS

In this section, we provide additional results of the BFS experiments.

In the original implementation of DAS (Kim et al., 2025), the proposal transition kernel is biased with the verifier gradient $\tau = \mathcal{N}(\mathbf{x}_{t-1}; \mu_\theta(\mathbf{x}_t) + \lambda \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0:t}), \sigma_t)$, and include the log ratio in the resampling weights: $w_t^i = \log p_\theta(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i) - \log \tau(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i) + \lambda \log f(\mathbf{x}_t^i) - \lambda \log f(\mathbf{x}_{t-1}^i)$.

In Table 2, we disable all the gradients in global search methods for a fair comparison. Here we provide the results using the original implementation with gradients (DAS-grad) in Table 7. We tune the KL coefficient so that the relative magnitude of the reward divided by the KL coefficient remains consistent with the experiments in the original paper (Kim et al., 2025). We also evaluate our BFS method with the gradient-biased kernel (BFS-grad), where we use the KL coefficient from the DAS-grad method as the guidance strength, ensuring an identical transition kernel. From the results, we observe that both ImageReward and HPS scores benefit from the additional gradient guidance, with our BFS design enabling more efficient global exploration.

To validate the robustness of inference-scaling, we further evaluate the generated samples with Human Preference Score (Wu et al., 2023b), and provide visualizations in Fig. 6.

Model	N	BoN		DAS (w/o grad)		DAS-grad		BFS (w/o grad)		BFS-grad	
		ImageReward	HPS	ImageReward	HPS	ImageReward	HPS	ImageReward	HPS	ImageReward	HPS
SD v1.5	4	0.702 ± 0.057	0.264 ± 0.001	0.878 ± 0.028	0.265 ± 0.001	1.084 ± 0.052	0.269 ± 0.002	0.882 ± 0.029	0.265 ± 0.001	1.191 ± 0.041	0.271 ± 0.001
SD v1.5	8	0.896 ± 0.031	0.267 ± 0.001	1.052 ± 0.033	0.268 ± 0.001	1.197 ± 0.053	0.271 ± 0.001	1.087 ± 0.031	0.268 ± 0.001	1.302 ± 0.043	0.273 ± 0.002
SD XL	4	1.085 ± 0.013	0.273 ± 0.001	1.181 ± 0.023	0.275 ± 0.001	1.272 ± 0.047	0.277 ± 0.002	1.194 ± 0.024	0.275 ± 0.001	1.413 ± 0.038	0.278 ± 0.001
SD XL	8	1.198 ± 0.021	0.277 ± 0.001	1.265 ± 0.019	0.278 ± 0.001	1.485 ± 0.046	0.279 ± 0.001	1.291 ± 0.018	0.279 ± 0.001	1.532 ± 0.035	0.281 ± 0.001

Table 7: Additional BFS experiment results

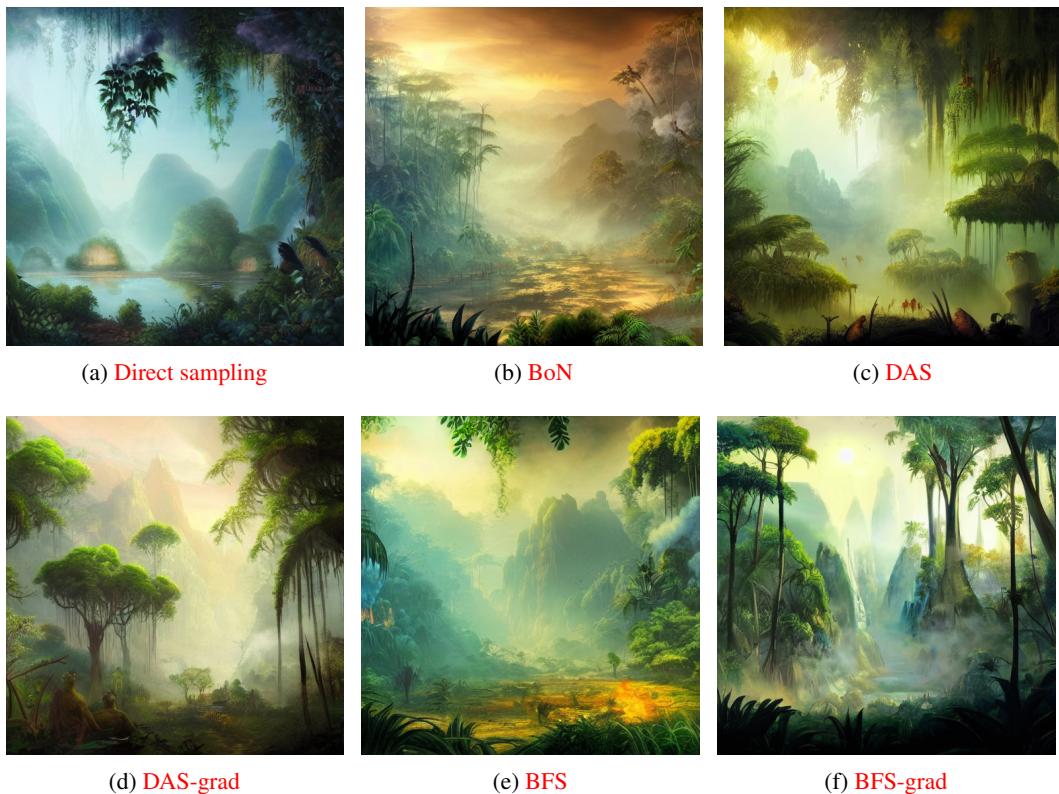


Figure 6: Visualizations for SD v1.5 generated samples, where direct sampling denotes sampling without inference-scaling, and the number of particles is N=4 for other methods. Prompt: a beautiful painting of the jungle in the morning with lots of smoke, fantasy art, matte painting.

1512
1513

E.2 TEXT-TO-IMAGE COMPOSITIONAL GENERATION WITH DFS

1514
1515
1516
1517

We use the SSD-1B model⁷ which is distilled from SDXL, and we use the default sampling configuration with 50 steps of DDIM sampler. For DFS and BFS, we evaluate at time steps $\{25, 35, 45\}$ and set the backtrack depth $\Delta_T = 25$. For BFS we additionally sweep the temperature in range $\{0.5, 1, 2, 4, 8\}$ and report the best performance.

1518
1519

We provide example visualizations in Fig. 7.

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
15301531
1532

(a) w/o inference scaling

(b) w/ inference scaling

1533

(c) Example from color dataset with prompt: a yellow book and a red vase

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543

(d) w/o inference scaling

(e) w/ inference scaling

1544
1545

(f) Example from texture dataset with prompt: a fabric hat and a glass mirror

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557

(g) w/o inference scaling

(h) w/ inference scaling

1558
1559

(i) Example from shape dataset with prompt: a round bagel and a square toaster

1560

Figure 7: **Example of inference-time scaling with CompBench** Above shows the example prompts from CompBench benchmark and images before and after inference scaling

1561

1562

1563

1564

1565

Comparison with SoP. Compared with SoP (Ma et al., 2025), our DFS adopts an adaptive backtracking schedule, which enables efficient quality-dependent exploration and full restarts to escape

⁷<https://huggingface.co/segmind/SSD-1B>

1566 low quality modes. We provide the additional experiment results in Fig. 8. For SoP, we follow the
 1567 original backtracking schedule, and the uses Paths-2 for low compute and Paths-4 for scaling up more
 1568 compute, following the insights of Ma et al. (2025). We use $\delta = 0.7$ for DFS.
 1569

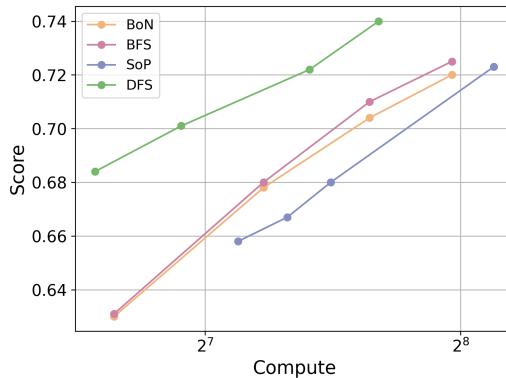


Figure 8: Comparison of DFS with SoP

E.3 LONG HORIZON MAZE PLANNING

Maze environment. For all our maze experiments we use the OGBench PointMaze environment (Park et al., 2024). We created our maze layout using the same protocol of Figure 5 in Marcucci et al. (2023)⁸, but with a smaller size of 20x20 cells. Dataset is collected following the protocol in OGBench (Park et al., 2024). We evaluate the model on the default task 1 of OGBench (Park et al., 2024), which is navigating from bottom left to top right. Empirically we discover that the diffusion model can perform well on short-horizon tasks without extra inference compute, but struggles heavily in the long horizon tasks.

Model Training. We train the model following diffuser (Janner et al., 2022), where we use a temporal U-Net to denoise the trajectory

$$\tau = \begin{bmatrix} s_1 & s_2 & \cdots & s_H \\ a_1 & a_2 & \cdots & a_H \end{bmatrix}.$$

Since our objective start and goal is more distant than trajectories in dataset, we sample at longer horizons than training, which is enabled by the temporal U-Net architecture. We train the model for 1.2M steps using the same configuration as Janner et al. (2022). Model details are below in Table. 8.

Table 8: Hyper-parameters for maze model

hidden dimension multipliers	[1,4,8,16]
training horizon	2000
sampling horizon	2800
training steps	1.2M
batch size	64
learning rate	1e-4

Inference. We found that the model performance saturates with 16 denoising steps, which we use for all our experiments. For all the data points we report the average success rate with over 40 samples.

For verifier design, we use the ground-truth maze layout, and calculate the violation of each point in the trajectory using the position coordinates. Specifically, if a point (x, y) is inside a maze wall box with center (c_x, c_y) and half-width d , then the point loss can be calculated as the minimum distance from the point to box walls:

$$L(x, y) = \min (x - (c_x - d), (c_x + d) - x, y - (c_y - d), (c_y + d) - y).$$

⁸<https://github.com/mpetersen94/gcs/blob/main/models/maze.py>

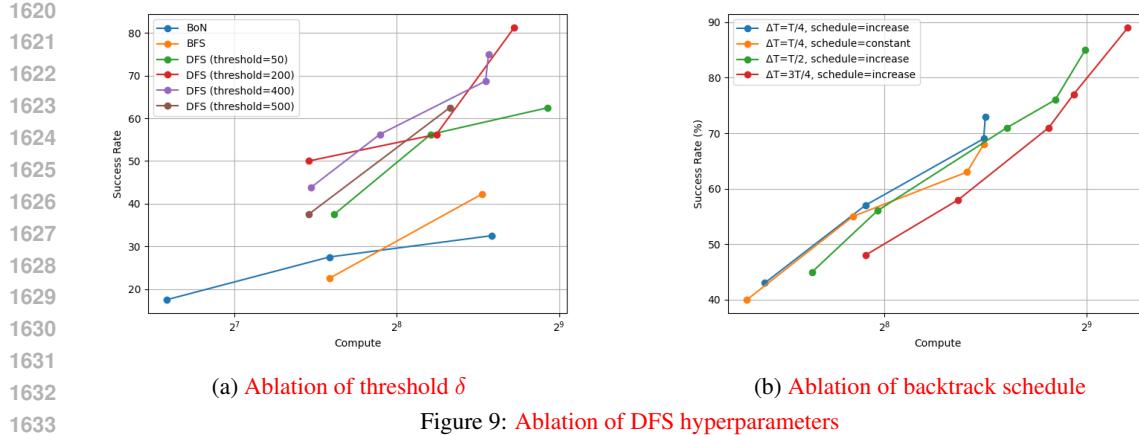


Figure 9: Ablation of DFS hyperparameters

and the total verifier score is computed as:

$$f(\tau) = \exp \left(- \sum_{i=1}^H L(x_i, y_i)^2 \right).$$

So if all the points are free of violation in the trajectory, then $f(\tau) = 1$. We point out that this does not indicate a successful plan as the connection between consecutive points $(x_i, y_i) \rightarrow (x_{i+1}, y_{i+1})$ may violate the maze layout, and using only the verifier function can not generate a successful plan.

For local search, we search the hyper-parameters $\bar{\rho}$ and $\bar{\mu}$ in Sec. C.5 with $\bar{\gamma} = 0$. For global search with BFS we evaluate at steps $\{12, 8, 4\}$, and for DFS we evaluate at $\{12, 11, \dots, 1\}$ with backtracking depth $\Delta_T = 4$. We also observe that increasing backtracking depth to 12 and evaluate at smaller time steps $\{4, 3, 2, 1\}$ helps to scale up the performance with more compute. The hyperparameter search results are below in Table 9 and Fig. 9

N	$\tau = 0.2$	$\tau = 0.005$	$\tau = 0.1$
2	27.5 ± 4.3	32.5 ± 1.1	31.2 ± 4.2
4	42.5 ± 5.2	48.1 ± 1.1	45.5 ± 2.3
8	67.6 ± 1.1	71.2 ± 2.2	70.1 ± 1.1

Table 9: Hyperparameter search for temperature τ in PointMaze BFS

E.4 OFFLINE RL

Background. Diffusion policy (Chi et al., 2023) is widely used for action generation in robot foundation models (Black et al., 2024; Liu et al., 2024). At inference time, policies can be guided by human trajectory constraints (Wang et al., 2022) or LLM-based value functions (Nakamoto et al., 2024). Exact diffusion sampling requires training a noise-dependent energy function (Lu et al., 2023), but this can degrade pretrained knowledge and demands additional data—often impractical in data-scarce robotic settings. In contrast, inference-scaling provides a more flexible approach, allowing seamless composition of pretrained diffusion policies with Q-functions without retraining.

Setup. We follow the setup in Lu et al. (2023), and we directly use their pretrained diffusion model and Q-function, omitting the time-dependent energy function. The diffusion model was trained to generate action a given state s , and we sample with 15 steps of DDIM.

For hyper-parameter search, we disable the implicit dynamics and set $\bar{\gamma} = 0$, and use the ‘increase’ schedule for ρ and μ . For strength parameters $\bar{\rho}$ and $\bar{\mu}$, we first search for the right magnitude. Then, we also follow Lu et al. (2023) and search with step size $\{1, 2, 3, 5, 8, 10\}$ within the magnitude. Same as Lu et al. (2023), we use 5 different seeds with 10 samples per seed for each task. To avoid overfitting, we use different seeds for parameter search and evaluation. We report the hyper-parameters and the performance within the parameter-searching dataset and evaluation dataset.

1674 For global search, we use 4 particles for Medium-Expert and Medium datasets, and 2 particles for
 1675 Medium-Replay datasets. Since the number of particles are small, we do not carry out BFS or DFS
 1676 methods and simply use Best-of-N. We point out that the number of particles we use are much smaller
 1677 than the 50 particles in Wang et al. (2022) and the 32 particles in Chen et al. (2023), highlighting the
 1678 effectiveness of local search.

1679 **Baseline.** We compare our method to a variety of baselines, including traditional state-of-the-art
 1680 methods IQL (Kostrikov et al., 2021) and diffusion-based policies such as diffuser (Janner et al.,
 1681 2022), decision-diffuser (DD) (Ajay et al., 2022), Diffusion-QL (D-QL) (Wang et al., 2022), SfBC
 1682 (Chen et al., 2023) and QGPO (Lu et al., 2023). We directly take the numbers from Lu et al. (2023).
 1683

1684 Among the baseline diffusion-based methods, both Diffuser (Janner et al., 2022) and QGPO (Lu
 1685 et al., 2023) requires training a noise-dependent guidance function, and D-QL (Wang et al., 2022)
 1686 requires updating the diffusion model during training using the Q-function iteratively, which needs to
 1687 back-propagate through the diffusion sampling chain, introducing high computation and memory
 1688 overheads. DD (Ajay et al., 2022) uses classifier-free guidance (Ho & Salimans, 2022) to generate
 1689 high-return trajectories that requires training a return-conditional model on labeled datasets, which
 1690 can be expensive to obtain in robotics where only demonstration data is available (Liu et al., 2024).

1691 For our reproduced baselines, TFG (Ye et al., 2024) is allowed up to 8 recurrence steps and DAS
 1692 (Kim et al., 2025) up to 16 particles, resulting in a hyperparameter space and computational cost
 1693 approximately twice that of our method. We sweep across all configurations for the baseline methods
 1694 and report the best performance. For fair comparison we evaluate our method on different seeds used
 1695 for hyperparameter search, with the results shown in Table. 10.

Dataset	Environment	particles	N_{recur}	N_{iter}	$\bar{\rho}$	$\bar{\mu}$	Eval set	Search set
Medium-Expert	HalfCheetah	4	1	1	0.008	0.02	93.9 ± 0.3	94.3 ± 0.5
Medium-Expert	Hopper	4	1	4	0.001	0.00	104.4 ± 3.1	109.4 ± 5.2
Medium-Expert	Walker2d	4	1	1	0.005	0.10	111.4 ± 0.1	111.4 ± 0.2
Medium	HalfCheetah	4	1	4	0.003	0.05	54.8 ± 0.1	54.8 ± 0.2
Medium	Hopper	4	4	4	0.003	0.02	99.5 ± 1.7	100.1 ± 0.1
Medium	Walker2d	4	1	6	0.003	0.08	86.5 ± 0.2	85.2 ± 3.2
Medium-Replay	HalfCheetah	2	1	6	0.005	0.03	47.8 ± 0.4	48.4 ± 0.1
Medium-Replay	Hopper	2	1	1	0.003	0.20	97.4 ± 4.0	100.4 ± 2.2
Medium-Replay	Walker2d	2	2	4	0.003	0.03	79.3 ± 9.7	83.2 ± 2.8
Average							86.1	87.5

1707 Table 10: Hyper-parameters on D4RL locomotion tasks with test-time scaling. We report the performance on
 1708 hyper-parameter search dataset and the evaluation dataset, highlighting the best number.
 1709

1712 E.4.1 OFFLINE POLICY DISTILLATION

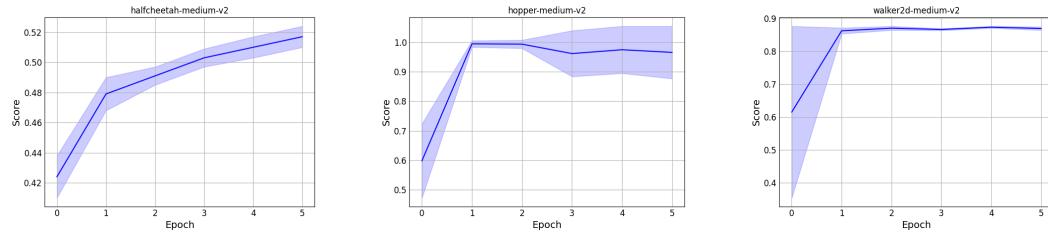
1714 **Setup.** We adopt the Medium dataset from D4RL (Fu et al., 2020) and the corresponding pretrained
 1715 models from Lu et al. (2023) as in the previous section. For the dataset, we replace the action of each
 1716 state with the sample generated with test-time search (TTS), using the hyper-parameters in Table. 10.
 1717 We then finetune the models on the modified dataset with early-stopping. For evaluation of finetuned
 1718 models, we use 5 different seeds different from the seed used during training, with 10 samples per
 1719 seed. During evaluation, we sample from the finetuned diffusion model directly, without the presence
 1720 of any verifier. Detailed training hyper-parameters are below in Table. 11.

epochs	5
learning rate	1e-4
batch size	16384
eval every epoch	1
sampling steps	15

1722 Table 11: Hyper-parameters for policy distillation

1728 For the Baseline DPPO (Ren et al., 2024), we directly adopt the numbers reported in their paper,
 1729 which uses the same Medium dataset and models as ours.

1730 The training curves for policy finetuning are shown in Fig. 10. In both Hopper and Walker2d
 1731 environments, performance converges rapidly, within a single epoch over the dataset. Notably,
 1732 our method is significantly faster than online finetuning approaches, as it does not require online
 1733 data collection. Training one epoch on the full Medium dataset takes only about 4 minutes on a
 1734 single Nvidia RTX 4090 GPU, including the time for data generation via inference-scaling sampling,
 1735 whereas DPPO requires several hours to reach convergence.



1737
 1738 Figure 10: Training curves for policy distillation
 1739
 1740
 1741
 1742
 1743

1744 E.5 MITIGATING REWARD HACKING WITH DOUBLE VERIFIER

1745 **Experimental setup.** We evaluate the proposed double-verifier on the challenging conditional
 1746 ImageNet generation task, generating target-class samples from an unconditional model guided by a
 1747 pretrained classifier. Specifically, we use two independent classifiers as verifiers⁹¹⁰ for global and
 1748 local search. We report the Fréchet Inception Distance (FID) computed on 256 generated samples
 1749 against the corresponding ImageNet class, and measure class accuracy using a separate classifier¹¹.
 1750 Since we only apply the global verifier sparsely, double-verifier introduces negligible computational
 1751 costs. For local search we search the hyper-parameters with step size [1,2,4,8,10], and for global
 1752 search with BFS, we search the temperature in [1.0,2.0,4.0]. For MSP score, we adopt a different
 1753 imangenet classifier¹².

1754 For the MSP score (Hendrycks & Gimpel, 2016), it is defined as:
 1755

$$1756 \text{MSP}(\mathbf{x}) = \max_c p(c|\mathbf{x})$$

1757 Thus, higher MSP score indicates higher confidence that the image belongs to one of the classes from
 1758 the dataset, which is less OOD.

1759 **Visualizations.** Here we provide some visualizations of adversarial reward hacking and the effectiveness
 1760 of our double-verifier approach. As shown in Fig. 11, we can see the adversarial patches that
 1761 exploits the weakness of a single verifier, making the verifier to predict the images as belonging to
 1762 the wrong class.

1763 F WALL-CLOCK TIME ANALYSIS

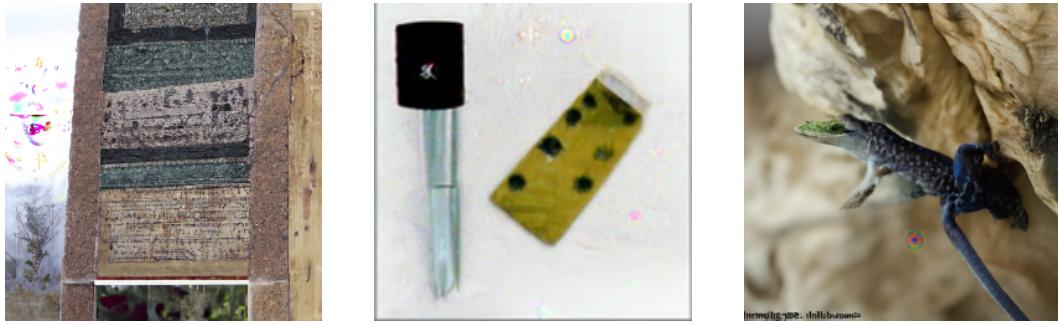
1764 We conduct a wall-clock time analysis of our methods on the class-guided ImageNet generation task,
 1765 measuring the average per-sample runtime when generating 10 samples under similar GPU utilization
 1766 on a single RTX 4090. In DAS Kim et al. (2025) they only compute the verifier gradient while in our
 1767 local search we additionally incorporates the recurrence in the Langevin MCMC step. We observe
 1768 that wall-clock time is primarily dominated by the number of NFEs. Local search and DAS (Kim
 1769 et al., 2025) is slower due to the additional gradient computations, while DFS is slightly slower
 1770 because it generates particles sequentially, preventing full utilization of GPU batch parallelism.

1771⁹<https://huggingface.co/google/vit-base-patch16-224>

1772¹⁰<https://huggingface.co/google/vit-base-patch16-384>

1773¹¹<https://huggingface.co/facebook/deit-small-patch16-224>

1774¹²<https://huggingface.co/facebook/deit-base-patch16-224>



(a) Adversarial example with 0.96 class validity predicted by the local search verifier
 (b) Adversarial example with 0.95 class validity predicted by the local search verifier
 (c) Adversarial example with 0.98 class validity predicted by the local search verifier

Figure 11: **Examples of adversarial samples generated by gradient over-optimization** Here we provide the adversarial samples generated by gradient guidance on class 222 (kuvasz). Although the samples have high probability of belonging to the target class as predicted by the verifier, they are caused by adversarial reward hacking.

Method	Settings	NFEs of diffusion model	Seconds
Direct sampling	N=1	100	14
DAS	N=1, 1 gradient step	100	26
Local search	N=1, 1 additional local search step	200	40
Local search	N=1, 2 additional local search steps	300	66
BoN	N=4	400	55
BFS	N=4	400	56
DAS	N=4, 1 gradient step	400	106
DFS	budget=4	210	29
BoN	N=4, 2 additional local search steps	1200	260
BFS	N=4, 2 additional local search steps	1200	261
DFS	budget=4, 2 additional local search steps	620	136

Table 12: Wall-clock time analysis

G LLM USAGE STATEMENT

In this paper, LLMs are used exclusively for grammar checks, with no changes made to any technical components.