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ABSTRACT

Training large scale neural networks typically involves sharing the gradients be-
tween all accelerators, which necessitates specialized high-speed interconnects.
Taking cues from signal processing, we show that it is not necessary to share or
synchronize the full optimizer states and model parameters during training. By
decoupling the momentum and allowing divergence in the optimizer states across
accelerators, it is possible to even improve convergence compared to previous state
of the art optimizers. From this, we introduce Decoupled Momentum, a fused
optimizer and data parallel algorithm (DeMo) that reduces the communication re-
quirements by several orders of magnitude, potentially enabling future training of
large neural networks on slow internet bandwidths with heterogeneous network-
ing hardware. Furthermore, our method is agnostic to the network topology and
neural network architecture, and supports scalable clock-synchronous distributed
training with negligible compute and memory overhead. Empirically, we show
that models trained with DeMo match or surpass the performance of equal models
trained with AdamW, entirely bypassing the need for high-speed interconnects for
pre-training large scale foundation models.

1 INTRODUCTION

Large scale neural networks, particularly language models, are characterized by high parameter
counts. Indeed, it is not uncommon to talk about models with trillions of parameters. To train these
models, multiple accelerators (e.g. GPUs, TPUs) must be used to make training time tractable.
There are multiple strategies to split the training among these accelerators, such as Distributed Data
Parallelism (Li et al., 2020) and Fully Sharded Data Parallelism (Zhao et al., 2023). These techniques
work by having the accelerators split the weights and synchronize the gradients (sometimes multiple
times per step), the size of which is on the order of the size of the model itself.

Gradient synchronization between accelerators necessitates the use of specialized high-speed in-
terconnects (e.g. Infiniband). These interconnects are expensive localized networking topologies,
which requires that all accelerators be present in the same data center. However, if the amount of
data needed to be synchronized could be massively reduced, these requirements could be relaxed.

In this paper we show that the gradients and optimizer states during training of many large scale
neural networks are redundant and highly compressible. Armed with this knowledge, we develop
DeMo, an optimizer that leverages this compressibility to reduce the communication needs between
accelerators by several order of magnitudes. To evaluate DeMo, we train a standard LLM architec-
ture (decoder-only Transformer (Vaswani, 2017)) using the baseline optimizer (AdamW (Loshchilov
& Hutter, 2019)) on traditional high-speed interconnect as well as with DeMo under bandwidth con-
strained scenarios, and show that the models trained with DeMo meet or exceed the performance of
their vanilla counterparts.

2 BACKGROUND AND RELATED WORK

To mitigate the communication overhead in distributed training, a variety of strategies have been
employed over the years. The most effective techniques for centralized and clock-synchronous
training can be sorted into three broad categories:
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• Quantization and sparsification of gradients.

• Low rank projection of gradients.

• Federated averaging (also known as Local-SGD).

It is important to note that this work will not consider asynchronous methods, decentralized methods
or any method that requires the use of specific network topologies or neural network architectures.
Such methods constitute a distinct class of techniques; they introduce considerable complexity in
analysis, are not generalizable to all use cases, and involve numerous factors that are beyond the
scope of this study. Rather, we will restrict our focus to the simplest and most generalizable scenario:
a centralized and clock-synchronous distributed optimizer.

2.1 QUANTIZATION AND SPARSIFICATION

Previous work, such as (Wang et al., 2023), focuses mainly on the compressibility of the gradients
as-is, within the assumption that the gradient values are uncorrelated and tolerant to quantization
and sparsification errors. Of note, the compression gain that can be obtained from quantization
is bounded – a 16-bit gradient can only be at most compressed down to one bit. The gain from
sparsification is unbounded, but sparsifiction can only achieve limited compression ratios without
hampering training, and is therefore best suited for fine-tuning existing models.

2.2 LOW RANK PROJECTION

It was shown in (Zhao et al., 2024) that the gradients of LLMs are very low rank during training.
As such, a Singular Value Decomposition (SVD) can be used to find a low rank projection matrix
that preserves the most significant directions of the gradient, and the model can be optimized using
only the projected gradients. This drastically reduces the size of the gradients and optimizer states
that have to be stored and transmitted to other accelerator nodes. A disadvantage of this approach
is that finding the SVD of the gradients of a very large model is expensive, and the relatively large
projection matrix must be shared or recomputed across all nodes. This overhead can be reduced
by not recomputing the SVD and projection matrices every single step, but it remains a significant
bottleneck that only gets worse as the model size increases. However, as this method achieves
convergence1 parity with full rank optimizers when pre-training LLMs, it teaches us a very important
and useful lesson: that compression using a low rank projection is better than sparsity and should be
investigated further.

2.3 FEDERATED AVERAGING

In (McMahan et al., 2017), federated averaging is used to reduce the amount of communication
needed between nodes during a distributed training run. Essentially, each accelerator node trains
independently for a fixed number of steps, then synchronizes the accelerator nodes by averaging
their weights, which means that the gradient and optimizer states do not need to be communicated
for every single step. However, at synchronization this method still requires sharing the full param-
eter weights across every node, which has the same order of bandwidth cost as unmodified training.
Furthermore, increasing the number of steps between synchronizations hurts convergence, exchang-
ing one training speed bottleneck with another. In one extreme, the training iterations run very fast
because there is little communication between the nodes, but convergence is very slow. In the other
extreme, we can have convergence parity with traditional optimizers, but the time spent synchroniz-
ing the parameters becomes significant, so on average one iteration will be prohibitively slow. The
optimal point is somewhere in the middle. In practice, federated averaging slows down training by a
non-negligible factor and does not scale well with respect to the number of accelerator nodes, which
makes it difficult to find the optimal hyper-parameters2 for specific training runs.

1Rate of loss decrease per iteration, or per minibatch of data.
2A lot of extraneous variables unrelated to the optimizer itself will affect the optimal hyper-parameters,

such as (but not exclusively), the number of accelerator nodes, the network bandwidth, the neural network
architecture, the batch sizes, etc. In most cases, federated averaging only works on a case-by-case basis, and is
not suitable as a drop-in optimizer replacement.
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3 METHODOLOGY

Rather than relying on ad-hoc modifications of existing optimization algorithms, we propose in
this work a novel and general decoupled momentum optimization algorithm that allows and utilizes
different optimizer states between accelerators.

3.1 ASSUMPTIONS

To formulate our method, we made three crucial assumptions that, while currently lacking theoretical
proof, show indications of validity based on empirical evidence.

Conjecture 3.1 Fast moving components of the momentum are highly spatially auto-correlated,
most of the energy of the momentum is concentrated in a few principal components.

Conjecture 3.2 Fast moving components of the momentum have low temporal variance and should
be used to update the parameters immediately, whereas slow moving components of the momentum
have high temporal variance and should be smoothed out temporally and be used over a longer
period of time.

Conjecture 3.3 Slow moving components of the momentum are very important for long-term con-
vergence, they should not be filtered out or be discarded.

We will not formally prove any of these conjectures in this work, but the optimizer that we show
was made with all of these assumptions in mind. We hope that by proposing this novel method, it
can help develop these ideas further in future research.

3.2 ALGORITHM

Starting from the SGD with Momentum optimization algorithm, we first remove the all-reduce op-
eration on the gradients g̃k, decoupling the momentum m in each accelerator node. Then, after
updating the momentum, we extract and remove from it the fast components q, which can be syn-
chronized very efficiently with a minimal amounts of data being transmitted. The pseudo-code of
the algorithm is described in Algorithm 1.

Algorithm 1 Decoupled Momentum Optimization
Input: learning rate η, decay β ∈ (0, 1), parameters xt, momentum mt, hyperparameters s, k
g̃t ← LocalStochasticGradient(xt) ▷ Get local gradient g without all-reduce
mt ← βmt + g̃t ▷ Accumulate gradient in momentum m
qt ← ExtractFastComponents(mt, s, k) ▷ Extract fast components q from m
mt+1 ← mt − qt ▷ Remove q from m
Qt ← Synchronize(qt) ▷ Synchronize q across all accelerators
xt+1 ← xt − ηQt ▷ Parameter update step

3.2.1 EFFICIENT EXTRACTION OF FAST MOVING COMPONENTS

In order for our method to work, we first have to decorrelate, separate and extract the principal
components from the momentum during training. Assuming 3.1 is true, one way would be to apply
a spatial Kosambi–Karhunen–Loève Transform (KLT) to the momentum in order to separate the
faster moving components from the slower ones. However, computing the KLT on the momentum
of a large neural network with billions or even trillions of parameters is prohibitively expensive.

Alternatively, taking cues from signal processing work, the Discrete Cosine Transform (DCT) can
act as an approximation of the KLT, if used for the purpose of energy compaction, as they are
both decorrelating transforms. It is shown that for highly spatially correlated signals, the DCT
approximation approaches the KLT (Roma & Sousa, 2011). While the DCT approximation is not
perfect, it has many advantages that cannot be overlooked. Firstly, the DCT is highly parallelizable
and is extremely fast to compute on modern GPUs. Furthermore, it being a separable transform
ensures that its computational complexity scales linearly for 2D, 3D or even n-dimensional signals.
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Finally, the DCT has a fixed orthogonal basis, which means it is possible to perfectly decode a DCT-
encoded signal without any auxiliary information; the transform matrix and its inverse are known in
advance.

If 3.1 is true, we can assume that the DCT would be a good approximation to the KLT for extracting
the fast moving components from our momentum, as the momentum is assumed to be spatially
auto-correlated. Empirically, we found that using the DCT alone is enough to extract a very good
approximation of the principal components.

During training, we treat each momentum tensor as a d-dimensional auto-correlated signal, and
we chunk each momentum tensor of shape (n0, n1, ..., nd−1) into contiguous chunks with shape
(s0, s1, ..., sd−1), where each si is a divisor of ni, and apply a separable d-dimensional decorre-
lating DCT transform on all chunks. Next, we find the top-k DCT frequencies with the biggest
amplitudes in each chunk and treat them as if they were the principal components of the momentum.
Both (s0, s1, ..., sd−1) and k are hyperparameters and control the size of the effective ”rank” of the
frequencies that we extract.

After extracting the highest energy frequencies, we are left with two tensors of size
(n0

s0
, n1

s1
, ..., nd−1

sd−1
, k), one tensor representing the discrete frequency bins as integer indices, the other

representing the amplitudes as a floating point number.

Effectively what we have done here is create a fast transform p that tries to maximize ”energy
compaction”. This way, most of the ”movement” described by the momentum can be compressed
down to fewer numbers without resorting to sparsity or quantization, which is a similar idea to but
is not exactly the same as a low rank projection. For ease of reference, we will define the transform
p here as follows, where s is the vector representing the chunk sizes for each dimension of mt:

m̃t
freq, m̃t

ampl = p(mt, s, k) (1)

We can reverse this transform by first scattering both frequency and amplitude tensors onto a sparse
tensor chunked the same way as before, then apply the inverse DCT transform, obtaining something
close to the “fast moving components” q of the original momentum:

qt = p−1(m̃t
freq, m̃t

ampl) (2)

The next step’s momentum is then set to be equal to the residual, which represents the ”slow moving
components” of the original momentum:

mt+1 = mt − qt (3)

Note that because the principal components are removed from the momentum at each step, the
momentum decay rate should be lowered in general. For example, β = 0.999 would be a more
reasonable value for pre-training a LLM, instead of the usual β = 0.9.

Also, since the DCT is computed on relatively small static chunks of shape (s0, s1, ..., sd−1), the
required transition matrices can be pre-computed in advance and reused at each iteration, which
makes the memory and computational overhead almost negligible if implemented correctly.

3.2.2 LOW BANDWIDTH SYNCHRONIZATION

After extracting m̃t
freq, m̃t

ampl from the momentum mt, we can then perform an all-gather on the
last dimension of the extracted bins. This allows us to perform the same inverse DCT operation by
scattering both frequency and amplitude tensors the same way as before, but this time we average
the amplitude of any duplicate frequencies. If s and k are chosen appropriately, the two tensors
m̃t

freq, m̃t
ampl can be orders of magnitude smaller than the size of the model, which allows for a

communications efficient way of synchronizing the update step across all accelerators.

Given 3.2 and 3.3, here we are effectively averaging all of the fast moving components of the mo-
mentum at each step, while letting the slow moving components be decoupled from each-other. If
we assume that slow moving components in the gradient are high variance, they will be accumulated
over time in the momentum. As such, slow moving components can slowly overtake fast moving
components in strength, which is then transmitted and removed from the momentum. From this,
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we can conclude that slow moving components are gradually transmitted alongside the immediate
transmission of fast components.

Finally, the gradient descent step is described here, where η is the learning rate and Qt the fast
moving components of the momentum accumulated from all accelerators:

θt+1 = θt − ηQt (4)

3.3 SIGNUM

In order to improve convergence when training LLMs, a signum (Bernstein et al., 2018) variant of
DeMo can be used instead, where the gradient descent step is replaced by:

θt+1 = θt − η sign(ηQt) (5)

Since the second moment is not computed here, this variant of DeMo uses less memory for optimizer
states as compared to AdamW.

4 EXPERIMENTAL RESULTS

We performed experiments on the signum variant of DeMo using OLMo (Groeneveld et al., 2024),
a highly reproducible large language model pre-training framework. Adapting OLMo to use DeMo
consisted only of including the DeMo optimizer class in the training code. The only additional
change needed was disabling the gradient synchronization in PyTorch Distributed Data Paral-
lelism (Li et al., 2020). We have publicly released the modified OLMo code as well as the con-
figuration files for all experiments.

Our experiments used the Dolma v1.53 dataset for pre-training. As a baseline we used the publicly
released OLMo-1B4, a standard decoder-only Transformer model consisting of 1.18 billion param-
eters using the AdamW optimizer (β1 = 0.9, β2 = 0.95, weight decay = 0.1) as compared to using
the DeMo optimizer (β = 0.999).

Due to constrained compute availability we trained models for 100 billion total tokens rather than
the full 3 trillion tokens in Dolma. As a secondary baseline and for complete comparability we
re-trained OLMo-1B with these same 100 billion tokens and the learning rate schedule adjusted
accordingly. We also repeated the experiments on a smaller 300M model identical to the 1B except
halving the model’s hidden size. All experiments were performed on 64 H100 GPUs with a global
batch size of 2048 with a sequence length 2048 tokens, resulting in a per-GPU batch size of 8.

Figure 1 shows the cross-entropy training loss of DeMo to the reference AdamW model for vari-
ous values of the hyperparameters k and fixed shape5 of s = 64. Additionally we report the final
training loss, per-GPU communication requirements, and downstream evaluation scores of the Hel-
laswag (Zellers et al., 2019), ARC-Easy (Clark et al., 2018), and PiQA (Bisk et al., 2020) tasks for
these configurations as well as s = 128 in Table 1.

5 CONCLUSION

In conclusion, we have shown that our proposed DeMo optimization algorithm can act as a drop-in
replacement to AdamW when training LLMs, with no noticeable slowdown in convergence while
reducing communication requirements by several orders of magnitude. The signum variant of DeMo
is more memory efficient than AdamW and has negligible compute overhead if we use small pre-
computed DCT transition matrices. Finally, the LLMs pre-trained with DeMo have equivalent or
better scores on multiple standard benchmarks compared to their equivalents trained with AdamW.

3https://huggingface.co/datasets/allenai/dolma/blob/main/urls/v1_5.txt
4https://huggingface.co/allenai/OLMo-1B
5For brevity, s = 64 means a shape of (64, 64) for a 2D parameter tensor and (64, ..., 64) for a n-D tensor.
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Figure 1: Convergence of training cross-entropy loss across model sizes trained on 100B tokens of
reference AdamW and DeMo with s = 64 for various values of k hyperparameter
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Figure 2: Final loss and downstream evaluation scores of model sizes trained on 100B tokens for
various values of the k hyperparameter. The red line represents the reference AdamW training run.

6 REPRODUCIBILITY STATEMENT

As described in Section 4 we chose the OLMo framework and references to maximize reproduca-
bility and comparability of our experiments. We have provided as publicly available supplementary
material a standalone PyTorch implementation of DeMo, as well as the minimal patch to OLMo
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Model Final Loss ↓ Hellaswag ↑ ARC-Easy ↑ PIQA ↑ Data Tx ↓
acc norm acc acc norm MB/step

DeMo 300M
s = 64, k = 32 2.87 0.37 0.46 0.67 29.9
s = 64, k = 16 2.87 0.38 0.50 0.67 14.9
s = 64, k = 8 2.88 0.38 0.47 0.67 7.49
s = 64, k = 4 2.89 0.37 0.47 0.67 3.74
s = 64, k = 2 2.93 0.36 0.46 0.65 1.87
s = 64, k = 1 2.97 0.35 0.45 0.65 0.93

s = 128, k = 32 2.88 0.37 0.50 0.66 7.49
s = 128, k = 16 2.90 0.37 0.47 0.67 3.74
s = 128, k = 8 2.93 0.36 0.49 0.66 1.87
s = 128, k = 4 2.98 0.35 0.46 0.64 0.93
s = 128, k = 2 3.06 0.33 0.45 0.65 0.46
s = 128, k = 1 3.16 0.31 0.45 0.63 0.23

AdamW-DDP 300M 2.98 0.35 0.46 0.65 636.9

DeMo 1B
s = 64, k = 32 2.63 0.48 0.55 0.70 110.32
s = 64, k = 16 2.63 0.47 0.53 0.70 55.16
s = 64, k = 8 2.64 0.47 0.52 0.69 27.58
s = 64, k = 4 2.67 0.45 0.52 0.70 13.79
s = 64, k = 2 2.71 0.44 0.51 0.69 6.89
s = 64, k = 1 2.76 0.41 0.52 0.69 3.44

s = 128, k = 32 2.65 0.46 0.53 0.69 27.58
s = 128, k = 16 2.67 0.46 0.50 0.70 13.79
s = 128, k = 8 2.72 0.44 0.52 0.68 6.89
s = 128, k = 4 2.76 0.41 0.50 0.67 3.44

AdamW-DDP 1B 2.73 0.43 0.51 0.68 2416.6

Table 1: Results of training loss, downstream evaluation scores, and per-GPU communication re-
quirements of the model sizes and reference trained on 100B tokens

and configuration files used for the experiments. We do this in hopes of encouraging independent
reproduction and improvement of our method.
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