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Abstract

The recent success of general-domain large001
language models (LLMs) has significantly002
changed the natural language processing003
paradigm towards a unified foundation model004
across domains and applications. In this005
paper, we focus on assessing the perfor-006
mance of GPT-4, the most capable LLM so007
far, on the text-based applications for radiol-008
ogy reports, comparing against state-of-the-009
art (SOTA) radiology-specific models. Explor-010
ing various prompting strategies, we evaluated011
GPT-4 on a diverse range of common radiology012
tasks and we found GPT-4 either outperforms013
or is on par with current SOTA radiology mod-014
els. With zero-shot prompting, GPT-4 already015
obtains substantial gains (≈ 10% absolute im-016
provement) over radiology models in tempo-017
ral sentence similarity classification (accuracy)018
and natural language inference (F1). For tasks019
that require learning dataset-specific style or020
schema (e.g. findings summarisation), GPT-4021
improves with example-based prompting and022
matches supervised SOTA. Our extensive er-023
ror analysis with a board-certified radiologist024
shows GPT-4 has a sufficient level of radiol-025
ogy knowledge with only occasional errors in026
complex context that require nuanced domain027
knowledge. For findings summarisation, GPT-028
4 outputs are found to be overall comparable029
with existing manually-written impressions.030

1 Introduction031

Recently, the emergence of large language mod-032

els (LLMs) has pushed forward AI performance in033

many domains; with many GPT-4 (OpenAI, 2023)034

powered applications achieving and even surpass-035

ing human performance in many tasks (Bubeck036

et al., 2023; Nori et al., 2023). There is a shift in037

paradigm towards using a unified general-domain038

foundation LLM to replace domain- and task-039

specific models. General-domain LLMs enable040

a wider range of customised tasks without the need041

to extensively collect human labels or to perform042

specialised domain training. Also, with off-the- 043

shelf prompting, applying LLMs is easier than the 044

traditional training pipeline for supervised models. 045

While contemporary studies (Nori et al., 2023; 046

Ranjit et al., 2023; Bhayana et al., 2023a) have 047

started to explore the use of GPT-4 in the clinical 048

domain, the readiness of GPT-4 in the radiology 049

workflow remains to be rigorously and systemati- 050

cally tested. In this study, we set out the following 051

research questions: (1) How can we evaluate GPT- 052

4 on its ability to process and understand radiology 053

reports? (2) How can we apply common prompt- 054

ing strategies for GPT-4 across different radiology 055

tasks? (3) How does GPT-4 compare against SOTA 056

radiology-specific models? 057

To answer these questions, we established a rig- 058

orous evaluation framework to evaluate GPT-4 on a 059

diverse range of common radiology tasks including 060

both language understanding and generation. The 061

evaluation covers sentence-level semantics (natural 062

language inference, sentence similarity classifica- 063

tion), structured information extraction (including 064

entity extraction, disease classification and disease 065

progression classification), and a direct application 066

of findings summarisation. We explored various 067

prompting strategies including zero-shot, few-shot, 068

chain-of-thought (CoT)(Wei et al., 2022), example 069

selection (Liu et al., 2022), and iterative refinement 070

(Ma et al., 2023), and we further experimented 071

with adding self-consistency (Wang et al., 2023) 072

and asking GPT-4 to defer handling uncertain cases 073

to improve the reliability of GPT-4. For each task, 074

we benchmarked GPT-4 with prior GPT-3.5 mod- 075

els (text-davinci-003 and ChatGPT) and the re- 076

spective state-of-the-art (SOTA) radiology models. 077

Apart from reporting metric scores, we performed 078

extensive qualitative analysis with a board-certified 079

radiologist to understand the model errors by cat- 080

egorising them as ambiguous, label noise, or gen- 081

uine model mistakes. We highlight the particular 082

importance of qualitative analysis for open-ended 083
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generation tasks such as findings summariastion084

where GPT-4 may provide alternative solutions.085

To sum up, our key contributions and findings086

(in italics) are:087

1. Evaluation Framework: We proposed an088

evaluation and error analysis framework to089

benchmark GPT-4 in radiology. Collaborat-090

ing with a board-certified radiologist, we pin-091

pointed the limitations of GPT-4 and the cur-092

rent task paradigms, directing future evalua-093

tion pursuits to tackle more intricate and chal-094

lenging real-world cases and to move beyond095

mere metric scores.096

GPT-4 shows a significant level of radiology097

knowledge. The majority of detected errors098

are either ambiguous or label noise, with a099

few model mistakes requiring nuanced domain100

knowledge. For findings summarisation, GPT-101

4 outputs are often comparable to existing102

manually-written impressions.103

2. Prompting Strategies: We explored and es-104

tablished good practices for prompting GPT-4105

across different radiology tasks.106

GPT-4 requires minimal prompting (zero-shot)107

for tasks with clear instructions (e.g. sentence108

similarity). However, for tasks needing com-109

prehension of dataset-specific schema or style110

(e.g. findings summarisation), which are chal-111

lenging to articulate in instructions, GPT-4112

demands advanced example-based prompting.113

3. GPT-4 vs. SOTA: We compared GPT-4 per-114

formance with task-specific SOTA radiology115

models for understanding and validating the116

paradigm shift towards a unified foundation117

model in the specialised domains.118

GPT-4 outperforms or matches performance119

of task-specific radiology SOTA.120

2 Related Work121

There have been extensive efforts to benchmark and122

analyse LLMs in the general-domain. Liang et al.123

(2022) benchmarks LLMs across broad NLP sce-124

narios with diverse metrics. Hendrycks et al. (2021)125

measures LLMs’ multitask accuracy across disci-126

plines. Zheng et al. (2023) explores using LLMs127

as judge for open-ended questions. Bubeck et al.128

(2023) further tests GPT-4’s capabilities beyond129

language processing towards general intelligence130

(AGI), exploring tasks such as mathematical prob- 131

lem solving and game playing. Many other studies 132

focus on testing specific capabilities such as rea- 133

soning from LLMs (Liu et al., 2023b; Espejel et al., 134

2023). 135

The evaluation of GPT-4 has also begun to gar- 136

ner interest in the medical field. For example, Lee 137

et al. (2023) discusses the potential advantages and 138

drawbacks of using GPT-4 as an AI chatbot in the 139

medical field. Cheng et al. (2023) investigates pos- 140

sible applications of GPT-4 in biomedical engineer- 141

ing. Nori et al. (2023) evaluates GPT-4 for medical 142

competency examinations and shows GPT-4 perfor- 143

mance is well above the passing score. There have 144

also been a few recent studies that evaluate GPT-4 145

in the radiology domain: Bhayana et al. (2023a,b) 146

show that GPT-4 significantly outperforms GPT-3.5 147

and exceeds the passing scores on radiology board 148

exams. Other studies have shown great potential 149

from GPT-4 in various radiology applications such 150

as simplifying clinical reports for clinical education 151

(Lyu et al., 2023), extracting structures from radiol- 152

ogy reports (Adams et al., 2023), natural language 153

inference (NLI) (Wu et al., 2023b), and generating 154

reports (Ranjit et al., 2023). While most of these 155

studies focus on a specific application, our study 156

aims for an extensive evaluation to compare GPT-4 157

against SOTA radiology models, covering diverse 158

tasks and various prompting techniques. 159

Beyond prompting GPT-4, continued efforts are 160

being made to adapt LLMs to the medical domain 161

via fine-tuning. Med-PaLM and Med-PaLM-2 162

(Singhal et al., 2022, 2023) improve over PaLM 163

(Chowdhery et al., 2022) and PaLM-2 (Anil et al., 164

2023) with medical-domain fine-tuning. Yunxiang 165

et al. (2023) and Wu et al. (2023a) further fine-tune 166

the open-source LLaMA model (Touvron et al., 167

2023) with medical-domain data. Van Veen et al. 168

(2023) adapts LLMs to radiology data with param- 169

eter efficient fine-tuning. While these models offer 170

lightweight alternatives, our study focuses on GPT- 171

4 as it is still by far the best-performing model 172

across many domains and represents the frontier of 173

artificial intelligence (Bubeck et al., 2023). 174

3 Evaluation Framework 175

3.1 Task selection 176

We benchmark GPT-4 on seven common text-only 177

radiology tasks (Table 1) covering both understand- 178

ing and generation tasks. The two sentence sim- 179

ilarity classification tasks and NLI both require 180
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the understanding of sentence-level semantics in181

a radiology context, with NLI additionally requir-182

ing reasoning and logical inference. Structured183

information extraction tasks (disease classification,184

disease progression classification, and entity ex-185

traction) require both superficial entity extraction186

and inference from cues with radiology knowledge187

(e.g. ‘enlarged heart’ implies ‘cardiomegaly’). For188

entity extraction, the model must further follow the189

schema-specific categorisation of entities. Finally,190

we evaluate GPT-4 on an important part of the191

radiology workflow: findings summarisation, i.e.192

condensing detailed descriptions of findings into a193

clinically actionable impression. These tasks cover194

different levels of text granularity (sentence-level,195

word-level, and paragraph-level) and different as-196

pects of report processing, and hence give us a197

holistic view of how GPT-4 performs in processing198

radiology reports.199

3.2 Prompting strategies200

Alongside GPT-4 (gpt-4-32k), we evaluated two201

earlier GPT-3.5 models: text-davinci-003 and202

ChatGPT (gpt-35-turbo). Model and API details203

are in Appendix A. For each task, we started with204

zero-shot prompting and progressively increased205

prompt complexity to include random few-shot (a206

fixed set of random examples), and then similarity-207

based example selection (Liu et al., 2022). For ex-208

ample selection, we use OpenAI’s general-domain209

text-embedding-ada-002 model to encode the210

training examples as the candidate pool to select211

n nearest neighbours for each test instance. For212

NLI, we also explored CoT, as it was shown to213

benefit reasoning tasks (Wei et al., 2022). For find-214

ings summarisation, we replicated ImpressionGPT215

(Ma et al., 2023), which adopts dynamic example216

selection and iterative refinement.217

To test the stability of GPT-4 output, we applied218

self-consistency (Wang et al., 2023) for sentence219

similarity, NLI, and disease classification. We re-220

port mean and standard deviation across five runs of221

GPT-4 with temperature zero1 and self-consistency222

results with majority voting (indicated by ‘SC’).223

All prompts are presented in Appendix C.224

3.3 Error analysis with radiologist225

The authors did a first pass of the error cases to226

review easy instances requiring only general syn-227

1The OpenAI API for GPT-4 is non-deterministic even
with temperature 0. We also explored varying the temperature
parameter and found no improvement.

tactic and linguistic knowledge (e.g. ‘increased 228

pleural effusion’ versus ‘decreased pleural effu- 229

sion’). We then surfaced the cases where radiology 230

expertise is required to a board-certified radiolo- 231

gist for a second-round review and feedback. For 232

interpretability, we prompted GPT-4 to give an ex- 233

planation after its answer. Reviewing both model 234

answer and reasoning, we categorise each error 235

into: ambiguous2, label noise3, or genuine mistake. 236

4 Experiments 237

4.1 Sentence similarity classification 238

Task and model setup In this task, the model 239

receives as input a sentence pair and must clas- 240

sify the sentences as having the same, or differ- 241

ent meanings. We evaluate the models on two 242

sub-tasks: temporal sentence similarity classifi- 243

cation (MS-CXR-T (Bannur et al., 2023b)) and 244

RadNLI-derived sentence similarity classification. 245

Temporal sentence similarity focuses on temporal 246

changes of diseases. For RadNLI, we follow Ban- 247

nur et al. (2023a) to use the subset of bidirectional 248

‘entailment’ and ‘contradiction’ pairs and discard 249

the ‘neutral’ pairs to convert RadNLI (Miura et al., 250

2021) to a binary classification task. 251

The radiology SOTA for this task is BioViL-T 252

(Bannur et al., 2023a) (a radiology-specific vision- 253

language model trained with temporal multi-modal 254

contrastive learning). The GPT performance is 255

obtained from zero-shot prompting. 256

Results As shown in Table 2, all the GPT models 257

outperform BioViL-T, achieving new SOTA. In 258

particular, GPT-4 significantly outperforms both 259

text-davinci-003 and ChatGPT on MS-CXR-T, 260

indicating an advanced understanding of disease 261

progression. Error analysis revealed the majority 262

of the GPT-4 (SC) errors are either ambiguous or 263

label noise with only 1 model mistake in RadNLI 264

(see Appendix B.1), indicating GPT-4 is achieving 265

near-ceiling performance in these tasks. 266

4.2 Natural language inference (NLI) 267

Task and model setup We assess GPT on the 268

original RadNLI classification dataset (Miura et al., 269

2021). The model receives input ‘premise’ and ‘hy- 270

pothesis’ sentences, and determines their relation: 271

2An ambiguous case is when both GPT-4 error output and
gold label can arguably be correct under different interpreta-
tions of the labels. For an example, an uncertain pathology
could be labelled as ‘presence’ or ‘absence’.

3the label is wrong and model is correct
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Table 1: Results overview. GPT-4 either outperforms or is on par with previous SOTA. New SOTA is established by
GPT-4 on sentence similarity and NLI (absolute improvement for accuracy and F1 are reported). GPT-4 achieves
near-ceiling performance in many tasks with < 1% mistake rate (shaded). ImpressionGPT (Ma et al., 2023) requires
example selection and iterative example refinement.

Task Test samples Prompting GPT-4 GPT-4 performance Mistake rate

Temporal sentence similarity 361 Zero-shot New SOTA (↑10% acc.) 0.0%
Sentence similarity (RadNLI) 145 Zero-shot New SOTA (↑3% acc.) 0.7%
Natural language inference (RadNLI) 480 Zero-shot + CoT New SOTA (↑10% F1) 5.8%
Disease progression 1326 Zero-shot On par with SOTA 0.4%
Disease classification 1955 10-shot* On par with SOTA 0.3%
Entity extraction 100 200-shot* On par with SOTA –
Findings summarisation 1606 / 576† ImpressionGPT On par with SOTA –

n-shot*: similarity-based example selection with n examples; Mistake rate4 = [# genuine mistakes] / [# test samples];
†: [MIMIC] / [Open-i]

Table 2: Zero-shot GPT-4 and GPT-3.5 achieve new
SOTA (accuracy) on sentence similarity tasks. To test
the consistency of GPT-4, we report mean and std.
across five runs, and the self-consistency results (‘SC’).

Model MS-CXR-T RadNLI

text-davinci-003 90.3 91.0
ChatGPT 92.0 95.2
GPT-4 97.3 ± 0.2 94.1 ± 0.4
GPT-4 (SC) 97.2 93.8

BioViL-T (Bannur et al., 2023a) 87.8 90.5

one of ‘entailment’, ‘contradiction’, or ‘neutral’.272

We present GPT performance with zero-shot273

prompting and CoT. We compare GPT models274

against the current SOTA, a radiology-adapted T5275

model (DoT5) which was trained on radiology text276

and general-domain NLI data (Liu et al., 2023a).277

Results Table 3 shows that GPT-4 with CoT278

achieves a new SOTA on RadNLI, outperforming279

DoT5 by 10% in macro F1. Whereas NLI has tra-280

ditionally been a challenging task for earlier GPT281

models, GPT-4 displays a striking improvement.282

We also observe that CoT greatly helps in this task283

especially for GPT-3.5.284

We further investigate how GPT-4 performs in285

cases that require different levels of radiology ex-286

pertise5, and we show that GPT-4 reaches the best287

performance in both generic and radiology-specific288

logical inference. CoT seems to help GPT models289

particularly to understand the radiology-specific290

cases. This is because CoT pushes the model to291

elaborate more on the radiology knowledge rele-292

vant to the input sentences, therefore giving suf-293

ficient context for a correct reasoning assessment294

5Our categorisation is based on Liu et al. (2023a)’s domain
expertise annotations.

(see Table B.4). Finally, we highlight that, even 295

for GPT-4, there is still a gap in performance: the 296

cases that specifically require radiology knowledge 297

are more challenging than the other cases. 298

Table 3: GPT performance (macro F1) on RadNLI with
domain analysis. GPT-4 + CoT achieves new SOTA.
Mean, std., and self-consistency (‘SC’) results are re-
ported for GPT-4 + CoT across five runs.

All need domain expertise?
Yes No

text-davinci-003 55.9 42.8 60.7
+ CoT 64.9 54.1 68.4

ChatGPT 45.4 31.5 52.3
+ CoT 70.5 65.6 70.2

GPT-4 87.8 74.0 93.1
+ CoT 89.3 ± 0.4 78.9 ± 1.4 93.5 ± 0.4
+ CoT (SC) 89.2 78.8 93.6

DoT5
(Liu et al., 2023a) 79.8 70.1 86.4

4.3 Disease classification 299

Task and model setup The evaluation dataset is 300

extracted from Chest ImaGenome (Wu et al., 2021) 301

gold attributes on the sentence level. To fairly com- 302

pare with the SOTA CheXbert (Smit et al., 2020) 303

model, we focus on pleural effusion, atelectasis, 304

pneumonia, and pneumothorax, which are common 305

pathology names between CheXbert findings and 306

Chest ImaGenome attributes. The output labels are 307

‘presence’ and ‘absence’ (binary classification) for 308

each pathology. Detailed description of the label 309

mapping is in Appendix D. 310

Besides the CheXbert baseline, we also include 311

the silver annotations from Chest ImaGenome, pro- 312

duced by an ontology-based NLP tool with filtering 313

rules (the Chest ImaGenome gold datasets are in 314

fact human-verified silver annotations). To prompt 315
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GPT models, we started with zero-shot prompting,316

and then added 10 in-context examples with both317

random selection and similarity-based example se-318

lection. The example candidates are from the Chest319

ImaGenome silver data.320

Results As shown in Table 4, there is progressive321

improvement from text-davinci-003 to Chat-322

GPT and then to GPT-4. All the GPT models’323

zero-shot results outperform CheXbert. We are324

able to improve GPT-4 zero-shot performance with325

10-shot random in-context examples. We achieve326

a further slight improvement with similarity-based327

example selection, approaching the performance of328

silver annotations.329

We manually analysed the errors from the GPT-4330

(*10) experiment and found that most (20 out of331

30) are ambiguous, with the pathology cast as po-332

tentially present, rather than being easily labelled333

as present or not. This is particularly the case for334

pneumonia whose presence is typically only sug-335

gested by findings in the chest X-ray (See examples336

of such uncertain cases in Table B.6). The rest of337

the model errors are 5 cases of label noise and 5338

model mistakes. With <1% mistake rate, GPT-4 is339

approaching ceiling performance in this task.340

Defer from uncertain cases Given the large341

amount of uncertain and ambiguous cases in the342

dataset, we experimented with asking the model to343

output ‘uncertain’ alongside the presence and ab-344

sence labels, and defer from these uncertain cases.6345

Table 5 shows that GPT-4 achieves very strong346

performance on those cases for which it is not347

uncertain. Note that pneumonia classification is348

dramatically improved and many positive cases of349

pneumonia are deferred. This aligns with our ob-350

servation from the dataset that pneumonia is often351

reported as a possibility rather than a certain pres-352

ence. We further test the robustness of GPT-4 in353

this setup and report mean, standard deviation and354

majority vote results in Table E.1.355

4.4 RadGraph entity extraction356

Task and model setup This task requires a357

model to extract observation and anatomy entities358

from radiology reports and determine their pres-359

ence (present, absent, or uncertain) following the360

RadGraph schema (Jain et al., 2021). To evaluate361

the extraction, we report micro F1 score counting362

6This can be seen as an alternative way to allow for uncer-
tainties compared with using the class logits (Nori et al., 2023)
as the class logits are not available via the API endpoints.

Table 4: GPT performance on Chest ImaGenome dis-
ease classification.

Model Micro F1 Macro F1

text-davinci-003 79.2 79.9
ChatGPT 89.7 85.0
GPT-4 93.0 91.5
GPT-4 (10) 96.6 96.6
GPT-4 (*10) 97.9 97.5

CheXbert 73.6 73.1
Silver 97.8 98.9

(n): number of random shots; *: similarity-based example
selection; Silver: Chest ImaGenome silver annotations.

Table 5: Zero-shot GPT-4 performance after deferring
from uncertain cases on Chest ImaGenome dataset:
GPT-4 (defer). Its performance is significantly improved
from zero-shot GPT-4 (with binary output).

GPT-4 (defer) GPT-4

Macro F1 97.4 93.0
Micro F1 98.6 91.5

Pleural effusion 98.5 [103] 95.3 [176]
Atelectasis 99.0 [154] 97.8 [233]
Pneumonia 92.3 [16] 75.7 [111]
Pneumothorax 100.0 [17] 97.3 [18]

[n]: number of positive instances for each pathology.

a true positive when both the extracted entity text 363

and the label are correct. RadGraph provides two 364

datasets: MIMIC (Johnson et al., 2019) with both 365

train and test data, and CheXpert (Irvin et al., 2019) 366

(with only test data). 367

We compare with the SOTA RadGraph Bench- 368

mark model reported in Jain et al. (2021), which is 369

based on DyGIE++ (Wadden et al., 2019) with Pub- 370

MedBERT initializations (Gu et al., 2021). Regard- 371

ing prompting strategy, we started with a randomly 372

selected 1-shot example,7 and then increased the 373

number of random shots to 10. To push the perfor- 374

mance, we leveraged the maximum context window 375

of GPT-4, incorporating 200-shot examples with 376

both random selection and similarity-based selec- 377

tion. Additionally, we found it is helpful to perform 378

GPT inference on individual sentences before com- 379

bining them for report-level output. The in-context 380

examples are also on the sentence level (200-shot 381

sentences roughly corresponds to 40 reports) from 382

the train set. 383

Results As shown in Table 6, examples are cru- 384

cial for GPT to learn this task. We observe a mas- 385

7We first experimented with zero-shot prompting, which re-
sulted in many output formatting errors. Adding one example
resolved the formatting issue.
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Table 6: GPT performance (micro F1) on RadGraph
entity extraction.

Model MIMIC CheXpert

text-davinci-003 (1) 56.2 49.2
text-davinci-003 (10) 83.2 79.5

ChatGPT (1) 47.1 42.2
ChatGPT (10) 70.6 67.5

GPT-4 (1) 36.6 25.3
GPT-4 (10) 88.3 84.7
GPT-4 (200) 91.5 88.4
GPT-4 (*200) 92.8 90.0

RadGraph Benchmark 94.3 89.5

(n): number of random shots; *: similarity-based example
selection

sive jump in performance when increasing the num-386

ber of examples in the context. GPT-4 with 200387

selected examples achieves overall on-par perfor-388

mance with RadGraph benchmark: while GPT-4389

(*200) underperforms the RadGraph model on the390

in-domain MIMIC test set, GPT-4 surpasses Rad-391

Graph Benchmark on the out-of-domain CheXpert392

dataset. This indicates GPT-4 could be a more ro-393

bust choice to generalise to out-of-domain datasets.394

Our error analysis reveals the errors are mostly due395

to GPT-4 failing to learn the schema specifics (Ap-396

pendix B.5). For example, GPT-4 may extract the397

whole compound word (‘mild-to-moderate’) as the398

observation term, while the gold annotations break399

the word down (‘mild’ and ‘moderate’).400

4.5 Disease progression classification401

Task and model setup We evaluate on the tem-402

poral classification task from MS-CXR-T (Bannur403

et al., 2023b), which provides progression labels404

for five pathologies (consolidation, edema, pleural405

effusion, pneumonia, and pneumothorax) across406

three progression classes (‘improving’, ‘stable’,407

and ‘worsening’). In this experiment, the input is408

the radiology report and the outputs are disease pro-409

gression labels. We report macro accuracy for each410

pathology due to class imbalance. As MS-CXR-T411

labels were originally extracted from Chest Im-412

aGenome, we can also use Chest ImaGenome sil-413

ver annotations as our baseline. We report GPT414

performance with zero-shot prompting.415

Results Table 7 shows that there is again a large416

jump of performance from GPT-4 compared with417

the earlier GPT-3.5 models. Zero-shot GPT-4418

achieves >95% across all pathologies and is com-419

parable with Chest ImaGenome silver annotation.420

Our error analysis reveals that the majority of 421

model errors are either label noise or ambiguous 422

and the small mistake rate (0.4%) reflects the task 423

is nearly solved. 424

Table 7: GPT performance on MS-CXR-T disease pro-
gression (macro accuracy).

Model Pl. eff. Cons. PNA PTX Edema

text-davinci-003 92.1 91.8 90.0 96.1 93.6
ChatGPT 91.0 84.8 84.5 93.0 89.8
GPT-4 98.7 95.7 96.4 99.4 96.8

Silver 98.1 91.8 96.6 100.0 97.6

PNA: pneumonia; PTX: pneumothorax; Pl. eff.: pleural
effusion; Cons.: consolidation; Silver: Chest ImaGenome
silver annotations.

4.6 Findings summarisation 425

Task and model setup The findings summarisa- 426

tion task requires the model to summarise the input 427

findings into a concise and clinically actionable im- 428

pression section. We evaluate on the MIMIC (John- 429

son et al., 2019) and Open-i (Demner-Fushman 430

et al., 2016) datasets and follow Ma et al. (2023) 431

to report results on the official MIMIC test set and 432

a random split (2400:576 for train:test) for Open-i. 433

For metrics, we report RougeL (Lin, 2004) and the 434

CheXbert score (Smit et al., 2020) (a radiology- 435

specific factuality metric). We further conduct a 436

qualitative comparison study on GPT-4 outputs. 437

For prompting strategies, we started with zero- 438

shot and increased the number of random in- 439

context examples to 10-shot. For GPT-4, we 440

tried adding 100 examples with random selec- 441

tion and similarity-based selection. Examples are 442

drawn from the respective train set for each dataset. 443

We also replicated ImpressionGPT (Ma et al., 444

2023) with ChatGPT and GPT-4. ImpressionGPT 445

performs dynamic example selection based on 446

CheXbert labels and iteratively selects good and 447

bad examples as in-context examples (The imple- 448

mentation details are found in Appendix G). 449

We compare with the previous supervised SOTA 450

for this task (Hu et al., 2022) (which adopts a graph 451

encoder to model entity relations from findings), 452

as well as with DoT5 (Liu et al., 2023a), a strong 453

zero-shot summarisation baseline. 454

Results While zero-shot GPT models all outper- 455

form DoT5, we observe that providing examples is 456

crucial for this task: there is consistent and substan- 457

tial improvement when increasing the number of 458
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in-context examples for all GPT models. A further459

boost can be achieved when we enable example460

selection for GPT-4 (*100). The more advanced461

ImpressionGPT brings the best performance out of462

GPT-4 and achieves performance comparable with463

the supervised SOTA.464

Qualitative comparison To understand the dif-465

ferences between GPT-4 output and the manually-466

written impressions, we chose a random sample of467

reports and asked a radiologist to compare existing468

manually-written impressions with GPT-4 (Impres-469

sionGPT) output. Table 9 demonstrates that for the470

majority of the cases (≈ 70%), GPT-4 output is471

either preferred or comparable with the manually-472

written impression. Tables B.8 and B.9 show exam-473

ples where GPT-4 outputs are more faithful to the474

findings than the manually-written impressions.475

Table 8: GPT performance on findings summarisation.
ImpressionGPT iteratively refines good and bad exam-
ples as in-context examples.

MIMIC Open-i

Model R. CB. R. CB.

text-davinci-003 22.9 41.8 14.5 41.9
text-davinci-003 (10) 29.1 43.0 40.5 42.0

ChatGPT 20.0 40.5 14.8 39.6
ChatGPT (10) 31.0 42.5 40.6 41.0

GPT-4 22.5 39.2 18.0 39.3
GPT-4 (10) 28.5 44.2 42.5 44.9
GPT-4 (100) 30.9 44.7 44.2 45.0
GPT-4 (*100) 38.4 47.4 59.8 47.3

ChatGPT (ImpressionGPT) 44.7 63.9 58.8 44.8
GPT-4 (ImpressionGPT) 46.0 64.9 64.6 46.5

Hu et al. (2022) 47.1 54.5 64.5 –
DoT5 (Liu et al., 2023a) – – 11.7 25.8

(n): number of random shots; *: similarity-based example
selection; R.: RougeL; CB.: CheXbert.

Table 9: Percentage (%) with which the GPT-4 (Im-
pressionGPT) generated impression is equivalent or pre-
ferred compared with an existing manually-written one
according to a radiologist.

Sample (n) Manual Imp.
preferred Equiv. GPT-4

preferred Ambig.

Open-i (80) 28.8 43.8 26.3 1.3
MIMIC (40) 25.0 10.0 57.5 7.5

Equiv.: equivalent; Ambig.: ambiguous;
Manual Imp.: Existing manual impression

5 Discussion 476

5.1 Error analysis and GPT-4 consistency 477

Moving beyond quantitative scores, we manually 478

reviewed all GPT-4 errors in all the tasks (A de- 479

tailed analysis is shown in Appendix B). We further 480

analysed the consistency of the errors for a selec- 481

tion of tasks and reported the error breakdown in 482

Table 10. We found the majority of the errors are 483

either ambiguous or label noise. As an example of 484

ambiguity, GPT-4 is extremely strict in identifying 485

paraphrases and argues that one sentence contains 486

minor additional information or slightly different 487

emphasis. In fact, for sentence similarity, disease 488

progression, and disease classification tasks, the 489

model mistakes are < 1% of the test set (Table 1). 490

We believe GPT-4 is achieving near-ceiling perfor- 491

mance on these tasks. For entity extraction and 492

findings summarisation, we found that GPT-4 out- 493

put for many of the error cases is not necessarily 494

wrong, but is offering an alternative to the schema 495

or style in the dataset. This is verified by our quali- 496

tative analysis from Appendix B.5 and Section 4.6). 497

It is important to note that GPT-4 in our current 498

study still makes occasional mistakes. Some mis- 499

takes are unstable across runs and can be corrected 500

by self-consistency. Table 10 shows that GPT-4 is 501

mostly consistent, and, for the few cases of incon- 502

sistent output, self-consistency can correct most of 503

the model mistakes that occur in minority runs.8 504

Another helpful strategy is to ask GPT-4 to defer 505

when it is uncertain, as demonstrated by the disease 506

classification experiments (Appendix B.3). 507

The remaining model mistakes are mostly cases 508

where nuanced domain knowledge is required. For 509

example, GPT-4 mistakenly equates ‘lungs are hy- 510

perinflated but clear’ with ‘lungs are well-expanded 511

and clear’ in MS-CXR-T. The former indicates 512

an abnormality while the latter is describing nor- 513

mal lungs. We should point out that this mistake 514

does not mean GPT-4 is fundamentally lacking the 515

knowledge. In fact, when asked explicitly about it 516

in isolation (e.g., difference between ‘hyperinflated’ 517

and ‘well-expanded lungs’), or when we reduce the 518

complexity of the two sentences to ‘lungs are hy- 519

perinflated’ and ‘lungs are well-expanded’, GPT-4 520

is able to differentiate the two terms (Table B.3). 521

We interpret it as nuanced radiology knowledge not 522

being guaranteed to always surface for all contexts 523

8Note that the overall scores from self-consistency experi-
ments (Tables 2, 3 and E.1) do not reflect this quantitatively
due to the noise from the many ambiguous cases.
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Table 10: Self-consistency error analysis for GPT-4. Errors are categorised by whether they are consistent, occurring
in minority runs (SC correct) or occurring in majority runs (SC incorrect). We further categorise errors into model
mistakes and others (ambiguous or label noise). We observe the majority of the errors are consistent and many
errors are not model mistakes. Within the cases of inconsistent output, self-consistency can correct most of the
model mistakes. GPT-4 zero-shot performance is reported in this table (disease classification results are after we
defer from the uncertain cases). Error breakdown for other single run experiments are in Table F.1.

Consistent SC correct SC incorrect

Task Mistake Other Corrected mistake Other Mistake Other Total

Temporal sentence similarity 0% 72% 10% 0% 0% 18% 11
Sentence similarity (RadNLI) 11% 78% 0% 0% 0% 11% 9
RadNLI 55% 31% 6% 0% 2% 6% 49
Disease classification 22% 67% 11% 0% 0% 0% 9

All 38% 46% 6% 0% 1% 8% 78

with all various prompts. While future prompting524

strategies might help with these cases, we must525

acknowledge that potential model mistakes cannot526

be fully ruled out. Therefore, a human in the loop527

is still required for safety-critical applications.528

5.2 GPT-4 vs SOTA radiology models529

Throughout the experiments, we first observed a530

significant jump of performance of GPT-4 com-531

pared with the prior GPT-3.5 (text-davinci-003532

and ChatGPT), confirming the findings from previ-533

ous studies (Nori et al., 2023). We then summarised534

the overall GPT-4 performance compared with ra-535

diology SOTA in Table 1. The key finding is that536

GPT-4 outperforms or is on par with SOTA radiol-537

ogy models in the broad range of tasks considered.538

We further notice that different tasks require dif-539

ferent prompting efforts and strategies. For tasks540

such as sentence similarity, RadNLI, and disease541

progression, the task requirements can be clearly542

defined in the instruction. (For example, there543

is clear logical definition for ‘entailment’, ‘neu-544

tral’, and ‘contradiction’ in NLI). For such ‘learn-545

by-instruction’ tasks, a simple zero-shot prompt-546

ing strategy for GPT-4 can yield significant gains547

over task-specific baselines or nearly ceiling per-548

formance. Disease classification does not fall into549

this category due to the ambiguity in how to as-550

sign labels for the uncertain cases. Here, GPT-4551

requires 10 examples to achieve comparable near-552

ceiling performance with previous SOTA. We show553

that zero-shot GPT-4 can also achieve near-ceiling554

performance if we defer from uncertain cases (Ta-555

ble 5) in this task. Another key point to note is that556

GPT-4 is a better choice than the previous SOTA557

Chest ImaGenome silver annotations for disease558

and disease progression classification, as the silver559

annotations are from rule-based systems that are 560

not available to be re-used for other datasets. 561

Different from the above-mentioned tasks, it is 562

not straightforward to articulate requirements in 563

the instruction for entity extraction and findings 564

summarisation. For entity extraction, the exact 565

definition of observation and anatomy is schema- 566

specific and in many cases can only be inferred 567

from training examples. For findings summarisa- 568

tion, while there are general rule-of-thumb princi- 569

ples for writing a good impression, it is not possible 570

to write down detailed instructions regarding the 571

exact phrasing and style of the impressions in a 572

particular dataset. We call these ‘learn-by-example’ 573

tasks. Task-specific supervised models perform 574

competitively on such tasks, as they can explicitly 575

learn an in-domain distribution from all training 576

examples. We found significant improvement of 577

GPT models with increased number of examples 578

compared with zero-shot, and GPT-4 with example 579

selection can match supervised baselines. Future 580

research can explore ways to combine GPT-4 and 581

supervised models (e.g. treating the latter as plug- 582

ins Shen et al. 2023; Xu et al. 2023). 583

6 Conclusion 584

This study evaluates GPT-4 on a diverse range of 585

common radiology text-based tasks. We found 586

GPT-4 either outperforms or is on par with task- 587

specific radiology models. GPT-4 requires the least 588

prompting effort for the ‘learn-by-instruction’ tasks 589

where requirements can be clearly defined in the 590

instruction. Our extensive error analysis shows that 591

although it occasionally fails to surface domain 592

knowledge, GPT-4 has substantial capability in the 593

processing and analysis of radiology text, achieving 594

near-ceiling performance in many tasks. 595
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7 Limitations596

As GPT-4 with the current prompting strategies597

in the study already achieves near-ceiling perfor-598

mance in many tasks, we leave an exhaustive exper-599

imentation of all existing prompting strategies for600

future research. For example, we have not explored601

the more recently proposed advanced prompting602

techniques including tree of thought (Yao et al.,603

2023) and self-critique (Shinn et al., 2023) and we604

encourage future research to apply techniques to605

help improve the reliability of GPT-4. Also, due606

to resource constraint, we did not perform self-607

consistency exhaustively for all tasks and for all608

GPT models. That being said, we believe the in-609

sights from this study will be useful for design-610

ing future prompting strategies for radiology tasks,611

where particular tasks or error cases will require612

more prompting efforts. Our error analysis shows613

that many of the existing radiology tasks contain614

intrinsic ambiguities and label noise and we call615

for more quality control when creating evaluation616

benchmarks in the future. Finally, our qualitative617

evaluation of the findings summarisation task is618

limited to a single radiologist. This is a subjective619

assessment that will be influenced by radiologist’s620

own style and preference. The ideal scenario would621

be to ask radiologists who participated in the cre-622

ation of the MIMIC or Open-i dataset to perform623

the assessment so that they have the same styling624

preference as the dataset.625
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A GPT model and API details884

We evaluated GPT-4 (gpt-4-32k, ver. 0314), and885

two earlier GPT-3.5 models: text-davinci-003886

and ChatGPT (gpt-35-turbo, ver. 0301). We887

use Azure Cognitive Services API with the ver-888

sion ‘2023-03-15-preview’. Model names corre-889

spond to https://platform.openai.com/docs/890

models/overview.891

B GPT-4 detailed error analysis892

B.1 Sentence similarity893

We manually reviewed all GPT-4 errors and found894

that the errors are mostly ambiguous or label noise895

and these two tasks can be seen as nearly solved by896

GPT-4. For MS-CXR-T, the majority of the errors897

required identifying that ‘improvement’ was syn-898

onymous with ‘decrease’ for cases such as edema899

and lung opacity (all were ground truth paraphrase900

pairs) (See Table B.1). Among these cases, GPT-4901

does recognise ‘improvement’ and ‘decrease’ de-902

scribe positive change, but argues that ‘improve-903

ment’ and ‘decrease’ describe different aspects of904

the change. Confirmed with our radiologist, GPT-4905

reasoning here is pedantic but is understandable.906

In one error however, GPT-4 reasons that ‘im-907

proved’ and ‘decrease’ indicate opposite direc-908

tion of change, which is a clear error showing909

the radiology-specific knowledge does not surface910

from GPT-4 in this case. Fortunately, this error911

case is only the minority across all runs (2 out of 5912

cases) and is corrected by SC.913

The finding is similar for the RadNLI sentence914

similarity task where the majority of the errors are915

ambiguous cases where GPT-4 flagged that one sen-916

tence contained slightly more information than the917

other, hence were not strict paraphrases. There is918

one genuine error where GPT-4 mistakenly equates919

‘lungs are hyperinflated but clear’ with ‘lungs are920

well-expanded and clear’ (See Table B.2). The921

former indicates an abnormality while the latter is922

normal. We should point out that this behaviour923

does not mean GPT-4 is fundamentally lacking the924

knowledge. In fact, if we reduce the complexity925

of the two sentences to ‘lungs are hyperinflated’926

and ‘lungs are well-expanded’, GPT-4 is able to927

differentiate between the two terms. Therefore, we928

interpret the error as the domain knowledge has not929

being surfaced in a complex context.930

Self-consistency does not improve the overall931

results and most errors are consistent across runs.932

For MS-CXR-T, 8 out of the 11 error cases are con- 933

sistent. For RadNLI sentence similarity, 8 out of 9 934

error cases are consistent across runs. For the in- 935

consistent cases, apart from one genuine error from 936

MS-CXR-T which is corrected by self-consistency, 937

all inconsistent cases are ambiguous. 938
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Sentence 1 interval improvement in mild pulmonary edema

Sentence 2 interval decrease in mild pulmonary edema

GPT-4 reasoning The first sentence describes an improvement in the mild pulmonary edema, which
means the condition has gotten better. The second sentence describes a decrease in
the mild pulmonary edema, which means the amount or severity of the edema has
reduced. Although both sentences indicate a positive change, they describe different
aspects of the change in the pulmonary edema.

Error category ambiguous

Sentence 1 opacities in the left base have minimally improved.

Sentence 2 opacities in the left base have minimally decreased.

GPT-4 reasoning The first sentence states that the opacities have improved, which means they have
become less severe or less noticeable. The second sentence states that the opacities
have decreased, which means they have reduced in size or number. Although both
sentences describe a positive change, they convey different aspects of the change in
opacities.

Error category ambiguous

Sentence 1 left basal consolidation has slightly improved.

Sentence 2 left basal consolidation has slightly decreased.

GPT-4 reasoning The first sentence states that the left basal consolidation has slightly improved, mean-
ing the condition has gotten better. The second sentence states that the left basal
consolidation has slightly decreased, which implies that the size or extent of the
consolidation has reduced. Although both sentences indicate a positive change, they
describe different aspects of the change.

Error category ambiguous

Sentence 1 mild improvement in right upper lung opacity, possibly a hematoma, status post right
upper lobe resection.

Sentence 2 mild decrease in right upper lung opacity, possibly a hematoma, status post right upper
lobe resection.

GPT-4 reasoning The two sentences describe different changes in the right upper lung opacity. Sentence
1 mentions a "mild improvement," while Sentence 2 mentions a "mild decrease."
These changes are opposite in nature, with improvement suggesting a positive change
and decrease suggesting a reduction in opacity.

Error category genuine mistake

Table B.1: Examples of GPT-4 errors on the MS-CXR-T temporal sentence similarity dataset. Note that all pairs
are labelled (ground truth) as paraphrases, but were classified as different by GPT-4. In the first three examples,
GPT-4 gives sound reasoning. The last example shows erroneous reasoning where the model thinks improvement
and decrease indicate opposite directions of change, but fortunately the last example comes from 2 out of 5 runs and
can be corrected by self-consistency.
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Sentence 1 Osseous structures are without an acute abnormality.

Sentence 2 The osseous structures are grossly unremarkable, although evaluation is limited sec-
ondary to body habitus.

GPT-4 output and
reasoning

different. While both sentences describe the osseous structures as not having any sig-
nificant issues, Sentence1 states that there are no acute abnormalities, while Sentence2
mentions that the evaluation is limited due to the patient’s body habitus, implying that
there might be some limitations in the assessment.

True label paraphrase

Error category ambiguous

Sentence 1 Lungs are hyperinflated but clear.

Sentence 2 Lungs are well-expanded and clear without focal consolidation concerning for pneu-
monia.

GPT-4 output and
reasoning

paraphrase. Both sentences describe lungs that are clear and without any signs
of pneumonia. The first sentence uses the term "hyperinflated" while the second
uses "well-expanded," but both essentially convey the same meaning of lungs being
expanded and clear.

True label different

Error category genuine mistake

Table B.2: Examples of GPT-4 errors on the RadNLI-derived sentence similarity dataset. In the first example, the
label is ambiguous and GPT-4 highlights the additional information in the second sentence. In the second example,
GPT-4 erroneously equates hyperinflated (a pathological state) with ‘well-expanded’ lungs.

Sentence 1 Lungs are hyperinflated but clear.

Sentence 2 Lungs are well-expanded and clear without focal consolidation concerning for pneu-
monia.

GPT-4 output and
reasoning

paraphrase. Both sentences describe lungs that are clear and without any signs
of pneumonia. The first sentence uses the term "hyperinflated" while the second
uses "well-expanded," but both essentially convey the same meaning of lungs being
expanded and clear.

True label different

Sentence 1 Lungs are hyperinflated.

Sentence 2 Lungs are well-expanded.

GPT-4 output and
reasoning

different. Although both sentences describe the state of the lungs, they convey different
meanings. "Hyperinflated" implies that the lungs are excessively inflated, which could
indicate a medical issue. On the other hand, "well-expanded" suggests that the lungs
are in a healthy state, functioning properly with adequate inflation.

True label different

Table B.3: An example to show that domain knowledge is surfaced from GPT-4 when we reduce the complexity of
the context as in the second example.
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B.2 RadNLI939

We observe a higher error rate in NLI compared to940

sentence similarity. This can be explained by the941

subtle nature of the task that requires precise logi-942

cal reasoning in order to correctly recognise textual943

entailment from neutral examples and contradic-944

tions. Out of the 45 model “errors” from GPT-4945

+ CoT (SC), we identified 13 logical errors where946

the model’s reasoning indicated a lack of under-947

standing of entailment as it appeared to look for948

paraphrases ‘the hypothesis does not provide all949

information in the premise’ or it confused the direc-950

tionality of entailment ‘the premise is part of the951

hypothesis’. Additionally, we found 18 label-noise952

examples for which GPT-4 was arguably right. An953

extra set of 14 errors were domain specific such954

as ‘unchanged’ does not imply ‘normal’ and ‘en-955

larged’ suggests ‘not top normal’ in a radiology956

context (See Table B.5). While most of the errors957

are consistent across run, there are 7 cases of incon-958

sistent output across runs. For 4 cases, majority run959

does not align with the gold label but these cases960

are mostly label noise. For 3 cases, majority cor-961

rects inconsistent output and all 3 cases are genuine962

errors from minority runs.963

We also show in Table B.4 the examples where964

CoT improves GPT-4 performance on RadNLI.965

B.3 Disease Classification966

We analyse the errors for the GPT-4 (defer) setup967

after we defer from uncertain cases. We collect968

a total of 8 error cases for all pathologies from969

a single run: there are two cases of label noise,970

while the other errors are largely ambiguous and971

uncertain cases where GPT-4 should output ‘uncer-972

tain’ but outputs ‘absence’ instead. For example,973

in ‘alternatively, could be due to infection, a toxic974

or allergic drug reaction or hemorrhage.’, GPT-4975

should output uncertain for pneumonia rather than976

absence. There are two genuine errors where GPT-977

4 fails to identify ‘pleural effusion’ from ‘fluid did978

not accumulate acutely’, and mistakenly assigns979

the absence label for pleural effusion in the sen-980

tence ‘pleural effusion is nearly resolved’. When981

we compare the outupt before and after we add982

the ‘uncertain’ option to the model, we observe an983

overall improvement in F1, many of the ambigu-984

ous errors from binary setup are now assigned with985

‘uncertain’ label. In addition, some of the genuine986

errors from binary setup (e.g., not understanding987

‘linear opacities’ indicates atelectasis) are assigned988

with ‘uncertain’ as well as GPT-4 reasons that ‘lin- 989

ear opacities’ can possibly reflect atelectasis. This 990

indicates that the model is able to defer in the case 991

of an obvious erroneous output. 992

We test self-consistency for the GPT-4 (defer) 993

set up across five runs, the 8 identified errors are 994

consistent. There is an extra error from 1 out of 995

5 runs where the model makes a genuine mistake: 996

GPT-4 thinks pleural effusion is present based on 997

“there is no pneumothorax, large effusion, or con- 998

gestion.” Fortunately, this obvious error can be 999

corrected by majority voting from self-consistency. 1000

B.4 Disease Progression 1001

The error analysis reveals that GPT-4 is achieving 1002

ceiling performance on this task. We manually re- 1003

viewed a total of 34 errors from all the pathologies 1004

and found most of the model mismatches are either 1005

due to label noise (7) or the case being ambiguous 1006

(21). Many of the ambiguous cases appeared where 1007

the pathologies mentioned are uncertain in the first 1008

place and therefore harder to assess for change. The 1009

genuine errors are either because the model fails 1010

to recognise pathologies (e.g. ‘hemorrhage’ will 1011

indicate consolidation) or failed to associate the 1012

change word with the pathology due to unfamiliar- 1013

ity with radiology-specific phrasing (e.g., not able 1014

to recognise edema is worsening from ‘increased 1015

opacities consistent with mild pulmonary edema’). 1016

Table B.7 shows the example errors from GPT-4 1017

on disease progression. 1018

B.5 RadGraph 1019

We examine the GPT-4 (*200) output on MIMIC 1020

and collect in total 137 error cases. We categorise 1021

these errors into 31 cases where gold entities are 1022

not identified from predictions, and 73 cases where 1023

predicted entities are not found in gold, and 33 1024

cases where the entity tokens are extracted but the 1025

labels are not correct. For the missing gold enti- 1026

ties, we found that most of the cases (22 out of 1027

33) are due to GPT breaking up the word differ- 1028

ently than the gold annotations: e.g., While GPT-4 1029

extracts the whole phrase ‘mild-to-moderate’ as 1030

one observation entity, the gold annotation extracts 1031

‘mild’ and ‘moderate’ separately. For the 73 over- 1032

predicted entities, we found that the majority of 1033

the mismatch is due to inconsistency in the annota- 1034

tion. For example, in the sentence ‘an esophageal 1035

drainage tube passes into the stomach and out of 1036

view’ GPT extracts ‘out of view’ as the observa- 1037

tion but the gold annotation does not. However, in 1038
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Premise Mediastinal and hilar contours are grossly unremarkable.

Hypothesis Bony structures are unremarkable.

GPT-4 + CoT REASON: The premise talks about the mediastinal and hilar contours being unre-
markable, which refers to the structures in the chest area. The hypothesis talks about
bony structures being unremarkable, which refers to the bones. These two statements
are not directly related to each other, as one talks about chest structures and the other
talks about bones. Therefore, there is no clear evidence to support or contradict
the hypothesis based on the premise. Hence, the relation between the premise and
hypothesis is neutral.
ANSWER: neutral

GPT-4 ANSWER: entailment

True label neutral

Premise The lungs are clear.

Hypothesis The lungs are well expanded.

GPT-4 + CoT Both the premise and hypothesis are related to the lungs, but they express different
information. The premise states that the lungs are clear, which means that there are no
signs of disease or infection. On the other hand, the hypothesis states that the lungs
are well expanded, which means that they are functioning properly and have good air
flow. These two statements are not contradictory, but they do not necessarily entail
each other either. It is possible for the lungs to be clear but not well expanded, or
for the lungs to be well expanded but not necessarily clear. Therefore, the relation
between the premise and hypothesis is neutral.
ANSWER: neutral

GPT-4 ANSWER: entailment

True label neutral

Table B.4: Examples where CoT improves GPT-4 performance on RadNLI.
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Premise The heart is mildly enlarged, unchanged.

Hypothesis The heart is top normal in size, which is exaggerated by the low lung volumes.

GPT-4 output and
reasoning

REASON: The premise states that the heart is mildly enlarged and unchanged, while
the hypothesis suggests that the heart is top normal in size and appears larger due to
low lung volumes. These two statements provide different information about the heart
size and do not support or contradict each other directly.
ANSWER: neutral

True label contradiction

Premise The pulmonary vasculature is normal.

Hypothesis There is no pulmonary edema.

GPT-4 output and
reasoning

REASON: The premise states that the pulmonary vasculature is normal, which implies
that there are no abnormalities in the blood vessels of the lungs. The hypothesis states
that there is no pulmonary edema, which is a condition where fluid accumulates in
the lungs due to issues with the blood vessels or heart. Since a normal pulmonary
vasculature would not typically result in pulmonary edema, the hypothesis can be
inferred from the premise.
ANSWER: entailment

Error category genuine mistake

True label neutral

Error category genuine mistake

Premise Opacities involving the right middle lobe and left lower lobe are again demonstrated
and may represent atelectasis or infection in the appropriate setting.

Hypothesis Minimal left basilar opacity suggests minor atelectasis.

GPT-4 output and
reasoning

REASON: The premise mentions opacities in the right middle lobe and left lower lobe,
which could represent atelectasis or infection. The hypothesis, on the other hand, talks
about minimal left basilar opacity suggesting minor atelectasis. While both sentences
discuss opacities and atelectasis, they refer to different parts of the lungs. Therefore,
the relation between the premise and hypothesis is undetermined.
ANSWER: neutral

True label entailment

Error category genuine mistake

Table B.5: GPT-4 errors on RadNLI. In the first example, GPT-3 misses that ’enlarged’ entails ’not top-normal’ for
hear size. In the second example, GPT-4 fails to understand that normal pulmonary vasculature does not necessarily
always indicates no normal pulmonary edema. In the last example, GPT-4 fails to understand left basilar opacity
and opacities in the left lower lobe refer to the same location.
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Text scattered vague opacities bilaterally are consistent with clinical history of septic
emboli, unknown whether active or scar.

Gold (pneumonia, absent)

GPT-4 answer and
reasoning

(pneumonia, present). The text mentions "scattered vague opacities bilaterally" which
are consistent with the clinical history of septic emboli. This suggests the presence of
pneumonia.

Error category ambiguous

Text no large pleural effusions are seen, although trace effusions will be difficult to exclude.

Gold (pleural effusion, absent)

GPT-4 answer and
reasoning

(pleural effusion, present). The text mentions that no large pleural effusions are seen,
but trace effusions are difficult to exclude, which implies that small pleural effusions
might be present.

Error category ambiguous

Table B.6: Examples of ambiguous GPT-4 errors on the disease classification binary classification task from Chest
ImaGenome Gold dataset.

Text ... Small focus of hemorrhage or atelectasis at the base of the postoperative right lung
has cleared...

Gold (consolidation, improving)

GPT-4 answer and
reasoning

(consolidation, stable). Consolidation is not mentioned in the input text. The findings
discussed include persistent moderate right pneumothorax, small bilateral pleural
effusions, small focus of hemorrhage or atelectasis, and mild generalized pulmonary
edema.

Error category genuine mistake

Text Increased interstitial opacity with mediastinal vascular fullness and Kerley B lines is
consistent with mild to moderate pulmonary edema

Gold (edema, worsening)

GPT-4 answer and
reasoning

(edema, stable). The text does not provide any information about the change in the
edema’s condition compared to a previous state. Therefore, we cannot determine if it
is improving or worsening, and we assume it is stable.

Error category genuine mistake

Table B.7: Examples of GPT-4 genuine mistakes on the disease progression classification task. In the first example,
GPT-4 fails to identify that hemorrhage is a type of consolidation. In the second example, GPT-4 fails to understand
the radiology-specific phrasing that the change ’consistent with edema will also apply to the edema.
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another gold example in the training data: ‘right1039

internal jugular line ends in the right atrium and1040

an upper enteric drain passes into a non-distended1041

stomach and out of view .’, ‘out of view’ was anno-1042

tated as the observation. This reflects the intrinsic1043

ambiguity of annotating what counts as observa-1044

tion and anatomies in the schema. In another 251045

cases of over-predicted entities, GPT over-extracts1046

words such as ‘probable’, ‘definite’ as observa-1047

tions. Finally, we found 33 cases where GPT-41048

extracts the correct entities but assigns the wrong1049

label, and they are mostly due to the confusion of1050

uncertain labels. Many of these are ambiguous, for1051

example, for the sentence ‘No definite focal con-1052

solidation identified’, the gold annotation assigns1053

an ‘observation-uncertain’ label for ‘consolidation’1054

but GPT assigns ‘observation-absent’.1055

This error analysis reveals the intrinsic challenge1056

of learning schema-specific annotations in this task,1057

as there may not be a single clear-cut standard in1058

some cases. GPT output often is not wrong but is1059

offering an alternative solution.1060

B.6 Findings summarisation1061

Table B.9 and Table B.8 show examples where1062

GPT-4 (ImpressionGPT) outputs are favoured than1063

existing manually-written impressions.1064
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Findings There is mild cardiomegaly. Mediastinal contours appear within normal limits. There
are small bilateral pleural effusions, left greater than right with left basilar opacities.
No pneumothorax. Mild degenerative changes of the thoracic spine.

Existing impression Cardiomegaly with small bilateral pleural effusions and left basilar atelectasis.

GPT-4 impression Mild cardiomegaly and small bilateral pleural effusions with left basilar opacities.

Findings Cardiomegaly is noted. No pleural effusions. No pneumothorax. There is perihilar
prominence and interstitial opacification.

Existing impression Cardiomegaly and mild interstitial pulmonary edema.

GPT-4 impression Stable cardiomegaly with prominent perihilar opacities which may represent scarring
or edema.

Table B.8: Examples where GPT-4 (ImpressionGPT) impressions are favoured over the existing manually-written
impressions on Open-i dataset. In both examples, GPT-4 outputs have more faithful and more complete details to
the findings.
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Findings Single AP upright portable view of the chest was obtained. The patient’s overlying
chin obscures the medial bilateral upper lobes. The cardiac silhouette remains enlarged.
Prominence of the pulmonary arteries is partially imaged and again seen. Evidence of
diaphragmatic/pleural plaques is seen bilaterally suggesting prior asbestos exposure.

Existing impression The patient’s chin overlies the bilateral medial upper lobes, obscuring the view. Given
this, the cardiac silhouette is persistently enlarged. There is again prominence of the
pulmonary arteries. Pulmonary vascular congestion appears improved.

GPT-4 impression Cardiomegaly and prominence of pulmonary arteries. Bilateral diaphragmatic/pleural
plaques suggestive of prior asbestos exposure.

Findings AP upright and lateral views of the chest provided. Vascular stent is seen in the region
of the right brachiocephalic vein. The heart is moderately enlarged. There is mild
interstitial pulmonary edema. Previously noted ET and NG tubes have been removed.
No large pleural effusion. Mediastinal contour is stable. Bony structures are sclerotic
which could reflect renal osteodystrophy.

Existing impression Mild cardiomegaly with mild interstitial pulmonary edema.

GPT-4 impression Moderate cardiomegaly with mild interstitial pulmonary edema.

Table B.9: Examples where GPT-4 (ImpressionGPT) impressions are favoured over the existing manually-written
impressions on MIMIC dataset The first example shows that the existing manually-written impressions written by
radiologist are not always perfect and may contain irrelevant information (in orange). In the second example GPT-4
gives the correct detail (‘Moderate cardiomegaly’) based on the findings whereas the existing impression incorrectly
concludes with ‘mild cardiomegaly’.
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C Prompts1065

For each task, We write the prompt to describe the1066

task requirements with the input and output format,1067

and we assign GPT the role of a radiologist in the1068

system message. The prompts are written in one1069

go without tweaking and tuning wording for each1070

task.1071

C.1 Sentence Similarity1072

The chat prompt for zero-shot sentence similarity1073

classification is shown in Fig. C.1.1074

C.2 RadNLI1075

Figure C.2 presents the zero-shot chat prompt for1076

RadNLI.1077

C.3 Disease Classification1078

Figure C.3 presents the zero-shot chat prompt for1079

disease classification.1080

C.4 RadGraph Entity Extraction1081

Figure C.4 shows the zero-shot chat prompt for1082

RadGraph Entity Extraction.1083

C.5 Disease Progression Prompt1084

Figure C.3 presents the zero-shot chat prompt for1085

disease progression classification.1086

C.6 Summarisation Prompt1087

Figure C.6 presents the zero-shot chat prompt for1088

findings summarisation.1089
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System You are a radiologist. Assess whether two sentences are describing the same
meaning (paraphrase) or different meaning (different) regarding the change
information. Reply with ’paraphrase’ or ’different’ first and then explain.

User - - INPUT
Sentence1: Left lower lobe collapse stable.
Sentence2: Persistent left lower lobe collapse.<|endofprompt|>
ANSWER:

Figure C.1: Zero-shot Chat Prompt for Sentence Similarity

System You are a radiologist performing natural language inference on 2 sentences:
premise and hypothesis. You need to judge which following three relations
hold for the premise and hypothesis:

entailment: The hypothesis can be inferred from the premise.
contradiction: The hypothesis can NOT be inferred from the premise.
neutral: The inference relation of the premise and the hypothesis is
undetermined.

Given the input, compare premise and hypothesis and reply with the following
structure:

REASON: <Text explaining the decision step by step>
ANSWER: <entailment | neutral | contradiction>

User - - INPUT
Premise: There is no pleural effusion pneumothorax.
Hypothesis: No focal consolidation, pleural effusion, pneumothorax, or
pulmonary edema.
What is the relation between premise and hypothesis? Explain your reason
first and then answer entailment, neutral or contradiction.<|endofprompt|>
REASON:

Figure C.2: Zero-shot Chat Prompt for RadNLI
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System You are a radiologist that identifies findings from radiology reports on
chest X-rays. Given a piece of radiology text in the following input format:

<INPUT>
<text>
</INPUT>

Assess the following findings from the input text: "Pleural Effusion",
"Atelectasis", "Pneumonia", "Pneumothorax". Answer "present" if the finding
is present; Answer "absent" if the finding is absent. Answer "not mentioned"
if the finding is not mentioned from text. Reply with a list of tuples and
then briefly explain following the format:

<OUTPUT>
ANSWER:
[
("Pleural Effusion", "present"|"absent"|"not mentioned"),
("Atelectasis", "present"|"absent"|"not mentioned"),
("Pneumonia", "present"|"absent"|"not mentioned"),
("Pneumothorax", "present"|"absent"|"not mentioned"),
]
EXPLANATION: <explanation>
</OUTPUT>

User <INPUT>
cardiomediastinal and hilar contours are unremarkable.
</INPUT>
Assess the requested findings from the above input text. Answer "present",
"absent" or "not mentioned" for each finding. Reply with a list of tuples
first and then briefly explain.<|endofprompt|>
<OUTPUT>
ANSWER:

Figure C.3: Zero-shot Chat Prompt for Disease Classification
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System You are a radiologist performing clinical term extraction from the
FINDINGS and IMPRESSION sections in the radiology report. Here a
clinical term can be either anatomy or observation that is related
to a finding or an impression. The anatomy term refers to an
anatomical body part such as a ’lung’. The observation terms refer to
observations made when referring to the associated radiology image.
Observations are associated with visual features, identifiable
pathophysiologic processes, or diagnostic disease classifications.
For example, an observation could be ’effusion’ or description
phrases like ’increased’. You also need to assign a label to indicate
whether the clinical term is present, absent or uncertain. Given a
piece of radiology text input in the format:

<INPUT>
<text>
</INPUT>

reply with the following structure:

<OUTPUT>
ANSWER: tuples separated by newlines. Each tuple has the
format: (<clinical term text>, <label: observation-present
|observation-absent|observation-uncertain|anatomy-present>). If
there are no extraction related to findings or impression, return
()
</OUTPUT>

Example user <INPUT>
No convincing evidence of pneumothorax or pneumomediastinum .
</INPUT>

What are the clinical terms and their labels in this text? Discard
sections other than FINDINGS and IMPRESSION: eg. INDICATION, HISTORY,
TECHNIQUE, COMPARISON sections. If there is no extraction from
findings and impression, return ().

<OUTPUT>
ANSWER:

Example assistant (’pneumothorax’, ’observation-absent’)
(’pneumomediastinum’, ’observation-absent’)
</OUTPUT>

Figure C.4: 1-shot Chat Prompt for RadGraph Entity Extraction
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System You are a radiologist that identifies the progression of pathologies from
radiology text. Given a radiology report in the following input format:

<INPUT>
<text>
</INPUT>

Assess the following findings from the input text: "Edema". Answer "improving"
if the finding is improving. Answer "worsened" if the finding is worsened.
Answer "stable" if the finding is stable.Reply with a prediction and then
briefly explain in the following format:

<OUTPUT>
ANSWER:
[
("Edema", "worsened"|"improving"|"stable"),
]
EXPLANATION: <explanation>
</OUTPUT>

User <INPUT>
FINAL REPORT
INDICATION: Chest pain and bradycardia. Evaluate for pneumonia.
COMPARISONS: Chest radiograph from ___.
TECHNIQUE: A single AP upright view of the chest was obtained.
FINDINGS: Since prior exam, there are new interstitial opacities and vascular
congestion, most consistent with moderate pulmonary edema. There is no focal
airspace opacity, pleural effusion, or pneumothorax. The mediastinal contours
are normal. The heart size is mildly enlarged.
IMPRESSION: New moderate pulmonary edema.
</INPUT>

Assess the above input text. Answer "improving" if the finding is improving.
Answer "worsened" if the finding is worsened. Answer "stable" if the finding
is stable. Reply with a prediction and then briefly explain:<|endofprompt|>

<OUTPUT>
ANSWER:

Figure C.5: Zero-shot Chat Prompt for Disease Progression Classification
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System You are a radiologist that can write an impression section in a radiology
report. Given the findings section of the report as the input:

<INPUT>
<findings>
</INPUT>

generate impression section:

<OUTPUT>
IMPRESSION:<impression>
</OUTPUT>

User <INPUT>
Left PICC tip is seen terminating in the region of the distal left
brachiocephalic vein. Tracheostomy tube is in unchanged standard position.
The heart is moderately enlarged. Marked calcification of the aortic knob
is again present. Mild pulmonary vascular congestion is similar. Bibasilar
streaky airspace opacities are minimally improved. Previously noted left
pleural effusion appears to have resolved. No pneumothorax is identified.
Percutaneous gastrostomy tube is seen in the left upper quadrant.
</INPUT>
Generate the impression section based on the input findings:<|endofprompt|>
<OUTPUT>
IMPRESSION:

Figure C.6: Zero-shot Chat Prompt for Findings Summarisation
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D Label mapping details for disease1090

classification1091

The attributes in Chest ImaGenome are labelled1092

as ‘yes’ or ‘no’. When there are no such labels,1093

we assign the CheXbert ‘missing’ class. When1094

calculating the scores, we collapse ‘missing’ and1095

‘no’ labels into the negative class, and the ‘yes’1096

label is treated as the positive class. CheXbert1097

predicts four labels for each pathology: ‘present’,1098

‘absent’, ‘not mentioned/missing’, and ‘uncertain’.1099

To conform with the Chest ImaGenome dataset, we1100

combine ‘present’ and ‘uncertain’ into the positive1101

class, and ‘absent’ and ‘missing’ into the negative1102

class.1103

E Self-consistency Results for Disease1104

Classification1105

Table E.1 shows the self-consistency results for1106

disease classification after deferring from uncertain1107

cases.1108
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GPT-4 (SC) GPT-4 (mean)

Macro F1 97.44 97.46 ± 0.12
Micro F1 98.56 98.56 ± 0.12
Pleural Effusion 98.47 98.38 ± 0.21
Atelectasis 98.99 98.38 ± 0.21
Pneumonia 92.30 92.42 ± 0.25
Pneumothorax (18) 100.0 100.0

Table E.1: mean, standard deviation and the self-
consistency results for Zero-shot GPT-4 after deferring
from uncertain cases
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F Error breakdown for single-run1109

experiments1110

Table F.1 shows the error breakdown for single-run1111

experiments.1112

G Implementation details for1113

ImpressionGPT1114

We replicated the latest ImpressionGPT (Ma1115

et al., 2023) framework using both Chat-1116

GPT(as proposed in the original work)1117

and GPT-4. We reproduced this work1118

based on the publicly available code https:1119

//github.com/MoMarky/ImpressionGPT. We1120

set the hyperparameter values to match the optimal1121

settings reported in the ablation study from the1122

paper (Ma et al., 2023) which are different from1123

the default values hard-coded in the repository. We1124

therefore select Ns = 15 most similar in-context1125

examples in the dynamic prompt. Additionally, we1126

iteratively inject as many bad examples Bd = n1127

and update the single good example Gd = 1 with1128

highest Rouge-1 score using Rouge-1 threshold1129

T = 0.7. Finally, the iterative process is run for1130

I = 17 iterations. We evaluate on the same test1131

split shared in https://github.com/MoMarky/1132

radiology-report-extraction for Open-i1133

dataset and the official test split for MIMIC-CXR.1134

We note a performance drop for ChatGPT (Im-1135

pressionGPT) baseline (Rouge-L=44.7 vs 47.931136

for MIMIC-CXR and Rouge-L=58.8 vs 65.471137

for Open-i) compared to the results reported in1138

(Ma et al., 2023). The default hyperparameters in1139

the repository also did not produce the expected1140

results.1141
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Task Mistake Other Total Mistake Rate

Disease Classification 17% 83% 30 5 / 1955 (0.3%)
Disease Progression Classification 18% 82% 34 13 / 1326 (0.4%)

Table F.1: GPT-4 Error breakdown for single-run classification experiments: disease classification (*10) and disease
progression (zero-shot). Errors are categories into mistakes and other (ambiguous or label noise).
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