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Abstract

Policy alignment of large language models refers to constrained policy optimization,
where the policy is optimized to maximize a reward while staying close to a
reference policy with respect to an f -divergence such as the KL divergence. The
best of n alignment policy selects a sample from the reference policy that has the
maximum reward among n independent samples. For both cases (policy alignment
and best of n), recent works showed empirically that the reward improvement of
the aligned policy on the reference one scales like

√
KL, with an explicit bound

in n on the KL for the best of n policy. We show in this paper that the
√
KL

information theoretic upper bound holds if the reward under the reference policy
has sub-gaussian tails.Moreover, we prove for the best of n policy, that the KL
upper bound can be obtained for any f -divergence via a reduction to exponential
order statistics owing to the Rényi representation of order statistics, and a data
processing inequality. If additional information is known on the tails of the aligned
policy we show that tighter control on the reward improvement can be obtained
via the Rényi divergence. Finally we demonstrate how these upper bounds transfer
from proxy rewards to golden rewards which results in a decrease in the golden
reward improvement due to overestimation and approximation errors of the proxy
reward.

1 Introduction

Aligning Large Language Models (LLMs) with human preferences allows a tradeoff between main-
taining the utility of the pre-trained reference model and the alignment of the model with human
values such as safety or other socio-technical considerations. Alignment is becoming a crucial step
in LLMs training pipeline, especially as these models are leveraged in decision making as well as
becoming more and more accessible to the general public. Policy alignment starts by learning a
reward model that predicts human preferences, these reward models are typically fine-tuned LLMs
that are trained on pairwise human preference data [Christiano et al., 2017, Stiennon et al., 2020,
Ouyang et al., 2022, Bai et al., 2022]. The reward is then optimized using training time alignment i.e
via policy gradient based reinforcement learning leading to the so called Reinforcemnent Learning
from Human Feedback (RLHF) [Christiano et al., 2017]. RLHF ensures that the reward is maximized
while the policy π stays close to the initial reference policy πref in the sense of the Kullback-Leibler
divergence KL(π||πref). Other variants of these training time alignment have been proposed via
direct preference optimization [Rafailov et al., 2024] [Zhao et al., 2023] [Ethayarajh et al., 2024].
Another important paradigm for optimizing the reward is test time alignment via best of n sampling
from the reference policy and retaining the sample that maximizes the reward. The resulting policy
is known as the best of n policy. The best of n policy is also used in controlled decoding settings
[Yang and Klein, 2021, Mudgal et al., 2023] and in fine-tuning LLMs to match the best of n policy
responses [Touvron et al., 2023].
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Figure 1: Qualitiative plot of centered rewards vs. KL of Proxy and Gold Rewards for both Best of n
and RL policies. (See Fig. 1 a) and b) in [Gao et al., 2023] for scaling laws in policy alignment).

[Gao et al., 2023] and [Hilton and Gao, 2022] studied the scaling laws of reward models optimization
in both the RL and the best of n setups. [Gao et al., 2023] distinguished between “golden reward”
that can be thought of as the golden human preference and “proxy reward” which is trained to predict
the golden reward. For proxy rewards [Gao et al., 2023] found experimentally for both RL and best
of n policies that the reward improvement on the reference policy scales as

√
KL(π||πref). Similar

observations for reward improvement scaling in RL were made in [Bai et al., 2022]. For golden
rewards, [Gao et al., 2023] showed for both RL and best of n policies that LLMs that optimize the
proxy reward suffer from over-optimization in the sense that as the policy drifts from the reference
policy, optimizing the proxy reward results in deterioration of the golden reward. This phenomena
is referred to in [Gao et al., 2023] [Hilton and Gao, 2022] as Goodhart’s law. A qualitative plot of
scaling laws discovered in [Gao et al., 2023] is given in Figure 1. For the best of n policy, most works
in this space assumed that KL(π||πref) = log(n) − n−1

n [Stiennon et al., 2020, Coste et al., 2024,
Nakano et al., 2021, Go et al., 2024, Gao et al., 2023]. Recently Beirami et al. [2024] showed that
this is in fact an inequality under the assumption that the reward is one to one map (a bijection) and
for finite alphabets. The main contribution of this papers are :

1. We provide in Theorem 1 in Section 2 a new proof for the best of n policy inequality
KL(π||πref) ≤ log(n) − n−1

n and show via a reduction to exponential random variables
that it is a consequence of the data processing inequality of the KL divergence. We extend
this inequality beyond the setup of [Beirami et al., 2024] of one to one rewards and finite
alphabets to a more realistic setup of surjective rewards and beyond finite alphabets. We
also give conditions under which the equality is met, and extend those inequalities to
f -divergences and Rényi divergences.

2. We show in Section 3 that the scaling laws on policy improvement versus KL of [Gao
et al., 2023] are information theoretic upper bounds and are consequences of transportation
inequalities with the KL divergence under sub-gaussian tails of the reward under the reference
policy. We discuss how the dependency on KL is driven only by the tails of the reward
under the reference model, and cannot be improved by a better alignment algorithm and can
only be improved if the tails of the reference rewards are fatter than sub-gaussian such as
sub-gamma or sub-exponential tails.

3. We study in Theorem 4 the tightness of these information theoretical upper bounds when
the tails of the optimized policy are also known via new transportation inequalities for the
Rényi divergence Dα for in α ∈ (0, 1), and show that the upper bound

√
KL can not be met,

echoing Goodhart’s law of [Gao et al., 2023].
4. We finally study in Section 4 the transfer of transportation inequalities from proxy rewards

to golden rewards and prove that indeed the golden reward improvement is hindered by
“overestimation” of the proxy reward as reported empirically in [Gao et al., 2023].

2 The Alignment Problem

2.1 RLHF: A Constrained Policy Optimization Problem

Let X be the space of prompts and Y be the space of responses y ∈ Y from a LLM conditioned on a
prompt x ∈ X . The reference LLM is represented as policy πref(y|x), i.e as a conditional probability
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on Y given a prompt x ∈ X . Let ρX be a distribution on prompts, and a r a reward, r : X × Y → R,
r represents a safety or alignment objective that is desirable to maximize.
Given a reference policy πref , the goal of alignment is to find a policy π∗ that maximizes the reward
r and that it is still close to the original reference policy for some positive ∆ > 0:

π∗
y|x = argmax

πy|x
Ex∼ρXEy∼π(.|x)r(x, y) s.t

∫
X
KL(π(y|x)||πref(y|x))dρX (x) ≤ ∆, (1)

where KL(π(y|x)||πref(y|x)) = Ey∼π.|x log
(
π(y|x)
πref(y|x)

)
. With some abuse of notation, we write

π(x, y) = π(y|x)ρX (x) and πref(x, y) = πref(y|x)ρX (x). Let P(X × Y) be joint probability
defined on X × Y that has ρX as marginal on X . Hence we can write the alignment problem (1) in a
more compact way as follows:

sup
π∈P(X×Y)

∫
rdπ s.t KL(π||πref) ≤ ∆. (2)

For β > 0, we can also write a penalized form of this constrained policy optimization problem
as follows: supπ∈P(X×Y)

∫
rdπ − 1

βKL(π||πref). It is easy to see that the optimal policy of the
penalized problem is given by:

πβ,r(y|x) =
exp(βr(x, y))πref(y|x)∫
exp(βr(x, y))dπref(y|x)

, ρX almost surely. (3)

The constrained problem (2) has a similar solution (See for e.g [Yang et al., 2024]):

πλ∆,r(y|x) =
exp( r(x,y)λ∆

)πref(y|x)∫
exp( r(x,y)λ∆

)dπref(y|x)
, ρX almost surely, (4)

where λ∆ > 0 is a lagrangian that satisfies
∫
X KL(πλ∆,r(y|x)||πref(y|x))dρX (x) = ∆.

2.2 Best of n Policy Alignment

LetX be the random variable associated with prompts such that Law(X) = ρX . Let Y be the random
variable associated with the conditional response of πref given X . Define the conditional reward of
the reference policy :

R(Y )|X := r(X,Y ) where Y ∼ πref(.|X),

we assume that R(Y )|X admits a CDF denoted as FR(Y )|X and let F−1
R(Y )|X be its quantile:

F
(−1)
R(Y )|X(p) = inf{η : FR(Y )|X(η) ≥ p} for p ∈ [0, 1].

Let Y1 . . . Yn be independent samples from πref(.|X). We define the best of n reward as follows:

R(n)(Y )|X = max
i=1...n

R(Yi)|X, (5)

this the maximum of n iid random variables with a common CDF FR(Y )|X . The best of n policy
corresponds to Y (n)|X := argmaxi=1...n r(X,Yi). We note π(n)

r,ref(.|X) the law of Y (n)|X . π(n)
r,ref

is referred to as the best of n alignment policy. We consider two setups for the reward:
Assumption 1. We assume that the reward r is a one to one map for a fixed x, and admits an inverse
hx : R → Y such that hx(r(x, y)) = y.

This assumption was considered in [Beirami et al., 2024]. Nevertheless this assumption is strong and
not usually meet in practice, we weaken this assumption to the following:

Assumption 2. We assume that there is a stochastic map HX such that HX(RY |X))
d
= Y |X and

HX(RY (n)|X))
d
= Y (n)|X .

Under Assumption 2, the reward can be surjective which is more realistic but we assume that there is
a stochastic map that ensures invertibility not point-wise but on a distribution level. Our assumption
means that we have conditionally on X: R|X → Y |X form a Markov chain i.e exists A(Y |R,X) so
that PY |X = A(Y |R,X)PR|X , and PY (n)|X = A(Y |R,X)PR(n)|X .
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Best of n Policy KL Guarantees: A reduction to Exponentials. In what follows for random
variables Z,Z ′ with laws pZ , pZ′ we write interchangeably: KL(pZ ||pZ′) = KL(Z||Z ′). Let us
start by looking at KL

[
R(n)(Y )||R(Y )

∣∣∣X] the KL divergence between the conditional reward of
the best of n policy and that of the reference policy. Let E ∼ Exp(1), the optimal transport map
F−1
R(Y )|X ◦ FE from the exponential distribution E to R(Y )|X (See for example Theorem 2.5 in

[Santambrogio, 2015]: E is atomless, but R(Y )|X can be discrete valued) allows us to write:
R(Y )|X d

= F−1
R(Y )|X ◦ FE(E), (6)

where d
= means equality in distribution. On the other hand, let R(1)(Y )|X ≤ · · · ≤ R(n)(Y )|X be

the order statistics of the rewards of n independent samples Yi, i = 1 . . . n, Yi ∼ πref(.|X). The order
statistics refer to sorting the random variable from the minimum (index (1)) to the maximum (index
(n)). Consider n independent exponential E1, . . . En, where Ei ∼ exp(1), and their order statistics
E(1) ≤ E(2) ≤ . . . E(n). The Rényi representation of order statistics [Rényi, 1953], similar to the
Optimal Transport (OT) representation allows us to express the distribution of the order statistics of
the rewards in terms of the order statistics of exponentials as follows:(

R(1)(Y )|X, . . . , R(n)(Y )|X
)
d
=
(
F−1
R(Y )|X ◦ FE(E(1)), . . . , F−1

R(Y )|X ◦ FE(E(n))
)
. (7)

The central idea in the Rényi representation is that the mapping F−1
R(Y )|X ◦ FE is monotonic and

hence ordering preserving and by the OT representation each component is distributed as R(Y )|X .
See [Boucheron and Thomas, 2012] for more account on the Rényi representation of order statistics.

Hence using the OT representation in (6) and the Rényi representation of the maximum (7), we can
reduce the KL between the rewards to a KL on functions of exponentials and their order statistics:

KL
[
R(n)(Y )||R(Y )

∣∣∣X] = KL
(
F−1
R(Y )|X ◦ FE(E(n))

∣∣∣∣∣∣F−1
R(Y )|X ◦ FE(E)

)
= KL(TX(E(n))||TX(E)), (8)

where TX = F−1
R(Y )|X ◦ FE = F−1

(r(X,.))♯πref (.|X) ◦ FE .

Under Assumption 1 we can write samples from the best of n policy as Y (n)|X = hX(Rn(Y ))|X
and from the reference policy as Y |X = hX(R(Y ))|X. Hence we have by the data processing
inequality (DPI) for the KL divergence (See for e.g [Polyanskiy and Wu, 2023]) under Assumption 1:

KL(π
(n)
r,ref ||πref|X) = KL(Y (n)||Y |X)

= KL(hX(Rn(Y ))||hX(R(Y ))|X)

= KL(Rn(Y )||R(Y )|X) By Assumption 1 hX is one to one and DPI is an equality

= KL(TX(E(n))||TX(E)) Rényi and Optimal Transport Representations (Eq (8))
(9)

Recall that TX = F−1
R(Y )|X ◦ FE , FE is one to one. If the space Y is finite, R(Y |X) has a

discontinuous CDF hence not strictly monotonic. It follows that its quantile F−1
R(Y )|X is not a one to

one map and TX as a result is not a one to one map and hence we have by DPI (that is an inequality
in this case since TX is not one to one):

KL(TX(E(n))||TX(E)) ≤ KL(E(n)||E) (10)

If the space Y is infinite and we assume that R(Y |X) is continuous and strictly monotonic then
F−1
R(Y )|X is a one to one map, and as a result TX is a one to one map and the DPI is an equality in

this case:
KL(TX(E(n))||TX(E)) = KL(E(n)||E) (11)

Hence under Assumption 1 and for Y finite combining (9) and (10) we have:

KL(π
(n)
r,ref ||πref|X) ≤ KL(E(n)||E), (12)

and under Assumption 1 and for Y infinite and assuming FR(Y )|X is continuous and strictly mono-
tonic, combining (9) and (11) we have:

KL(π
(n)
r,ref ||πref|X) = KL(E(n)||E). (13)
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Under the more realistic Assumption 2 we can also apply the DPI on the stochastic map HX , since
DPI also holds for stochastic maps ( under our assumption R|X → Y |X see for example [van Erven
and Harremos, 2014] Example 2)

KL(π
(n)
r,ref ||πref|X) = KL(HX(Rn(Y ))||HX(R(Y ))|X))

≤ KL(Rn(Y )||R(Y )|X) = KL(TX(E(n))||TX(E)), (14)

and hence under Assumption 2 regardless whether TX is a one to one map or not, thus we have:
KL(π

(n)
r,ref ||πref|X) ≤ KL(E(n)||E). The following Lemma gives a closed form expression for

KL(E(n)||E):
Lemma 1 (KL Between Exponential and Maximum of Exponentials). Let E ∼ exp(1), and
E1, . . . En be iid exponentials and E(n) their maximum, we have:

KL(E(n)||E) = log(n)− n− 1

n
. (15)

Hence we conclude with the following result:
Theorem 1. The best of n policy satisfies under (i) Assumption 1 (reward one to one) and for finite Y
or under (ii) Assumption 2 (existence of stochastic “inverse”) :

KL(π
(n)
r,ref ||πref) ≤ KL(E(n)||E) = log(n)− n− 1

n
. (16)

Under Assumption 1, for infinite Y and assuming FR(Y |X) is continuous and strictly increasing for
all X we have:

KL(π
(n)
r,ref ||πref) = KL(E(n)||E) = log(n)− n− 1

n
. (17)

Proof. Combining Lemma 1, the analysis above and taking expectation onX we obtain the result.
Beirami et al. [2024] showed this result under condition (i) which is not a realistic setting and used
the finiteness of Y to provide a direct proof. Our analysis via chaining DPI and using OT and Rényi
representations to reduce the problem to exponentials allows us to extend the result to a more realistic
setup under condition (ii) i.e the existence of a stochastic “inverse", without any assumption on
Y . Furthermore we unveil under which conditions the equality holds that was assumed to hold in
previous works [Stiennon et al., 2020] [Coste et al., 2024, Nakano et al., 2021, Go et al., 2024]
[Hilton and Gao, 2022] [Gao et al., 2023] .

Our approach of reduction to exponentials using Rényi representation of order statistics and data
processing inequalities extends to bounding the f - divergence Df (π

(n)
r,ref ||πref) as well as the α Rényi

divergence. The Rényi divergence for α ∈ (0, 1) ∪ (1,∞) is defined as follows:

Dα(P ||Q) =
1

(α− 1)
log

(∫
pα(x)q1−α(x)dx

)
the limit as α→ 1 coincides with KL, i.e: D1(P ||Q)) = KL(P ||Q). These bounds are summarized
in Table 1. Full proofs and theorems are in the Appendix.

Divergence f(x) Bound on Df (π
(n)
r,ref ||πref)

KL x log(x) log(n)− n−1
n

Chi-squared (x− 1)2 (n−1)2

2n−1

Total Variation f(x) = 1
2 |x− 1| ( 1n )

1
n−1 − ( 1n )

n
n−1

Hellinger distance (1−
√
x)2 2 (1−

√
n)2

n+1

Forward KL − log(x) n− 1− log(n)

α Rényi Divergence NA 1
(α−1) log

(
nα

α(n−1)+1

)
Table 1: Best of n policy f -Divergence and α Rényi Divergence Bounds.

Best of n-Policy Dominance on the Reference Policy. The following proposition shows that the
best of n policy leads to an improved reward on average:
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Proposition 1. R(n) dominates R in the first order dominance that is R(n) dominates R on all
quantiles: QR(n)(t) ≥ QR(t),∀t ∈ [0, 1]. It follows that we have ER(n) ≥ ER.

Best of n Policy and RL Policy The following proposition discusses the sub-optimality of the best
of n policy with respect to the alignment RL objective given in (1):
Proposition 2. Assume a bounded reward in [−M,M ]. For ∆ > 0 and n = exp(∆) the best of n
policy π(n)

r,ref and the ∆ Constrained RL policy πλ∆,r (given in (4)) satisfy:

KL(π
(n)
r,ref ||πλ∆,r) ≤

√
2πM(e

2M
λ∆ − 1)

λ∆
exp(−∆

2
).

A similar asymptotic result appeared in [Yang et al., 2024] for ∆ → ∞, showing as n → ∞,
KL(π

(n)
r,ref ||πλ∆,r) → 0, we provide here a non asymptotic result for finite n and finite ∆.

3 Reward Improvement Guarantees Through Transportation Inequalities

Notations Let X be a real random variable. The logarithmic moment generating function of X
is defined as follows for λ ∈ R: ψX(λ) = logEXeλ(X−EX). X is said to be sub-Gaussian with
variance σ2 if : ψX(λ) ≤ λ2σ2

2 for all λ ∈ R. We denote SubGauss(σ2) the set of sub-Gaussian
random variables with variance σ2

ref . X is said to be sub-Gamma on the right tail with variance factor
σ2 and a scale parameter c > 0 if : ψX(λ) ≤ λ2σ2

2(1−cλ) for every λ such that 0 < λ < 1
c . We denote

SubGamma(σ2, c) the set of left and right tailed sub-Gamma random variables. Sub-gamma tails
can be thought as an interpolation between sub-Gaussian and sub-exponential tails.

Scaling Laws in Alignment It has been observed empirically [Coste et al., 2024, Nakano et al.,
2021, Go et al., 2024, Hilton and Gao, 2022, Gao et al., 2023] that optimal RL policy πλ∆,r satisfy
the following inequality for a constant σ2

ref :Eπλ∆,r
r − Eπref

r ≤
√
2σ2

refKL(πλ∆,r||πref). A similar

scaling for best of n policy : E
π
(n)
r,ref

r − Eπref
r ≤

√
2σ2

ref

(
log n− n−1

n

)
, and those bounds are

oftentimes tight even when empirically estimated from samples. This hints that those bounds are
information theoretic and independent of the alignment problem. Indeed if the reward was bounded,
a simple application of Pinsker inequality gives rise to

√
KL scaling. Let TV be the total variation

distance, we have: TV(π, πref) = 1
2 sup||r||∞≤1 Eπr − Eπref

r ≤
√

1
2KL(π||πref). Hence we can

deduce that for bounded rewards r with norm infinity ||r||∞ that:

Eπr − Eπref
r ≤

√
2||r||2∞KL(π||πref).

Nevertheless this boundedness assumption on the reward is not realistic, since most reward models
are unbounded: quoting Lambert et al. [2024] “ implemented by appending a linear layer to predict
one logit or removing the final decoding layers and replacing them with a linear layer” and hence the
reward is unbounded by construction. We will show in what follows that those scalings laws are tied
to the tails of the reward under the reference policy and are instances of transportation inequalities.

3.1 Transportation Inequalities with KL Divergence

For a policy π ∈ P(Y) and for a reward function r : Y → R , we note r♯π, the push-forward map of
π through r. The reader is referred to Appendix D.1 for background on transportation inequalities
and how they are derived from the so-called Donsker-Varadhan variational representation of the KL
divergence. The following Proposition is an application of Lemma 4.14 in [Boucheron et al., 2013]):
Proposition 3 (Transportation Inequalities). The following inequalities hold depending on the tails
of r♯πref :

1. Assume that r♯πref ∈ SubGauss(σ2
ref). For any π ∈ P(Y) that is absolutely continuous

with respect to πref , and such that KL(π||πref) <∞ then we have:

|Eπr − Eπref
r| ≤

√
2σ2

refKL(π||πref).
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2. Assume that r♯πref ∈ SubGamma(σ2
ref , c). For any π ∈ P(Y) that is absolutely continuous

with respect to πref , and such that KL(π||πref) <∞ then we have:

|Eπr − Eπref
r| ≤

√
2σ2

refKL(π||πref) + cKL(π||πref)

In particular we have the following Corollary:
Corollary 1 (Expected Reward Improvement). If r♯πref ∈ SubGauss(σ2

ref) the following holds for
the optimal RL policy πλ∆,r and for the best of n policy π(n)

r,ref :

1. For the optimal RL policy πλ∆,r we have:

0 ≤ Eπλ∆,r
r − Eπref

r ≤
√
2σ2

refKL(πλ∆,r
||πref) ≤

√
2σ2

ref∆.

2. For the Best of n policy π(n)
r,ref , under Assumption 2 we have:

0 ≤ E
π
(n)
r,ref

r − Eπref
r ≤

√
2σ2

refKL(π
(n)
r,ref ||πref) ≤

√
2σ2

ref

(
log n− n− 1

n

)
.

A similar statement holds under sub-gamma tails of the reward of the reference model. We turn now
to providing a bound in high probability on the empirical reward improvement of RL:

Remark 1. Item (1) in Corollary 1 shows that the
√
σ2
refKL provides an upper bound on the reward

improvement of the alignment under subgaussian tails of the reference reward. Under subgaussian
tails of the reference, this information theoretic barrier can not be broken with a better algorithm.
On way to improve on the

√
KL ceiling is by aiming at having a reference model with a reward that

has subgamma tails to improve the upper limit to
√
σ2
refKL+ cKL, or to subexponential tails to be

linear in the KL. Item (2) can be seen as a refinement on the classical
√
2σ2

ref log(n) upper bound
on the expectation of maximum of subgaussians see for e.g Corollary 2.6 in [Boucheron et al., 2013].
If in addition r is positive and for X = r♯πref − Eπref

r we have for t > 0 , P(X > t) ≥ P(|g| > t),
where g ∼ N (0, σ2

ℓ ) (where σ2
ℓ is a variance) , then we have a matching lower bound for π(n)

r,ref that
scales with

√
σ2
ℓ log(n) for sufficiently large n (See [Kamath, 2015]).

The following Theorem gives high probability bounds for the excess reward when estimated from
empirical samples:
Theorem 2 (High Probability Empirical Reward Improvement For RL). Assume r♯πref ∈
SubGauss(σ2

ref). Let β > 1 and t0 > 0. Let πβ,r be the optimal policy of the penalized RL
problem given in Equation (3). Let Ri,β and Ri,ref , i = 1 . . .m be the rewards evaluated at m
samples from πβ,r and πref . Assume that the β-Rényi divergence Dβ(πβ,r||πref) and KL(πβ,r||πref)

are both finite. The following inequality holds with probability at least 1− e
− mt20

2σ2
ref − e−m(β−1)t0 :

1

m

m∑
i=1

Ri,β − 1

m

m∑
i=1

Ri,ref ≤
√
2σ2

refKL(πβ,r||πref) +
Dβ(πβ,r||πref)− KL(πβ,r||πref)

β
+ 2t0.

Note that in Theorem 2, we did not make any assumptions on the tails of r♯πβ,r and we see that this
results in a biased concentration inequality with a non-negative bias Dβ(πβ,r||πref )−KL(πβ,r||πref )

β ≥ 0.
For the best of n policy, if the reward was positive and has a folded normal distribution (absolute
value of gaussians), [Boucheron and Thomas, 2012] provides concentration bounds, owing to the
subgamma tails of the maximum of absolute value of Gaussians.

3.2 Tail Adaptive Transportation Inequalities with the Rényi Divergence

An important question on the tightness of the bounds rises from the bounds in Corollary 1. We
answer this question by considering additional information on the tails of the reward under the policy
π, and we obtain tail adaptive bounds that are eventually tighter than the one in Corollary 1. Our
new bounds leverage a variational representation of the Rényi divergence that uses the logarithmic
moment generating function of both measures at hand.
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Preliminaries for the Rényi Divergence The Donsker-Varadahn representation of KL was crucial
in deriving transportation inequalities. In Shayevitz [2011] the following variational form is given for
the Rényi divergence in terms of the KL divergence, for all α ∈ R

(1− α)Dα(P ||Q) = inf
R
αKL(R||P ) + (1− α)KL(R||Q) (18)

A similar variational form was rediscovered in [Anantharam, 2018]. Finally a Donsker-Varadahn-
Rényi representation of Dα was given in [Birrell et al., 2021]. For all α ∈ R+, α ̸= 0, 1 we have
:

1

α
Dα(P ||Q) = sup

h∈H

1

α− 1
log
(
EP e(α−1)h

)
− 1

α
log
(
EQeαh

)
, (19)

where H =
{
h
∣∣∣ ∫ e(α−1)hdP < ∞,

∫
eαhdQ < ∞

}
. Birrell et al. [2021] presents a direct proof

of this formulation without exploring its link to the representation given in (18), we show in what
follows an elementary proof via convex conjugacy, the duality relationship between equations (18)
and (19).
Theorem 3. For 0 < α < 1 Equations (18) and (19) are dual of one another. For α > 1 they are
Toland Dual.

We collect in what follows elementary lemmas that will be instrumental to derive transportation
inequalities in terms of the Rényi divergence. Proofs are given in the Appendix.

Lemma 2. Let α ∈ (0, 1)∪ (1,∞), and define H = {h|e(α−1)(h−
∫
hdP ) ∈ L1(P ), e(α)(h−

∫
hdQ) ∈

L1(Q)}. We have for all h ∈ H and for α ∈ (0, 1) ∪ (1,∞)∫
hdP−

∫
hdQ ≤ 1

α
Dα(P ||Q)− 1

α− 1
log

(∫
e(α−1)(h−

∫
hdP )dP

)
+
1

α
log

(∫
eα(h−

∫
hdQ)dQ

)
Lemma 3. The following limit holds for the Rényi divergence limα→0

1
αDα(P ||Q) = KL(Q||P ).

Transportation Inequalities with Rényi Divergence. The following theorem shows that when
considering the tails of π we can obtain tighter upper bounds using the Rényi divergence that is more
tail adaptive:
Theorem 4 (Tail Adaptive Transportation Inequalities). Let α ∈ (0, 1). Assume r♯π ∈ SubGauss(σ2

π)
and r♯πref ∈ SubGauss(σ2

ref) then we have for all α ∈ (0, 1):

Eπr − Eπref
r ≤

√
2((1− α)σ2

π + ασ2
ref)

Dα(π||πref)
α

. (20)

In particular if there exits α ∈ (0, 1) such that Dα(π||πref) ≤ ασ2
ref

(1−α)σ2
π+ασ

2
ref

KL(π||πref), then the
tail adaptive upper bound given in Equation (20) is tighter than the one provided by the tails of πref
only i.e

√
σ2
refKL(π||πref). Note that this is possible because Dα is increasing in α ∈ (0, 1) [van

Erven and Harremos, 2014], i.e Dα(π||πref) ≤ KL(π||πref), and ασ2
ref

(1−α)σ2
π+ασ

2
ref

≤ 1. Note that
taking limits α→ 0 (applying Lemma 3) and α→ 1, and taking the minimum of the upper bounds
we obtain:

Eπr − Eπref
r ≤

√
2min(σ2

πref
KL(π||πref), σ2

πKL(πref ||π)),

this inequality can be also obtained by applying Proposition 3 twice: on the tails of π and πref
respectively.

Another important implication of Theorem 4, other than tighter than KL upper bound, is that if
we were to change the RL alignment problem (1) to be constrained by Dα, α ∈ (0, 1) instead of
KL, we may end up with a smaller upper limit on the reward improvement. This Dα constrained
alignment may lead to a policy that under-performs when compared to a policy obtained with the KL
constraint. This was indeed observed experimentally in [Wang et al., 2024] that used constraints with
α- divergences for α ∈ (0, 1) (that are related to Rényi divergences) and noticed a degradation in the
reward improvement w.r.t the policy obtained using KL constraints.
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4 Transportation Inequality Transfer From Proxy to Golden Reward

As we saw in the previous sections, the tightness of
√
KL(π||πref) upper bound in alignment can be

due to the tails of the reward of the aligned policy π (Theorem 4) and to the concentration around the
mean in finite sample size (Theorem 2). Another important consideration is the mismatch between the
golden reward r∗ that one desires to maximize that is expensive and difficult to obtain (for example
human evaluation) and a proxy reward r that approximates r∗. The proxy reward r is used instead of
r∗ in RL and in best of n policy. While we may know the tails of the reward r of the reference and
aligned model, we don’t have access to this information on the golden reward r∗. We show in this
section how to transfer transportation inequalities from r to r∗ for RL and Best of n policy.
Proposition 4 (r∗ Transportation Inequality for RL Policy ). The following inequality holds:

Eπβ,r
r∗ − Eπref

r∗ ≤ Eπβ,r
r − Eπref

r − 1

β
log

(∫
eβ(r−r

∗−(
∫
rdπref−

∫
r∗dπref )dπβ,r∗

)
,

Assume r♯πref ∈ SubGauss(σ2
ref), and there exists δ > 0 such that.

1
β log

(∫
eβ(r−r

∗−(
∫
rdπref−

∫
r∗dπref )dπβ,r∗

)
≥ δKL(πβ,r∗ ||πref) then we have:

Eπβ,r
r∗ − Eπref

r∗ ≤
√
2σ2

refKL(πβ,r||πref)− δKL(πβ,r∗ ||πref).

Note that 1
β log

(∫
eβ(r−r

∗−(
∫
rdπref−

∫
r∗dπref )dπβ,r∗

)
is interpreted here as an interpolation

between the mean and the maximum of its argument on the support of πβ,r∗ (Proposition
9 in [Feydy et al., 2018]). Indeed as β → 0, this boils down to the mean on

∫
(r −

r∗)dπβ,r∗ −
(∫
rdπref −

∫
r∗dπref

)
and β → ∞ this boils down to maxsuppπβ,r∗ {r − r∗ −(∫

rdπref −
∫
r∗dπref

)
}. Our assumption means that r overestimates r∗ and the overestimation is

accentuated as we drift from πref on which r was learned. This assumption echoes findings in [Gao
et al., 2023] that show that the transportation inequalities suffer from overestimation of proxy reward
models of the golden reward (See Figure 8 in [Gao et al., 2023]).

Note that in Proposition 4, we are evaluating the golden reward r∗ improvement when using the
proxy reward optimal policy πβ,r. We see that the golden reward of the RL policy inherits the
transportation inequality from the proxy one but the improvement of the reward is hindered by possible
overestimation of the golden reward by the proxy model. This explains the dip in performance as
measured by the golden reward depicted in Figure 1 and reported in [Gao et al., 2023].
Proposition 5 (r∗ Transportation Inequality for Best of n Policy). Let ε > 0. Let r be a surrogate
reward such that ∥r − r∗∥∞ ≤ ε and assume r♯πref ∈ SubGauss(σ2

ref) then the best of n policy
π
(n)
r,ref satisfies:

E
π
(n)
r,ref

(r∗)− Eπref
(r∗) ≤

√
2σ2

ref

(
log(n)− n− 1

n

)
+ 2ε

((
1

n

) 1
n−1

−
(
1

n

) n
n−1

)
.

Transportation inequalities transfers for the best of n policy from r to r∗ and pays only an additional
error term ∥r − r∗∥∞ TV(π

(n)
r,ref |πref) , an upper bound of this total variation as a function of n is

given in Table 1. As mentioned in remark 1, if we have lower bounds on the tail of the reference
reward, then we also have a lower bound on the reward improvement that scales like C

√
σ2
ℓ log(n)−

2ε
((

1
n

) 1
n−1 −

(
1
n

) n
n−1

)
. This is in line with empirical findings in [Hilton and Gao, 2022] [Gao

et al., 2023] that showed that best of n policy is resilient as the reward model r gets closer to r∗.

5 Conclusion

We presented in this paper a comprehensive information theoretical analysis of policy alignment using
reward optimization with RL and best of n sampling. We showed for best of n a bound on KL under
realistic assumptions on the reward. Our analysis showed that the alignment reward improvement, is
intrinsically constrained by the tails of the reward under the reference policy and controlling the KL
divergence results in an upper bound of the policy improvement. We showed that the KL bound may
not be tight if the tails of the optimized policy satisfy a condition expressed via Rényi divergence.
We also explained the deterioration of the golden reward via overestimation of the proxy reward.
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A Broader Impact and Limitations

We believe this work explaining scaling laws for reward models and alignment will give practitioners
insights regarding the limits of what is attainable via alignment. All assumptions under which our
statements hold are given. We don’t see any negative societal impact of our work.

B Proofs For Best of n Policy

B.1 Best of n Policy KL Guarantees

Proof of Lemma 1.

KL(E(n)||E) =

∫ +∞

0

fE(n)(x) log

(
fE(n)(x)

fE(x)

)
dx

We have fE(x) = e−x1x≥0. Note that the CDF of maximum of exponential FE(n)(x) = (1 −
e−x)1x≥0, and hence fE(n)(x) = n(1− e−x)n−1e−x1x≥0. Hence we have:

KL(E(n)||E) =

∫ +∞

0

n(1− e−x)n−1e−x log

(
n(1− e−x)n−1e−x

e−x

)
dx

=

∫ +∞

0

n(1− e−x)n−1e−x log
(
n(1− e−x)n−1

)
dx

Let u = 1− e−x, we have du = e−xdx. It follows that :

KL(E(n)||E) =

∫ 1

0

nun−1 log
(
nun−1

)
du

=

∫ 1

0

nun−1 (log(n) + (n− 1) log(u)) du

= log(n)

∫ 1

0

dun + (n− 1)

∫ 1

0

nun−1 log(u)du

= log(n) + (n− 1)

∫ 1

0

d(un log u− un

n
)

= log(n)− n− 1

n
.

B.2 Best of n Policy f divergence and Rényi Divergence

Best of n Policy f divergence and Renyi divergence Guarantees Given that our proof technique
relies on DPI and Rényi representation, we show that similar results hold for any f -divergence and
for the Rényi divergence:

Df (P ||Q) =

∫
q(x)f

(
p(x)

q(x)

)
dx, (21)

where f is convex and f(1) = 0. Hence we have by DPI for f -divergences:

Theorem 5. Under Assumption 2 the best of n policy satisfies for any f-divergence:

Df (π
(n)
r,ref ||πref) ≤

∫ 1

0

f
(
nun−1

)
du (22)
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Proof of Theorem 5.

Df (π
(n)
r,ref ||πref|X) = Df (Y

(n)||Y |X)

= Df (HX(Rn(Y ))||HX(R(Y ))|X)

≤ Df (R
n(Y )||R(Y )|X) By the data processing inequality (23)

= Df (TX(E(n))||TX(E)) Renyi and Optimal Transport Representations (8)

= Df (E
(n)||E) since TX is a monotonic bijection DPI is an equality (24)

=

∫ +∞

0

fE(x)f

(
fE(n)(x)

fE(x)

)
dx (25)

=

∫ ∞

0

(e−x)f
(
n(1− e−x)n−1

)
du (26)

=

∫ 1

0

f(nun−1)du. (27)

In particular we have the following bounds for common f divergences:

• For f(x) = x log(x) we obtain the KL divergence and we have the result:∫ 1

0

nun−1 log(nun−1)du = KL(E(n)||E) = log(n)− n− 1

n
.

• For f(x) = (x − 1)2 we obtain the chi-squared divergence and we have:∫ 1

0

(
nun−1 − 1

)2
du =

∫ 1

0
(n2u2(n−1) − 2nun−1 + 1)du = n2

2n−1u
2n−1 − 2un + u|10 =

n2

2n−1 − 2 + 1 = n2−2n+1
2n−1 = (n−1)2

2n−1 .

• For f(x) = 1
2 |x − 1|, we obtain the total variation distance (TV ) and we have:

1
2

∫ 1

0

∣∣nun−1 − 1
∣∣ du = 1

2 (
∫ u∗

0

(
1− nun−1

)
du + (

∫ 1

u∗

(
nun−1 − 1

)
du) = (u∗ −

(u∗)n),where n(u∗)(n−1) = 1, i.e u∗ = ( 1n )
1

n−1 . Hence the TV is ( 1n )
1

n−1 − ( 1n )
n

n−1 .

• For f(x) = (1 −
√
x)2 we have the hellinger distance:

∫ 1

0

(√
nu

n−1
2 − 1

)2
du =∫ 1

0
(nun−1 − 2

√
nu

n−1
2 + 1)du = un − 2

√
nu

n+1
2

n+1
2

+ u
∣∣∣1
0
= 2(1− 2

√
n

n+1 ) = 2 (1−
√
n)2

n+1

• For f(x) = − log(x), we obtain the forward KL and we have :
∫ 1

0
f(nun−1)du = n− 1−

log(n).

Guarantees with Rényi Divergence Turning now to the Rényi divergence for α ∈ (0, 1) ∪ (1,∞):

Dα(P ||Q) =
1

(α− 1)
log

(∫
pα(x)q1−α(x)dx

)
the limit as α→ 1 D1(P ||Q)) = KL(P ||Q) .

Theorem 6. Under Assumption 2 the best of n policy satisfies:

Dα(π
(n)
r,ref ||πref) ≤

1

(α− 1)
log

(
nα

α(n− 1) + 1

)
(28)
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Proof of Theorem 6. Applying DPI that holds also for the Rényi divergence twice from Y, Y (n) to
R,R(n) and from R,R(n) to E,E(n) we obtain :

Dα(π
(n)
r,ref ||πref|X) ≤ Dα(E

(n)||E)

Dα(E
(n)||E) =

1

(α− 1)
log

(∫ ∞

0

nα(1− e−x)α(n−1)e−αxe−x(1−α)dx

)
=

1

(α− 1)
log

(∫ +∞

0

nα(1− e−x)α(n−1)e−xdx

)
Let u = 1− e−x we have du = e−xdx

Dα(E
(n)||E) =

1

(α− 1)
log

(∫ 1

0

nαuα(n−1)du

)
=

1

(α− 1)

(
log nα + log

∫ 1

0

uα(n−1)du

)
=

1

(α− 1)

(
log nα + log

uα(n−1)+1

α(n− 1) + 1

∣∣∣1
0

)
=

1

(α− 1)
log

(
nα

α(n− 1) + 1

)

From Renyi to KL guarantees Let s1(α) = (α − 1) , and s2(α) = log
(

nα

α(n−1)+1

)
,

we have Dα(E
(n)||E) = s2(α)

s1(α)
, we have KL(E(n)||E) = limα→1Dα(E

(n)||E) =

limα→1
s2(α)
sα

= 0
0 , hence applying L’Hôpital rule we have: limα→1

s2(α)
s1(α)

= limα→1
s′2(α)
s′1(α)

=

limα→1
log(n)− n−1

α(n−1)+1

1 = log(n)− n−1
n . Hence we recover the result for the KL divergence.

B.3 Best of n Dominance

Proof of Proposition 1 . FE(n)(x) = (FE(x))
n ≤ FE(x),∀x ≥ 0, which means also that

F−1
E(n)(t) ≥ F−1

E (t),∀t ∈ [0, 1], which means that E(n) dominates E in the first stochastic or-
der : E(n) ≽

FSD
E , which means there exists a coupling between E(n) and E, π ∈ Π(E(n), E), such

that E ≥ e, for all (E, e) ∼ π. On the other hand By Rényi and Monge map representations we have:
R(n) = F−1

R ◦ FE(E(n)) and R = F−1
R ◦ FE(E), given that T = F−1

R ◦ FE is non decreasing the
same coupling π guarantees that T (E) ≥ T (e), for all (E, e) ∼ π and Hence R(n) ≽

FSD
R.

Corollary 2. Best of n-polciy has higher expectation :

ER(n) ≥ ER,

and is a safer policy, let the Tail Value at Risk be:

TVARp(X) =
1

p

∫ p

0

QR(t)dt

We have
TVARp(R

n) ≥ TVARp(R),∀p ∈ [0, 1]

Proof of Corollary 2. First order dominance implies second order dominance (i.e by integrating
quantiles). Expectation is obtained for p = 1.
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C Best of n and RL Policy

Proof of Proposition 2. We fix here β = 1
λ∆

KL(π
(n)
r,ref ||πβ,r) =

∫
π
(n)
r,ref(y|x) log

(
π
(n)
r,ref(y|x)
πβ,r(y|x)

)
=

∫
π
(n)
r,ref(y|x) log

(
π
(n)
r,ref(y|x)

πref(y|x) e
βr(x,y)

Zβ(x)

)

= KL(π
(n)
r,ref ||πref) + log

(
Eπref

eβr
)
− β

∫
rdπ

(n)
r,ref

On the other hand by optimality of πβ,r we have:

KL (πβ,r||πref) = β

∫
rdπβ,r − log

(∫
eβrdπref

)
and hence we have:

KL(π
(n)
r,ref ||πβ,r) = KL(π

(n)
r,ref ||πref)− KL (πβ,r||πref) + β

(∫
rdπβ,r −

∫
rdπ

(n)
r,ref

)
We choose n such that :

KL(π
(n)
r,ref ||πref) ≤ log(n)− n− 1

n
≤ KL (πβ,r||πref) = ∆

and we conclude choosing n = e∆ therefore for that choice of n that:

KL(π
(n)
r,ref ||πβ,r) ≤ β

(∫
rdπβ,r −

∫
rdπ

(n)
r,ref

)
On the other hand we have:∣∣∣∣∫ rdπβ,r −

∫
rdπ

(n)
r,ref

∣∣∣∣ = ∣∣∣∣∫ r exp(βr)
1

Zβ
dπref −

∫
max
i
r(xi)dπref(x1) . . . dπref(xn)

∣∣∣∣
=

∣∣∣∣∣
∫ (

1

n

n∑
i=1

r(xi) exp(βr(xi))

Zβ
−max

i
r(xi)

)
dπref(x1) . . . dπref(xn)

∣∣∣∣∣
=

∣∣∣∣∣
∫ (

1

n

n∑
i=1

r(xi) exp(βr(xi))∑n
i=1 exp(βr(xi))

∑n
i=1 exp(βr(xi))

Zβ
−max

i
r(xi)

)
dπref(x1) . . . dπref(xn)

∣∣∣∣∣
≤
∫ ∣∣∣∣max r(xi)

( 1
n

∑n
i=1 exp(βr(xi))

Zβ
− 1

)∣∣∣∣ dπref(x1) . . . dπref(xn)
≤ M

Zβ
E

∣∣∣∣∣
n∑
i=1

exp(βr(xi))− Zβ

∣∣∣∣∣
where we used the following fact, followed by Jensen inequality :

n∑
i=1

r(xi) exp(βr(xi))∑n
i=1 exp(βr(xi))

≤ max
i
r(xi).

Assume that the reward is bounded hence we have by Hoeffding inequality :

P

(∣∣∣∣∣ 1n
n∑
i=1

exp(βr(xi))− Zβ

∣∣∣∣∣ ≥ t

)
≤ 2e

− nt2

2(exp(βM)−exp(−βM))2

Hence we have:

E

∣∣∣∣∣
n∑
i=1

exp(βr(xi))− Zβ

∣∣∣∣∣ ≤ 2

√
π

2

exp(βM)− exp(−βM)√
n

KL(π
(exp(∆))
r,ref ||πλ∆,r) ≤

M

λ∆Z1/λ∆

√
2π(exp(βM)− exp(−βM))

√
exp(−∆).
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D Transportation Inequalities and KL Divergence

D.1 Transportation Inequalities with KL

The following Lemma (Lemma 4.14 in [Boucheron et al., 2013]) uses the Donsker-Varadhan repre-
sentation of the KL divergence to obtain bounds on the change of measure , and using the tails of
πref .
Lemma 4 (Lemma 4.14 in [Boucheron et al., 2013]). Let ψ be a convex and continuously differen-
tiable function ψ on a possibly unbounded interval [0, b), and assume ψ(0) = ψ′(0) = 0. Define for
every x ≥ 0, the convex conjugate ψ∗(x) = supλ∈[0,b) λx− ψ(λ) , and let ψ∗−1(t) = inf{x ≥ 0 :

ψ∗(x) > t}. Then the following statements are equivalent:
(i) For λ ∈ [0, b)

log

(∫
eλ(r−

∫
rdQ)dQ

)
≤ ψ(λ),

(ii) For any probability measure P that is absolutely continuous with respect to Q and such that
KL(P ||Q) <∞: ∫

rdP −
∫
rdQ ≤ ψ∗−1(KL(P ||Q)).

Lemma 5 ( Inverse of the conjugate [Boucheron et al., 2013]). 1. If Q ∈ SubGauss(σ2), we
have for t ≥ 0 ψ∗−1(t) =

√
2σ2t.

2. If Q ∈ Subgamma(σ2, c), we have for t ≥ 0 ψ∗−1(t) =
√
2σ2t+ ct.

We give here a direct proof for the subgaussian case:

Proof. By the Donsker Varadhan representation of the KL we have:

KL(P ||Q) = sup
h

∫
hdP − log

(∫
ehdQ

)
Fix x and M > 0 and define for 0 < λ < M

hλ(y) = λ
(
r(x, y)− Eπref (y|x)r(x, y)

)
We omit in what follows x and y, but the reader can assume from here on that π and πref are
conditioned on x. Note that Rref |x = (r(x, .))♯πref(.|x) and we assume Rref |x subgaussian. Note
that

Eπref
ehλ = Eπref |xe

λ(r−Eπref |xr) =MRref |x(λ),

where MRref |x the moment generating function of the reward under the reference policy. Rref |x is
subgaussian we have for all λ ∈ R:

Eπref |xe
hλ ≤ e

λ2σ2

2 ≤ e
M2σ2

2 <∞

Hence hλ ∈ H and we have for all π << πref and for all 0 < M <∞ and 0 < λ < M :

λEπ|x(r − Eπref |xr) ≤ KL(π||πref |x) + log
(
Eπref |xe

λ(r−Eπref |xr)
)

or equivalently:

Eπ|xr − Eπref |xr ≤
1

λ
KL(π||πref |x) +

1

λ
log
(
Eπref |xe

λ(r−Eπref |xr)
)

Finally we have for π << πref for all 0 < λ < M :

Eπ|xr − Eπref |xr ≤
1

λ
KL(π||πref |x) +

1

λ
log
(
MRref |x(λ)

)
(29)

Being a subgaussian, the MGF of Rref |x is bounded as follows:

log
(
MRref |x(λ)

)
≤ λ2σ2

2
.
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Hence we have for :

Eπ|xr − Eπref |xr ≤
1

λ
KL(π||πref |x) +

λσ2

2

Integrating over x we obtain for all π << πref and all 0 < λ < M :

Eπr − Eπref
r ≤ 1

λ
KL(π||πref) +

λσ2

2

Define :

δ(λ) =
1

λ
KL(π||πref) +

λσ2

2

minimizing the upper bound δ(λ) for λ ∈ (0,M ], taking derivative δ′(λ) = −KL(π||πref )
λ2 + σ2

2 = 0

gives λ∗ =
√

2KL(π||πref )
σ2 . Taking M = 2λ∗, λ∗ is the minimizer. Putting this in the bound we have

finally for all rewards r for all π:

Eπr − Eπref
r ≤

√
2σ2KL(π||πref). (30)

Proof of Corollary 1. (i) This follows from optimality of πλ∆ and applying the transportation in-
equality for gaussian tail.

(ii) This follows from applying Corollary 2 (best of n policy has larger mean ) and 1 for bounding the
KL.

Proof of Theorem 2. For the penalized RL we have by optimality:∫
rdπβ,r −

1

β
KL(πβ,r||πref) =

1

β
log

(∫
eβrdπref

)
=

1

β
log

(∫
eβ(r−

∫
rdπref )dπref

)
+

∫
rdπref

It follows that :

1

β
log

(∫
eβ(r−

∫
rdπref )dπref

)
=

∫
rdπβ,r −

∫
rdπref −

1

β
KL(πβ,r||πref) (31)

On the other hand by the variational representation of the Rényi divergence we have:∫
rdπβ,r −

∫
rdπref ≤

Dβ(πβ,r||πref)
β

− 1

β − 1
log

(∫
e(β−1)(r−

∫
rdπβ,r)dπβ,r

)
+

1

β
log

(∫
eβ(r−

∫
rdπref )dπref

)
(32)

Summing Equations (31) and (32) we obtain a bound on the moment generating function at β of
r♯πβ,r (this is not a uniform bound , it holds only for β):

1

β − 1
log

(∫
e(β−1)(r−

∫
rdπβ,r)dπβ,r

)
≤ Dβ(πβ,r||πref)− KL(πβ,r||πref)

β
. (33)

Let us assume β > 1 we have therefore the following bound on the logarithmic moment generation
function at β − 1

ψr♯πβ,r
(β − 1) ≤ β − 1

β
(Dβ(πβ,r||πref)− KL(πβ,r||πref))
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Let Ri,β = r♯πβ,r, i = 1 . . .m , the reward evaluation of m independent samples of πβ,r we have:

P
{ m∑
i=1

(Ri,β −
∫
rdπβ,r) > mt

}
= P(e

∑m
i=1(β−1)(Ri,β−

∫
rdπβ,r) > em(β−1)t)

≤ e−(β−1)mtemψRβ
(β−1)

≤ e−(β−1)mtem
β−1
β (Dβ(πβ,r||πref )−KL(πβ,r||πref ))

≤ e
−m(β−1)

(
t−

Dβ(πβ,r||πref )−KL(πβ,r||πref )

β

)
(34)

Let t0 > 0, hence we have for β > 1:

P
{ 1

m

m∑
i=1

Ri,β >

∫
rdπβ,r + t0 +

Dβ(πβ,r||πref)− KL(πβ,r||πref)
β

}
≤ e−m(β−1)t0

Now turning to Rref = r♯πref , since Rref ∈ SubGauss(σ2
ref) we have for every t0 > 0 :

P
{
− 1

m

m∑
i=1

Ri,ref > −
∫
rdπref + t0

}
≤ e

− mt20
2σ2

ref

Hence we have with probability at least 1− e
− mt20

2σ2
ref − e−m(β−1)t0 :

1

m

m∑
i=1

Ri,β − 1

m

m∑
i=1

Ri,ref ≤
∫
rdπβ,r −

∫
rdπref + 2t0 +

Dβ(πβ,r||πref)− KL(πβ,r||πref)
β

≤
√
2σ2

refKL(π||πref) + 2t0 +
Dβ(πβ,r||πref)− KL(πβ,r||πref)

β
.

E Proofs for Transportation Inequalities and Rényi Divergence

Proposition 6 (Fenchel Conjugate Propreties). Let F and G be convex functions on a space E and
F ∗, G∗ be their convex conjugates defined on E∗. We have:

1. Let Fγ(x) = γF (x) we have:

F ∗
γ (p) = γF ∗

(
p

γ

)
(35)

2. Duality:
min
x∈E

F (x) +G(x) = max
p∈E∗

−F ∗(−p)−G∗(p) (36)

3. Toland Duality:
min
x∈E

F (x)−G(x) = min
p
G∗(p)− F ∗(p) (37)

Proof of Theorem 3. Let γ > 0 , let FP,γ(R) = γKL(R||P ), the Fenchel conjugate of FP,1(.) is
defined for h bounded and measurable function as follows F ∗

P,1(h) = logEP eh. It follows by 1) in

Proposition 6 that : F ∗
P,γ(h) = γF ∗

P,1(
h
γ ) = γ logEP e

h
γ .

For 0 < α < 1: The objective function in (18) is the sum of convex functions: FP,α(R)+FQ,1−α(R),
by (2) in Proposition 6, we have by duality:

(1− α)Dα(P ||Q) = inf
R
FP,α(R) + FQ,1−α(R)

= sup
h∈H

−F ∗
P,α(−h)− F ∗

Q,1−α(h)

= sup
h∈H

−α logEP e−
h
α − (1− α) logEQe

h
1−α

18



Replacing h by (1− α)(α)h does not change the value of the sup and hence we obtain:

(1− α)Dα(P ||Q) = sup
h∈H

−α logEP e−
(1−α)(α)h

α − (1− α) logEQe
(1−α)(α)h

1−α

= sup
h∈H

−α logEP e−(1−α)h − (1− α) logEQeαh.

dividing by 1
α(1−α) both sides we obtain for 0 < α < 1:

1

α
Dα(P ||Q) = sup

h∈H
− 1

1− α
logEP e−(1−α)h − 1

α
logEQeαh

For α > 1: The objective function in (18) is the difference of convex functions: FP,α(R) −
FQ,α−1(R), by Toland Duality (3) in Proposition 6 we have:

(1− α)Dα(P ||Q) = inf
R
FP,α(R)− FQ,α−1(R)

= inf
h∈H

F ∗
Q,α−1(h)− F ∗

P,α(h)

= inf
h∈H

(α− 1) logEQe
h

(α−1) − α logEP e
h
α

The inf does not change when we replace h by α(α− 1)h, hence we have:

(α− 1)Dα(P ||Q) = − inf
h∈H

(α− 1) logEQe
α(α−1)h
(α−1) − α logEP e

α(α−1)h
α

= sup
h∈H

α logEP e(α−1)h − (α− 1) logEQeαh

dividing both sides by 1
α(α−1) we obtain for α > 1:

1

α
Dα(P ||Q) = sup

h∈H

1

α− 1
logEP e(α−1)h − 1

α
logEQeαh.

Proof of Lemma 2 . Adding and subtracting in the exponential
∫
hdP and

∫
hdQ resp we obtain the

result: 1
α−1 log

(∫
e(α−1)hdP

)
− 1

α log
(∫
eαhdQ

)
= 1

α−1 log
(∫

e(α−1)(h−
∫
hdP+

∫
hdP )dP

)
−

1
α log

(∫
eα(h−

∫
hdQ+

∫
hdQ)dQ

)
=

∫
hdP −

∫
hdQ + 1

α−1 log
(∫

e(α−1)(h−
∫
hdP )dP

)
−

1
α log

(∫
eα(h−

∫
hdQ)dQ

)

Proof of Lemma 3. Note that we have for 0 < α < 1, 1
αDα(P ||Q) = 1

1−αD1−α(Q||P ) (See
Proposition 2 in van Erven and Harremos [2014]). Taking limits we obtain limα→0

1
αDα(P ||Q) =

D1(Q||P ) = KL(Q||P ).

Proof of Theorem 4 . For 0 < α < 1, we have for all h ∈ H :

∫
hdP −

∫
hdQ ≤ 1

α
Dα(P ||Q) +

1

1− α
log

(∫
e(α−1)(h−

∫
hdP )dP

)
+

1

α
log

(∫
eα(h−

∫
hdQ)dQ

)
(38)

Assuming r is bounded 0 < r < b then we have (r)♯P − EP r and (r)♯Q− EQr are sub-Gaussian
with parameter σ2 = b2

4 . Hence we have for λ ∈ R:

EP eλ(r−
∫
rdP ) ≤ exp

(
λ2σ2

P

2

)
and EQeλ(r−

∫
rdQ) ≤ exp

(
λ2σ2

Q

2

)
,
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Fix a finite M > 0. For 0 < λ < M and P = π|x and Q = πref |x, consider hλ = λr, thanks to
subgaussianity and boundedness of λ, hλ ∈ H for all λ ∈ (0,M). Hence we have by Equation (38)
for all λ ∈ (0,M):

λ

(∫
rdP −

∫
rdQ

)
≤ 1

α
Dα(P ||Q)+

1

1− α
log

(∫
eλ(α−1)(r−

∫
rdP )dP

)
+
1

α
log

(∫
eλα(r−

∫
rdQ)dQ

)
we have by sub-Gaussianity:

1

1− α
log

(∫
eλ(α−1)(r−

∫
rdP )dP

)
≤ 1

1− α

λ2(1− α)2σ2
P

2
=
λ2(1− α)σ2

P

2

1

α
log

(∫
eλα(r−

∫
rdQ)dQ

)
≤ 1

α

λ2α2σ2
Q

2
=
λ2ασ2

Q

2

It follows that for all λ ∈ (0,M)

λ

(∫
rdπ|x−

∫
rdπref |x

)
≤ 1

α
Dα(π|x||πref |x) +

λ2(1− α)σ2
P

2
+
λ2ασ2

Q

2

=
1

α
Dα(π|x||πref |x) +

λ2((1− α)σ2
P + ασ2

Q)

2

Integrating over x we obtain:

λ

(∫
rdπ −

∫
rdπref

)
≤ 1

α
Dα(π||πref) +

λ2((1− α)σ2
P + ασ2

Q)

2

Finally we have: ∫
rdπ −

∫
rdπref ≤

1

λα
Dα(π||πref) +

λ((1− α)σ2
P + ασ2

Q)

2

minimizing over λ ∈ (0,M): we obtain λ∗ =

√
2Dα(π||πref )

((1−α)σ2
P+ασ2

Q)α
, M is free of choice, choosing

M = 2λ∗, gives that λ∗ is the minimizer and hence we have for all α ∈ (0, 1):∫
rdπ −

∫
rdπref ≤

√
2((1− α)σ2

P + ασ2
Q)Dα(π||πref)

α
.

F Goodhart Laws

Proof of Proposition 4. We have by duality:

1

β
log

(∫
eβr

∗
dπref

)
= sup

ν

∫
r∗dν − 1

β
KL(ν||πref)

hence for ν = πβ,r we have:

1

β
log

(∫
eβr

∗
dπref

)
≥
∫
r∗dπβ,r −

1

β
KL(πβ,r||πref)

Hence: ∫
r∗dπβ,r ≤

1

β
log

(∫
eβr

∗
dπref

)
+

1

β
KL(πβ,r||πref)

On the other hand by optimality of πβ,r we have:

KL (πβ,r||πref) = β

∫
rdπβ,r − log

(∫
eβrdπref

)
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Hence we have:∫
r∗dπβ,r ≤

1

β
log

(∫
eβr

∗
dπref

)
+

∫
rdπβ,r −

1

β
log

(∫
eβrdπref

)
≤
∫
rdπβ,r +

1

β
log

(∫
eβr

∗
dπref∫

eβrdπref

)
It follows that:∫

r∗dπβ,r −
∫
r∗dπref ≤

∫
rdπβ,r −

∫
rdπref +

1

β
log

(∫
eβ(r

∗−
∫
r∗dπref )dπref∫

eβ(r−
∫
rdπref )dπref

)
∫
eβ(r

∗−
∫
r∗dπref )dπref∫

eβ(r−
∫
rdπref )dπref

=

∫
eβ(r

∗−r−(
∫
r∗dπref−

∫
rdπref )

eβrdπref∫
eβrdπref

=

∫
eβ(r

∗−r−(
∫
r∗dπref−

∫
rdπref )dπβ,r

Hence we have finally:∫
r∗dπβ,r −

∫
r∗dπref ≤

∫
rdπβ,r −

∫
rdπref +

1

β
log

(∫
eβ(r

∗−r−(
∫
r∗dπref−

∫
rdπref )dπβ,r

)
∫
r∗dπβ,r−

∫
r∗dπref ≤

∫
rdπβ,r−

∫
rdπref −

1

β
log

(∫
eβ(r−r

∗−(
∫
rdπref−

∫
r∗dπref )dπβ,r∗

)
The proof follows from using the subgaussianity of r♯πref and the assumption on the soft max.

Proof of Proposition 5.

Eπ(r∗ − r)− Eπref
(r∗ − r) ≤ 2||r − r∗||∞TV(π, πref)

For π(n)
r,ref , we have:

E
π
(n)
r,ref

(r∗)− Eπref
(r∗) ≤ E

π
(n)
r,ref

(r)− Eπref
(r) + 2||r − r∗||∞TV(π

(n)
r,ref , πref)

and
E
π
(n)
r,ref

(r∗)− Eπref
(r∗) ≥ E

π
(n)
r,ref

(r)− Eπref
(r)− 2||r − r∗||∞TV(π

(n)
r,ref , πref)

By the data processing inequality we have: TV(π(n)
r,ref , πref) ≤ TV(R

(n)
r,ref , R) = ( 1n )

1
n−1 − ( 1n )

n
n−1

If r has subguassian tails under πref than we have:

E
π
(n)
r,ref

(r∗)− Eπref
(r∗) ≤

√
2σ2

(
log(n)− n− 1

n

)
+ 2||r − r∗||∞

(
(
1

n
)

1
n−1 − (

1

n
)

n
n−1

)

E
π
(n)
r,ref

(r∗)− Eπref
(r∗) ≤

√
2σ2

(
log(n)− n− 1

n

)
+ 2 inf

r∈H
||r − r∗||∞

(
(
1

n
)

1
n−1 − (

1

n
)

n
n−1

)
.
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper is theoretical
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper is theoretical
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification:The paper is theoretical
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper is theoretical
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper is theoretical
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper is theoretical
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is theoretical
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper is theoretical
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:The paper is theoretical
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper is theoretical
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper is theoretical
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper is theoretical
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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