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Abstract

In density functional theory, the charge density is the core attribute of atomic
systems from which all chemical properties can be derived. Machine learning
methods are promising as a means of significantly accelerating charge density
predictions, yet existing approaches either lack accuracy or scalability. We propose
a recipe that can achieve both. In particular, we identify three key ingredients:
(1) representing the charge density with atomic and virtual orbitals (spherical
fields centered at atom/virtual coordinates); (2) using expressive and learnable
orbital basis sets (basis functions for the spherical fields); and (3) using a high-
capacity equivariant neural network architecture. Our method achieves state-of-
the-art accuracy while being more than an order of magnitude faster than existing
methods. Furthermore, our method enables flexible efficiency–accuracy trade-offs
by adjusting the model and/or basis set sizes.

1 Introduction

Density functional theory (DFT) is a computational quantum chemistry method that has enabled
countless advancements in the chemical sciences by providing a tractable means to calculate the
electronic structure of molecules and materials [1]. The central concept in DFT is the charge
density, a fundamental quantity from which all derivable ground-state physicochemical properties of
a system, such as energy and forces, can, in principle, be derived. The most widely used Kohn–Sham
formalism [2] of DFT offers a reasonable balance between accuracy and computational efficiency
among conventional DFT workflows. However, it still scales with a complexity of roughly O(N3

e )
where Ne is the number of electrons, rendering it computationally expensive and limiting its viability
for both large-scale systems and long-timescale ab initio molecular dynamics simulations.

In DFT, the solution to the Kohn–Sham equations are reliant on an iterative calculation to identify
the charge density that minimizes the potential energy functional for a given atomic configuration.
This process, known as converging the self-consistent field, is the main computational expense within
DFT. With a machine learning (ML) model that can effectively bypass the Kohn–Sham equations by
accurately and efficiently predicting the charge density, the number of steps required to converge the
ground-state electron density can be drastically reduced or potentially eliminated altogether by using
the predicted charge density as the initial guess. If accurate enough, a machine-learned charge density
could also be used to directly predict electronic structure properties, such as the band gap, band
structure, and electronic density of states of a material. Furthermore, the charge density itself can
provide an enormous amount of insight into a molecule or material. From the charge density, partial
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Figure 1: (a) Illustration of the orbital-based method for charge density representation for an example
molecule (indole, C8H7N). The overall charge density is represented as a sum over spherical-
harmonics-based atomic orbital basis functions (spherical fields) centered at each atom. (b) Left:
Illustration of the probe-based method for charge density representation. The charge density is
represented as a voxel where each grid point (probe node) represents a scalar density at that coordinate.
The voxel for the example molecule is of size 108 × 96 × 40. Grid points with very small charge
densities (< 0.05) are not visualized. Right: For a probe-based machine learning prediction model,
the voxel contains too many grid points to be processed simultaneously. Sampling of the voxel points
is needed during training and inference. All charge densities use the same colormap scale at the
right-most side of the figure. Atom color code: H (white), C (gray), N (blue). The charge density is
from the QM9 charge density dataset [7].

atomic charges, dipole moments, atomic spin densities, and effective bond orders can all be directly
computed through one of several population analysis methods [3, 4]. For some materials discovery
tasks, the charge density can also be a crucial descriptor depending on the application area [5, 6].
Therefore, efficient and accurate representations and ML models for charge density prediction are
highly desirable as a means of accelerating the discovery of promising molecules and materials.

In machine learning workflows, the charge density is a volumetric, data-rich object, usually rep-
resented as voxels with a grid resolution of around 0.1 Å [7, 8]. This poses a challenge, as even
relatively small molecules and materials can require hundreds of thousands to millions of grid points
to represent the charge density at this (relatively coarse) resolution. At the same time, small deviations
in the charge density that result from a representation that is too coarse can have a substantial impact
on energy and other derivable properties. This need for both efficiency and accuracy creates a
significant challenge for ML methods.

The existing literature has mainly focused on two approaches to learning to predict charge density.
The first approach (orbital-based), illustrated in Figure 1 (a), is to predict atomic orbital basis set
coefficients by regressing over coefficients extracted from DFT data [9, 10, 11, 12, 13]. The atomic
orbital basis functions are based on the composition of radial functions and spherical harmonics.
Under this scheme, the charge density is represented as a set of spherical fields centered around
each atom. The real space charge density voxel can be constructed by overlaying the spherical
fields and evaluating at each grid point. For orbital-based ML models, both the prediction of the
basis set coefficients and the evaluation of the spherical fields are relatively scalable, making this
approach efficient at inference time. However, this approach can suffer from sub-optimal accuracy
due to the limited representation power of the chosen basis set. In particular, it is challenging for the
atom-centered atomic orbitals to model complex electronic structures between atoms.

The second approach (probe-based) [14, 7, 15, 16], illustrated in Figure 1 (b), is to predict the charge
density by inserting “probe nodes” at all grid coordinates of the charge density voxel and applying
graph message passing between the atoms and these probe nodes. Finally, the scalar charge density at
each grid coordinate is predicted through node-wise readout over the probe nodes. This approach,
while expressive and accurate, is computationally expensive. To see why, recall that the number
of grid points in the charge density voxel is usually very large for even a small atomic system.
Conducting neural message passing over millions of nodes is both computationally and memory
intensive. The large number of nodes usually requires sampling a subset of grid points from the
charge density voxel (Figure 1 (b), right) in each training or inference step [7].

This paper aims to address this accuracy–efficiency dilemma with a new recipe for building represen-
tations and ML models for charge density prediction. We identify three key ingredients:

1. We represent the charge density using an atomic orbital basis set (spherical fields centered
at each atom) to leverage its efficiency and equivariant properties. Beyond orbitals placed
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at the atomic coordinates, we further introduce virtual orbitals to improve expressivity. In
other words, we also place spherical fields centered at coordinates other than the atomic
centers, while ensuring the placement algorithm is SE(3)-equivariant.

2. We use domain-informed and expressive basis sets. In particular, we construct an even-
tempered Gaussian basis from an atomic orbital basis set. This allows us to smoothly control
the expressivity of the atomic orbitals and enable flexible accuracy–efficiency trade-offs.
We make the basis set exponents learnable to further improve expressivity.

3. We use a high-capacity equivariant neural network architecture (eSCN [17]), which enables
efficient training and inference with features of high tensor order for a large dataset.

We apply our recipe to the widely used QM9 charge density benchmark [18, 19, 7]. Our method
outperforms existing state-of-the-art methods while being around 30× faster. Furthermore, we can
flexibly trade off accuracy and efficiency by adjusting the model/basis size; in doing so, we achieve
up to 171× efficiency compared to state-of-the-art methods with only a slight degradation in accuracy.
This tunability is valuable, as different applications, material classes, and available computing
resources may require drastically different levels of accuracy in the charge density prediction. We
conduct an ablation study to justify the significance of each proposed ingredient.

2 Related Works

ML methods for charge density prediction. Orbital-based methods predict coefficients for the
orbital basis set functions to recover the target charge density. Past works have explored Gaussian
processes [9] and graph neural networks [10, 11, 12, 13] in small molecules, water, and materials
systems. [20] used Jacobi-Legendre expansion — a many-body extension of atomic orbitals — for
representing and predicting the charge density. These approaches, while efficient, suffer from lower
accuracy in benchmarks such as QM9 [18, 19, 7] and the Materials Project [21, 8] charge density
datasets. Probe-based methods, on the other hand, predict the charge density by neural message
passing between the atoms and probe nodes at all grid points. These methods [14, 7, 15, 16] have
shown superior accuracy in both molecules and materials but suffer from poor scalability, as they
require neural processing of millions of probe nodes for molecule/material structures of tens of
atoms. Recent works also explored a combination of atomic orbitals and probe-based methods [12] or
plane-wave basis sets [22]. However, both methods still require neural message passing with a large
number of probe nodes, which limits their scalability. In the present work, we combine virtual nodes,
even-tempered Gaussian basis, and trainable basis functions to greatly improve the expressivity of
orbital basis functions.

Equivariant neural networks. Equivariant neural networks [23, 24, 25, 26, 27, 28, 29, 17] use
equivariant representations and processing layers that can preserve rotational and translational
symmetries that are critical to atomistic modeling tasks. Equivariant models have shown advantages
in ML potentials with respect to the accuracy, sample complexity, and molecular dynamics simulation
capabilities [30, 31, 32, 33] in addition to charge density prediction tasks [7, 15]. This is because
atomic forces and charge densities are indeed SE(3)-equivariant with regard to the input atomic
coordinates. In this work, we leverage recent advances in methods for building more expressive
and scalable equivariant architectures [17] to improve the accuracy and scalability of charge density
prediction.

3 Methods

Our recipe for building ML charge density prediction capabilities involves two complementary
aspects: the charge density representation and the prediction model.

3.1 Charge Density Representation

Gaussian-type orbitals (GTOs) are widely used as basis sets for representing electron configurations
in quantum chemistry [34]. They are spherical Gaussian functions centered at atomic coordinates.
For an atom i at coordinate ri, a GTO basis function with exponent α, angular momentum quantum
number (also called tensor order or degree) l, and magnetic quantum number m is given by the
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Figure 2: (a) Two example molecules (left: indole, C8H7N; right: methanol CH3OH), before and
after the bond-midpoint-based virtual coordinates (small black points) are inserted. Atom color code:
H (white), C (gray), N (blue), O (red), virtual nodes (small, black). (b) The number of Gaussian-
type orbital basis functions for selected elements in the def2-QZVPPD basis set and even-tempered
Gaussian basis sets derived from it under different β, which controls the number of basis functions as
described in Equation (3).

following expression:

Φα,l,m,ri(r) ≡ Rl(r)Yl,m

(
r − ri

r

)
= zα,l exp(−αr2)rlYl,m

(
r − ri

r

)
, (1)

where r = ||r − ri|| is the distance from a query coordinate r to the atom coordinate ri and Yl,m are
real spherical harmonics. zα,l is a normalizing constant, such that

∫
R3 ||Φ||22 dV = 1. For the purpose

of developing a machine learning model based on GTOs, we choose to represent the charge density,
ρ, of an atomic system via a linear combination of many basis functions:

ρ(r) =

N∑
i

Ni
b∑
j

li,j∑
m=−li,j

ci,j,mΦαi,j ,li,j ,m,ri
(r), (2)

where N is the number of atoms (including virtual ones when applicable), N i
b is the number of l

values (α values) for atom i. It should be noted that the charge density in Kohn–Sham DFT is not
computed in this way; rather, Equation (2) is an artificial representation for the sake of training a
machine learning model that is inspired by the orbital-like character of GTOs. The basis functions
Φαi,j ,li,j ,m,ri are chosen first as the basis set, with a fixed set of l and α values for each element. For
example, the values for l and α for hydrogen in the def2-QZVPPD basis set [35] are presented in
Appendix A, Table 2. The number of basis functions for an atom i can be derived as

∑Ni
b

j=1(2 · li,j+1),
because m can be an integer from −l to l. A higher l value corresponds to a more complex angular
part of the basis function and allows the corresponding spherical field to be more anisotropic. The
number of orbital basis functions for elements H, C, N, O, and F of the def2-QZVPPD basis set (and
its even-tempered variant, detailed later in this section) is included in Figure 2. Atoms with more
complex electronic structures are often represented with more basis functions. The number of basis
functions, ls, and α values are carefully chosen in existing basis sets such as def2-QZVPPD. We refer
interested readers to the original papers [35, 36, 37] for more details regarding the construction of
atomic orbital basis sets.

In training the machine learning model, after the basis set is determined, the coefficients ci,j,m are
then fit such that Equation (2) best represent the charge density. GTOs have been studied in several
previous works [9, 11, 12] as a means of representing the charge density with promising results.
However, their accuracy still bears significant room for improvement. We next introduce virtual
orbitals, even-tempered Gaussian basis, and scaling factors for orbital exponents that greatly improve
the expressive power of GTOs for charge density representation.

Virtual orbitals. The atom-centered spherical fields often struggle to capture non-local electronic
structures, which induces representation errors. This limitation is effectively addressed with the
introduction of virtual orbitals, which define sets of spherical fields located in a position other
than the atomic centers. Due to the critical importance of chemical bonds in defining the overall
electronic structure, we insert virtual nodes into the midpoint of all chemical bonds for a given
molecule (illustrated in Figure 2 (a)). With this method, the coordinates to insert the virtual nodes
are SE(3)-equivariant with regard to the input atom coordinates. Therefore, as long as the prediction
of the basis set coefficients is SE(3)-equivariant, the overall charge density prediction will still be
equivariant after the introduction of the virtual orbitals. We discuss potential extensions to virtual
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orbital assignments in Section 5. After the virtual nodes are created, one must decide which basis
functions to use for the virtual orbitals. In this work, we use the basis functions of element O for the
virtual nodes, which offers a balance in accuracy and efficiency based on preliminary experiments.

Even-tempered Gaussian basis. The number of basis functions in existing basis sets, such as
def2-QZVPPD, may be insufficient for representing complex charge densities. At the same time,
expanding the number of basis functions requires care in choosing the values of l and α that improve
expressivity effectively. As an example, the def2-QZVPPD basis set for hydrogen already contains
basis functions with l = 1 and α = 2.292. Extending this basis set with basis functions with
l = 1 and α = 2.0 will not significantly improve its expressivity because the spherical pattern
will be similar to existing basis functions. A general methodology for controlling the basis set size
is to use an even-tempered Gaussian basis set [38]. Based on a reference atomic orbital basis set
(e.g., def2-QZVPPD), the even-tempered basis set constructs a series of GTOs with a set of angular
momentum quantum numbers l determined by the atomic number and exponents α given by:

αk = α · βk for k = 0, 1, 2, . . . , Nl. (3)

For each spherical harmonics degree l, α and Nl are chosen such that the exponents in the reference
atomic orbital basis set are well-covered2. β controls the number of basis functions — a smaller β
creates a more expressive basis set with denser exponents. The use of an even-tempered basis set
allows us to smoothly control the number of basis functions N i

b effectively. Figure 2 (b) shows how
the number of orbital basis functions for elements H, C, N, O, and F grows with a smaller β for the
even-tempered Gaussian basis derived from the def2-QZVPPD basis set.

Scaling factors for orbital exponents. In existing orbital-based models [9, 10, 11, 12, 13], while
the coefficients for the basis functions are predicted by the ML model, the exponents are fixed for
each atom type and not trainable. However, atoms in different local atomic environments can exhibit
significantly different charge density patterns around them, especially for the virtual orbitals that aim
at capturing interatomic interactions. To further improve the expressivity of the basis set, we make
the exponents trainable by learning a positive scaling factor s > 0, such that Equation (1) becomes:

Φα,l,m,ri
(r, s) = zα,l,s exp(−s · αr2)rlYl,m

(
r − ri

r

)
. (4)

where zα,l,s is a normalizing constant such that
∫
R3 ||Φ||22 dV = 1. The charge density is now

represented with coefficients ci,j,m and scaling factors si,j as:

ρ(r) =

N∑
i

Ni
b∑
j

li,j∑
m=−li,j

ci,j,mΦαi,j ,li,j ,m,ri
(r, si,j), (5)

the introduction of the learnable scaling factors for the exponents significantly improves the expressive
power of our charge density representation but is also prone to instability during training. We resolve
the instability issue with a fine-tuning approach detailed in Section 3.2.

3.2 Prediction Model

Using the atomic orbital basis set representation of charge density, the prediction model aims to predict
the basis set coefficients ci,j,m and the scaling factors si,j for each real and virtual node such that
the predicted charge density matches the ground truth density obtained from DFT calculations. The
model F takes as input the types A = {ai |i = 1, . . . , N} and coordinates R = {ri|i = 1, . . . , N}
of all real and virtual nodes:

{ci,j,m, si,j |i = 1, . . . , N ; j = 1, . . . , N i
b ;m = −li,j , . . . , li,j} = F (A,R). (6)

Backbone architecture. Our construction of the ML prediction model is motivated by the following:

2We adopt the implementation of PySCF [39] and refer interested readers to the original paper/code for more
details on the construction of even-tempered Gaussian basis.
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• Charge density is SE(3)-equivariant with regard to the input atom coordinates. An equivariant
model that can preserve this symmetry is desired. Concretely, the basis set coefficients ci,j,m
are SE(3)-equivariant with regard to the input atom coordinates. The scaling factors si,j are
SE(3)-invariant with regard to the input atom coordinates.

• Charge density is data-rich and very sensitive to the local atomic environment. A high-
capacity and expressive model is desired.

• Efficiency is key for general applications of charge density prediction. The model should be
efficient while being expressive.

Based on these criteria, we consider equivariant model architectures and the balance between
capacity and efficiency. For equivariant models, an important aspect of model expressivity is the
representation of node and edge features in the form of irreducible representations (irreps) of SO(3)3:
spherical harmonic coefficients. A higher degree of representation (L) is desired for building high-
capacity models. Previous works have employed the PaiNN architecture [27, 7] that is based on
Cartesian features (equivalent to L = 1) or architectures based on irreps of SO(3) and tensor
products [10, 15, 12, 28] for charge density prediction. However, these models suffer from limited
expressivity or scalability. Cartesian features are limited in representing angular information (L = 1);
meanwhile, the O(L6) complexity of tensor products limits the degree of representation that can be
used while remaining computationally feasible.

In this work, we adopt the equivariant spherical channel network (eSCN) architecture [17] as
our model backbone. While using SE(3)-equivariant representations and processing layers, the
convolution layers in eSCN reduce the SO(3) convolutions [41] or tensor products [23, 31] to
convolutions in SO(2) that are mathematically equivalent. It reduces the complexity of the convolution
operation from O(L6) to O(L3). Further, the use of point-wise, spherical non-linearity in eSCN
also distinguishes itself from e3nn-based equivariant models that only apply non-linearity to the
scalar features in the irreps. In our experiments, we also find that eSCN outperforms alternative
architectures, such as tensor field networks [15, 23] and MACE [42]. Using eSCN as the backbone
architecture, we get the last-layer latent features xi for all real/virtual nodes:

{xi|i = 1, . . . , N} = eSCN(A,R). (7)

Prediction layers. The features xi are encoded using multi-channel spherical harmonic coefficients
(irreps). Note that the prediction target, basis set coefficients ci,j,m, are also encoded as multi-channel
spherical harmonic coefficients. For example, for an eSCN with L = 3 and a latent dimension
of 128, the last-layer latent atom features will be 128x0e + 128x1o + 128x2e + 128x3o. For
the (uncontracted) def2-QZVPPD basis set of hydrogen described in Table 2, its irreps are 7x0e +
4x1e + 2x2e + 1x3e (even parity as charge density is reflection-invariant). The scaling factors
si,j are SE(3)-invariant and can be seen as scalar features of multi-channel irreps (14x0e for the
def2-QZVPPD basis set of hydrogen). Therefore, we can make equivariant predictions of the basis set
coefficients and invariant predictions of the scaling factors for each atom i through a fully connected
tensor product layer over the atom features and additional processing:

{ci,j,m,hi|j = 1, . . . , N i
b ;m = −li,j , . . . , li,j} = FullyConnectedTensorProduct(xi,xi) (8)

{si,j |j = 1, . . . , N i
b} = C1/(1 + exp(−Linear(hi) + lnC2)) + C3. (9)

The basis set coefficients are directly obtained through the fully connected tensor product. The
tensor product also produces scalar features hi (128x0e for a 128-channel eSCN), which are used
for predicting the scaling factors. The parameterization of Equation (9) allows the prediction to range
from (C3, C1 + C3), and the scaling factors will be C1/(1 + C2) + C3 when the linear network in
Equation (9) is zero-initialized. By setting C1 = 1.5, C2 = 2, and C3 = 0.5, we can limit the range
of the scaling factors to be (0.5, 2) (at most halve or double an exponent) and let initial scaling factors
be 1 with a zero initialization of the linear layer in Equation (9).

With the predicted coefficients and scaling factors, the charge density prediction ρ̂ can be obtained
efficiently by evaluating Equation (5) at all grid coordinates of the charge density voxel. We train the
model end-to-end with a mean-absolute error loss L over the charge density:

3We refer interested readers to [28] and [40] for more information on equivariant geometric neural networks.
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Table 1: QM9 charge density prediction error and efficiency on the test set. Metrics for baseline
models are from previous papers whenever possible and skipped (-) when unavailable. The metrics
(↓ means lower the better, ↑ means higher the better) of the best-performing model are bold. The
metrics are reported with corresponding standard errors when available. For SCDP models, K is the
number of interaction layers in the eSCN backbone, L is the tensor order of the feature representation
in the eSCN backbone, and β controls the expressiveness of the even-tempered Gaussian basis set.
A higher K, higher L, or lower β indicates a more expressive model. eSCN + VO indicates that
virtual orbitals are used. NMAE stands for normalized mean absolute error. Efficiency is measured
by molecule per minute (mol. per min.).

NMAE [%] ↓ NMAE, Split 2 [%] ↓ Mol. per min. [min−1] ↑
i-DeepDFT [7] 0.357± 0.001 - -
e-DeepDFT [7] 0.284± 0.001 - -
ChargE3Net [15] 0.196± 0.001 0.203± 0.003 3.95
InfGCN [12] 0.869± 0.002 0.93 72.00
InfGCN, GTO only [12] - 3.72 -
GPWNO [22] - 0.73 -

SCDP models (Ours)
eSCN, K = 4, L = 3, β = 2.0 0.504± 0.001 0.514± 0.003 675.47
eSCN, K = 8, L = 6, β = 2.0 0.434± 0.006 0.452± 0.017 567.19
eSCN, K = 8, L = 6, β = 1.5 0.381± 0.001 0.391± 0.002 442.25
eSCN + VO, K = 8, L = 6, β = 2.0 0.237± 0.001 0.250± 0.002 231.21
eSCN + VO, K = 8, L = 6, β = 1.5 0.206± 0.001 0.220± 0.002 177.14
eSCN + VO, K = 8, L = 6, β = 1.3 0.196± 0.001 0.209± 0.002 136.92

SCDP models fine-tuned with scaling factors (Ours)
eSCN, K = 4, L = 3, β = 2.0 0.432± 0.001 0.438± 0.003 644.00
eSCN, K = 8, L = 6, β = 2.0 0.369± 0.007 0.386± 0.018 544.56
eSCN, K = 8, L = 6, β = 1.5 0.346± 0.001 0.354± 0.002 419.57
eSCN + VO, K = 8, L = 6, β = 2.0 0.207± 0.001 0.220± 0.002 221.19
eSCN + VO, K = 8, L = 6, β = 1.5 0.187± 0.001 0.200± 0.002 164.94
eSCN + VO, K = 8, L = 6, β = 1.3 0.178± 0.001 0.191± 0.002 125.29

L = Er∈Data [|ρ(r)− ρ̂(r)|] . (10)

Fine-tuning for scaling factor prediction. The scaling factors at the exponents lead to significant
training instability when the network is trained from scratch. Therefore, we use a fine-tuning approach,
where we first pre-train the model with fixed basis set exponents (an even-tempered Gaussian basis
derived from def2-QZVPPD) and then fine-tune the prediction model with a small learning rate
with the learning for scaling factors enabled. To achieve this, we zero-initialize the linear layer in
Equation (9) and freeze its weights until the fine-tuning stage.

4 Experiments

Our experiments on the QM9 charge density benchmark aim to validate the effectiveness of our
proposed recipe in both accuracy and efficiency. We refer to our method as SCDP models, which
stands for Scalable Charge Density Prediction models.

Dataset and metrics. The QM9 charge density dataset [18, 19, 7] contains charge density calculations
for 133,845 small organic molecules using the Vienna Ab initio Simulation Package (VASP). We
adopt the original split, where 123,835, 50, and 10,000 data points are used for training, validation,
and testing, respectively. There are on average 18 atoms in each molecule and 666,462 grid points
in each charge density voxel. The entire dataset takes 1.1 TB of disk space. Following previous
works [7, 15], we benchmark the prediction accuracy with the normalized mean absolute error,
defined as:

NMAE(ρ̂) =

∫
R3 |ρ(r)− ρ̂(r)|dV∫

R3 |ρ(r)|dV
, (11)
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Figure 3: Efficiency–accuracy trade-off for SCDP models. The models with scaling factor fine-tuning
form the Pareto front.

where the integration is approximated by summing over the full charge density voxel. We benchmark
the efficiency of different methods by the number of molecules predicted per minute (Mol. per min.)
on a single NVIDIA A100-80GB-PCIe GPU for the QM9 test split.

In addition to the QM9 charge density dataset, we also benchmark our method on the MD charge
density dataset [43, 44, 12] and the Cubic charge density dataset [45]. We use the same data splits as
previous works on these benchmarks [12, 22]. Experimental results and comparisons to baselines are
included in Appendix A.

Baseline Models. We compare SCDP to several previous works on the QM9 charge density pre-
diction benchmark [18, 19, 7]. i-DeepDFT, e-DeepDFT [7], and ChargE3Net [15] are probe-based
methods with different backbone architectures: i-DeepDFT uses SchNet [27], e-DeepDFT uses
PaiNN [27], while ChargE3Net uses higher-order equivariant features under the tensor field network
framework [23, 28]. InfGCN [12] combines GTOs and a shallow network for probe-based inference.
It also has a more efficient but less accurate GTO-only variant. GPWNO [22] combines GTOs and
plane-wave basis sets but still requires a large number (64,000) of probe nodes for constructing the
plane wave prediction. NMAE results for i-DeepDFT, e-DeepDFT, and ChargE3Net are from [15].
NMAE results for InfGC and GPWNO are also from the original papers, which uses a different test
split from the default QM9 test split (last 1,600 molecules from the QM9 test split). We benchmark
the efficiency of baseline models on our hardware when the source code and pretrained model are
publicly available (ChargE3Net and InfGCN). We do not apply any modification to the original code
but use optimized configurations for inference to better utilize our GPU: for ChargE3Net, we process
20,000 probes in each batch instead of the default setting of 2,500 probes per batch, and for InfGCN,
we process 40,000 probes in each batch with a batch size of 4.

A significant advance in both accuracy and efficiency. The metrics for all methods are presented
in Table 1. We have a series of SCDP models with different model sizes, basis set sizes, as well
as options on the inclusion of virtual orbitals and scaling factors. Our best-performing model uses
the virtual orbitals described in Section 3.1, an eSCN of 8 layers and feature representation of order
L = 6, an even-tempered Gaussian basis with β = 1.3, and scaling factor fine-tuning. This model
achieves an NMAE of 0.178 on the QM9 charge density test set, outperforming the state-of-the-art
method ChargE3Net [15] — a probe-based method. While being more accurate, our best model also
significantly outperforms ChargE3Net by 31.7× in efficiency. Other configurations of our model
with smaller model sizes, basis set sizes, and models without virtual orbitals can trade off accuracy
for further gains in efficiency. The trade-off curves are visualized in Figure 3. Compared to a more
efficient baseline model, InfGCN, all benchmarked configurations of our method are more efficient
and significantly outperform in accuracy. These results convincingly demonstrate a significant
advance in the accuracy–efficiency trade-off in ML methods for charge density prediction. Figure 5
in Appendix A shows the convergence of validation NMAE during pretraining and fine-tuning of
SCDP models. More details on the hyperparameters for model construction and training are included
in Appendix A, Table 3.

Ablation Analysis. We discuss the effectiveness of all ingredients through an ablation analysis
of the performance of different SCDP models. Starting from the most lightweight model with
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is the ground truth charge density with the corresponding color scale. The next five columns are
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factor fine-tuning. The virtual orbitals significantly reduce errors around chemical bonds. Atom color
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K = 4, L = 3, β = 2.0 and no virtual orbitals, we first observe that increasing the model size
to K = 8, L = 6 significantly improves the performance, reducing the NMAE from 0.504% to
0.434%. Next, we increase the basis set size by adjusting β from 2.0 to 1.5, which further reduces
the NMAE to 0.381%. The introduction of the virtual orbitals renders a significant gain in accuracy
by reducing the error from 0.434% to 0.237% for β = 2.0 and from 0.381% to 0.196% for β = 1.5.
In particular, the charge density near chemical bonds is significantly more accurate after introducing
the virtual orbitals, as visualized in Figure 4. On the other hand, for models with higher capacity,
the improved accuracy comes at the cost of efficiency. As shown in Table 1 and Figure 3, higher
capacity consistently improves performance while sacrificing efficiency. At the same time, all SCDP
models remain highly efficient compared to baseline models. When the scaling factors are introduced,
accuracy further improves at a slight cost on efficiency for all models. As shown in Figure 3, models
with scaling factors from the Pareto front of all SCDP models benchmarked.

5 Discussion

Charge density is a fundamental quantity for atomic systems and is central to DFT. ML methods for
charge density prediction are promising as a means of greatly accelerating DFT by circumventing
the iterative procedure used to find the ground-state charge density given a set of atomic coordinates.
In this paper, we propose a recipe that combines three ingredients: (1) virtual nodes; (2) expressive
basis sets; and (3) high-capacity equivariant networks that collectively outperform state-of-the-art
methods in accuracy while being more than an order of magnitude faster. Nevertheless, there are
still many directions for further improving the performance of our proposed model. First, the simple
heuristic of assigning virtual node coordinates to bond centers may not be optimal. With recent
advances in auto-regressive [46] and diffusion-based [47, 48] equivariant generative models for 3D
atomic structures, learning to insert the virtual orbitals may be a promising avenue for optimizing the
placement of virtual nodes, thus improving charge density prediction. Due to the “nearsighted” nature
of electronic matter [49], an automated method for placing a higher density of virtual nodes near sites
of chemical relevance may also be worthwhile to pursue. Second, we can use basis functions beyond
Gaussian-type orbitals (e.g., Slater-type orbitals [50, 51] or non-decay radial basis functions [52])
that may require fewer functions to achieve the same level of accuracy.

There are several limitations of the current paper that we aim to address in future work: (1) Despite
substantial improvements in efficiency, the computational cost for training the current model is still
significant: our best-performing model was pretrained for six days and fine-tuned for six days over
four NVIDIA A100 GPUs for the QM9 charge density prediction task. The scaling factor fine-tuning
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stage requires a small learning rate, which prolongs training. The prediction model can benefit from
resolving the training instability issues with the scaling factors as well as further improvement on
the model architecture [53]. (2) While our approach achieves state-of-the-art performance on the
QM9 charge density prediction benchmark, its effectiveness in crystalline materials [21, 8] has major
room for improvement. The GTOs and the equivariant network can be applied to materials without
modification. The bond-midpoint-based virtual node assignment for molecules can be generalized
to crystals through a crystal graph construction algorithm, such as CrystalNN [54]. Alternatively,
virtual nodes can be iteratively added to occupy void space inside the unit cell of the material using
an algorithm based on the Voronoi diagram [55]. The virtual nodes are expected to play an even more
important role in prediction accuracy — this is because the diverse atomic species in materials and
their complex interactions induce even more complex charge density patterns. (3) To better validate
the practical utility of the predicted charge density, evaluation on the reduction of self-consistent field
calculations, or on recovering physical observables, such as energy and forces [7, 56, 15], will be
highly valuable.
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Higher order equivariant message passing neural networks for fast and accurate force fields.
Advances in Neural Information Processing Systems, 35:11423–11436, 2022.

[43] Felix Brockherde, Leslie Vogt, Li Li, Mark E Tuckerman, Kieron Burke, and Klaus-Robert
Müller. Bypassing the kohn-sham equations with machine learning. Nature communications,
8(1):872, 2017.

[44] Mihail Bogojeski, Leslie Vogt-Maranto, Mark E Tuckerman, Klaus-Robert Müller, and Kieron
Burke. Quantum chemical accuracy from density functional approximations via machine
learning. Nature communications, 11(1):5223, 2020.

[45] Fancy Qian Wang, Kamal Choudhary, Yu Liu, Jianjun Hu, and Ming Hu. Large scale dataset of
real space electronic charge density of cubic inorganic materials from density functional theory
(dft) calculations. Scientific Data, 9(1):59, 2022.

[46] Ameya Daigavane, Song Kim, Mario Geiger, and Tess Smidt. Symphony: Symmetry-equivariant
point-centered spherical harmonics for molecule generation. arXiv preprint arXiv:2311.16199,
2023.

[47] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3D. In International conference on machine learning,
pages 8867–8887. PMLR, 2022.

[48] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
metric diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923,
2022.

[49] Emil Prodan and Walter Kohn. Nearsightedness of electronic matter. Proceedings of the
National Academy of Sciences, 102(33):11635–11638, 2005.

[50] John C Slater. Atomic shielding constants. Physical review, 36(1):57, 1930.

[51] Delano P Chong, Erik Van Lenthe, Stan Van Gisbergen, and Evert Jan Baerends. Even-tempered
slater-type orbitals revisited: From hydrogen to krypton. Journal of computational chemistry,
25(8):1030–1036, 2004.

[52] Bowen Jing, Tommi S. Jaakkola, and Bonnie Berger. Equivariant scalar fields for molecular
docking with fast fourier transforms. In The Twelfth International Conference on Learning
Representations, 2024.

[53] Yi-Lun Liao, Brandon Wood, Abhishek Das, and Tess Smidt. EquiformerV2: Improved equivari-
ant transformer for scaling to higher-degree representations. arXiv preprint arXiv:2306.12059,
2023.

[54] Nils ER Zimmermann and Anubhav Jain. Local structure order parameters and site fingerprints
for quantification of coordination environment and crystal structure similarity. RSC advances,
10(10):6063–6081, 2020.

[55] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and Claudio T.
Silva. Computing and rendering point set surfaces. IEEE Transactions on visualization and
computer graphics, 9(1):3–15, 2003.

[56] Ethan M Sunshine, Muhammed Shuaibi, Zachary W Ulissi, and John R Kitchin. Chemical
properties from graph neural network-predicted electron densities. The Journal of Physical
Chemistry C, 127(48):23459–23466, 2023.

[57] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[58] Florian Weigend. Hartree–fock exchange fitting basis sets for h to rn. Journal of computational
chemistry, 29(2):167–175, 2008.

13



[59] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[60] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming
with CUDA: Is CUDA the parallel programming model that application developers have been
waiting for? Queue, 6(2):40–53, 2008.

[61] Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Mor-
gane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, et al. Open catalyst
2020 (oc20) dataset and community challenges. Acs Catalysis, 11(10):6059–6072, 2021.

[62] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
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Figure 5: Convergence of validation NMAE during pretraining and finetuning.

Table 2: The (uncontracted) def2-QZVPPD basis set for H.
l α

0 190.6916900
0 28.6055320
0 6.5095943
0 1.8412455
0 0.59853725
0 0.21397624
0 0.080316286
1 2.29200000
1 0.83800000
1 0.29200000
1 0.084063199228
2 2.06200000
2 0.66200000
3 1.39700000

Algorithm 1 Pseudo code for the charge density prediction procedure

1: Input: Atomic numbers A : (N, 1), atom positions R : (N, 3), grid positions Rc : (M, 3)
2: Output: charge density at the grid positions C : (M, 1)
3: obtain atomic irreps features: X = {xi|i = 1, . . . , N} = eSCN(A,R)
4: obtain basis set coefficients {ci,j,m,hi|i = 1, . . . , N, j = 1, . . . , N i

b ;m = −li,j , . . . , li,j} and
scaling factors {si,j |i = 1, . . . , N, j = 1, . . . , N i

b} = C1/(1+exp(−Linear(hi)+lnC2))+C3

following Equation (8) and (9)
5: for r in Rc do ▷ in practice, we use batched inference
6: obtain ρ(r) following Equation (4) and (5)
7: end for
8: return C = {ρ(r)|r ∈ Rc}

Experimental results on MD and Cubic. We benchmark the proposed SCDP models on the
MD [43, 44, 12] and the Cubic charge density dataset [45] in Table 4. We find the SCDP models
significantly outperform baseline models. Hyperparameters used for the MD and Cubic experiments
are summarized in Table 5 and Table 6. The MD models are trained on 4 GPUs, while the Cubic
model is trained on 8 GPUs. For the molecules in the MD dataset, we use bond centers as coordinates
for virtual nodes. For the materials in the Cubic dataset, we iteratively insert virtual nodes up to the
number of atoms in the unit cell using an algorithm based on Voronoi diagrams [55].

Software. Basis-set-exchange-v0.9.1 [36, 37] and PySCF-v2.5.0 [39] are used to build the orbital
basis sets. E3NN-v0.5.1 [28], PyTorch-v1.13.1 [59], and CUDA-v11.6 [60] are used to build the
SCDP models. The eSCN [17] implementation is adopted from the Open Catalyst Project [61].
We also acknowledge Numpy [62], ASE [63], Pymatgen [64], wandb [65], Matplotlib [66], and
Plotly [67].
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Figure 6: Efficiency as a function of molecular size for our most expressive model (eSCN + VO,
K = 8, L = 6, β = 1.3, with scaling factors). We measure the efficiency by running inference over
500 sampled molecules from the QM9 charge density dataset for a given number of atoms.

B Broader Impact

This paper proposes an ML method for accelerating charge density prediction, a crucial task in
computational chemistry. The adoption of our method is useful for scientific discovery and can yield
positive or negative repercussions, contingent on the applications. The proposed method should be
used for materials and drug discovery research that benefit our society.
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Table 3: Hyperparameters for SCDP models on the QM9 dataset. 1The cutoff distance used for
building the message passing graph. 2The cutoff distance for computing the charge density using
Equation (5). An orbital basis function only influences all grid coordinates within this distance.

Hyperparameter Value

eSCN
# interaction layers [4, 8]

Lmax [3, 6]

mmax 2

sphere channels 128

hidden channels 256

edge channels 128

# sphere samples 128

radius cutoff1 6 Å

Basis set
reference basis set def2-QZVPPD [35]
β [2.0, 1.5, 1.3]
orbital inference cutoff2 5 Å

Training
batch size 4

# grid point samples (training, without VO) 100, 000

# grid point samples (validation/testing, without VO) 200, 000

# grid point samples (training, with VO) 60, 000

# grid point samples (validation/testing, with VO) 120, 000

precision 32

gradient clipping 0.5

# training steps (pretraining) 500, 000

# training steps (fine-tuning) 300, 000

optimizer Adam [57]
Adam β1 0.9

Adam β2 0.999

Adam ϵ 1× 10−8

weight decay 0

initial learning rate (pretraining) 0.001

initial learning rate (fine-tuning) 2× 10−5

learning rate scheduler exponential (LR = initial LR× 0.96step/C)
terminal learning rate (pretraining) 1× 10−5

terminal learning rate (fine-tuning) 2× 10−6

Inference
batch size (without VO) 8

batch size (with VO) 4

Max # grid points in a forward pass for Equation (5)

eSCN, K = 4, L = 3, β = 2.0 2, 000, 000

eSCN, K = 8, L = 6, β = 2.0 1, 000, 000

eSCN, K = 8, L = 6, β = 1.5 1, 000, 000

eSCN + VO, K = 8, L = 6, β = 2.0 600, 000

eSCN + VO, K = 8, L = 6, β = 1.5 400, 000

eSCN + VO, K = 8, L = 6, β = 1.3 400, 000
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Table 4: Benchmark results (NMAE) on the MD and Cubic datasets.
Molecule SCDP (Ours) GPWNO [22] InfGCN [12]

MD-ethanol 2.34± 0.25 4.00 8.43
MD-benzene 1.13± 0.06 2.45 5.11
MD-phenol 1.29± 0.07 2.68 5.51
MD-resorcinol 1.35± 0.08 2.73 5.95
MD-ethane 2.05± 0.12 3.67 7.01
MD-malonaldehyde 2.71± 0.60 5.32 10.34
Cubic 2.59± 0.25 7.69 8.98

Table 5: Hyperparameters for SCDP models on the MD dataset. Parameters that are the same as the
QM9 models are omitted in this table.

Hyperparameter Value

eSCN
# interaction layers 4

Lmax 3

mmax 2

Basis set
reference basis set def2-QZVPPD [35]
β 1.5
orbital inference cutoff2 5 Å

Training
batch size 4

# grid point samples (training, with VO) 125, 000

# grid point samples (validation/testing, with VO) 125, 000

# training steps (pretraining) 250, 000

# training steps (fine-tuning) 50, 000

Inference
batch size (with VO) 4

Max # grid points in a forward pass for Equation (5)

eSCN, K = 4, L = 3, β = 1.5 1, 000, 000
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Table 6: Hyperparameters for SCDP models on the Cubic dataset. Parameters that are the same as the
QM9 models are omitted in this table.

Hyperparameter Value

eSCN
# interaction layers 8

Lmax 4

mmax 2

Basis set
reference basis set def2-universal-JKFIT [58]
β 1.5
orbital inference cutoff2 4 Å

Training
batch size 2

# grid point samples (training, with VO) 25, 000

# grid point samples (validation/testing, with VO) 35, 000

# training steps (pretraining) 500, 000

# training steps (fine-tuning) 0

Inference
batch size (with VO) 2

Max # grid points in a forward pass for Equation (5)

eSCN, K = 8, L = 4, β = 1.5 100, 000

Table 7: Hyperparameters for baseline model architectures (β = 2.0, all other hyperparameters are
kept the same as in Table 3).

Hyperparameter Value

Charge3Net backbone
# interaction layers 4

Lmax 3

Feature irreps 167x0o + 167x0e + 56x1o + 56x1e + 33x2o + 33x2e

MACE backbone
# interaction layers 4

Lmax 3

Hidden irreps 64x0e + 64x1o + 64x2e

MLP irreps 128x0e

Common
Max # grid points in a forward pass 2, 000, 000

Initial learning rate 1× 10−2

Terminal learning rate 1× 10−4
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist”,
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 3, Section 4
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not present theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 3, Section 4, Appendix A. Code is available at https://github.
com/kyonofx/scdp.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data used in this paper is publicly available [7]. Code is available at
https://github.com/kyonofx/scdp.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 3, Section 4, Appendix A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4, Section 5, Appendix A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors believe this paper conforms, in every respect, with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Appendix B
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The authors believe the data and models presented in this work do not have a
high risk for misuse.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Appendix A
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Code is available at https://github.com/kyonofx/scdp under an MIT
license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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