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ABSTRACT

Accurately predicting user watch-time is crucial for enhancing user stickiness and
retention in video recommendation systems. Existing watch-time prediction ap-
proaches typically involve transformations of watch-time labels for prediction and
subsequent reversal, ignoring both the natural distribution properties of label and
the instance representation confusion that results in inaccurate predictions. In this
paper, we propose ProWTP, a two-stage method combining prototype learning
and optimal transport for watch-time regression prediction, suitable for any deep
recommendation model. The core idea of ProWTP is to align label distribution
with instance representation distribution to calibrate the instance space, thereby
improving prediction accuracy. Specifically, we observe that the watch-ratio (the
ratio of watch-time to video duration) within the same duration bucket exhibits
a multimodal distribution. To facilitate incorporation into models, we use a hi-
erarchical vector quantised variational autoencoder (HVQ-VAE) to convert the
continuous label distribution into a high-dimensional discrete distribution, serv-
ing as credible prototypes for calibrations. Based on this, ProWTP views the
alignment between prototypes and instance representations as a Semi-relaxed Un-
balanced Optimal Transport (SUOT) problem, where the marginal constraints of
prototypes are relaxed. And the corresponding optimization problem is reformu-
lated as a weighted Lasso problem for solution. Moreover, ProWTP introduces
the assignment and compactness losses to encourage instances to cluster closely
around their respective prototypes, thereby enhancing the prototype-level distin-
guishability. Finally, we conducted extensive offline experiments on two industrial
datasets, demonstrating our consistent superiority in real-world application.

1 INTRODUCTION

The rapid growth of online-video services (e.g. YouTube and Hulu) and video-sharing platforms
(e.g. TikTok and Douyin) has driven the increasing demand for personalized and high-quality con-
tent (Zhou et al., 2018; Tang et al., 2023). In video recommendation systems, user watch-time has
become a key metric for measuring user engagement (Covington et al., 2016). Accurately predict-
ing user watch-time not only helps improve user stickiness and retention but also optimizes content
distribution and resource allocation, thereby driving the growth of Daily Active Users (DAUs) on
the platform (Lin et al., 2023; Zhan et al., 2022).

Existing methods for Watch-time Prediction (WTP) usually focus on designing specific loss func-
tions or transforming watch-time labels in particular ways to train the model, aiming to improve
performance. Weighted Logistic Regression (WLR) (Covington et al., 2016) treats WTP task as
a weighted binary classification problem, approximating the expected watch-time by assigning
weights to positive samples. Duration-Deconfounded Quantile-based (D2Q) model (Zhan et al.,
2022) divides videos into different groups based on duration and employs traditional regression
within each group to estimate the transformed watch-time. Tree-based Progressive Regression
(TPM) (Lin et al., 2023) decomposes WTP into a series of ordinal classifications, leveraging a tree
structure to model conditional dependencies.

However, those methods struggle to consistently maintain high predictive accuracy across different
models. They overlook the natural distribution properties of labels—we observed that the watch
ratio (i.e., the ratio of watch-time to video duration) within the same video duration bucket exhibits
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Figure 1: (a) Illustrates the watch-ratio distribution of three different video durations, demonstrating
the multimodal nature. (b) Depicts the instance representation confusion problem, where MLP
serves as the deep recommendation model. (c) Shows the core idea of proposed ProWTP.

a pronounced multimodal distribution, as shown in Fig.1(a), which has not yet been explicitly cap-
tured. Moreover, model trained with watch-time supervision suffers from instance representation
confusion, as shown in Fig.1(b), making it challenging to accurately differentiate various patterns,
consequently, limiting its predictive capability.

To address the aforementioned issues, we propose a two-stage method called ProWTP, which com-
bines prototype learning (Snell et al., 2017; Chang et al., 2022) and optimal transport (Villani et al.,
2009; Peyré et al., 2019; Caffarelli & McCann, 2010; Chizat et al., 2018; Chapel et al., 2021), mak-
ing it applicable to any deep recommendation model. The core concept of ProWTP is illustrated in
Fig.1(c), wherein instance distributions are aligned with credible label distributions to calibrate the
instance representation space, thereby enhancing prediction accuracy. In the first stage, we employ
a Hierarchical Vector Quantised Variational Auto-Encoder (HVQ-VAE) (Van Den Oord et al., 2017)
to transform the one-dimensional continuous distribution of watch-ratio into a high-dimensional dis-
crete distribution, generating credible prototypes that effectively capture the patterns of multimodal
distributions of different duration buckets. Different from traditional prototype learning (Snell et al.,
2017; Yang et al., 2023; Chang et al., 2022), ProWTP generates prototype vectors from label distri-
butions, providing models with more precise and credible calibration references. Subsequently, we
model the alignment between prototypes and instance representations as a Semi-relaxed Unbalanced
Optimal Transport (SUOT) problem (Chapel et al., 2021), wherein the marginal constraints on the
prototypes are relaxed. By reformulating the SUOT with an l2 penalty term into a weighted Lasso
regression problem, we utilize a regularization path algorithm to compute the OT plan (Chapel et al.,
2021). Moreover, to further enhance the model’s discriminative capability, we introduce the assign-
ment and compactness losses that encourage instances to cluster around their respective prototypes.
Our contributions are summarized as follows:

• We propose a method named ProWTP for the WTP task, which addresses the instance
representation confusion problem in deep recommendation models by aligning label dis-
tributions with instance representation distributions through optimal transport, thereby en-
hancing model prediction performance.

• We investigate the multimodal distribution properties of watch-ratio across different video
duration buckets for the first time and utilize the hierarchy VQ-VAE to transform these
into credible high-dimensional prototype vectors, providing a more precise reference for
recommendation models calibration.

• We conducted extensive offline experiments on two industrial datasets and the experimental
results consistently demonstrate the superiority of our approach.

2 RELATED WORK

Watch-time Prediction. Watch-time prediction is a critical issue in industrial recommender sys-
tems, especially for platforms focusing on short videos and movies. Despite its significance, there
are only a few papers that address this area (Lin et al., 2023; Covington et al., 2016; Zhan et al.,
2022). A pioneering study (Covington et al., 2016) in YouTube’s video recommendation sphere in-
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troduced the Weighted Logistic Regression (WLR) technique for forecasting watch durations. It has
since been established as a leading method in related application areas. Nevertheless, this approach
is not directly applicable to full-screen video recommendation systems and may encounter signifi-
cant bias issues due to its weighting strategy. D2Q (Zhan et al., 2022) addresses duration bias by
utilizing backdoor adjustment techniques and models watch time through direct quantile regression
of viewing durations. Debiased and Denoised watch time Correction (D2Co) (Zhao et al., 2023)
and Counterfactual Watch Model (CWM) (Zhao et al., 2024) leverage causal inference frameworks,
while Debiased Video Recommendation (DVR) (Zheng et al., 2022) employs adversarial learning to
mitigate duration bias. SWAT (Yang et al., 2024) leverages a user-centric statistical framework with
behavior-driven assumptions and bucketization techniques to model watch time. However, those
method fail to consider the ordinal relationships and dependencies between different quantiles. Ad-
ditionally, since both approaches estimate watch time using point estimations, they overlook the
uncertainty inherent in the predictions. Then, TPM (Lin et al., 2023) introduced the ordinal ranks of
watch time and decomposed the problem into a series of conditional dependent classification tasks
organized into a tree structure.

Optimal Transport. Optimal Transport (OT) (Villani et al., 2009; Peyré et al., 2019) is a math-
ematical tool used to transfer or match distributions. OT has been employed in a wide range of
tasks including generative adversarial training (Arjovsky et al., 2017), clustering (Ho et al., 2017),
domain adaptation (Courty et al., 2017), and others. Partial Optimal Transport (POT) (Caffarelli
& McCann, 2010; Figalli, 2010) is an extension of the classical OT problem, where only a partial
amount of mass is transported instead of transporting all the mass between two distributions. To
alleviate the computational load of OT, the Sinkhorn algorithm (Cuturi, 2013) was introduced as
an efficient method for solving Sinkhorn OT, and it was subsequently extended to POT (Benamou
et al., 2015). Previously, many methods (Flamary et al., 2016; Damodaran et al., 2018) applied
OT to domain adaptation, aligning the distributions of source and target domains in either input or
feature spaces. They utilized mini-batch OT to mitigate computational overhead but faced sampling
bias since mini-batch data only partially reflect the original data distribution. To tackle these chal-
lenges, more robust OT models, such as unbalanced and partial mini-batch OT, have been developed
to enhance performance (Nguyen et al., 2022). Building on this, joint partial optimal transport was
designed to transport only a portion of the mass, mitigating negative transfer, and the method was
later applied to open-set domain adaptation (Xu et al., 2020). Additionally, aligning source pro-
totypes with target features has been proposed as a solution to the problem of universal domain
adaptation (Yang et al., 2023).

Deep clustering with VAE. Variational Autoencoders (VAEs) (Kingma, 2013) have emerged as
a pivotal approach in the domain of deep clustering for unsupervised learning tasks, effectively
overcoming the limitations of traditional clustering methodologies that often struggle with complex
and high-dimensional data. By optimizing the evidence lower bound (ELBO), VAEs facilitate the
learning of data embeddings while integrating prior knowledge, such as Gaussian Mixture Mod-
els (GMMs) (McLachlan et al., 2019), for modeling latent variables. Notable contributions in this
field include the Variational Deep Embedding (VaDE) (Jiang et al., 2016) framework, which com-
bines VAEs with GMMs, employing mixtures of Gaussian priors to enhance clustering performance.
GMVAE (Dilokthanakul et al., 2016) addresses the problem of over-regularization in VAE by em-
ploying the minimum information constraint. LTVAE (Li et al., 2018) improves clustering by inte-
grating a latent tree model into a VAE variant, introducing a tree-structured layer of discrete latent
variables optimized via message passing. VAEIC (Prasad et al., 2020) jointly learns the prior and
posterior parameters, thus avoiding pre-training. The Vector Quantized Variational Autoencoder
(VQ-VAE) (Van Den Oord et al., 2017) is an extension of the traditional VAE framework, which
introduces a discrete latent space via a codebook of prototype vectors. In VQ-VAE, continuous la-
tent vectors are quantized by mapping each to its closest prototype vector from the codebook, thus
discretizing the latent representation. Although the quantization process is non-differentiable, tech-
niques such as the Straight-Through Estimator (STE) (Yin et al., 2019) and Gumbel-Softmax (Jang
et al., 2016) enable end-to-end training by allowing gradient-based optimization. The prototype
vectors can serve as cluster centroids (Zheng & Vedaldi, 2023; Wu & Flierl, 2020), encapsulat-
ing essential information about distinct data clusters. In addition, the semantically rich prototypes
learned by VQ-VAE can support various applications, such as conditional image generation (Esser
et al., 2021; Ramesh et al., 2022), multi-modal language modeling (Li et al., 2023; Zhan et al., 2024)
and recommender system (Liu et al., 2024; Rajput et al., 2024).
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3 BACKGROUND

Optimal Transport. We consider two sets of data points, denoted as {xi}ni=1 and {yj}mj=1, where
the empirical distributions are represented as µ =

∑n
i=1 µiδxi

and ν =
∑m

j=1 νjδyj
, respectively.

Here,
∑n

i=1 µi = 1 and
∑m

j=1 νj = 1, with δx indicating the Dirac delta function at location x. For
simplicity in notation, we write µ = (µ1, µ2, . . . , µn)

⊤ and ν = (ν1, ν2, . . . , νm)⊤, and define the
cost matrix as C ∈ Rn×m, where each element is Cij = d(xi, yj). The Optimal Transport (OT),
as defined by (Villani et al., 2009; Peyré et al., 2019), is a mathematical framework that transports a
probability measure µ into another measure ν with a minimum cost C. This can be formulated as
the following linear programming problem:

OT(µ,ν) = min
T∈Π(µ,ν)

⟨T,C⟩, (1)

where ⟨·, ·⟩ is the Frobenius dot product, T ∈ Rn×m
≥0 is the transport plan. Π(µ,ν) = {T ∈

Rn×m
≥0 |Tlm = µ,TT ln = ν} denotes the polytope of matrices T.

Unbalanced Optimal Transport. However, the strict mass-conservation constraints on the trans-
port plan T might cause dreadful degradation of performance in some applications. These con-
straints can be alleviated by incorporating the penalty of Π(µ,ν) into the objective function, which
naturally leads to the formulation of the Unbalanced Optimal Transport (UOT) problem Chizat et al.
(2018); Chapel et al. (2021):

UOTλ(µ,ν) = min
T≥0

⟨T,C⟩+ λ1Φ(Tlm,µ) + λ2Φ(T
T ln,ν), (2)

where Φ(·, ·) is a smooth divergence measure function, λ1 and λ2 are hyperparameters that represent
the strengths of penalization. We also have an alternative formulation, which relaxes one of the two
constraints in (1). This is a Semi-relaxed Unbalanced Optimal Transport (SUOT) problem (Chapel
et al., 2021), defined as the following:

SUOTλ(µ,ν) = min
T≥0,Tlm=µ

⟨T,C⟩+ λΦ(TT ln,ν) (3)

SUOT cast as regression. Let t = vec(T) and c = vec(C). Next, we define matrices Hc and
Hr, such that Hct computes the column sums of the transport plan (i.e., T⊤1n), and Hrt computes
the row sums (i.e., T1m). The objective function for SUOT includes the transport cost ⟨C,T⟩ and
the deviation penalty term λΦ(T⊤1n,ν), where Φ is typically chosen as the squared Euclidean
distance. Using vectorization and matrix notation, the objective function can be rewritten as c⊤t+
λ∥Hct− ν∥22. Introducing the variable γ = 1

λ , we reformulate the problem as:

min
t≥0

γcT t+ 0.5 ∗ ||Hct− ν||22, s.t.Hrt = µ, (4)

and as such be expressed as a non-negative penalized linear regression problem, where Hct is re-
gressed onto the target distribution ν. By representing the SUOT problem in this form, we can
leverage efficient optimization algorithms from regression analysis to solve it (Chapel et al., 2021).

4 PROPOSED METHOD: PROWTP

Let U = {u1, ..., u|U|} and V = {v1, ..., v|V|} denote the set of users and videos, respectively, where
|U| is the number of users and |V| is the number of items. The user-item historical interactions are
represented by D = {(xi, yi)|x = (u, v), u ∈ U , v ∈ V}Ni=1, where N is the number of samples and
y ∈ R∗ denotes the watch-time. The target is to learn a deep recommendation model f(X; Θf ) and
a regressor g(f(X; Θf ); Θg) to predict the watch-time y of user u on video v, where Θf and Θg is
the parameters of f and g, respectively.

4.1 OVERVIEW

The proposed ProWTP is a two-stage method, as shown in Fig. 2. In the first stage, we employ a Hi-
erarchical Vector Quantised Variational AutoEncoder (HVQ-VAE) P(P|Y ), which consists of three
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Figure 2: The framework of proposed ProWTP, which contains two phases: credible prototypes gen-
eration and distribution alignment. In the first stage, HVQ-VAE is used to encode the watch-ratio
distribution into high-dimensional discrete representations, which serve as prototypes for calibra-
tion. In the second stage, semi-relaxed unbalanced optimal transport (SUOT) is employed to align
the instance distribution with the prototypes, thereby calibrating the instance space.

components: 1) Encoder E(·; ΘE) : Y → Rd maps the one-dimensional continuous watch-ratio dis-
tribution w ∈ RL into a d-dimensional space, generating the initial representation E(w; ΘE) ∈ Rd;
2) Codebook P ∈ RC×K×d: quantizes the high-dimensional feature into a discrete space, capturing
the multimodal characteristics; 3) Decoder D(·; ΘD): Rd → Ŷ decodes the quantized prototype
back into the continuous distribution w, ensuring the reconstruction capability of the prototypes.
In the second stage, the prototypes P and Semi-Relaxed Unbalanced Optimal Transport (SUOT)
modules are integrated to regularize the training of the recommendation model f(·; Θf ) : X → Rd

and calibrate the instance representation space, thereby producing accurate instance representations
h for prediction by the regressor g(·; Θg) : H → R∗.

4.2 CREDIBLE PROTOTYPES GENERATION WITH HVQ-VAE

Currently, most prototype learning researches (Snell et al., 2017; Chang et al., 2022) typically rely
on pre-trained models, where prototypes are generated by clustering the hidden representations for
subsequent tasks. However, we argue that such prototypes often contain noise and potential errors,
limiting their capacity in calibrating original models. Therefore, we propose to generate prototypes
directly from the distribution of the prediction target Y. As shown in Fig. 1(a), when we partition
user historical behaviors into {1, 2, ..., D} buckets based on video duration, we observe that the
watch-ratio (i.e., the ratio of user’s watch-time to video duration) within each bucket exhibits a
distinct multimodal distribution. This indicates that user’s behavior is statistically clustered and
regular. However, these multimodal distributions are one-dimensional long sequences, making it
challenging to directly extract high-dimensional discrete representations.

Pre-processing. To solve this problem, we first sample L (L >> D) one-dimensional distributions
w = (y1, ..., yn) from each multimodal distribution. Using this sampling strategy, we transform the
original one-dimensional multimodal distributions into D ∗ L one-dimensional near-Gaussian dis-
tributions w of length n, thereby making the data more suitable for neural networks and effectively
reducing the difficulty of training.

Credible Prototypes Generation. We observed in Fig. 1(a) that the peaks at the same positions
across different duration buckets exhibit similar means but varying variances. Then, we hypothesize
that w sampled from the same positions in these buckets can be grouped into equal means but varied
variances clusters. Inspired by Vector Quantised Variational AutoEncode (VQ-VAE) (Van Den Oord
et al., 2017), we propose a Hierarchical VQ-VAE approach that first identifies the closest cluster
and then indexes the nearest vector within that cluster. Specifically, we take the one-dimensional
distribution w into the encoder E(·; ΘE) to obtain latent representation E(w). Subsequently, the
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HVQ-VAE maintains a codebook P ∈ RC×K×d, where C and K are the number of cluster and the
number of prototype, respectively, pij ∈ Rd is a prototype vector. We can assume that prototype
vectors within the same cluster share similar means but allow for different variances.

Next, we select the cluster c by computing the distance between E(w) and each cluster center p̃i,
where p̃i is obtained by target attention (Zhou et al., 2018; Vaswani, 2017) between E(w) and P:

c = argmin
i

||p̃i − E(w)||2, where p̃i =
∑
j

softmax(pij · E(w)) · pij . (5)

Within the selected cluster c, we find the prototype vector pc,k that has the minimum distance to
E(w) and map it to the discrete vector z:

z = pc,k, where k = argmin
j

||pc,j − E(w)||2 (6)

Finally, we input z into the decoder D(·) to reconstruct w. In HVQ-VAE, the presence of the
argmin operation hampers gradient propagation. To address this issue, we employ the Straight-
Through Estimator (STE) (Bengio et al., 2013; Van Den Oord et al., 2017) during training, with the
loss function defined as follows:

LHVQ−V AE = ||w−D(E(w)+ sg[z−E(w)])||22+ ||sg[E(w)]− z||22+β||E(w)− sg[z]||22 (7)

Here, sg[·] denotes the stop-gradient operation, which halts gradient flow during backpropaga-
tion, and β is a hyperparameter that balances the reconstruction loss and the embedding update.
Through this approach, we transform the one-dimensional continuous w distribution into discrete
high-dimensional prototype vectors, thereby providing credible calibration for subsequent models.

4.3 DISTRIBUTION ALIGNMENT

As illustrated in Fig. 1(b), we posit that the inaccuracies of recommendation models within the WTP
task stem from instance representation confusion. This confusion hampers the model’s ability to ef-
fectively differentiate between various user behavior patterns, thereby adversely affecting predictive
performance. To address this issue, it is imperative to utilize the generated credible prototypes P to
calibrate the instance representation f(x), thereby reducing representation confusion and enhancing
the model’s predictive accuracy.

Transport Matrix Calculation. First, we conceptualize the instance representations f(x) and the
prototypes P as two probability distributions, with the objective of mapping the instance represen-
tation distribution α = 1

nb
1nb

to the prototype representation distribution β = 1
CK1CK through

optimal transport (Villani et al., 2009; Peyré et al., 2019; Chapel et al., 2021). Specifically, we
construct the instance representation set H = {h1,h2, . . . ,hnb

} ⊆ Rd, where each instance repre-
sentation hi is obtained by L2 normalization of the model output f(xi), i.e. hi = f(xi)/||f(xi)||2,
and nb is the mini-batch size. The prototype set P = {p1,p2, . . . ,pCK} ⊆ Rd is derived from the
original prototype set P through a learnable linear transformation Wp. To quantify the discrepancy
between instances and prototypes, we define the cost matrix C ∈ Rnb×CK , where each element ci,k
represents the cosine distance between instance hi and prototype pk, i.e. C = 1−HT ∗P.

To achieve distribution alignment, we adopt the optimal transport method. However, traditional
optimal transport requires all the mass from β is transported to α, meaning that each prototype must
be fully mapped to the instances. This strict marginal constraint is not applicable in our scenario,
especially in a mini-batch setting, where it is unreasonable to allocate samples for every prototype,
as certain prototypes may not correspond to any instances in the current batch. Therefore, we model
the alignment between instances and prototypes as a Semi-relaxed Unbalanced Optimal Transport
(SUOT) problem (Chapel et al., 2021):

T∗ = SUOTλ(α,β) = min
T≥0,TlCK=α

⟨T,C⟩+ λ||TT lnb
− β||22, (8)

where λ controls the strengths of penalization. By introducing an l2 penalty term into the objective,
we allow the marginal constraints on the prototype side to be relaxed, transforming the hard con-
straints TT lnb

= β into soft one. To optimize this problem, (Chapel et al., 2021) reformulated it as
a weighted Lasso regression and solved it with a regularization path algorithm.
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Training objectives. To calibrate the sample space, we aim for the instance representations to clus-
ter tightly around their corresponding prototypes, necessitating a reduction in the distance between
each sample and its assigned prototype. Each row of the transportation matrix T represents the
allocation relationship of sample xi to the prototypes, with the row sums equal to 1

C×K . After mul-
tiplying by the constant C ×K, each row of T can be viewed as a soft pseudo-label summing to 1.
Therefore, we can define the calibration loss through the cross-entropy loss:

Lassign = − 1

nb

nb∑
i=1

C∗K∑
k=1

ti,k log
exp (hT

i ∗ pk/τ)∑C∗K
j=1 exp (hT

i ∗ pj/τ)
(9)

where τ is the temperature parameter that controls the smoothness of the softmax function. By min-
imizing Lassign, we can decrease the distance between samples and their corresponding prototypes,
thereby better calibrating instance representations within the prototype space, reducing representa-
tion confusion, and enhancing the model’s predictive performance.

To further shape the instance space, we hope for instances assigned to the same prototype to be closer
together in the representation space, thereby forming tighter clusters. This necessitates promoting
similarity among samples under the same prototype. To achieve this, we first define the set of
instances associated with each prototype k:

S+
k = {i|ti,k >

1

nb

∑
j

tj,k}, (10)

which includes those samples under prototype pk whose transport value ti,k exceed the average
level, indicating that these samples should be close to each other in the instance representation space.
Inspired by contrastive learning (Khosla et al., 2020), we designed a compact loss to encourage
samples under the same prototype to cluster more closely in the representation space:

Lcompact = − 1

CK

CK∑
k=1

nb∑
i=1

nb∑
j=1

I(i, j ∈ S+
k ) · I(i ̸= j) · log exp(hT

i ∗ hj/τ)∑nb

i=1

∑nb

j=1 exp(h
T
i ∗ hj/τ)

, (11)

where I(·) is the indicator function, and τ controls the smoothness. By minimizing the compact
loss, we not only help reduce instance representation confusion but also enhance the model’s ability
to capture fine-grained features, ultimately improving prediction performance. Additionally, to ad-
dress computational efficiency issues arising from multiple loops, we randomly sample 20% of the
instances from the mini-batch for the calculations. Finally, We incorporate the labels yi to define the
MSE loss:

Ltask =
1

N

N∑
i=1

(g(

CK∑
k=1

ti,kpk)− yi)
2, (12)

Compared to original prediction, ProWTP reshapes instance representations f(xi) in the credible
prototype space P by utilizing the transport matrix T to weight and combine prototype vectors, sub-
sequently feeding these representations into the regressor g(·; Θg) for prediction. This approach ef-
fectively captures the inherent structure of the instance representation space, enhancing the model’s
robustness and leading to more accurate predictions.

5 EXPERIMENT

5.1 SETUP

Dataset. We adopt two public datasets Wechat (collected from Wechat App) and Kuairand (Gao
et al., 2022) (from Kuaishou App) for offline experiments. We split each dataset into training,
validation and test set by the ratio of 6:2:2. We provide more details of datasets in Appendix A.5.

Baselines. We evaluate the performance of proposed ProWTP in comparison with the following
baselines that represent the popular method in WTP tasks: Traditional Regression, Weighted Lo-
gistic Regression (WLR) (Covington et al., 2016), Ordinal Regression (OR) (Crammer & Singer,
2001), Duration-Deconfounded Quantile (D2Q) (Zhan et al., 2022), and Tree-based Progressive
Model (TPM) (Lin et al., 2023). Sine all methods are model-agnostic, we implement them on the
MLP (Taud & Mas, 2018). The detailed description of baselines can be found in Appendix A.6.
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Evaluation. To evaluate the performance of each model, we use four widely adopted metrics (Zhan
et al., 2022) : MAE, RMSE, XAUC, and XGAUC. In WTP tasks, both value accuracy (measured
by MAE and RMSE) and order accuracy (measured by XAUC and XGAUC) are crucial. MAE
and RMSE ensure that the predicted values are close to the actual watch times, while XAUC and
XGAUC focus on producing correct rankings. We refer the readers to Appendix A.7 for more details
of the used evaluation metrics.

Training details. All algorithms are implemented on TensorFlow. We set the embedding dimension
of all features to 64. For TR and OR, models are implemented on MLP with three hidden layers
and ReLU Glorot et al. (2011) as the activation function. For other baseline methods, we adopt
the experimental design and parameter settings described in the original papers. We optimize all
models using Adam optimizer Kingma & Ba (2014) with the batch size of 512 on both two datasets.
To avoid overfitting, We set the dropout rate Srivastava et al. (2014) to 0.2 and employ an early
stopping mechanism Prechelt (2002) with a patience of 10 epochs. These choices are based on
empirical observations. Once all network structures are fixed, we use grid search to find the optimal
values for several key hyper-parameters. Among them, the learning rate is searched in {1e-3, 1e-4,
1e-5}, and β is tuned from 0.0 to 0.2 with increments of 0.05. K is searched in {4, 8, 12, 16, 20, 24}.

5.2 RESULTS

Comparison with baselines. We compare ProWTP with several baseline methods on two real-
world industrial-grade datasets, and the results are shown in Tab. 1. ProWTP achieves the best
performance across all evaluation metrics. In contrast, the TR method performs the worst on both
datasets, likely because it directly regresses on watch-time without leveraging the distributional char-
acteristics of the data. WLR and OR show some improvement over TR, but the gains are limited. The
D2Q, by addressing duration bias, improves prediction accuracy, and TPM further enhances perfor-
mance through its tree-structured modeling of dependencies and uncertainties. ProWTP outperforms
all baselines in four metrics, particularly with significant improvements in RMSE and XAUC. This
demonstrates that ProWTP effectively alleviates instance representation confusion by aligning the
credible prototype distribution with the instance distribution, improving model’s accuracy.

Table 1: Overall performance of different methods. Boldface means the best-performed methods.
Higher XAUC and XGAUC indicate better performance, while lower MAE and RMSE are better.

Model Wechat KuaiRand-Pure
RMSE MAE XAUC XGAUC RMSE MAE XAUC XGAUC

TR 30.39 20.51 0.5979 0.5406 42.41 28.09 0.7174 0.6905
WLR 30.24 20.16 0.6043 0.5535 42.17 27.98 0.7078 0.6883
OR 28.96 20.05 0.6072 0.5572 41.44 27.69 0.7142 0.6942

D2Q 29.12 20.12 0.6089 0.5613 41.65 27.82 0.7186 0.6987
TPM 28.85 19.97 0.6102 0.5642 40.82 24.58 0.7201 0.7021

ProWTP 28.47 19.84 0.6180 0.5727 40.44 24.33 0.7288 0.7045

Impact of different modules in ProWTP. We further conduct ablation studies to demonstrate the
effectiveness of the key components of ProWTP and the results are shown in Tab. 2. Specifically,
we compare ProWTP to its five variants: (1) w/o HVQ-VAE, means that prototypes are no longer
generated from label distributions but are randomly initialized as parameters within the neural net-
work. (2) w/o Lassign means the assign loss is removed. (3) w/o Lcompact means the compact loss
is further removed. (4) w/o SUOT indicates that SUOT is no longer used for distribution alignment,
and instead, the the linear combination of prototypes is directly computed for prediction. (5) w/o
ProWTP means the approach degenerates into traditional regression (TR). The results indicate that
removing any single module leads to a performance decline, demonstrating that each component of
ProWTP is crucial for improving model performance. Removing HVQ-VAE results in a significant
drop in performance, highlighting that transforming label distributions into credible prototypes ef-
fectively enhances the model’s performance. The impact of removing SUOT is also particularly no-
table, indicating that SUOT helps better align the distributions of instances and prototypes, thereby
improving predictive capabilities. Moreover, the two loss functions effectively constrain the learning
of the instance space, ensuring instances are tightly clustered around the corresponding prototype,
which enhances the model’s discriminative ability.
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Table 2: Ablation results of different modules in ProWTP.

Model Wechat KuaiRand-Pure
RMSE MAE XAUC XGAUC RMSE MAE XAUC XGAUC

ProWTP 28.47 19.84 0.6180 0.5727 40.44 24.33 0.7288 0.7045
ProWTP w/o HVQ-VAE 29.12 20.23 0.6128 0.5690 41.08 24.87 0.7233 0.7010

ProWTP w/o Lassign 29.45 20.65 0.6112 0.5678 41.35 25.01 0.7205 0.6998
ProWTP w/o Lcompact 29.38 20.51 0.6130 0.5684 41.12 24.92 0.7221 0.7004

ProWTP w/o SUOT 29.90 20.89 0.6108 0.5665 42.00 25.50 0.7185 0.6980
w/o ProWTP 30.39 20.51 0.5979 0.5406 42.41 28.09 0.7174 0.6905

Table 3: Ablation study on different prototype generation methods.

Prototypes
generation

Wechat KuaiRand-Pure
RMSE MAE XAUC XGAUC RMSE MAE XAUC XGAUC

HVQ-VAE 28.47 19.84 0.6180 0.5727 40.44 24.33 0.7288 0.7045
VQ-VAE 28.82 20.04 0.6164 0.5713 40.72 24.52 0.7259 0.7024
Kmeans 29.07 20.28 0.6132 0.5683 41.22 24.98 0.7236 0.7018
Random 29.12 20.23 0.6128 0.5690 41.08 24.87 0.7233 0.7010

Table 4: Ablation study on different distribution alignment methods.

Distribution
alignment

Wechat KuaiRand-Pure
RMSE MAE XAUC XGAUC RMSE MAE XAUC XGAUC

SUOT 28.47 19.84 0.6180 0.5727 40.44 24.33 0.7288 0.7045
OT 28.82 20.15 0.6164 0.5705 40.85 24.65 0.7252 0.7023

UOT 29.46 20.58 0.6137 0.5688 41.20 24.93 0.7225 0.7000
w/o alignment 29.90 20.89 0.6108 0.5665 42.00 25.50 0.7185 0.6980

Different prototype generation methods. To further validate the effectiveness of using HVQ-
VAE for generating credible prototypes, we compare three different generation strategies: VQ-VAE,
Kmeans, and Random. As shown in Tab. 3, the performance of VQ-VAE saw a slight decrease,
indicating that the hierarchically generated prototypes from HVQ-VAE exhibit a better clustering
structure, making it easier for instance representations to align with them. Kmeans generates pro-
totypes by clustering the instance representations directly, but its performance drops due to being
more susceptible to noise and potential errors. The Random method performs the worst, as it fails to
provide a credible reference for calibrations, thereby affecting the model’s predictive performance.

Different distribution alignment methods. We also compare different alignment strategies, as
shown in Tab 4. The SUOT approach, which relaxes the marginal constraints on the prototype side,
yielded the best performance. In contrast, OT requires strict transportation of the entire mass, but
since not all prototypes in a mini-batch can be assigned to instances, it limits performance. UOT
also saw a performance decline due to some instances not being assigned. SUOT’s flexible allocation
mechanism more effectively enhances model performance.

Impact of the number of prototypes K. In Fig 3, we illustrate the impact of varying the num-
ber of prototypes K on model performance. As the number of prototypes increases, performance
improves accordingly. However, defining too many prototypes results in slight performance fluctu-
ations, likely due to the introduction of noise.

6 CONCLUSION

In this paper, we propose a two-stage method, ProWTP, for watch-time prediction (WTP) tasks,
applicable to any deep recommendation model. This method aligns label distributions with in-
stance representation distributions through prototype learning and optimal transport to calibrate the
instance space, thereby improving the accuracy. Specifically, we employ HVQ-VAE to transform
continuous watch-ratio labels into high-dimensional discrete distributions, which serve as credible
prototypes. Then, the alignment between prototypes and instance representations is modeled as a
SUOT problem, where the marginal constraints are relaxed and the problem is reformulated as a
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Figure 3: Impact of the number of prototypes K on two datasets.

weighted Lasso regression for solution. Additionally, we introduce assign loss and compact loss to
encourage instances to cluster tightly around their respective prototypes. Finally, extensive experi-
ments demonstrate the significant advantages of ProWTP in practical applications.
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A APPENDIX

A.1 EXPLANATIONS ON INSTANCE REPRESENTATION CONFUSION.

A.1.1 MATHEMATICAL EXPLANATION

Proposition A.1. In WTP task, let the instance representation of a sample (x, y) be f(x), with
its ideal center being µy = E[f(x) | y], where y is the ground-truth. The degree of instance
representation confusion is defined as the distance between the instance representation and the
ideal center, d(f(x), µy) = ∥f(x) − µy∥. Then, the model’s prediction error ∆x = |y − ŷ| is
predominantly correlated with the degree of instance representation confusion d(f(x), µy).

proof :

In a regression model for WTP task, suppose the predicted value is given by ŷ = ReLU(Wf(x)+b),
and the true value y is a function represented by a ideal center µy = E[f(x) | y] and a noise term ϵ:

y = ReLU(Wµy + b) + ϵ, (13)

where W ∈ R1×d and b ∈ R are the model parameters, and f(x) ∈ Rd is the instance representation
of the input x. The noise ϵ is independent and identically distributed Gaussian noise with zero mean,
unrelated to the instance representation, i.e., ϵ ∼ N (0, σ2).

Starting with the model and true value definitions, the error can be rewritten as:

∆x = |y − ŷ| = |ReLU(Wµy + b) + ϵ− ReLU(Wf(x) + b)|. (14)

We assume that the ideal center µy lies within the activation region, meaning that Wµy+b ≥ 0. This
assumption holds because, in WTP task, the ground-truth y ≥ 0. Thus, we only need to consider
two cases based on the value of Wf(x) + b for each sample:

(1) Case 1: Wf(x) + b ≥ 0

In the linear activation region of ReLU, the output simplifies to:

∆x = |(Wµy + b+ ϵ)− (Wf(x) + b)|. (15)

Further simplifying:
∆x = |W (µy − f(x)) + ϵ|. (16)

The squared error is:

∆2
x = (W (µy − f(x)))2 + 2ϵW (µy − f(x)) + ϵ2. (17)

Taking the expectation, assuming ϵ is independent of f(x) and E[ϵ] = 0:

E[∆2
x] = (W (µy − f(x)))2 + E[ϵ2]. (18)

Since E[ϵ2] = σ2, we have:

E[∆2
x] = (W (µy − f(x)))2 + σ2. (19)

Thus, the expectation of the squared error is dominated by (W (µy − f(x)))2, and we get:

(W (µy − f(x)))2 = ∥W∥2 · ∥f(x)− µy∥2. (20)

Therefore:
E[∆2

x] ∝ ∥f(x)− µy∥2. (21)

(2) Case 2: Wf(x) + b < 0

In the non-activation region of ReLU, if Wf(x) + b ≤ 0, then:

ŷ = 0. (22)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

In this case, the error is:
∆x = |y|. (23)

Combining both cases, the expected squared error is:

E[∆2
x] = P (Wf(x) + b ≥ 0) ·

(
∥W∥2 · ∥f(x)− µy∥2 + σ2

)
+ P (Wf(x) + b < 0) · y2. (24)

When most instances satisfy Wf(x) + b > 0 (i.e., the ReLU activation region dominates), the
expected error is primarily determined by ∥f(x) − µy∥. We conducted experiments and found that
instances located in the non-activation region of ReLU account for approximately 1% to 2% of the
total training data.

A.1.2 DIFFERENT MODEL ANALYSIS

In this paper, we identify instance representation confusion as the main reason for the inability of
existing methods to achieve accurate predictions. In Appendix A.1.1, we provide a mathematical
explanation of the phenomenon. In this section, we conduct a visualization study on the relationship
between instance representations f(x) and prediction errors ∆ across different values.

To simplify the analysis, we focus on three sample groups with true values y ∈ [0, 0.1), y ∈
[1.0, 1.1), and y ∈ [2.0, 2.1). For each sample x, the prediction error of the model f(·) is de-
noted as ∆. We define the ideal center uy as the average instance representation f(x) of samples
with ∆ < 0.01. The degree of instance representation confusion is measured by the L2 distance
||f(x)− uy||.
The analysis results for each model include five figures: (a) The correlation between prediction error
and the degree of confusion. (b) A t-SNE visualization of instance representations f(x) for all three
sample groups with (∆ < 0.3). (c)(d)(e) The visualization of instance representations f(x) and
ideal centers uy for high-error samples (∆ > 0.3) in y ∈ [0, 0.1), y ∈ [1.0, 1.1) and y ∈ [2.0, 2.1)
respectively.

From Figure (a), it can be observed that both TR and ProWTP align with the conclusion of Appendix
A.1.1, where the prediction error ∆ is positively correlated with the degree of confusion. From
the distribution of black scatter points, TR exhibits a significantly higher level of confusion, while
ProWTP effectively mitigates this confusion by reducing the distance between instances and reliable
prototypes.

From Figure (b), even when the prediction error ∆ < 0.3, the instance representations of TR struggle
to form well-defined clusters, with instances of different types mixed together. In contrast, ProWTP
achieves clear clustering among instances with small errors, and instances of different types are
distinctly separated.

In Figures (c), (d), and (e), for points with larger errors, darker colors indicate higher ∆ values
and greater distances from the ideal center. This further supports the conclusion in Appendix A.1.1.
Additionally, compared to TR, ProWTP shows significantly fewer points with large errors (i.e., fewer
dark-colored points), effectively reducing instance representation confusion. This demonstrates that
the root cause of reducing prediction errors lies in learning better instance representations.
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Figure 4: Traditional Regression (TR) on Wechat.
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Figure 5: ProWTP on Wechat.
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A.2 MORE DETAILS OF PRE-PROCESSING AND PROTOTYPE GENERATIONS.

Prototypes generation 
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Figure 6: The details of Pre-processing and Prototype generations.

Our goal is to transform the ground-truth Y of the entire dataset into high-dimensional vectors,
referred to as prototypes, for downstream tasks. The generation process is divided into four steps,
as shown in Fig. 6 :

1. Partitioning Y . The ground-truth Y is an N × 1 vector, where N is the size of the dataset.
Directly generating prototypes from this vector is challenging. We observe that watch-ratio in dif-
ferent duration buckets exhibit distinct multi-modal distributions. Thus, Y is first divided into D
unequal-length multi-modal distributions based on video durations.

2. Fitting Gaussian Mixture Models (GMMs). Even after partitioning, the watch-ratio distribu-
tions remain as long one-dimensional continuous arrays, making direct modeling still difficult. To
address this, we fit D GMMs to these distributions, where the number of components C corresponds
to the number of peaks in the distribution.

3. Random Sampling. For each GMM, C sets of means, variances and weights {(µj , σj , θj)}Cj=1
are obtained. The sampling process is as follows:

• Data for each peak is sampled randomly to form a distribution w = (y1, y2, . . . , yn) of
length n, with the sampling range defined as [µ− i ·σ, µ+ i ·σ], where i follows a Gaussian
distribution N(µ

′
, σ

′
).

• To ensure that the overall sampled distribution matches the original distribution, the number
of samples for each peak is determined by the weights θ. Specifically, when generating L
near-Gaussian distributions from the current multi-modal distribution, the allocation of L
is governed by θ, where the number of samples generated for each peak is ⌊θ · L⌋.

This sampling strategy significantly simplifies subsequent learning while adhering to the semantic
of Prototypes, where each Prototype represents the center of a peak.

4. Generating Credible Prototypes. For each bucket, L distributions w are sampled, resulting in
D × L distributions. These are fed into the HVQ-VAE for training, and the codebook weights from
HVQ-VAE are considered as Prototypes.

In Fig. 7 and 8, we present a comparison of the overall distribution of 100 sampled w values
(orange) and the original watch-ratio distribution (blue) across different durations on the WeChat
and our Short-video datasets, respectively. The red dashed lines indicate the means of the GMM.
It can be observed that the distributions exhibit typical multimodal characteristics, and the sampled
distributions successfully preserve the original distribution’s shape and features.

A.3 THE RELATIONSHIP BETWEEN MULTIMODAL DISTRIBUTIONS, PROTOTYPES, AND
USER BEHAVIOR.

The watch-ratio distribution exhibits distinct multi-modal characteristics, reflecting different user
behavior patterns during video consumption: ”scroll” (the first peak) indicates that users skim past
the video after watching the cover for about 1 second, showing a lack of interest; ”like” (the second
peak) represents users who watch most of the video and show moderate interest; and ”very like”
(subsequent peaks) suggests users who are highly engaged with the content and may even re-watch
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Figure 7: Comparison of Sampled Distribution and Original Watch-Ratio Distribution on WeChat.
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Figure 8: Comparison of Sampled Distribution and Original Watch-Ratio Distribution on our Short-
video.

it multiple times. This clustering behavior helps watch-time prediction models quickly identify
specific intervals, thereby reducing prediction errors.

However, multi-modal distributions are typically long one-dimensional sequences, making direct
modeling challenging for capturing behavior patterns effectively. Prototype learning addresses this
issue by dividing the multi-modal distribution into several sub-distributions and generating multiple
semantic centers in high-dimensional space for each sub-distribution. This approach significantly
simplifies computation and learning complexity, breaking down the complex multi-modal distribu-
tion into more manageable local structures. Consequently, Prototype enables watch-time prediction
models to more accurately capture the characteristics of different user behavior patterns, improving
global prediction performance of duration distributions and effectively supporting recommendation
systems in WTP tasks.
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Figure 9: The Relationship Between Multimodal Distributions, Prototypes, and User Behavior.
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A.4 COMPUTATIONAL COMPLEXITY DISCUSSION

Stage I: prototype generations. The computational complexity of HVQ-VAE primarily arises
from the cluster selection and prototype selection. For a single sample, the cluster selection involves
computing the attention-weighted cluster centers, with a time complexity of O(C ·K + C), where
C is the number of clusters, K is the number of prototypes per cluster. Within the selected cluster,
prototype selection further incurs a complexity of O(K). Overall, the time complexity for a single
sample is O(C · K + C + K), and the space complexity is dominated by the static storage of the
codebook, which is O(C ·K · d), and d is the prototype vector dimension.

Importantly, HVQ-VAE is completely independent, and its spatio-temporal complexity does not
affect the training and inference time of ProWTP. When the distribution of watch ratios is suffi-
ciently large, the resulting prototype distribution is stable. Furthermore, we observed that for a well-
established video recommendation APP, the watch-ratio distribution remains largely unchanged and
consistent across multiple months.

As shown in Figure 10, we randomly sampled 200,000 users from our APP (a short-video platform)
and extracted their historical behavior on the 1st day of each month from January to November
2024. The data were divided into D = 15 buckets based on video duration. We then computed the
Wasserstein Distance between the watch-ratio probability density distributions of each month and
November, as well as the Kolmogorov-Smirnov test with p < 0.05 between their cumulative empir-
ical distributions. The results indicated no significant distribution shifts across multiple months.

Even in extreme scenarios where user behavior undergoes notable adjustments, we only need to
resample the watch-ratio distributions for each duration buckets, perform offline retraining, and
update the weights of ProWTP. This process incurs minimal computational overhead.
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Figure 10: Mean Differences in Watch-ratio Distributions Between November and January-October.

Stage II: Distribution alignment. ProWTP is a model-agnostic method that adds only an additional
prototype layer compared to the baseline, resulting in a space complexity of O(CKd). During the
inference phase, the OT module is removed, and the final value is computed as a linear combina-
tion of similarities to each prototype, which is then input into the regressor. The time complexity
of this process is O(CK), where C and K are small constants, ensuring that the time overhead
remains negligible. The training time complexity comes from four parts. OT optimization oper-
ates on a transportation matrix of size nb × CK, where nb is the mini-batch size and CK is the
number of prototypes, with a complexity of O(I · nb · CK) for I iterations. The calibration loss,
which computes softmax and cross-entropy for each sample across all prototypes, has a complexity
of O(nb · CK). The compact loss, which encourages tighter clustering of instance representations
under the same prototype, involves sampling 20% of the instances and computing pairwise similar-
ities, with a complexity of O(0.04 · CK · |S+

k |2). Additionally, the prototype-weighted prediction
calculation incurs an additional O(nb · CK). Thus, the overall training time complexity for a batch
is O(I · nb · CK + 2 · nb · CK + 0.04 · CK · |S+

k |2).
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We trained on WeChat data with a batch size of 512 using an RTX 4090 GPU. Tab. 5 compares
the training time per batch for ProWTP under different sampling frequencies and the corresponding
changes in RMSE, along with the inference efficiency of different models. It can be observed that
ProWTP’s inference efficiency does not significantly increase compared to the baseline. However, as
the sampling ratio increases, the training time for ProWTP grows noticeably, while the performance
improvement shows diminishing marginal returns.

Table 5: Time cost (s) per batch of different models on Wechat.

Model TR D2Q ProWTP
Sample ratio - - 0% 10% 20% 30% 50% 100%

Train cost 0.011 0.013 0.049 0.058 0.061 0.075 0.092 0.121
RMSE 30.39 29.12 29.38 28.91 28.47 28.22 28.05 28.04

Infer cost 0.003 0.003 0.004

A.5 DATASETS.

1) Wechat: This dataset was adopted in WeChat Big Data Challenge1, which records the behavior
of users on short videos in two weeks. We divide the duration into D = 5 buckets. The user id,
device id, video id, author id, duration level and multi-model content feature vectors are used as
our feature inputs.

2) Kuairand-Pure: Constructed from the recommendation logs of the video-sharing mobile app,
Kuaishou (Gao et al., 2022), the dataset contains millions of intervened interactions about 27,285
users and 7,551 items in 4 weeks. Similarly, we discretize the duration into D = 5 buckets in this
dataset, and the user id, video id, tab, music id, author id, duration level and user active degree
will serve as input features in our experiments.

3) Short-video: We collected behavioral logs of 200,000 active users from a short-video platform
on November 1, 2024. The data was divided into D = 15 buckets based on video duration. In
our experiments, we used the following features as inputs: user id, video id, tag id, author id, and
duration level.

Table 6: Statistical Information of datasets.

Data #user #video #interaction #duration

WeChat 20,000 96,428 7,210,290 5

Kuairand-Pure 27,285 7,551 1,231,181 5

Short-video 200,000 4,832,885 30,000,000 15

A.6 BASELINE DETAILS.

To evaluate the effectiveness of our proposed method, we compare it with the following methods
that are pivotal in leveraging Watch-time prediction:

• TR (Traditional Regression): This method adopts a straightforward regression approach,
using watch time as the label. It is trained to minimize the Mean Squared Error (MSE).

• WLR (Weighted Logistic Regression) (Covington et al., 2016): As implemented in
YouTube’s system, this method learns a logistic regression model, reweighted by watch
times, and uses the learned odds to estimate watch time during prediction.

• OR (Ordinal Regression) (Crammer & Singer, 2001): This method, based on ordinal re-
gression techniques, emphasizes the relative order of watch times, fitting the data to predict
categorical watch time levels.

1https://algo.weixin.qq.com/2021/problem-description
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• D2Q (Duration-Deconfounded Quantile) (Zhan et al., 2022): Representing a state-of-the-
art approach in watch time prediction, this model addresses duration bias through backdoor
adjustment and fits duration-dependent quantiles of watch time using MSE.

• TPM (Tree-based Progressive Model) (Lin et al., 2023): This approach uses a tree-
structured series of classification tasks, considering ordinal ranks and prediction variance,
and incorporates backdoor adjustment to mitigate bias, offering a nuanced and comprehen-
sive approach to enhancing watch time prediction in video recommender systems.

• DVR (Debiased Video Recommendation) (Zheng et al., 2022): This methods provides
unbiased recommendation of micro-videos with varying duration, and learn unbiased user
preferences via adversarial learning.

• CWM (Counterfactual Watch Model) (Zhao et al., 2024): This methods proposes to use
counterfactual reasoning to mitigate duration bias.

A.7 METRICS.

Root Mean Square Error (RMSE). This metric measures the average magnitude of errors between
generated values and actual values, which is formulated as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (25)

where yi is the actual value of the i-th sample and ŷi is the predicted value.

Mean Absolute Error (MAE). This metric is used to evaluate the average discrepancy between
generated and real data; the calculation is as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi|. (26)

XAUC (Zhan et al., 2022). This is an extension of the standard AUC, applied to continuous values.
Given a pair of samples (i, j), if the predicted watch-time values ŷi and ŷj are in the same order
as their true values yi and yj , the score is 1; otherwise, the score is 0. We uniformly sample such
pairs from the test set, and the XAUC is computed as the average score over all pairs. The formal
definition is:

XAUC =
1

|S|
∑

(i,j)∈S

I [(ŷi > ŷj) = (yi > yj)] , (27)

where S represents the set of all sampled pairs, and I(·) is the indicator function, which returns 1 if
the predicted order matches the true order, and 0 otherwise. XAUC intuitively measures how well
the ranking induced by the predicted watch times aligns with the true ranking. A higher XAUC
indicates better model performance.

XGAUC (Zhan et al., 2022). This is a weighted version of XAUC. It computes XAUC for each user
individually, and then averages the XAUC values with weights proportional to the sample size of
each user. The formal definition is:

XGAUC =

∑
u Nu · XAUCu∑

u Nu
, (28)

where u represents a user, Nu is the number of samples for user u, XAUCu is the XAUC score for
user u. XGAUC measures the overall ranking consistency across users, with the weight adjusted
based on the number of samples per user. A higher XGAUC indicates better model performance
across users.

In WTP tasks, MAE and RMSE are used to measure how close the predicted watch times are to the
actual values, focusing on the accuracy of the predictions. XAUC and XGAUC, on the other hand,
evaluate how well the predicted rankings of watch times match the true rankings, emphasizing the
importance of the order of predictions. Both metrics are crucial: accurate predictions (measured
by MAE and RMSE) ensure precision, while correct rankings (measured by XAUC and XGAUC)
are essential for delivering relevant recommendations. In recommendation systems, maintaining the
correct ranking is often as important, if not more so, than predicting the exact values, making both
aspects vital for optimizing user satisfaction and overall model performance.
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A.8 THE DERIVATION OF LHVQ−V AE .

The loss function LHVQ−V AE is designed to optimize both the encoder and decoder networks,
while preserving the discrete nature of the latent space.

LHVQ−V AE = ||w−D(E(w)+sg[z−E(w)])||22+ ||sg[E(w)]−z||22+β||E(w)−sg[z]||22. (29)

This function consists of three key components, explained as follows:

Reconstruction loss:
||w −D(E(w) + sg[z− E(w)])||22 (30)

This part measures the squared Euclidean distance between the decoder output D(·) and the orig-
inal input w, assessing the model’s ability to reconstruct the data. Here, E(w) represents the
encoder output of the input w, and z is the nearest prototype vector. The stop-gradient oper-
ation sg[·] prevents gradients from passing through, ensuring that the codebook is only updated
through the second term. During forward propagation (when calculating the loss), this simplifies to
D(E(w)+z−E(w)) = D(z), and during backpropagation (when calculating the gradients), since
z− E(w) provides no gradients, it also simplifies to D(E(z)).

Quantization Loss:
||sg[E(w)]− z||22 (31)

This loss encourages the prototype vector z to move closer to the encoder output E(w). The stop-
gradient operation is applied to E(w) to prevent gradients from propagating through this term to the
encoder, thus only updating the codebook.

Commitment Loss:
β||E(w)− sg[z]||22 (32)

This term encourages the encoder output E(w) to commit to the chosen codebook vector z. The
weight factor β adjusts the importance of this loss relative to the other components. By increasing
the encoder’s commitment to its quantized representation, this term improves the model’s stability
and efficiency.

A.9 RESULTS ON DIFFERENT DURATION BUCKETS.

Table 7: Results on different duration buckets.

Duration
bucket

Wechat KuaiRand-Pure
RMSE MAE XAUC XGAUC RMSE MAE XAUC XGAUC

0 8.57 6.87 0.6118 0.5273 7.82 5.57 0.6922 0.6365
1 13.13 10.53 0.6084 0.5334 16.40 12.37 0.6689 0.6085
2 20.15 16.19 0.6088 0.5289 28.79 21.45 0.6941 0.6245
3 31.95 26.00 0.5930 0.5261 43.62 32.03 0.6786 0.6167
4 48.97 40.34 0.5795 0.5203 69.09 48.40 0.6614 0.6153

A.10 TRAINING LOSS.

L = Ltask + Lassign + β ∗ Lcompact, (33)

where β is the hyper-parameter ranged from (0.0, 0.2].
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Table 8: The mean and variance of four metrics for different models across three datasets under five
different random seeds.

Model Metrics TR WLR OR D2Q TPM DVR CWM ProWTP

WeChat

RMSE 30.3871± 0.0014 30.2385± 0.0013 28.9598± 0.0016 29.1216± 0.0011 28.8490± 0.0012 28.9095± 0.0019 28.7830± 0.0018 28.4702± 0.0010
MAE 20.5250± 0.0019 20.1608± 0.0017 20.0490± 0.0010 20.1220± 0.0018 19.9730± 0.0015 20.0510± 0.0013 19.9020± 0.0014 19.8445± 0.0012

XAUC 0.5985± 0.0005 0.6047± 0.0004 0.6078± 0.0006 0.6094± 0.0008 0.6107± 0.0002 0.6109± 0.0007 0.6115± 0.0003 0.6183± 0.0005
XGAUC 0.5409± 0.0003 0.5538± 0.0007 0.5575± 0.0002 0.5616± 0.0004 0.5645± 0.0005 0.5628± 0.0006 0.5654± 0.0008 0.5730± 0.0004

KuaiRand-Pure

RMSE 42.4085± 0.0015 42.1702± 0.0016 41.4435± 0.0012 41.6548± 0.0014 40.8225± 0.0018 40.9730± 0.0010 40.7508± 0.0017 40.4508± 0.0015
MAE 28.0945± 0.0011 27.9789± 0.0013 27.6912± 0.0017 27.8210± 0.0015 24.5810± 0.0019 26.0815± 0.0012 24.5410± 0.0014 24.4312± 0.0011

XAUC 0.7176± 0.0006 0.7081± 0.0003 0.7145± 0.0004 0.7189± 0.0002 0.7203± 0.0008 0.7201± 0.0005 0.7209± 0.0007 0.7290± 0.0002
XGAUC 0.6907± 0.0002 0.6885± 0.0005 0.6945± 0.0007 0.6990± 0.0006 0.7024± 0.0005 0.6998± 0.0003 0.7026± 0.0004 0.7048± 0.0006

Short-video

RMSE 30.5924± 0.0013 30.2231± 0.0019 29.1822± 0.0015 29.3521± 0.0017 29.0231± 0.0011 29.1754± 0.0016 29.0031± 0.0018 28.6722± 0.0012
MAE 11.4621± 0.0016 11.2914± 0.0012 11.0716± 0.0014 11.1523± 0.0018 10.8235± 0.0010 11.0821± 0.0019 10.7634± 0.0015 10.6932± 0.0013

XAUC 0.5744± 0.0004 0.5788± 0.0003 0.5705± 0.0006 0.5814± 0.0005 0.5831± 0.0002 0.5822± 0.0008 0.5848± 0.0007 0.5929± 0.0002
XGAUC 0.5537± 0.0005 0.5603± 0.0002 0.5609± 0.0007 0.5622± 0.0004 0.5667± 0.0003 0.5643± 0.0006 0.5681± 0.0005 0.5731± 0.0004

A.11 MORE RESULTS ON BASELINES.

We report the mean and variance of metrics for additional baselines run five times on three datasets,
as shown in Tab. 8.

A.12 WHY OT?

Assuming the instance representation is hi and the prototype set is {pk}C∗K
k=1 , the weight between

hi and each prototype pi is defined as:

αi,k =
exp (hT

i ∗ pk/τ)∑C∗K
j=1 exp (hT

i ∗ pj/τ)
. (34)

We consider the three different alignment methods:

• SUOT calculates a transport matrix T based on the relationship between prototypes and
instances, and uses ti,k ∈ T to guide the learning of α. This approach considers global
distribution alignment, offering strong robustness and interpretability.:

Lassign = − 1

nb

nb∑
i=1

C∗K∑
k=1

ti,k logαi,k. (35)

• L2 distance directly aligns two representations, focusing on point-wise alignment without
considering the global distribution. This makes it susceptible to the influence of outliers.:

Lassign = ||hi −
C∗K∑
k=1

αi,k ∗ pk||2. (36)

• w/o alignment directly uses the linear combination
∑C∗K

k=1 α ∗ pk for prediction without
Lassign.

Tab. 4 and 9 compare the results of different alignment methods, showing that SUOT achieves the
best performance, which demonstrates the effectiveness of OT-based alignment. Fig. 11 provides
a case study where we visualize the weight matrix α of a batch (nb = 512, C ∗ K = 80) from
the WeChat dataset. It can be observed that the α learned by OT alignment maintains the same
sparsity as the transport matrix T. In contrast, the α from other methods is very dense, treating
the prototypes as mere representation anchors to enhance the overall representation, while ignoring
whether instances should actually match their corresponding prototypes.

Table 9: Different distribution alignment methods.

Distribution
alignment

Wechat KuaiRand-Pure
RMSE MAE XAUC XGAUC RMSE MAE XAUC XGAUC

SUOT 28.47 19.84 0.6180 0.5727 40.44 24.33 0.7288 0.7045
L2 distance 29.37 20.35 0.6129 0.5683 41.28 24.91 0.7208 0.7006

w/o alignment 29.90 20.89 0.6108 0.5665 42.00 25.50 0.7185 0.6980
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(a) SUOT.
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(b) L2 distance.

0 100 200 300 400 500
Instance

0

10

20

30

40

50

60

70

P
ro

to
ty

pe

(c) w/o alignment.

Figure 11: A case study on the weights α for different alignment methods.
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A.13 ONLINE DEVELOPMENT AND A/B TEST.

Existing industrial recommendation systems typically adopt a cascading architecture consisting of
four stages: recall, pre-ranking, ranking, and re-ranking, to recommend items to users from a mas-
sive pool of video candidates. In Appendix A.4, we analyzed the inference time of ProWTP, which
is O(C ·K). Although C and K are constants, this still introduces additional latency compared to
the baseline’s O(1). However, since the recall stage does not have stringent real-time requirements,
we deployed ProWTP in the recall stage of an online short-video recommendation system, where it
serves as one of the multiple recall paths.

For video content platforms, the key metrics of interest are watch-time and average app usage time.
Using D2Q as the baseline model, we reported the experimental results of ProWTP from November
6 to November 15, where November 6 to November 8 was the AA experiment phase, and November
9 to November 15 was the A/B testing phase. The results are shown in Tab. 10. Please note that in
a stable video recommendation system, a 0.1% increase in metrics is considered significant.

Table 10: Results of online A/B testing on a short-video platform.

AA test AB test
day 06 07 08 09 10

usage time -0.031% 0.025% 0.008% 0.052% 0.026%
watch time 0.003% 0.028% 0.037% 0.154% 0.095%

AB test
day 11 12 13 14 15

usage time 0.043% 0.132% 0.098% 0.167% 0.136%
watch time 0.262% 0.146% 0.129% 0.103% 0.151%
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