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ABSTRACT

As industrial applications are increasingly automated by machine learning mod-
els, enforcing personal data ownership and intellectual property rights requires
tracing training data back to their rightful owners. Membership inference algo-
rithms approach this problem by using statistical techniques to discern whether
a target sample was included in a model’s training set. However, existing meth-
ods only utilize the unaltered target sample or simple augmentations of the target
to compute statistics. Such a sparse sampling of the model’s behavior carries
little information, leading to poor inference capabilities. In this work, we use
adversarial tools to directly optimize for queries that are discriminative and di-
verse. Our improvements achieve significantly more accurate membership in-
ference than existing methods, especially in offline scenarios and in the low
false-positive regime which is critical in legal settings. Code is available at
https://github.com/YuxinWenRick/canary—in—a—coalmine

1 INTRODUCTION

In an increasingly data-driven world, legislators have begun developing a slew of regulations with
the intention of protecting data ownership. The right-to-be-forgotten written into the strict GDPR
law passed by the European Union has important implications for the operation of ML-as-a-service
(MLaaS) providers (Wilka et al., 2017; [Truong et al.l [2021). As one example, |Veale et al.| (2018)
discuss that machine learning models could legally (in terms of the GDPR) fall into the category of
“personal data”, which equips all parties represented in the data with rights to restrict processing and
to object to their inclusion. However, such rights are vacuous if enforcement agencies are unable to
detect when they are violated. Membership inference algorithms are designed to determine whether
a given data point was present in the training data of a model. Though membership inference is
often presented as a breach of privacy in situations where belonging to a dataset is itself sensitive
information (e.g. a model trained on a group of people with a rare disease), such methods can also
be used as a legal tool against a non-compliant or malicious MLaaS provider.

Because membership inference is a difficult task, the typical setting for existing work is generous
to the attacker and assumes full white-box access to model weights. In the aforementioned legal
scenario, this is not a realistic assumption. Organizations have an understandable interest in keep-
ing their proprietary model weights secret and short of a legal search warrant, often only provide
black-box querying to their clients (OpenAl 2020). Moreover, even if a regulatory agency forcibly
obtained white-box access via an audit, for example, a malicious provider could adversarially spoof
the reported weights to cover up any violations.

In this paper, we achieve state-of-the-art performance for membership inference in the black-box
setting by using a new adversarial approach. We observe that previous work (Shokri et al.l 2017
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Yeom et al.} 2018} [Salem et al.| 2018} |Carlini et al., 2022a) improves membership inference attacks
through a variety of creative strategies, but these methods query the targeted model using only the
original target data point or its augmentations. We instead learn query vectors that are maximally
discriminative; they separate all models trained with the target data point from all models trained
without it. We show that this strategy reliably results in more precise predictions than the baseline
method for three different datasets, four different model architectures, and even models trained with
differential privacy.

2 BACKGROUND AND RELATED WORK

Homer et al.| (2008]) originated the idea of membership inference attacks (MIAs) by using aggregated
information about SNPs to isolate a specific genome present in the underlying dataset with high
probability. Such attacks on genomics data are facilitated by small sample sizes and the richness of
information present in each DNA sequence, which for humans can be up to three billion base pairs.
Similarly, the overparametrized regime of deep learning makes it vulnerable to MIAs. |Yeom et al.
(2018) designed the first attacks on deep neural networks by leveraging overfitting to the training
data — members exhibit statistically lower loss values than non-members.

Since their inception, improved MIAs have been developed, across different problem settings
and threat models with varying levels of adversarial knowledge. Broadly speaking, MIAs can be
categorized into metric-based approaches and binary classifier approaches (Hu et al., [2021). The
latter utilizes a variety of calculated statistics to ascertain membership while the former involves
training shadow models and using a neural network to learn the correlation (Shokri et al.l 2017}
Truong et al., 2021} Salem et al., 2018).

More specifically, existing metric-based approaches include: correctness (Yeom et al., 2018;
Choquette-Choo et al.| 2021; Bentley et al., 2020; Irolla & Chatel, |2019; [Sablayrolles et al.,|2019)),
loss (Yeom et al 2018} [Sablayrolles et al., |2019), confidence (Salem et al., 2018)), and entropy
(Song & Mittal, [2021}Salem et al., 2018). The ability to query such metrics at various points during
training has been shown to further improve membership inference. |Liu et al.[(2022)) devise a model
distillation approach to simulate the loss trajectories during training, and [Jagielski et al.| (2022b)
leverage continual updates to model parameters to get multiple trajectory points.

Despite the vast literature on MIAs, all existing methods in both categories rely solely on the data
point z whose membership status is in question — metric-based approaches compute statistics based
on x* or augmentations of x* and binary classifiers take x* as an input and output membership status
directly. Our work hinges on the observation that an optimized canary image x,,,; can be a more
effective litmus test for determining the membership of x*. Note that this terminology is separate
from the use in|Zanella-Béguelin et al.| (2020) and |Carlini et al.| (2019), where a canary refers to a
sequence that serves as a proxy to test memorization of sensitive data in language models. It also
differs from the canary-based gradient attack in|[Pasquini et al.| (2021)), where a malicious federated
learning server sends adversarial weights to users to infer properties about individual user data (e.g.
membership inference) even with secure aggregation.

The metric used for assessing the efficacy of a MIA has been the subject of some debate. A com-
monly used approach is balanced attack accuracy, which is an empirically determined probability
of correctly ascertaining membership. However, (Carlini et al.| (2022a)) point out that this metric
is inadequate because it implicitly assigns equal weight to both classes of mistakes (i.e. false
positive and false negatives) and it is an average-case metric. The latter characteristic is especially
troubling because meaningful privacy should protect minorities and not be measured solely on
effectiveness for the majority. A good alternative to address these shortcomings is to provide the
receiver operating characteristic (ROC) curve. This metric reports the true positive rate (TPR) at
each false positive rate (FPR) by varying the detection threshold. One way to distill the information
present in the ROC curve is by computing the area under the curve (AUC) — more area means a
higher TPR across all FPRs on average. However, more meaningful violations of privacy occur at a
low FPR. Methods that optimize solely for AUC can overstress the importance of high TPR at high
FPR, a regime inherently protected by plausible deniability. In our work, we report both AUC and
numerical results at the FPR deemed acceptable by (Carlini et al.| (2022a)) for ease of comparison.
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There have been efforts to characterize the types of models and data most vulnerable to the MIAs
described above. Empirical work has shown the increased privacy risk for more overparametrized
models (Yeom et al., 2018 |Carlini et al., 2022a; Leino & Fredrikson, 2020), which was made rigor-
ous by [Tan et al.|(2022b) for linear regression models with Gaussian data. Tan et al.[(2022a)) show
the overparameterization/privacy tradeoff can be improved by using wider networks and early stop-
ping to prevent overfitting. From the data point of view, |Carlini et al.|(2022c) show that data at the
tails of the training distribution are more vulnerable, and efforts to side-step the privacy leakage by
removing tail data points just creates a new set of vulnerable data. Jagielski et al.|(2022a) show data
points encountered early in training are “forgotten” and thus more protected from MIAs than data
encountered late in training.

3 LETTING THE CaNarRY FLY

In this section, we expound upon the threat model for the type of membership inference we perform.
We then provide additional background on metric-based MIA through likelihood ratio tests, before
describing how to optimize the canary query data point.

3.1 THREAT MODELS

Membership inference is a useful tool in many real-world scenarios. For example, suppose a MLaaS
company trains an image classifier by scraping large amounts of online images and using data from
users/clients to maximize model performance. A client requests that their data be unlearned from
the company’s model — via their right-to-be-forgotten — and wants to test compliance by determining
membership inference of a private image during training. We assume the client also has the ability to
scrape online data points, which may or may not be in the training data of the target classifier. How-
ever, the target model can only be accessed through an API that returns predictions and confidence
scores, hiding weights and intermediate activations.

We formulate two threat models, where the trainer is the company and the attacker is the client as
described above:

Online Threat Model. We assume there exists a public training algorithm 7 (including the model
architecture) and a universal dataset D. The trainer trains a target model 6, on a random subset
D, C D through 7. Given a sensitive point (z*,y*) € D, the attacker aims to determine whether
(x*,y*) € Dyor (z*,y*) ¢ D,. The target model parameters are protected, and the attacker has
limited query access to the target model and its confidence fy, (), for any (z,y).

We use the term online to indicate that the attacker can modify their membership inference strat-
egy as a function of (z*,y*). A more conservative threat model is the offline variant, where the
attacker must a priori decide on a fixed strategy to utilize across all sensitive data points. This is
more realistic when the strategy involves training many shadow models, which is computationally
expensive.

Offline Threat Model. As above, the trainer trains a target model on Dy C D with 7. However,
now we assume the attacker only has access to an auxiliary dataset D,y,x C D to prepare their attack.
The set of sensitive data points Dy C D is defined to have the properties Dy N Diese = () but
D N Dy # ). Again, the attacker has limited query access to the target model and its confidence

fo.(z), for any (x,y).

3.2 LIKELIHOOD RATIO ATTACKS

As a baseline, we start out with the metric-based Likelihood Ratio Attack (LiRA) introduced by
Carlini et al.| (2022a)). In the online threat model, a LiRA attacker first trains /N shadow models
S = {6y,...,0x} on randomized even splits of the dataset D. For any data point (z,y) € D,
it follows that there are on average N/2 OUT shadow models trained without (x,y) and N/2 IN
shadow models trained with (x,y). This allows the attacker to run membership inference using
a joint pool of shadow models, without having to retrain models for every new trial data point.
Given a target point x* and its label y*, an attacker calculates confidence scores of IN models
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Figure 1: Query Decision Boundary in Model Parameter Space. We illustrate our idea by plotting
the decision boundaries of two queries x1 and x5 in model parameter space. In this case, the
target image is indeed in the training data of (green) target model. We sketch three cases. (a) Both
augmented queries are unable to separate both distributions and the membership inference fails. (b)
Two optimal adversarial queries are generated that are both diverse and, on average, separate both
distributions and the attack succeeds. (c) Without the constraints, adversarial queries can overfit and
again lead to attack failure.

Sin = {6, ..., 61"} and OUT models Sy = {65, ..., 0%} Confidence scores are scaled via

fé(z*)y*
1— fo(z*)y

where fy(z), denotes the confidence score from the model 6 on the point (x,y). This scaling
approximately standardizes the confidence distribution, as the distribution of the unnormalized con-
fidence scores is often non-Gaussian. After retrieving the scaled scores for IN and OUT models,
the attacker fits them to two separate Gaussian distributions denoted A (puin, 02) and N (pout, 72,
respectively. Then, the attacker queries the target model with (z*, y*) and computes the scaled con-
fidence score of the target model conf; = ¢( fp (x*),+). Finally, the probability of (z*,y*) being in
the training data of 6, is calculated as:

¢(fo(2")y-) = log( ); (1)

p(conf, | N (ptin, 02))
p(COIlfl | N(Mouta Ogut)) ’

where p(conf | N'(p1, 02)) calculates the probability of conf under N (y, o2).

2

For the offline threat model, the attacker exclusively produces OUT shadow models by training on a
set of randomized datasets fully disjoint from the possible sensitive data. For the sensitive data point
(z*,y™), the final score is now calculated as a one-sided hypothesis which yields:

1-— p(COHf[ | N(,uoul, Ugut))

Though assessing membership this way is more challenging, the offline model allows the attacker to
avoid having to train any new models at inference time in response to a new (z*, y*) pair — a more
realistic setting if the attacker is a regulatory agency responding to malpractice claims by many
users, for example.

In practice, modern machine learning models are trained with data augmentations. Both the online
and offline methods above can be improved if the attacker generates k augmented target data points
{1, ...,z }, performs the above probability test on each of the k augmented samples, and averages
the resulting scores.

3.3 MOTIVATION

Despite achieving state-of-the-art results, a LiRA attacker exclusively queries the target model with
the target data (z*,y*) or simple, predefined augmentations of it. Even in the online setting, if
(x*,y*) is not an outlier that strongly influences the final IN model (Carlini et al., 2022c} [llyas
et al.| [2022), then its impact on the model and thus the information gained from its confidence score
is quite limited. Moreover, the longer a model trains, the further it becomes invariant to its data
augmentations, so the ensemble of augmented target samples might still lack sufficient information
to ascertain membership.
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Since the threat model does not bar the attacker from querying arbitrary data, we ask whether more
information about the target model can be obtained by synthesizing more powerful queries. Intu-
itively, we want the final synthesized query to always give statistically separable signals for models
trained with/without the original sensitive sample. Existing work has shown two models trained
with the same data point, often share similar properties at the decision boundary near that point
(Somepalli et al.| 2022). Using the shadow models from LiRA, the attacker can therefore adversar-
ially optimize a query (near the original z*) such that the distribution of confidence scores for IN
models is as different as possible from the distribution of confidence scores for OUT models. We
call the synthesized query a canary because it is an indicator for the membership status of x*.

3.4 OPTIMIZING FOR CANARY SUCCESS

We now formally present our strategy to generate adversarial queries. For a target data point (z*, ),
its IN shadow models S, = {67, ..., 6"}, and its OUT shadow models Sy = {6™, ..., 09"}, the
attacker’s goal is to find a data point zn, such that IN models and OUT models have different
behaviors (logits/confidence scores/losses). In the simplest case, the attacker can optimize Xy, SO
that IN shadow models have high losses on x,, and OUT models to have low losses on xy,. This
can be simply achieved by minimizing the following objective:

argmin o Z L(Tma, y*, 05") + m Z Louw(Tma, y*, 05"), 3)
ema €Ly i=1

where I is the feasible data point domain, £ is the main task loss, and Loy is —log(1 — fg(x),). We
further evaluate the optimal choice of objective functions in Section4.4]

Though in principle an attacker

can construct a canary query — —
as described above, in practice 1: Imput: IN shadow models S = {07,...6;}, OUT

Algorithm 1 Canary Algorithm

the optimization problem is in- shadow models Soy = {6", ..., 02"}, target data point
tractable. Accumulating the loss (z*,y*), batch size b, optimization steps T, perturbation
on all shadow models requires a bound ¢, input domain [

significant amount of computa- Apa =0

tional resources, especially for a for1,...,T do

Shuffle the index for S;, and Sy
Calculate loss on OUT models:

b
gAm,al = VAWLal |:% Zi:l EOUt(x* + Amal; y*7 ofln):|
Calculate loss on IN models (removed when offline):
Tma as the model parameters and

1 b * E
the shadow models as training 92 o T= VA, [E 2ot L@ + Aty 79?)}
data points in traditional machine ~9:  Update Ay based on ga,,
learning. When framed this way, 10:  Project Apa onto |[Ama|lec < € and (2 + Apa) € 1
the number of parameters in our 11 Tma = 2" + Amal
model .1 is much greater than the 12 return
number of data points |\Si,| + | Sou|-
For CIFAR-10 the number of parameters in xy, is 3 X 32 x 32 = 3072, but the largest number
of shadow models used in the original LiRA paper is merely 256. Therefore, if we follow the loss
Equation (3)), zma will overfit to shadow models and not be able to generalize to the target model.

large number of shadow models
or models with many parameters.
Another way to conceptualize the
problem at hand, is to think of

To alleviate the computational burden and the overfitting problem, we make some modifications to
the canary generation process. During optimization, we stochastically sample b IN shadow models
from Sj, and b OUT shadow models from S, for each iteration, where b < min(n,m). This is
equivalent to stochastic mini-batch training for batch size b, which might be able to help the query
generalize better (Geiping et al.,|2021). We find that such a mini-batching strategy does reduce the
required computation, but it does not completely solve the overfitting problem. An attacker can
easily find a z, with a very low loss on Equation (3, and perfect separation of confidence scores
from IN models and OUT models. However, querying with such a canary zp, results in random
confidence for the holdout shadow models, which indicates that the canary is also not generalizable
to the unseen target model.

To solve this, instead of searching for x,, on the whole feasible data domain, we initialize the
adversarial query with the target image or the target image with a small noise. Meanwhile, we
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Table 1: Main Results on Different Datasets. For three datasets, Canary attacks are effective in
both online and offline scenarios.

Online
CIFAR-10 CIFAR-100 MNIST
AUC TPRQI%FPR | AUC TPRQ1%FPR | AUC TPRQ@1%FPR
LiRA  74.36 17.84 94.70 53.92 56.28 3.95
Canary 76.25 21.98 94.89 56.83 58.12 5.23
A +1.89 +4.14 +0.19 +2.91 +1.84 +1.28
Offline
AUC TPRQI%FPR | AUC TPRQ1%FPR | AUC TPRQ@1%FPR
LiRA  55.40 9.85 79.59 42.02 50.82 2.66
Canary 61.54 12.60 82.59 44.78 54.61 3.06
A +6.14 +2.75 +3.00 +2.76 +3.79 +0.40

add an € bound to the perturbation between xy, and x*. Intuitively, the hope is that z, and z*
now share the same loss basin, which prevents x,, from falling into a random, suboptimal local
minimum of Equation (3). We summarize our complete algorithm Canary in Algorithm[I] In the
offline case, we remove line 8 and only use OUT models during the optimization. We also illustrate
our reasoning in Figure [I] where we visualize how the adversarially trained queries might alter the
original queries’ decision boundaries and provide more confident and diverse predictions.

Once a suitable canary has been generated, we follow the same metric-based evaluation strategy
described in Section [3.2]but replace (z*, y*) with (Zmal, y*).

4 EXPERIMENTS

In this section, we first show that the Canary attack can reliably improve LiRA results under
different datasets and different models for both online and offline settings. Further, we investigate
the algorithm thoroughly through a series of ablation studies.

4.1 EXPERIMENTAL SETTING

We follow the setting of |Carlini et al.| (2022a)) for our main experiment on CIFAR-10 and CIFAR-
100 for full comparability. We first train 65 wide ResNets (WRN28-10) (Zagoruyko & Komodakis,
2016) with random even splits of 50000 images to reach 92% and 71% test accuracy for CIFAR-10
and CIFAR-100 respectively. For MNIST, we train 65 8-layer ResNets (He et al.,2016) with random
even splits to reach 97% test accuracy. During the experiments, we report the average metrics over
5 runs with different random seeds. For each run, we randomly select a model as the target model
and remaining 64 models as shadow models, and test on 5000 random samples with 10 queries.

For the hyperparameters in the Canary attack, we empirically choose ¢ = 2 for CIFAR-10 &
CIFAR-100 and ¢ = 6 for MNIST, which we will ablate in Section We sample b = 2 shadow
models for each iteration and optimize each query for 40 optimization steps using Adam (Kingma
& Bal [2014) with a learning rate of 0.05. For £ and L, we choose to directly minimize/maximize
the logits before a softmax on the target label. All experiments in this paper are conducted by one
NVIDIA RTX A4000 with 16GB of GPU memory, which allows us to load all shadow models and
optimize 10 adversarial queries at the same time, but the experiments could be done with a smaller
GPU by optimizing one query at a time or reloading the subsample of models for each iteration.

4.2 EVALUATION METRICS

In this paper, we mainly report two metrics: AUC (area under the curve) score of the ROC (receiver
operating characteristic) curve and TPRQ1%FPR (true positive rate when false positive rate is 1%).
One can construct the full ROC by shifting the probability threshold of the attack to show the TPR
under each FPR. The AUC measures the average power of the attack. As mentioned in[2]an attacker
might be more interested in TPR with low FPR, so we also specifically report TPR@Q1%FPR.
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Table 2: Results on Different Models Architecture. Canary attacks are able to consistently
outperform LiRA over different models. TQ1%F stands for TPR@Q1%FPR.

Online
WRN28-10 ResNet-18 VGG ConvMixer

AUC TQ1%F | AUC TQ1%F | AUC TQ1%F | AUC TQ1%F

LiRA  74.36 17.84 76.29 17.05 75.94 20.48 75.97 16.58

Canary 76.25 21.98 76.93 19.34 77.63 20.87 76.39 17.05

A +1.89 +4.14 +0.64 +2.29 +1.69 +0.39 +0.42 +0.47
Offline
AUC TQ1%F | AUC TQl1%F | AUC TQl1%F | AUC TQ1%F

LiRA  55.40 9.85 55.15 6.97 49.96 9.77 54.42 7.96

Canary 61.54 12.60 64.09 11.58 65.55 15.16 62.22 9.93

A +6.14 +2.75 +8.94 +4.61 +15.59 +5.39 +7.80 +1.97

4.3 CANARY ATTACKS HELP MEMBERSHIP INFERENCE

We show our main results in Table [T] for three datasets. Canary attacks are effective in both
online and offline scenarios. The improvement of TPR@1%FPR is significant for all datasets. The
difference is especially notable for online CIFAR-10, where we achieve a 4.14% boost over the
baseline LiRA (a relative improvement in TPR of 23%). In the case of online CIFAR-100, where
the baseline already achieves a very high AUC, Canary attacks only provide an extra 0.19% over
the baseline. On average, Canary attacks are most powerful in the more realistic offline scenario.
We gain over 3% boost on AUC scores on all datasets and over 2.75% TPRQ@Q1%FPR boost for
CIFAR-10 and CIFAR-100.

Overall, the improvement on MNIST is relatively small. We believe this can be attributed to the
lack of diversity for MNIST, which is known to make membership inference more challenging. In
this setting, the difference between the decision boundaries of IN models and OUT models is less
pronounced, so it is more difficult to make diverse and reliable queries. Despite these challenges,
we still see improvement over LiRA in the offline case — the AUC score is close to random (50.82%)
for LiRA here and Canary attacks can improve this to 54.61%.

In addition to WRN28-10, we further verify the ability of Canary attacks for three other models ar-
chitectures in CIFAR-10: ResNet-18 (He et al.,[2016), VGG-16 (Simonyan & Zisserman, [2014)), and
ConvMixer (Trockman & Kolter,[2022)). In Table@], Canary attacks are able to consistently provide
enhancement over different models. The performance of Canary attacks should be related to the
reproducibility of the model architecture. If the model decision boundary is highly reproducible, the
shadow models should share similar decision boundaries with the target model, and the adversarial
query trained on the shadow models will be more transferable to the target model. Indeed, we see
from Table |2| that models with higher reproducibility do correlate with more improvement for the
online scenario, especially between WRN28-10 and ConvMixer, where WRN28-10 has higher re-
producibility than ConvMixer (Somepalli et al.l [2022). We include further experiments regarding
reproducibility and Canary in Appendix

4.4 ABLATION EXPERIMENTS

In this section, we provide ablation experiments on several crucial hyperparameters of the discussed
Canary attacks.

Number of shadow models. As described before, the number of shadow models is comparable to
the number of data points in traditional machine learning. We test Canary attacks with 5 different
numbers of shadow models: 4, 8, 16, 32, and 64. We see from Figure that using more shadow
models yields a higher true positive rate when the false positive rate is low. Interestingly, as the
number of shadow models initially decreases, the overall performance drops slightly, but such an
effect diminishes after the number of shadow models is greater than 24.
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Figure 2: Hyperparameter Ablation Experiments. We provide ablation experiments on several
crucial hyperparameters: number of shadow models, number of adversarial queries, € bound, and
batch size.

Number of queries. Because of the stochasticity of optimization, different queries can fall into
different minima of Equation (3), returning different sets of confidence scores and thus more ways to
probe the target model. Therefore, it is essential to investigate how the number of queries affects the
membership inference results. We plot the results in Figure 2(b)] The ensemble of more adversarial
queries consistently enhances both metrics, which means different queries indeed give different
signals about the target model.

€ bound. The choice of ¢ is important, which is highly related to the transferability. As shown in
Figure the performance of Canary drops very fast after ¢ = 2. When & = 1 the TPRQ1%FPT
is slightly lower than when € = 2, which indicates that the perturbation within € = 1 might be too
small to be effective.

Batch size. In Figure we test Canary with different batch sizes. Mini-batch strategy does
improve the performance of Canary attacks. Especially for TPRQ1%FPT, the difference is around
2% between the batch size of 2! and 2°. Optimizing with a smaller batch size prevents the adversarial
query from overfitting to the shadow models. Meanwhile, it massively reduces the GPU memory
required for the gradient graph, which is a win-win situation for the attacker.

Choice of Objectives for L and Lyy. The choice the target objectives L and L, is also crucial
to the generalization of Canary attacks. We test six different objectives to create adversarial
queries: 1) CE/reverse CE. 2) CE/CE on a random label other than the true label. 3) CW (Carlini
& Wagner, 2017)/reverse CW. 4) CW/CW on a random label. 5) Directly minimize the scaled
log score/maximize the scaled log score. 6) Directly minimize the pre-softmax logits of the true
label/maximize the pre-softmax logits of the true label. We show the results in Table[3]

During the experiment, for all objectives above, we can easily get very low losses at the end of
the optimization, and create Canary queries that perfectly separate the training shadow models.
Surprisingly, minimizing/maximizing the pre-softmax logits gives us the biggest improvement, even
though it does not explicitly suppress the logits for other labels like other objectives do. Overall, any
other choices can also improve the baseline in the online scenario. However, in the offline scenario,
only CW/CW and pre-softmax logits provide improvements to TPRQ1%FPR.

4.5 DIFFERENTIAL PRIVACY

We now challenge Canary attacks with differential privacy (Abadi et al., 2016). Differential pri-
vacy is designed to prevent the leak of information about the training data. We evaluate Canary
attacks in two settings. The first setting only uses norm bounding, where the norm bounding C' = 5
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Table 3: Results with Different Objectives. We evaluate Canary attacks on different objectives.
Directly minimizing/maximizing the pre-softmax logits gives the biggest improvement in both the
online and offline settings.

Online Offline
AUC TPRQ@1%FPR | AUC TPR@1%FPR

LiRA 74.36 17.84 55.40 9.85
CE/r. CE | 75.55 19.85 56.83 9.22
CE/CE 75.55 19.89 59.23 9.77
CW/r. CW | 75.37 19.97 56.57 9.26
CW/CW 75.67 20.99 59.27 11.30
Log. Logits | 75.82 20.01 59.16 8.04
Logits 76.25 21.98 61.54 12.60

Table 4: Results under Differential Privacy. In both cases, the norm clipping is 5. Even when
the target model is trained with differential privacy, Canary attacks reliably increase the success of
membership inference.

Online Offline
AUC TPRQI%FPR | AUC TPRQ1%FPR

LiRA | 66.25 9.41 56.12 3.27

€ =00 Canary | 67.17 9.93 59.73 441
A +0.92 +0.52 +3.61 +1.14

LiRA | 52.17 1.18 49.93 1.18

€ =100 Canary | 53.18 1.81 51.38 1.14
A +1.01 +0.63 +1.45 -0.04

and € = oo, and in another setting, C' = 5 and € = 100. In order to follow the convention of prac-
tical differential privacy, we replace Batch Normalization with Group Normalization with G = 16
for ResNet-18.

We see in Table [ that Canary attacks can provide some limited improvement. Both LiRA and
Canary attacks are notably less effective when a small amount of noise € = 100 is added during
training, which is a very loose bound in practice. However, training with such a powerful defense
makes the test accuracy of the target model decrease from 88% to 44%. Differential privacy is still
a very effective defense for membership inference attacks, but Canary attacks reliably increase the
success chance of membership inference over LiRA.

5 CONCLUSION

We explore a novel way to enhance membership inference techniques by creating ensembles of ad-
versarial queries. These adversarial queries are optimized to provide maximally different outcomes
for the model trained with/without the target data sample. We also investigate and discuss strategies
to make the queries trained on the shadow models transferable to the target model. Through a series
of experiments, we show that Canary attacks reliably enhance both online and offline membership
inference algorithms under three different datasets, four different models, and differential privacy.

Although Canary attacks perform very well in the above experiments, there are several relevant
limitations. The optimization process for constructing the ensemble of canaries is markedly more
computationally expensive than using data augmentations of the target data point as in |Carlini et al.
(2022b)). Furthermore, effective optimization routines for queries could challenging, especially
when considering future applications of this approach to discrete data, like text or tabular data.
In principle, we believe it should be possible to devise a strategy to make adversarial queries trans-
ferable that do not require e-bounds, but so far have found the method detailed in Canary to be the
most successful approach.
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Although our key goal is to develop a better membership inference algorithm to help protect data
ownership, this technique might be used by a malicious party as a tool for breaching the privacy
of the model trainer. On one hand, we find this acceptable, due to the inherent power imbalance
between agents that train models and agents that own data. On the other hand, we believe that our
results do not represent a fundamental shift in the capabilities of membership inference attacks.
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Figure 3: Results with Different Widths of WRN28.. We find that with increasing width of the
WideResNet, attack success increases reliably. This is potentially related to an increase in repeata-
bility of the decision boundaries of these models.
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Figure 4: More Results under Differential Privacy. In all cases except No DP, the norm clipping
is 5. Privacy Budget here refers to (¢, 1e—5)-DP, except for the last entry, which sets no budget and
does not clip.

A APPENDIX

A.1 ABLATION STUDY: MODEL WIDTH

Appendix [AT] shows the results on different model widths for WRN28. As claimed in [Somepalli
(2022)), wider networks have higher reproducibility. The performance of Canary correlates
with the reproducibility (width) of the model.

A.2 ABLATION STUDY: PRIVACY BUDGET

In Appendix [A.2] we provide more results with more strict privacy budgets. When the ¢ of differ-
ential privacy is 10, the AUC of the attack is very close to 50% which is the random guess, and the
TPR@1%FPR is almost zero. Differential privacy is still a very strong defense against membership
inference.
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Figure 5: Canary Loss (i.e. the objective evaluated on the shadow models used to optimize the
canary attack) plotted against Performance (evaluated on the unseen test model) for various values
of ¢. When ¢ is too large, then the attack overfits and does not generalize to the unseen test model
that is attacked during membership inference.

Table 5: Comparison with Random Noise Perturbations. A random noise perturbation in the
same e-ball as the canary does not increase membership success. In this sense, the optimized behav-
ior of the canary attack is crucial.

AUC TPRQ@1%FPR

LiRA 74.36 17.84
Random Noise 74.30 17.87
Canary 76.25 21.98

A.3 CANARY LOSS V.s. PERFORMANCE

As shown in Appendix [A-3] if we increase ¢, the Canary objective monotonically decreases, evalu-
ated on the “training” shadow models, but attack success peaks and then decreases.

A.4 CaANARY V.S. RANDOM NOISE

We test adding random noise within the same ¢ ball on the original target image, as shown in Table[3}
The attacker doesn’t benefit from adding random perturbations.

A.5 COMPUTATIONAL COST

Table [6] shows the average attack time in seconds on one single NVIDIA RTX A4000 over 5000
target images with a total of 64 shadow models.

Table 6: Computational Cost in Seconds. for generation of the attack and query into the model.
Not included for both methods is the computational cost to create the array of shadow models.

1 Query 2 Queries 5 Queries 10 Queries
LiRA 0.26 0.27 0.36 0.63
Canary 1.03 1.04 1.44 2.44
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