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Abstract

Open-domain fact verification is the task of ver-
ifying claims in natural language texts against
extracted evidence. FEVEROUS is a bench-
mark that requires extracting and integrating
both unstructured and structured evidence to
verify a given claim. Previous models suffer
from low recall of structured evidence extrac-
tion, i.e., table extraction and cell selection. In
this paper, we propose a simple but effective
method to enhance the extraction of structured
evidence by leveraging the row and column se-
mantics of tables. Our method comprises two
components: (i) a coarse-grained table extrac-
tion module that selects tables based on rows
and columns relevant to the claim and (ii) a
fine-grained cell selection graph that combines
both formats of evidence and enables multi-
hop and numerical reasoning. We evaluate our
method on FEVEROUS and achieve an evi-
dence recall of 60.01% on the test set, which
is 6.14% higher than the previous state-of-the-
art performance. Our results demonstrate that
our method can extract tables and select cells
effectively, and provide better evidence sets
for verdict prediction. Our code is released at
https://github.com/WilliamZR/see-st

1 Introduction

Open-domain fact verification is the task of veri-
fying a factual claim based on evidence extracted
from a knowledge base(Guo et al., 2022; Hardalov
et al., 2022). A complete evidence set provides
necessary information for a verification module
to support or refute the claim. In the real world,
fact-checkers could use both unstructured and struc-
tured data as evidence.

Tables are a structured form of evidence that
provides an organized representation of informa-
tion that facilitates effortless comparison and cross-
referencing. By presenting information in cells,
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Figure 1: Example of FEVEROUS with gold evidence.
The gold cell evidence is highlighted in orange.

tables enable efficient look-up of individual val-
ues, while the arrangement of rows and columns
allows for the extraction of high-order semantics
through various operations, such as comparisons,
filtering, arithmetic calculations, and the identifi-
cation of minimum and maximum values. The
two-dimension structure and high-order semantics
of tables make them more difficult to extract com-
pared with texts. Regarding the previous method to
extract structured evidence. Aly et al. (2021) treats
tables as text sequences neglecting the table struc-
ture itself and extracts them only based on lexical
matching. This approach is also used in many fol-
lowing works (Bouziane et al., 2021; Saeed et al.,
2021; Hu et al., 2022, 2023). Consequently, these
methods struggle to extract tables with little word
overlap with the claim. Alternatively, Bouziane
et al. (2021) and Gi et al. (2021) convert each table
cell into a text sequence and perform cell retrieval
directly. Kotonya et al. (2021) construct a reason-
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Figure 2: Overview of our proposed approach SEE-ST. It extracts structured evidence based on retrieved pages and
extracted sentences. SEE-ST includes two modules: coarse-grained table extraction (§2.1) and fined-grained cell
selection based on an evidence graph(§2.2).

ing graph of sentences and cells to extract evidence.
Yet these methods overlook the context within the
table and fail to capture high-order semantics from
rows and columns.

Figure 1 presents an example from FEVER-
OUS (Aly et al., 2021), a benchmark on open-
domain fact verification using both sentences and
table cells as evidence. The verification model is
expected to extract both unstructured and struc-
tured evidence to verify the claim. The structured
table can be interpreted in several ways for the
model: a complete table, a combination of rows or
columns, or a composition of isolated cells. The
entire table encompasses a substantial amount of
information. During table extraction, the Site and
Attendance columns are irrelevant and only intro-
duce confusion for both lexical and semantic meth-
ods (Herzig et al., 2021). Cells typically contain
short phrases and numbers, which are often insuffi-
cient for conveying comprehensive information. In
contrast, rows and columns possess a similar vol-
ume of information to the claim, thereby exhibiting
comparable semantic granularity. The extraction
process should prioritize the information from the
3rd row and the Result column. During the cell
selection step, the selection module must capture
the high-order semantics in the Result column to
verify the statement ... lost all its games except
for one.... Moreover, it needs to identify the cells
October 7 and Illinois State by integrating informa-

tion from the Date and Opponent columns and the
3rd row. Overall rows and columns have compa-
rable semantic granularity with the claim and are
the most suitable fundamental unit for both table
extraction and cell selection.

In this paper, we propose Structured Evidence
Extraction with Row and Column Semantics of
Tables (SEE-ST), a novel approach to enhance
both table extraction and cell selection modules
for fact verification by leveraging the semantics of
rows and columns. This method aligns the seman-
tic granularity of structured evidence with claim
and sentence evidence, enabling more precise ev-
idence extraction. SEE-ST starts by extracting ta-
bles from retrieved Wikipedia pages and focuses
on identifying the most relevant rows and columns
for the claim, thereby reducing confusion arising
from irrelevant cells. Since a cell represents the
intersection of a row and a column, its selection
can be conducted by analyzing both dimensions.
We integrate rows and columns within a graph neu-
ral network to facilitate fine-grained cell selection
while preserving high-order semantics. Addition-
ally, we incorporate extracted sentence evidence
into the graph to merge information from evidence
of both formats at a similar semantic granularity.

Our contributions can be summarized as follows:
(i) We propose to leverage the row and column
semantics to enhance table extraction and cell se-
lection. (ii) We design an evidence graph for cell



selection. It enables rows and columns to interact
with sentences at comparable semantic granularity
while still maintaining high-order semantics from
table evidence. (iii) Our proposed method SEE-ST
achieves state-of-the-art performance in evidence
extraction on the FEVEROUS dataset, with better
evidence sets contributing to the increased accuracy
of the verification module.

2 Our Model

FEVEROUS is a benchmark on open-domain fact
verification (Aly et al., 2021). The task is to ver-
ify a claim c based on Wikipedia. We follow the
three-step pipeline in open-domain fact verification
(Thorne et al., 2018; Aly et al., 2021). The three
steps are document retrieval, evidence extraction,
and verdict prediction. The first step retrieves np

relevant pages from the Wikipedia dump. Then
the second step extracts sentence evidence S and
cell evidence C from the retrieved pages. At last,
the model predicts the veracity label ŷ of the claim
based on sentence and cell evidence.

SEE-ST enhances the extraction of structured
evidence in the second step of the pipeline. It oper-
ates on the same conceptual framework, utilizing
row and column semantics to enhance evidence ex-
traction (Figure 2). SEE-ST performs structured ev-
idence extraction in two stages: (i) Coarse-grained
table extraction that retrieves top nt tables for the
second step. It scores relevance between rows or
columns with the claim and ranks tables accord-
ingly and (ii) Fine-grained cell selection that re-
trieves cell evidence from complex tables. It con-
structs a graph neural network of rows, columns,
and sentences at a comparable semantic granular-
ity. It utilizes a graph attention network to enable
delicate information integration between different
pieces of evidence. The cells are selected as the
intersection of rows and columns.

At the verification step, we utilize DCUF (Hu
et al., 2022), a method that converts evidence into
dual-channel encodings to verify the claim.

2.1 Coarse-grained Table Extraction

In this section, we introduce our table extraction
module. First, the claim and table pair are fed to
TAPAS, a pre-trained table model aware of table
structures(Herzig et al., 2020). Instead of using
embedding of [CLS] token to predict the relevance
between the claim and table. our module predicts
the relevance based on row and column semantics.

Each row and column in the evidence table is rep-
resented as the average of all the token embeddings
in the same row or column. Then we predict a prob-
ability score for each row and column separately.

The selective score for the table is computed
as the multiplication of the maximum probability
score for the rows and columns.

P(t) = max (Prow)×max (Pcol)

The training set is constructed with all the tables
that contain gold cell evidence as positive exam-
ples. As for negative examples, we use top tables
retrieved by DrQA (Chen et al., 2017) which do not
contain cell evidence but have lexical overlap with
the claim. The ratio of positive and negative exam-
ples is 1 at every mini-batch in training. During
training, the model is trained to select table rows
and columns that contain gold cell evidence. The
loss function is computed with a cross-entropy loss
on each row and column.

L = αtL
Row + βtL

Col

LRow, and LCol are cross-entropy loss functions
of rows and columns. These rows and columns
that have gold cell evidence are labeled as select
while rows/columns in the same table but do not
contain cell evidence and rows/columns in negative
examples are labeled as not select.

At inference, a selective score is computed for
each table in retrieved pages. Top nt tables are se-
lected for the following fine-grained cell selection.

2.2 Fine-grained Cell Selection
Following the idea of leveraging row and column
semantics, we build an evidence graph G(V, E)
to select cell evidence. The first two types of
nodes v0, ..., vM and vM+1, ..., vM+N encode ta-
ble rows and columns. Shown as yellow nodes
in Figure 2. M and N are the total number of
table rows and columns. The third type of node
is sentences vM+N , ..., vK , shown as blue nodes
in Figure 2. Overall, the evidence graph has K
nodes of unstructured and structured evidence at a
comparable semantic granularity.

Graph edges E are constructed between related
evidence following three rules: (i) Cross-Format
Related: vi and vj are different format evidence of
sentence and table, and in the same Wikipedia page.
(ii) Structure-Based: vi and vj are nodes from the
same table and (iii) Entity-Based: vi and vj have



common entities and hyperlinks or sentences on
the same Wikipedia page.

We feed each claim-sentence pair to a RoBERTa
model and use the embedding for [CLS] token to
initialize the sentence nodes in our graph. And
nodes of table rows and columns are initialized
using the same method as in §2.1.

Then we apply a layer of Graph Attention Net-
work (GAT) (Veličković et al., 2018) with a resid-
ual connection to update representations of each
node. It dynamically allocates weights between
different nodes of evidence, allowing the graph to
capture semantic connections between evidence.

Finally, we use a two-layer feed-forward net-
work to predict the retrieved probability for each
node separately. The selective score for cell evi-
dence is the multiplication of the probability of the
row node and column node that contains the cell.
Top nc cells are extracted for verdict prediction.

The loss function is computed as the weighted
sum of the loss on nodes and cells:

L = LS + αc · LCol + βc · LRow + γc · LCe

LS , LCol, LRow, and LCe are cross-entropy loss
computed on sentences, table columns, table rows,
and cells. αc, βc and γc are coefficients to ad-
just weights between nodes and cells. Nodes of
sentences in the gold evidence set are labeled as
positive. Nodes of rows and columns are labeled
as positive if they contain the gold cell evidence.

3 Experiments

We utilize FEVEROUS as the test bed for our ap-
proach, as it is, to our knowledge, the only open-
domain fact verification benchmark that combines
both unstructured and structured evidence. FEVER-
OUS aims to accomplish two objectives: first, to ex-
tract sentence and table cell evidence from English
Wikipedia, which contains over 95.6 million sen-
tences and 11.8 million tables; and second, to pre-
dict the veracity label ŷ of a given claim. The possi-
ble veracity labels include SUPPORTS, REFUTES,
and NOT ENOUGH INFO (NEI). Some claims can
be verified using either sentences or tables alone,
while approximately 59% of instances need struc-
tured evidence for claim verification. 27% of the
instances need to combine evidence from unstruc-
tured and structured evidence to verify. The quan-
titative characteristics of the benchmark are pre-
sented in Table 1. Detailed experiment settings can
be found in Appendix A.

Train Dev Test Total

Supported 41,835 3,908 3,372 49,115
Refuted 27,215 3,481 2,973 33,669
NEI 2,241 501 1,500 4,242

Sentences 31,607 3,745 3,589 38,941
Cells 25,020 2,738 2,816 30,574
Sentences+Cells 20,865 2,468 2,062 25,395

Total 71,291 7,890 7,845 87,026

Table 1: Quantitative characteristics of FEVEROUS.

3.1 Evaluation

Evidence extraction is crucial in fact verification,
it provides the verdict prediction module with the
necessary evidence to verify the claim. FEVER-
OUS uses precision, recall and F1 score to measure
the quality of retrieved evidence. E is the collec-
tion of gold evidence sets and Ê is the retrieved
evidence set. Recall of a specific type of evidence
is computed for an instance as:

Recall(E, Ê) =
|Ê ∩ ∪E|i
| ∪ E|i

|E|i is the number of i type evidence in set E.
Evidence type i could be sentence, table or cell.

A retrieved evidence set is considered complete
iff at least one gold evidence set is included. The
recall of evidence set is defined for an instance as
follows:

Recall(E, Ê) =

{
1 ∃E ∈ E : E ⊆ Ê
0 otherwise

The number of retrieved evidence is limited to 5
sentences and 25 cells at maximum (Aly et al.,
2021). In the following discussion, recall refers
to evidence recall unless specified for an evidence
type.

The evaluation for verdict prediction uses label
accuracy(Acc.) and FEVEROUS score(F.S) as its
metrics. They are defined for an instance as:

Acc.(y, ŷ) =

{
1 y = ŷ
0 otherwise

F.S = Acc.(y, ŷ)× Recall(E, Ê)

y is the gold label and ŷ is the predicted label.
FEVEROUS score considers both the correct pre-
diction of the veracity label and the completeness
of the retrieved evidence set.



Models Table Sentence Cell Evidence

Baseline 56 53 29 30
FaBULOUS - 56.6 34.2 40.4

DCUF 75.59 62.54 58.41 43.22
UnifEE 75.59 75.36 67.44 55.08
Our Model 80.86 75.50 77.16 61.43

Table 2: Recall of different formats of evidence on the
development set.

3.2 Main Results

Evidence Extraction Results Table2 shows the
extraction results of our model on the development
set for different categories of evidence. All the pre-
vious methods restrict their evidence set to at most
5 sentences, 3 tables, and 25 cells. Official base-
line (Aly et al., 2021) and FaBULOUS (Bouziane
et al., 2021) use a weaker document retrieval mod-
ule which results in error propagation and low evi-
dence recall. Our model uses the same document
retrieval module as DCUF (Hu et al., 2022) and
UnifEE (Hu et al., 2023), which obtains a recall
of 85.20% for Wikipedia pages. Therefore recall
of each format of evidence can be used to com-
pare the performance of evidence extraction di-
rectly. SEE-ST leverages the row and column se-
mantics of tables and increases the recall of tables
by 5.27%. SEE-ST also increases the recall of cells
by 11.65% and 9.27% compared with DCUF and
UnifEE. This suggests the two stages of SEE-ST,
table extraction and cell selection can both improve
the performance of structured evidence extraction.
Overall Results Table 3 shows overall perfor-
mance on the dev and test set based on our ev-
idence extraction results. We achieve 60.01%
evidence recall on the blind test set, which is
6.14% higher than the previous state-of-the-art
UnifEE (Hu et al., 2023). Following the verifica-
tion method proposed in Hu et al. (2022), we obtain
accuracy 74.68%/65.16% and FEVEROUS score
49.73%/44.75% on dev/test set. This demonstrates
our enhancement on structured evidence extraction
provides verification with more accurate evidence
so that it could make the right predictions.

Since SEE-ST obtains the maximum number
of evidence in extraction, we also experiment on
UnifEE without its threshold selection mechanism
to compare its performance with SEE-ST more
fairly. SEE-ST still improves the evidence recall by
a large margin. Our choice of discarding threshold
selection is further analyzed in Appendix B.

The accuracy on the test set is generally about
10% lower than the accuracy on dev set. The main
reason is the unbalanced instances of NEI claims in
different splits. Our analysis of verdict prediction
results shows that DCUF performs poorly in NEI
instances. This explains the accuracy gap between
the dev and test set.

3.3 Ablation Study

Table Extraction We assess the effectiveness of
our table extraction model through the following
ablation experiments: (i) w/o Column Semantics:
We train a model that only considers the relevance
between rows and the claim for table extraction,
scoring tables based on the criterion max (Prow).
(ii) w/o Row Semantics: Analogously, we score ta-
bles using max (Pcol). (iii) w/o Row and Column:
We eliminate the design of table extraction and
instead utilize the embedding of the [CLS] token
in claim-table encodings for table extraction. The
recall of the top 3 tables is presented in Table 4.

In the setups without column or row semantics,
the recall of the top 3 tables decreases by 1.03% and
1.76%, respectively. In the w/o Row and Column
setting, table recall drops significantly by 17.75%,
resulting in a recall of 63.11%, which is even lower
than the recall achieved by DrQA (Table 2). These
results suggest that our table extraction module
in SEE-ST, which combines semantics from both
rows and columns, effectively captures the coarse-
grained relevance between claims and tables.
Cell Selection To evaluate the effectiveness of our
evidence graph for cell selection, we design ab-
lation experiments with an evidence graph con-
structed with the top 3 tables. The experimental
settings are as follows: (i) w/o Structured Edges:
We introduce additional edges between rows and
columns from the same Wikipedia pages but not
the same table. (ii) w/o Edge Pattern: We directly
connect every node in the evidence graph to each
other. (iii) w/o Row Semantics: Following Hu et al.
(2023), we build an evidence graph of sentences
and columns, and separately, a graph of table cells,
using columns as intermediates to select cells. (iv)
w/o Evidence Graph: We follow the table extrac-
tion pipeline with an added term for the cell loss
function, selecting each cell based solely on the
context within the same table.

The results of the ablation experiments are pre-
sented in Table 5. When increasing the number of
tables in the evidence graph from 3 to 5, cell and



Models Dev Test

F.S Acc. E-P E-R E-F1 F.S Acc. E-P E-R E-F1

Official Baseline 19 53 12 30 17 17.73 48.48 10.17 28.78 15.03
EURECOM 19 53 12 29 17 20.01 47.79 13.73 33.73 19.52
Z team – – – – – 22.51 49.01 7.76 42.64 13.12
CARE 26 63 7 37 12 23 53 7 37 11
NCU 29 60 10 42 17 25.14 52.29 9.91 39.07 15.81
Papelo 28 66 – – – 25.92 57.57 7.16 34.60 11.87
FaBULOUS 30 65 8 43 14 27.01 56.07 7.73 42.58 13.08
DCUF 35.77 72.91 15.06 43.22 22.34 33.97 63.21 14.79 44.10 22.15
UnifEE 44.86 73.67 19.04 55.08 28.30 41.50 65.04 18.35 53.87 27.37
UnifEE∗ 46.13 73.14 12.48 56.22 20.42 - - - - -

Our Model 49.73 74.68 10.60 61.43 18.07 44.75 65.16 9.81 60.01 16.89

Table 3: Model performance on the development set and test set. F.S is FEVEROUS score and Acc. is the accuracy
of veracity labels. E-R, E-P and E-F1 are recall, precision and F1 computed based on the evidence set. All metrics
are averaged on all instances. UnifEE∗ uses the maximum number of evidence as the constraint for the evidence set.

Models Recall@3

SEE-ST 80.86
w/o Column Semantics 79.83
w/o Row Semantics 79.10
w/o Row and Column 63.11

Table 4: Ablation study of coarse-grained table extrac-
tion. Recall@3 is the recall of top 3 extracted tables.

Recall Cell Evidence

Top5 Tables
SEE-ST 77.16 61.43

Top3 Tables
SEE-ST 74.20 60.16

w/o Structured Edges 72.30 58.61
w/o Edge Pattern 72.22 58.56
w/o Row Semantics 73.16 59.24
w/o Evidence Graph 68.37 56.08

Table 5: Ablation study of fine-grained cell selection.

evidence recall rise by 2.96% and 1.38%, respec-
tively, achieving a recall rate of 77.16% for cell
evidence and 61.43% for evidence recall. In the
w/o Structured Evidence setting, rows and columns
from different tables are connected if they are on
the same Wikipedia page, resulting in a decrease
of 1.98% in cell recall and 1.53% in evidence re-
call. This demonstrates that the Structured Edges
designed in §2.2 are beneficial for selecting cells as
intersections of rows and columns. Connecting all
cells in the graph further compromises the perfor-
mance of structured evidence. In the w/o Row Se-
mantics setting, we build two evidence graphs fol-
lowing Hu et al. (2023): one containing sentences

and columns, and another with cells. Cell recall
and evidence recall decline by 1.04% and 0.92%
in this setting, indicating that SEE-ST’s utilization
of row and column representations captures cell
information more precisely. Moreover, compared
to the two graphs of sentences and cells, SEE-ST
is more computationally efficient with only one
evidence graph. Finally, the w/o Evidence Graph
setting loses all connections between sentences and
tables, as well as shared entity information among
evidence. Each node is predicted based on its own
information, resulting in a significant drop in cell
and evidence recall. This highlights the importance
of the design of evidence graph that enables inter-
actions between texts and tables.

4 Analysis

4.1 Error Analysis

Here we perform a detailed error analysis for evi-
dence extraction.
Error Source Analysis The error source for ev-
idence sets is defined as the format of evidence
that is not extracted completely in the three-step
pipeline (§2). We use Page to denote that document
retrieval fails to retrieve all the pages containing
evidence. For those instances that have a complete
document set, the error source is defined according
to the format of evidence fail to extract: Unstruc-
tured (sentences), Structured (tables or cells) and
Both. The instances with a complete evidence set
are denoted as Complete. About 1% of instances
have other evidence types such as lists and table
captions. These instances are excluded during error
analysis. The impact of ignorance of other evidence
types is discussed in the Limitations section.
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Figure 3: Error analysis of extracted evidence set for the dev set. Left: Overall error source analysis. Right: Error
source proportions of claims with different reasoning challenges.

The result of the error source analysis is shown
in Figure 3. The document retriever fails to retrieve
complete documents for 15.8% instances in the dev
set. Our proposed method decreases the proportion
of cases missing structured evidence from 14.28%
to 9.34%. It shows the effectiveness of SEE-ST in
structured evidence extraction.

Analysis based on challenge types A fact-checker
system would face a specific reasoning challenge
when extracting evidence and verifying claims for
FEVEROUS. The challenges include multi-hop rea-
soning, entity disambiguation, search term not in
claim, combining tables and texts and numerical
reasoning. The challenges that do not belong to
those five types are categorized as other.

We further evaluate the performance of SEE-ST
in each category to demonstrate its ability to re-
trieve evidence for claims with different reasoning
challenges. SEE-ST achieves great extraction per-
formance over claims that need to combine tables
and texts with a recall rate of 69.27% showing that
the unified graph neural network can effectively in-
tegrate information from both formats of evidence.
The recall rates of claims that need multi-hop rea-
soning, entity disambiguation or search terms are
lower than 50%. But the analysis in Figure 3 shows
that the main error source of incomplete evidence
extraction is document retrieval. It fails to retrieve
complete document sets for each challenge type
listed above with an error rate of 38.6%, 28.4%
and 54.6% while only about 7% instances in these
challenges lose complete evidence sets because of
unsuccessful structured evidence extraction. This
demonstrates the ability of our model to retrieve
evidence in more challenging scenarios. Our model

also improves the evidence extraction performance
of numerical reasoning. The rate of Structured er-
rors is 34.82% for UnifEE (Hu et al., 2023). SEE-
ST increases the recall rate by 8.25% and decreases
the rate of Structured errors by 7.35%. Yet nu-
merical reasoning remains the main challenge in
structured evidence extraction.

5 Case Study

In this section, we demonstrate two cases for ev-
idence extraction in Figure 4. For the claim on
1991 Waterford City Council election, our table ex-
traction module successfully extracts the table of
election statistics from the Wikipedia dump. The
main challenge for this case is numerical reason-
ing. Verifying ... six parties all of which have
at least two seats requires high-order semantics
in Seats column. Such semantics is maintained
in coarse-grained table extraction and fine-grained
cell selection. SEE-ST extracts cells in Party and
Seats columns as evidence. It shows the numerical
reasoning ability of SEE-ST.

As for the evidence extraction for the claim of
The Castle of Iron, it demonstrates the ability of
SEE-ST to perform multi-hop reasoning. The claim
states that ...was published by a large-scale pub-
lishing company in New York, and is refuted by
sentence evidence Gnome Press was an American
small-press publishing company.... However, the
name of the publisher is not mentioned in the claim.
It is the structured evidence that links the claim
with the sentence evidence. The design of our evi-
dence graph could enable interaction between sen-
tence and table cells to achieve multi-hop reasoning
over different formats of evidence.



Claim: 1991 Waterford City Council election was planed to take place on 27 
June 1991 with six parties all of which have at least two seats.

Party Seats ± First Pref. Votes FPv%

Fianna Fáil 3 -2 3,165 19.01%

Fine Gael 2 -2 2,220 13.34%

Labour 3 +1 3,415 20.5%

Workers’s 
Party

3 +1 3,359 20.18%

Progressive 
Democrats

2 +2 1,666 10.01%

Independent 2 - 2,360 14.2%

Totals 15 - 16,645 100%

Label: SUPPORTS            Challenge: Numberical Reasoning

...
Untructured:
An election to Waterford City Council took place on 27 June 1991 as   
part of that year's Irish local elections.
Waterford City Council Comhairle Cathrach Phort Láirge) was the 
authority responsible for local governments in the city of waterford.
...

Extracted Evidence
Structured: 

Claim: The Castle of Iron is a fantasy novel written by L. Sprague de Camp 
and Fletcher Pratt and was published by a large-scale publishing company 
in New York.
Label: REFUTES               Challenge: Multi-hop Reasoning

Extracted Evidence

Author L. Sprague de Camp 
and Fletcher Pratt

Cover artist Hannes Bok

Country United States

Language English

Series Harold Shea

Genre Fantasy

Publisher Gnome Press

Publication date 1941, 1950

Media type Print

Pages 224

Preceded by The Incomplete 
Enchanter

Followed by Wall of Serpents

Structured: 

...
Untructured:
Gnome Press was an American small-press publishing company primarily 
known for publishing many science fiction classics.
The Castle of Iron is the title of a fantasy novella by American authors L. 
Sprague de Camp and Fletcher Pratt, and of the novel into which it was 
later expanded by the same authors.
...

Figure 4: Demonstrations of extracted evidence set for claims in FEVEROUS. Gold evidence is highlighted in
orange. The underlines indicate the cells selected by SEE-ST and table headers are marked with bold texts.

6 Related Work

Open-domain fact verification extracts evidence
from a knowledge base (KB) to verify the
claim. In the real world, unstructured and struc-
tured evidence can be used to verify the claim.
FEVER (Thorne et al., 2018) and HoVer (Jiang
et al., 2020) focus on extracting unstructured ev-
idence i.e. sentences from the Wikipedia dump.
And the research of structured evidence mainly fo-
cuses on tables. TabFact (Chen et al., 2019) and
InfoTabs (Gupta et al., 2020) verify claims with
tables and infoboxes from Wikipedia. SEM-TAB-
FACT (Wang et al., 2021) and SciTab (Lu et al.,
2023) are constructed on claims and tables from
scientific papers. Yet these datasets all provide
the table evidence for verification as in a closed-
domain setting. To our knowledge, FEVEROUS
is the only open-domain fact verification dataset
that considers table as evidence (Aly et al., 2021).
Therefore, our work uses FEVEROUS as a testbed
for table extraction and cell selection.

As for table extraction, the lexical matching ap-
proach is widely used in fact verification (Aly et al.,
2021; Hu et al., 2022, 2023). Chen et al. (2020)
encodes tables with BERT and concatenate em-
bedding with structured features to rank tables.
TAPAS enhances table encoding with additional
table-aware positional embeddings (Herzig et al.,
2021). (Pan et al., 2021) also leverages represen-

tations of row and column to rank tables but over-
looks the context of other cells. TaBERT (Yin
et al., 2020) utilizes a content-snapshot mechanism
to only encode the relevant rows thus may lose the
high-order semantics of columns.

Gi et al. (2021) converts each cell into a text
sequence to select cell evidence, bypassing the ta-
ble extraction step. Acharya (2021) selects cells
through dependency parsing. Jindal et al. (2021)
combines single-cell NLI task with cell-wise rel-
evance to extract evidence at cell-level semantic
granularity. These methods are performed at the se-
mantic granularity of cells. Approaches in question
answering have proposed to select cells as the in-
tersection of rows and columns (Glass et al., 2021;
Pan et al., 2021). All these above methods do not
consider the interaction between evidence.

The idea of evidence graph has been explored in
previous works. Kotonya et al. (2021) linearizes
cells into sentences to construct a fully connected
evidence graph with texts. UnifEE (Hu et al.,
2023) proposes to use column nodes as intermedi-
ates between sentence-level and cell-level evidence
graphs. Our method is more computationally effi-
cient with only one evidence graph. Our design en-
ables rows and columns to interact with sentences
at comparable semantic granularity while still main-
taining high-order semantics from tables.



7 Conclusions

This paper presents SEE-ST, a novel method for
enhancing the extraction of structured evidence. By
leveraging both row and column semantics, SEE-
ST can operate with a comparable evidence granu-
larity, enabling both coarse-grained table extraction
and fine-grained cell selection. Experimental re-
sults demonstrate the effectiveness of SEE-ST, as
it significantly improves the recall of structured
evidence compared to existing methods in fact ver-
ification. Moreover, SEE-ST outperforms state-of-
the-art methods in evidence recall and FEVEROUS
score on FEVEROUS benchmark. These findings
underline the impact of SEE-ST in enhancing struc-
tured evidence extraction.

Limitations

Our work explores the extraction of structured ev-
idence in enhancing table extraction and cell se-
lection. In the real world, fact checkers also use
other structured evidence as knowledge graphs and
databases to verify the claim. FactKG is a fact veri-
fication dataset on knowledge graphs (Kim et al.,
2023). The verification model is required to re-
trieve subgraphs as evidence for verdict prediction.
SEE-ST can not be directly applied to this task. We
will try to build a unified evidence extraction mod-
ule that could retrieve both tables and subgraphs
for fact verification in our future work.

Our work only enhances the extraction of struc-
tured evidence, while the whole evidence extraction
process still suffers from error propagation from
document retrieval. The error propagation in the
three-step pipeline makes it extremely difficult for
the model to retrieve complete evidence sets and
predict the right verdict label. A new pipeline for
open-domain fact verification is needed to solve
this issue.
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from the pages to construct our evidence graph. As
for the cell selection, we limit the selected cells
to a maximum of nc = 25 cells. For a fair com-
parison with baselines, the source tables of cells
are constrained to the top 3 tables. The tables are
re-ranked by the highest cell selective score at cell
selection.

For table extraction, we utilize TAPAS-base1 to
encode the claim-table pair. Our model is trained
with Adam optimizer (Kingma and Ba, 2014) with
a batch size of 8. The learning rate is 10−7 for
TAPAS and 10−5 for the classifier. αt and βt are
assigned a value of 1.

Regarding our evidence graph, we employ
Spacy2 to extract common entities from evidence
to connect relevant nodes. RoBERTa-base3 and
TAPAS-base are chosen as the encoders for node
initialization. The model is optimized using the
Adam optimizer (Kingma and Ba, 2014) with a
batch size of 4 and a peak learning rate of 10−6.
We set the weights for different coefficients of loss
functions as follows: αc = βc = 2 and γc = 1.
The model takes 14 hours to train for 3 epochs and
34 minutes to select cells in the dev set on a single
NVIDIA A100 GPU.

B Evidence Precision Analysis

With the constraint of a maximum number of sen-
tences and cells in the evidence set, there are two
ways to construct evidence sets. The previous
SOTA method UnifEE (Hu et al., 2023) uses a
threshold to construct an evidence set with high
precision at the expense of a slight decrease in evi-
dence recall. Other baselines use evidence as much
as fit the constraints to construct the evidence sets
resulting in higher evidence recall. In this section,
we aim to analyze which strategy achieves higher
accuracy and FEVEROUS score at the verdict pre-
diction step. We filter out unnecessary evidence
with different thresholds and verify claims based on
the filtered evidence sets. The results are presented
in Table 6.

The results indicate that as the evidence thresh-
old increases, evidence precision improves at the
cost of reduced evidence recall. However, label
accuracy remains largely unaffected by changes
in the evidence set. Threshold selection leads to
a decrease in the FEVEROUS score. Overall, the

1https://huggingface.co/google/tapas-base
2https://spacy.io/
3https://huggingface.co/roberta-base

verification model used in this work is robust to
threshold selection within the same extracted evi-
dence set, and verdict prediction achieves the high-
est FEVEROUS score without threshold selection.
The annotations of the gold evidence set may not
be exhaustive of all possible evidence, which could
result in an underestimation of precision due to the
presence of correct evidence that is not annotated
as gold evidence. In summary, SEE-ST employs
the maximum number of sentences and cells as
constrain for evidence sets for optimal verdict pre-
diction performance.

Threshold E-P E-R E-F1 F.S Acc.

0 10.60 61.43 18.07 49.73 74.68
0.001 12.99 60.17 21.36 48.38 74.25
0.005 15.85 59.60 25.04 48.04 74.03
0.01 17.88 58.54 27.49 47.28 74.22
0.05 23.39 50.78 32.04 42.56 73.99

Table 6: Effects of evidence extraction on verdict pre-
diction.

Verdict Recall

NEI 41.72
SUPPORTS 61.38
REFUTES 61.84

Table 7: The performance of evidence extraction for
claims with different veracity labels.

C Performance on Different Verdict

We further analyze the performance of evidence
extraction and verdict prediction for claims with
different veracity labels, as shown in Table 7. Gen-
erally, extracting evidence for REFUTES claims
is more challenging, as the information contained
in the evidence is not always explicitly included
in the claim, making it difficult to retrieve based
on relevance alone. However, our model achieves
comparable extraction performance for both SUP-
PORTS and REFUTES types, with recall rates of
61.38% and 61.84%, respectively. The recall for
NEI instances is approximately 20% lower than
for the other types. NEI claims cannot be verified
based on evidence from Wikipedia alone; only the
most relevant information is listed in the gold evi-
dence set, making it difficult to extract a complete
evidence set for NEI claims.

https://huggingface.co/google/tapas-base
https://spacy.io/
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