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Abstract

Reasoning capability is pivotal for Large Language Models (LLMs) to solve com-
plex tasks, yet achieving reliable and scalable reasoning remains challenging.
While Chain-of-Thought (CoT) prompting has become a mainstream approach,
existing methods often suffer from uncontrolled generation, insufficient quality,
and limited diversity in reasoning paths. Recent efforts leverage code to enhance
CoT by grounding reasoning in executable steps, but such methods are typically
constrained to predefined mathematical problems, hindering scalability and gen-
eralizability. In this work, we propose Caco (Code-Assisted Chain-of-ThOught),
a novel framework that automates the synthesis of high-quality, verifiable, and
diverse instruction-CoT reasoning data through code-driven augmentation. Unlike
prior work, Caco first fine-tunes a code-based CoT generator on existing math and
programming solutions in a unified code format, then scales the data generation
to a large amount of diverse reasoning traces. Crucially, we introduce automated
validation via code execution and rule-based filtering to ensure logical correctness
and structural diversity, followed by reverse-engineering filtered outputs into nat-
ural language instructions and language CoTs to enrich task adaptability. This
closed-loop process enables fully automated, scalable synthesis of reasoning data
with guaranteed executability. Experiments on our created Caco-1.3M dataset
demonstrate that Caco-trained models achieve strong competitive performance
on mathematical reasoning benchmarks, outperforming existing strong baselines.
Further analysis reveals that Caco’s code-anchored verification and instruction
diversity contribute to superior generalization across unseen tasks. Our work es-
tablishes a paradigm for building self-sustaining, trustworthy reasoning systems
without human intervention.

Olympaid Average

MetaMath DartMath Insturct Caco MetaMath DartMath Insturct Caco
45 413

35.9 60 57.1 57.3

21.7 45

5.5 30

" DeepSeekMath-78 LLaMA3-8B Qwen2.5-Math-78 " DeepSeekMath-78 LLaMA3-8B Qwen2.5-Math-7B

Figure 1: Overview of Caco results. Caco shows superior performance on Olympiad Bench and on
average than baseline methods.
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1 Introduction

The advent of Large Language Models (LLMs) [44} 32| 135]] has revolutionized domains requiring
complex reasoning, such as mathematics, code, and algorithmic problem-solving [42} [15, [1]]. Recent
LLMs demonstrate remarkable capabilities in generating step-by-step solutions through Chain-of-
Thought (CoT) [42, 25| 45] prompting, where intermediate reasoning steps are explicitly articulated
before final answers. This paradigm has become instrumental in tasks like mathematical problem
solving and program synthesis, where systematic logic decomposition is critical. A prevalent strategy
involves generating long CoT sequences [29, 12} 36} 137]] to mimic human-like deliberation.

However, these CoT approaches predominantly rely on natural language reasoning traces, which suffer
from several limitations. (1) Unverifiability, since natural language reasoning is not executable, errors
in intermediate steps may propagate and lead to incorrect conclusions; (2) Scalability constraints,
high-quality CoT data typically requires manual annotation, making it difficult to scale to diverse
problem domains.

To address these issues, recent works have explored code-assisted reasoning [11} 41} 23} |10l], where
reasoning steps are grounded in executable code snippets (e.g., Python codes or algorithm sketches).
By translating natural language logic into formal code, these methods enable automatic verification
through code execution. Preliminary studies [11] demonstrate that code-verified CoT can reduce
hallucination and improve answer accuracy. However, existing implementations struggle to generalize
beyond predefined mathematical problems, limiting their adaptability and scalability [39} 41} [10].

In this work, we introduce Caco, a scalable code-assisted CoT and instruction generation framework
designed to automate the production of high-quality reasoning training data through code-anchored
refinement. A core innovation of Caco lies in its fine-tuning of a base LLM on a compact set of
structured code CoT demonstrations, enabling the model to learn systematic code reasoning solutions.
Leveraging this fine-tuned LLM, we generate large-scale candidate code-based CoT solutions, which
are subsequently refined via an automated verification engine. This engine executes code snippets,
verifies logical consistency, and enforces diversity in reasoning patterns. Finally, the validated code
solutions are translated back into natural language instructions and the corresponding language CoTs,
yielding instruction-aligned data pairs that establish bidirectional alignment between code and textual
reasoning paths. The Caco generated natural language CoT offers several advantages. (1) Scalability:
Through these model-generated synthetic code CoTs, we eliminate reliance on manual annotation of
the aligned language CoTs, enabling the creation of millions of high-quality reasoning traces (e.g.,
our Caco-1.3M dataset); (2) Verifiability: Not only are the answers guaranteed to be correct for the
augmented instructions, but the executable and automatic validation of intermediate steps of Code
CoTs also ensures the aligned language CoTs to be correct solutions. (3) Diversity: By harnessing
the fine-tuned LLM’s generative capacity and sampling mechanism, Caco produces varied reasoning
paths as well as the instructions, enhancing generalization across different problem types.

We evaluate Caco through extensive experiments on standard mathematical reasoning benchmarks.
Models fine-tuned using our Caco-1.3M dataset achieve strong competitive performance; for exam-
ple, attaining 92.6% accuracy on GSM8K and 82.4% on MATH, significantly outperforming prior
approaches. Caco also exhibits strong generalization, the trained model maintains 67.7% accuracy on
average over multiple benchmarks, surpassing comparable methods by a margin exceeding 7.9%. Fur-
ther analysis confirms that Caco-generated CoT data preserves high diversity and scalability. Beyond
advancing superior performance in mathematical reasoning, our work establishes a generalizable
framework for developing self-improving and verifiable LLMs across algorithmic domains.

2 Related Work

2.1 Data Augmentation for Mathematical Reasoning

A wide range of recent efforts have explored different strategies for constructing instruction-tuning
datasets tailored to mathematical reasoning [41} 20, 46]. For example, WizardMath [25]], Meta-
Math [45]], Orca-Math [28], MMIQC [21]], and MathFusion [30] enhance answers and rationales for
seed problems through prompt engineering and reinforcement learning techniques. KPMath [[16]],
MathScale [34]], and ScaleQuest [8] generate new problems from scratch by extracting mathematical
concepts and topical structures. MAmooTH2 [47] and Numina-Math [18]] construct instruction-tuning
datasets by collecting and curating large-scale data from the web. DART-Math [38]] applies rejection
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Figure 2: An overview framework of Caco data generation, including unifying Code CoT, scaling
Code CoT with CodeGen, and instruction reversal and language CoT generation.

sampling based on problem difficulty to ensure the quality of generated solutions. Caco also falls
within this scope and uses code as a scalable medium to generate diverse mathematical problems.

2.2 Code Integration for Enhanced Reasoning

LLMs often make calculation errors in complex mathematical reasoning (e.g., computing eigenvalues)
when using CoT prompting [3}9]. To address this, methods such as Program of Thoughts (PoT) [3l],
Program-Aided Language models (PAL) [9]], and Code-based Self-Verification (CSV) [50] are pro-
posed to prompt LLMs to generate executable code, leveraging external code interpreters for accurate
computation. As open-source models improve, code-integrated data for post-training has gained
attention. OpenMathlInstruct-1 [39], TORA [10], MathCoder [41} 24]], MegaMath [51]], and Dota-
Math [[17]] embed code within natural language, enabling more robust reasoning. MAmmoTH [46]
introduces MathlInstruct, a hybrid of CoT and PoT datasets, allowing for different reasoning strategies
for different problems. rStar-Math [11]] generates paired natural language rationales and Python code,
keeping only verified executable steps. Codel/O [19] distills diverse reasoning patterns embedded in
code by transforming it into a code input-output prediction format. MathGenie [23]] synthesizes math
problems and code-integrated solutions through solution augmentation, question back-translation,
and verification-based filtering. Unlike previous works, our Caco leverages a code generation model
to ensure both scalability and verifiability, while additionally introducing algorithmic problem types
to promote greater diversity in problem coverage.

3 Method

Overview. Figure 2] presents the overall framework of Caco. We begin by abstracting each prob-
lem’s solution into an executable code template. Based on this, we fine-tune a problem generation
model (CodeGen) to learn diverse reasoning strategies by extending these templates. Sampling from
the trained model yields a large number of new programs, each representing a unique solution pattern
for a particular family of problems. Each code pattern is back-translated into concrete mathematical
problems and corresponding step-by-step solutions. Only the instances where the natural language
answer matches the code output are retained. Details regarding the prompt formulations, model
specifications, and the criteria for filtering Code CoTs are provided in Appendix [A]

3.1 Unifying Code CoT

To improve the quality, consistency, and verifiability of CoT reasoning for math problems, we
explore a unified Code CoT representation. Motivated by prior findings that code data can enhance
mathematical reasoning in language models [4,46]], we collect and standardize Code CoTs from both



mathematical and algorithmic domains. Specially, we use a general LLM G, : P — C to map
each problem p to code c and an executor F' that returns the correct answer a* upon running c. We
retain only verified traces; namely, the seed set is Cseed = { Gp—e(P) | F'(¢) = a* }. This unified
representation not only improves interpretability and execution fidelity but also lays the groundwork
for scalable data generation and model training.

Mathematical Problems. We collected a broad set of mathematical problems from multiple sources
to ensure diversity, such as the MATH dataset [[14] (7.5K), DeepScaleR [26] (40K), and BigMath [2]]
(251K). These problems vary in complexity and format; some are accompanied by natural language
CoT explanations, while others are not. To unify their representation, we convert each solution into
a structured Python program following a generic template (See Prompt|[I). This template encodes
problem inputs as dictionaries and defines problem-solving logic through explicit function calls. It
supports a wide range of reasoning types—arithmetic, algebraic, geometric, probabilistic—while
enabling direct execution for correctness verification.

For example, consider the problem:

George has an unfair six-sided die. The probability that it rolls a 6 is %, and the probability

that it rolls any other number is 1—10. What is the expected value of the number shown when
this die is rolled?

We transform its solution into the following code representation:

( A

def expected_value(probabilities, values):
return sum(p * v for p, v in zip(probabilities, values))

probabilities = [1/10, 1/10, 1/10, 1/10, 1/10, 1/2] # Probabilities for 1, 2, 3, 4,
5, 6
values = [1, 2, 3, 4, 5, 6] # Values on the die

input = {"probabilities": probabilities, "values": values}
output = expected_value (**input)
print (output)
(& J

This standardized representation ensures structural consistency across different problem types and
facilitates easier interpretation by both models and humans.

Algorithmic Problems. In parallel, we incorporate algorithmic problems as an additional source
of structured reasoning. We sample 40K problems from the Kodcode [43] dataset, covering key
algorithmic domains such as sorting, searching, and dynamic programming. These problems typically
come with code-level solutions and brief natural language comments, providing a native form of
Code CoT. To ensure consistency across data sources, we normalize all algorithmic solutions into
the same Python-based template used for mathematical problems. This standardization enables joint
training and evaluation under a single format. The conversion prompts are described in Prompt 2]

Unified Seed Code CoTs. After Code CoT generation, we perform rigorous post-processing to
ensure quality. Following the procedure described in Section we validate each code sample
through execution: only programs that run successfully, produce correct outputs, and conform to
the standardized format are retained. This filtering yields a curated seed corpus of 146K high-
quality Code CoT instances (122K Math + 24K Code). Among these, 109K problems originally had
solutions, which we refer to as Seed109K in the experiments. The resulting dataset provides a robust
foundation for training models to enable effective generation of verifiable and scalable CoT reasoning
in executable form in Section[3.2

3.2 Scaling Code CoT with CodeGen

To scale the generation of high-quality code-based reasoning chains, we leverage the seed Code CoT
dataset introduced previously to train a dedicated Code CoT generation model, CodeGen, so as to
enable automated synthesis of executable, diverse, and logically coherent Code CoTs at scale. By
training a model to internalize the structure and logic of our unified format, we facilitate the creation
of new reasoning traces without relying on costly human annotations or handcrafted solutions.



Problem: George has an unfair six-sided die. The probability that it rolls a 6 is $\frac{1}{2}$, and the probability that it rolls any other number is
S\frac{1}{10}$. What is the expected value of the number shown when this die is rolled? Express your answer as a decimal.

Solution: The expected value is $8\\frac{1}{10}(1) + \\frac{1}{10}(2) + \\frac{1}{10}(3) + \\frac{1}{10}(4) + \\frac{I1}{10}(5) + \\frac{1}{2}(6) =
\Wrac{15}{10} + 3 = \\boxed{4.5).

Code: Generated Code:
def expected_value(probabilities, values): def expected_value(num_rolls):
return sum(p * v for p, v in zip(probabilities, values)) # The expected value for a single roll of a fair 6-sided die is
@ the average of all possible outcomes
. " o expected_single_roll = sum(range(1, 7)) / 6
szifgnffr‘;e_p{f/i%bl;‘;:'lgs fjﬁjvil/"'lzs i;;oThle/;?fulr C= # For multiple rolls, the expected value is the expected value
- ¢ . : : : f I Il multiplied by th: ber of roll.
values = [1, 2, 3, 4, 5, 6] # Values on the die - e B L ey ey oL

expected_value_total = expected_single_roll * num_rolls
CodeGen return expected_value_total
input = {"probabilities": probabilities, "values": values}
output = expected_value(**input)
print(output)

input = {"num_rolls": 3}
output = expected_value(**input) E%

print(output)

‘ Reversal ‘ Reversal
Problem-level Augmentation: Context Rephrase Pattern-level Augmentation: Logic Reconstruct
A fair 10-sided die is modified such that 5 of its faces show the number
6, and the other 5 faces show the numbers 1 through 5, each appearing A fair 6-sided die is rolled multiple times. What is the expected value
exactly once. What is the expected value of a single roll of this of the sum of the outcomes when the die is rolled 3 times?

modified die?

Figure 3: A case of one problem with its Code CoT. We demonstrate two augmentations, where
problem-level augmentation refers to the original Code CoT can be back-translated into multiple
question variants, and pattern-level augmentation means our CodeGen is capable of generating novel
Code CoTs that generalize beyond the original seed patterns.

Training CodeGen on Unified Code CoTs. We fine-tune a unconditional CodeGen Uy on Cgeeq to
model the distribution of valid reasoning programs.

|l

mein L) = Z Zlogpg(ct’c<t). (1)

cECgeed t=1

The resulting model, CodeGen, is designed to generalize the reasoning patterns embedded in our
dataset and produce structurally consistent code-based CoTs for both mathematical and algorithmic
problems. Fine-tuning is conducted using a pretty simple prompt described in Appendix Table [3]
Notably, training uses only Code CoTs, without problem contexts or requirements, focusing on
internalizing the reasoning trace space rather than specific problem-solution pairs. In this way, we
aim to largely explore the diverse Code CoTs in the generation phase.

Large-Scale CoT Generation via Sampling. After fine-tuning, we employ CodeGen to generate
a large number of new Code CoT samples Cgmp = {¢’ ~ Up}. Using temperature sampling, we
generate multiple candidate programs use prompt in Appendix Table ] (same as training CodeGen).
This sampling-based approach introduces stochasticity into the decoding process, allowing the model
to explore a diverse set of reasoning paths and solution strategies. The result is a scalable and flexible
pipeline for synthesizing varied Code CoTs.

As illustrated in Figure [3] even for problem types the model has seen during training—such as
calculating the expected value of a biased die—the model is capable of restructuring the logic,
e.g., by decomposing the problem into multiple rolls and aggregating expected outcomes. This
demonstrates that CodeGen supports two complementary modes of augmentation:

Problem-level Augmentation arises when natural language problems are synthesized from code by
varying the situational context or rephrasing the same underlying logic in different stylistic forms.
This introduces diversity in surface formulations (implemented in Section[3.3).

Pattern-level Augmentation arises when the CodeGen explores novel reasoning structures—such as
problem decompositions or alternative solution strategies—thereby enriching the pool of underlying
logic templates.

Together, these modes yield both surface-level diversity and deeper structural variability in the
synthesized dataset. Additional representative samples along with training settings and sampling
configurations are provided in Appendix [A]

Code CoT Filtration. To ensure the quality of generated Code CoTs, we apply the execution-based
filtering criteria similar to the unified seed Code CoTs. The only difference is that at this stage, we
do not enforce output matching with known answers, as consistency verification is deferred to the
later back-translation stage. In total, we synthesize approximately 5.3M Code CoT samples. After
filtering, we retain a high-quality subset of around 4.6M executable and structurally valid programs.



This large-scale dataset forms the basis for the subsequent stage of problem synthesis, enabling us to
bootstrap new question—solution pairs and further expand the reach of code-based reasoning.

3.3 Instruction Reversal and Language CoT Generation

Following the generation of a substantial set of executable code templates, we distill their underlying
logic to synthesize natural language problems alongside their corresponding solutions, derived from
the combined set Cgeeq U Coamp- As shown in FigureE], this process significantly expands our dataset
by producing diverse and high-quality problem-answer pairs.

Two-Stage QA Generation. For quality control, we adopt a two-stage method to generate problem
and language CoT instead of one-step generation for both. In our preliminary experiments, we
find that jointly generating the instruction and language CoT together based on the Code CoT is
easy to lead to low quality or incorrect language solutions, perhaps due to the ‘lazy’ mode [39] by
LLMs since it sees the correct Code CoT as ‘guidance’. Therefore, each code snippet is paired with
representative input-output examples (code-instruction pair) and provided as input to the LLM (see
Prompt 5, which generates a natural language problem at the first stage. Secondly, we prompt the
generated problem to the LLM (see Prompt[6) for natural language CoT synthesis, which largely
forces the LLM to think and generate correct language CoTs.

Dual Verification. Two filtration and verification ways are processed to ensure the correctness of the
instruction and natural language CoT.

(1) Answer Consistency: We execute the code and compare its output to the answer inferred from the
LLM’s CoT reasoning. Any mismatches are discarded to maintain high precision.

(2) CoT Consistency: We remove samples where the language CoT and Code CoT for the same
problem are not aligned, based on the consistency judgment in Prompt[7} This process ensures the
correctness of the reasoning steps in the language CoT.

Only tuples (p’, s’, ¢') that simultaneously satisfy both conditions are retained. This filtering process
can be formally expressed as:

Dinar = {(p/, 8", ¢') [ ' = Gesp(€), 8" = Gpss(p'), (Ans(s’) = Exec(c')) A Con(s', ¢')}, (2)

where G denotes a general-purpose LLM used for instruction reversal and answer generation; Ans(s’)
extracts the final answer from the solution s’ and compares it with the execution result of the
code Exec(c’); and Con(s’, ¢) represents the CoT consistency check between the natural language
solution and the code. After this pipeline, we obtain approximately 1.3M validated instruction-answer
pairs in Dy, which significantly enhance the diversity and reliability of the training data and serve
as a valuable resource for downstream reasoning tasks.

4 Experiment

4.1 Experimental Setup

Baselines. We compare our Caco-generated dataset against several mainstream synthesized
instruction-tuning datasets for math reasoning, including data-centric methods such as Meta-
Math [45], MMIQC [21]], NuminaMath [[18]], MathFusion [34], RFT [38]], and DART-Math [38]],
which all demonstrate strong reasoning enhancement. Besides, we also include well-known open-
source instruction-tuned or reinforcement learning (RL)-based models as baselines: LLaMA3-7B-
Instruct [49]], Qwen2.5-Math-Instruct [44], and DeepSeekMath-7B-RL [32].

Training Configuration. To evaluate the generalizable effectiveness of our Caco produced dataset,
our experiments are conducted on two math-specialized LLMs—DeepSeekMath-7B [32] and
Qwen2.5-Math-7B [44]], as well as one general-purpose model, LLaMA3-8B [49]. Unless oth-
erwise specified, all models are fine-tuned for 3 epoch using a learning rate of 5 x 10~°, a batch size
of 128, and a cosine decay schedule with a warm-up ratio of 0.03. Additional implementation details
are provided in Appendix

Evaluation Setup. Following the evaluation protocol of DartMath [38]], we evaluate on multiple
popular benchmarks to show the advantages, including MATH [14]], GSM8K [6]], CollegeMath [34],
DeepMind-Mathematics [31], OlympiadBench-Math [13]], and TheoremQA [S]. Solutions are



generated using greedy decoding with a maximum sequence length of 2048 tokens, and we report
Pass@1 accuracy in the zero-shot setting without tool integration. Further evaluation details and
benchmark statistics can be found in Appendix

4.2 Main Results

Model #Samples MATH GSMSK College DM Olympiad Theorem AVG
DeepSeekMath-7B (Math-Specialized Base Model)
DeepSeekMath-7B-RL - 51.1 88.8 34.5 58.2 18.8 30.9 47.1
DeepSeekMath-7B-MetaMath 400K 40.2 80.5 35.7 48.1 11.4 21.8 39.6
DeepSeekMath-7B-MMIQCT 2.3M 453 79.0 353 529 13.0 23.4 41.5
DeepSeekMath-7B-NuminaMath 860K 47.7 78.5 38.0 56.2 18.2 22.1 435
DeepSeekMath—7B—RFTT 590K 53.0 88.2 419 60.2 19.1 27.2 48.3
DeepSeekMath-7B-DartMath’ 590K 53.6 86.8 40.7 61.6 21.7 322 494
DeepSeekMath-7B-MathFusion® 60K 534 77.9 39.8 65.8 233 24.6 47.5
Caco-Seed109K-DeepSeekMath-7B 109K 58.7 82.4 429 71.3 22.4 28.9 51.1
Caco-596K-DeepSeekMath-7B 596K 63.5 85.2 444 78.0 25.8 30.2 54.5
Caco-1.3M-DeepSeekMath-7B 1.3M 68.2 85.1 46.0 80.2 29.5 33.8 57.1
Qwen2.5-Math-7B (Math-Specialized Base Model)
Qwen2.5-Math-7B-Instruct - 82.1 94.1 50.4 72.9 413 40.8 63.6
Qwen?2.5-Math-7B-MetaMath 400K 51.7 84.7 40.0 62.6 18.2 26.5 47.3
Qwen2.5-Math-7B-NuminaMath 860K 70.6 90.8 46.1 75.1 359 37.4 59.3
Qwen2.5-Math-7B-DartMath 590K 61.4 89.7 425 72.0 25.8 355 54.5
Qwen2.5-Math-7B-MathFusion 60K 75.2 83.5 43.0 76.0 39.5 41.5 59.8
Caco-Seed109K-Qwen2.5-Math-7B 109K 80.6 92.3 47.1 83.0 41.6 459 65.1
Caco-596K-Qwen2.5-Math-7B 596K 81.1 924 50.3 86.7 433 455 66.6
Caco-1.3M-Qwen2.5-Math-7B 1.3M 824 92.6 514 87.1 46.5 46.0 67.7
LLaMA3-8B (General Base Model)

LLaMA3-8B-Instruct - 44.3 53.4 29.8 42.0 11.3 17.7 33.1
LLaMA3-8B-MetaMath' 400K 325 71.3 20.6 35.0 5.5 13.8 30.8
LLaMA3-8B-MMIQCT 2.3M 39.5 77.6 29.5 41.0 9.6 16.2 35.6
LLaMA3-8B-NuminaMath 860K 43.6 79.7 24.7 43.1 16.4 19.9 37.9
LLaMA3-8B-RFT' 590K 39.7 81.7 239 41.7 9.3 14.9 35.2
LLaMA3-8B-DartMathf 590K 46.6 81.1 28.8 48.0 14.5 19.4 39.7
LLaMA3-8B-MathFusion' 60K 46.5 79.2 27.9 434 17.2 20.0 39.0
Caco-Seed109K-Llama3-8B 109K 55.3 86.0 422 52.0 19.1 25.6 46.7
Caco-596K-LLaMA3-8B 596K 64.3 88.6 44.8 66.7 24.7 27.6 52.8
Caco-1.3M-LLaMA3-8B 1.3M 70.6 89.1 46.2 72.5 34.1 31.0 57.3

Table 1: Performance comparison on mathematical benchmarks including MATH, GSMS8K, Col-
legeMATH (College), DeepMind-Mathematics (DM), OlympiadBench-Math (Olympiad), and The-
oremQA (Theorem). The best results are highlighted in bold. Baseline results labeled with t are
derived from MathFusion [30]].

Table [T] presents a comprehensive comparison of our Caco against a series of strong baselines across
the three different base models (DeepSeekMath-7B, Qwen2.5-Math-7B, and LLaMA3-8B). We
report results for two synthesized data sizes: Caco-596K and Caco-1.3M samples. From the results,
we can summarize the following findings:

Consistent improvements across base models. Caco consistently outperforms existing methods
across all three base models. For instance, on LLaMA3-8B, Caco-1.3M achieves an average score of
57.3, surpassing the previous best of 39.7 from DartMath [38] by a relative improvement of 44.3%.

Improvement over scaled synthetic data. Performance improves obviously when increasing
the Caco-generated data from 596K to 1.3M. On Qwen2.5-Math-7B, Caco-1.3M achieves 67.7,
outperforming Caco-596K by 1.1 and demonstrating the scalability and effectiveness of our approach
under larger supervision.

Strong performance on challenging subsets. Notably, Caco shows superior performance on harder
benchmarks such as OlympiadBench and TheoremQA, where other baselines struggle. For instance,
on LLaMA-8B, Caco-596K improves OlympiadBench from 17.2 to 34.1 and TheoremQA from 20.0
to 31.0 compared to MathFusion, which shows the great potential of our approach.

Competitive with strong instruction-tuned and RL-based models. Remarkably, Caco matches
or exceeds the performance of strong instruction-tuned or RL-finetuned models. For example, on
Qwen2.5-Math-7B, Caco-1.3M achieves 67.7, which is comparable to Qwen2.5-Math-7B-Instruct
(63.6). On DeepSeekMath and LLaMA series, Caco-1.3M trained models significantly surpass



DeepSeekMath-7B-RL (47.1) and LLaMA-8B-Instruct (33.1). This greatly demonstrates the superi-
ority of our method.

Effectiveness of Caco Data. Compared to the seed data we used to train CodeGen (Caco-Seed-
109K), Caco-596K and Caco-1.3M consistently deliver substantial improvements. For instance, on
LLaMA3-8B, Caco-1.3M achieves 57.3, a significant increase from Caco-Seed-109K’s score of
46.7. This validates our data scaling strategy, showing that our method yields performance gains by
ensuring the training data comprehensively represents diverse and challenging problems.

5 Analysis

To further understand the strengths of our proposed approach, we analyze three key aspects that
contribute to Caco’s effectiveness: the diversity, the scalability, and the verification mechanism in
the Caco data construction pipeline. Together, these components form the foundation of Caco’s
training methodology and help explain its strong performance across models and benchmarks. In
the following sections, we provide a detailed analysis of each component and its contribution. More
experiments and discussion of cost are in Appendix [C|and

5.1 Analysis on Data Diversity

We conduct a comprehensive investigation into the diversity of the dataset to assess the range and
variability of the Caco-generated problems. This analysis is crucial for understanding how well the
model can generate problems across various domains and ensure broad coverage of mathematical
topics. By examining both the distribution of problems and the variety of problem types, we aim
to demonstrate that the dataset not only spans a wide range of topics but also captures diverse
problem-solving scenarios that are representative of real-world mathematical challenges.

Problem Diversity. We analyze the distribution of problems in the synthesized Caco dataset to assess
its coverage and diversity. Specifically, we randomly sample 5K problems from Caco and compare
them with samples from the original seed datasets (MATH, DeepScaleR and BigMath). We encode all
problems using the all-MiniLM-L6-v2 sentence embedding modeﬂ and visualize their distributions
via t-SNE [40], as shown in Figure[#al The resulting plot demonstrates that Caco’s synthesized data
broadly and evenly spans the embedding space, effectively covering the original seed distributions.
Notably, we observe a distinct region on the left side of the plot where Caco samples diverge from the
seed data clusters, suggesting that our generation pipeline introduces novel and diverse problem types
beyond the original datasets. This supports the claim that Caco enhances distributional generalization
through its diverse synthetic augmentation.

Topic Diversity. To further assess the topical diversity of the Caco dataset, we apply clustering
analysis to the problem embeddings. Using the same embedding method as before, we encode all
problems and then apply the KMeans algorithm [27]] to partition them into 12 distinct clusters. The
clustering results are visualized in Figure [db] The clusters reveal a wide range of mathematical and
algorithmic topics, including algebra, geometry, applied mathematics, data structures, algorithms, and
more. This confirms that Caco spans a broad spectrum of problem types, rather than concentrating
on narrow domains. Representative samples from each identified topic cluster are provided in
Appendix G| for qualitative reference.

5.2 Analysis on Data Scalability

We evaluate the scalability of Caco by analyzing its impact on model performance under varying
amounts of training data. Figure |5c|presents the results on the MATH benchmark and the overall
average across all benchmarks for DeepSeekMath-7B and LLaMA3-8B. For both models, we observe
a clear upward trend as the training data size increases from 109K to 1.3M. This demonstrates
the strong scalability of our approach. Notably, the performance gains are more pronounced for
the general-purpose LLaMA3-8B, especially in the early stages (e.g., from Seed109K to 596K),
highlighting Caco’s ability to significantly improve less specialized models. On Qwen2.5-Math model,
the performance also improves with increasing data size, but the improvement is less pronounced due
to the already strong capabilities of the base model.

https://huggingface.co/sentence-transformers/all-MinilM-L6-v2
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Figure 4: Left: Problem distribution of our Caco dataset and the original data sources. Right:
KMeans clustering result of the problem types.

5.3 Ablation on Verification

97.0

w/o Verification
w/ Verification

©
-]

Percentage (%)
Accuracy (%)
N
=
®

o
&

18.7

Average Accuracy (%)

@
]

@
8

DeepSeek - Math LLaMA - Math
DeepSeek - AVG LLaMA - AVG

15

Solvability Correctness Olympiad Theorem Average Seed109K 300K 596K 13M

Figure 5: Left: Comparison of solvability and correctness between generated samples with and
without verification. Middle: Accuracy comparison between models trained on verified and non-
verified data. Right: Performance improvements of the Caco model as data size increases.

Verification is a crucial process in our Caco data generation. To further investigate the impact
of verification on data quality and reliability, we compare the data with and without applying the
verification filtering. We randomly sample 100K data points for each version and use Qwen3-32B
to evaluate both the solvability (i.e., whether the problem can be solved) and the correctness (i.e.,
whether the final answer is accurate) of the generated samples. We further evaluate downstream
performance by fine-tuning the LLaMA model on each dataset.

Impact on Data Quality. As shown in Figure[5a] the verification mechanism substantially improves
the quality of the training data. With verification, the ratio of solvable problems increases from 91K
to 97K, and the number of correct answers rises from 88K to 93K. These improvements suggest
that the verification process—based on answer validation and consistency checks over reasoning
chains—effectively filters out low-quality or incorrect samples, resulting in more reliable supervision.

Impact on Model Performance. In addition to improving data quality, verification also yields tangi-
ble benefits in downstream performance (Figure[5b). The model trained with verified data achieves an
average accuracy of 21.8, compared to 20.8 without verification, reflecting a consistent improvement
across benchmarks. The performance gain is especially notable on more challenging tasks: for
instance, on Olympiad, the verified model scores 18.7, outperforming its non-verified counterpart by
1.1 points. This demonstrates that the enhanced data reliability introduced by verification translates
into better generalization and reasoning robustness in trained models.

5.4 Generality Beyond Mathematics

We first evaluate the generalization of Caco models. Using OpenCompass [7], we assess Caco-1.3M
models across a broad set of reasoning tasks, including mathematics (AIME24), code generation (Hu-
manEval+), scientific QA (ARC-c), logic puzzles (BBH, KorBench), and general knowledge/science
(AGIEval). Caco models demonstrate substantial improvements beyond math, with notable gains in
logic puzzles, general reasoning, science reasoning, and code tasks. These results indicate that the
models trained on Caco data generalize effectively across diverse benchmarks.

We next discuss the generality of the Caco methodology itself beyond mathematics. Although our
primary experiments focused on mathematical reasoning, Caco is fundamentally a general-purpose



Model AGIEval AIME24 HumanEval+ ARC-c BBH KorBench Average

Qwen2.5-Math-7B-base 42.5 20.0 12.8 72.2 19.9 39.7 34.5
Caco-1.3M-Qwen2.5-Math-7B 53.3 23.3 53.1 814 65.1 47.1 53.9
LLaMA3-8B-base 28.5 0.0 323 79.0 19.8 23.8 30.6
Caco-1.3M-LLaMA3-8B 46.5 10.8 34.2 83.1 33.8 4.1 42.1

Table 2: Performance comparison of base models and Caco-augmented models across diverse out-of-
domain benchmarks.

Model AGIEval ARC-¢c MMLU-STEM Average
LLaMA-MegaScience-Seed5.2K 42.8 78.6 554 59.0
LLaMA-MegaScience-Caco37K 45.0 84.8 60.5 63.4

Table 3: Evaluation of LLaMA models trained on MegaScience seed data (5.2K) vs. Caco-augmented
expansion (37K).

framework for structured, code-based reasoning, and is applicable to domains exhibiting logical,
symbolic, or programmatic structure, such as logic puzzles, scientific reasoning, and procedural
tasks. In logic puzzles, for instance, many problems share a reusable underlying reasoning template
(e.g., arithmetic expression puzzles, countdown problems), which can be parameterized in code to
generate diverse instances. This aligns with Caco’s central principle: code abstracts problem logic
more compactly than natural language, enabling systematic sampling and verification.

To test cross-domain applicability, we applied Caco to 5.2K science reasoning seeds from Mega-
Science. The pipeline generated 37K valid QA samples, and fine-tuning LLaMA on these yielded an
average score improvement from 59.0 to 63.4 across AGIEval, ARC-c, and MMLU-STEM (Table .
These results confirm that Caco’s code-driven design enables effective extension to new domains
where logic can be programmatically represented.

6 Conclusion

In this work, we present Caco, a code-assisted framework for generating high-quality, verifiable,
and diverse chain-of-thought reasoning data. By leveraging code execution and automated filtering,
Caco enables scalable synthesis of logically grounded instruction data without human supervision.
Models trained with Caco outperform strong baselines on both mathematical reasoning benchmarks
and out-of-domain benchmarks. Our findings highlight the effectiveness of code-driven verification
and instruction diversity in improving reasoning generalization.
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A Data Generation

A.1 Prompts

We show the prompts used for Code CoT unifying in Prompt[I]and Prompt[2] and CodeGen training
and sampling in Prompt [3and[d We also provide the back-translation prompt for question generation
in Prompt [5] and answer generation prompt in Prompt[6] prompts for problem solvability, answer
correctness, the consistency between the answer and the code’s chain-of-thought (CoT) evaluations
are displayed in Prompt|[8] 0] and

A.2 Model Usage

We detail the models employed at each stage of our pipeline:

 Unifying Code CoTs: We used Qwen2.5-72B-Instruct to generate unified Code CoTs.

¢ CodeGen: The unconditional CodeGen was fine-tuned from Qwen2.5-Coder-7B.

* Problem Reversal & Solution Generation: Both question back-translation and answer synthesis
were performed using Qwen3-8B.

» Evaluation: All assessments (problem solvability, answer correctness, and CoT consistency) were
conducted with Qwen3-32B.

A.3 Implementation Details

Focusing on Challenging Code CoT. To increase the difficulty of the dataset, we applied additional
filtering to the largest subset, bigmath, of the Code CoT dataset. Based on the solve rate annotations
provided with the dataset, we retained only those Code CoTs with a solve rate of less than 0.3.

Hyperparameters. During the Unifying Code CoT stage, we deployed Qwen2.5-72B-Instruct on 4
A100 GPUs to generate code from the raw datasets. For each sample, we performed a single pass of
sampling with a temperature of 0.6.

For training the CodeGen model, we used the LlamaFactory framework and adopted the same training
configuration as in the main experiments. During inference, we sampled with a temperature of 0.9
and a maximum sequence length of 1024 tokens.

For problem and solution generation, we followed the Qwen3-8B best practice [37]]. Specifically, we
used: Temperature = 0.7, TopP = 0.8, TopK = 20, MinP = 0, and enable_thinking =
False.

We use Qwen3-32B for evaluating problem solvability, answer correctness, and the CoT consistency
between the natural language solution and code CoT.

A4 Filtering Mechanism for Code CoTs

As discussed in method section, many stages of our pipeline require rigorous filtering to ensure the
quality, correctness, and executability of the generated Code CoTs. Here, we formally describe the
filtering criteria used throughout our work.

» Executability. The code must be syntactically valid and executable without raising runtime errors.
This ensures basic correctness and structural integrity.

» Execution Efficiency. To prevent degenerate or non-terminating programs, we discard any samples
that exceed a 10-second execution time limit under a controlled runtime environment.

* Minimum Code Length. To avoid trivial or underdeveloped solutions, we require that each code
snippet contain at least six non-comment lines of code. This encourages a minimal degree of
reasoning complexity and explanatory depth.

* AST-Based Semantic Validation. Using abstract syntax tree (AST) analysis [33]], we ensure that
all variables declared in the input dictionary are functionally utilized in the program’s logic. This
discourages redundant or templated outputs and promotes semantically meaningful solutions.

* Output Consistency. When ground-truth answers are available, we verify that the program output
exactly matches the expected solution. This check is applied in cases where reference answers are
known and consistency can be reliably evaluated.
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B Train and Evaluation

B.1 Training Setup

Model training was conducted using the LLaMA Factoryframework on 8§ NVIDIA A100 GPUs. All
models were trained for 3 epoch with a batch size of 128. We used the AdamW optimizer [22] with a
learning rate of 5 x 1075, cosine learning rate decay, and a warm-up ratio of 0.03. The maximum
sequence length (cutoff) was set to 4096, and the weight decay was 0.1. The prompt used for training
is shown in Prompt[10]

B.2 Evaluation Setup

All models were evaluated using a unified framework under the zero-shot setting. We used greedy
decoding with a maximum generation length of 2048 tokens. The prompt used for evaluation is
shown in Prompt[T1]

B.3 Evaluation Benchmarks

The following datasets are used for evaluation:

* MATH [14]: A benchmark of 12,500 high school math competition problems, with 7,500 for
training and 5,000 for testing. Problems are categorized into 7 topics (Prealgebra, Intermediate
Algebra, Algebra, Precalculus, Geometry, Counting & Probability, and Number Theory) and 5
difficulty levels.

* GSMBSK [6]: This dataset contains 8,792 high-quality grade school math word problems, with
7,473 for training and 1,319 for testing. Each problem typically requires 2 to 8 reasoning steps to
solve.

* CollegeMath [34]: A test set containing 2,818 college-level math problems collected from 9
college textbooks, covering 7 core subjects: Algebra, Precalculus, Calculus, Vector Calculus,
Probability, Linear Algebra, and Differential Equations.

* DeepMind-Mathematics [31]]: This test set consists of 1,000 problems covering a wide range of
mathematical reasoning tasks including algebra, arithmetic, calculus, and probability. It is designed
to assess the mathematical reasoning abilities of models.

* OlympiadBench-Math [13]: A benchmark of 675 Olympiad-level math problems. We evaluate
only on the English text-only subset of OlympiadBench.

* TheoremQA [5]: A theorem-driven question-answering benchmark containing 800 problems
grounded in 350 domain-specific theorems. It evaluates a model’s ability to apply mathematical
and scientific theorems across disciplines such as mathematics, physics, electrical engineering,
computer science, and finance.

C Additional Experiments

C.1 Distinguishing Caco from Teacher Knowledge Transfer and STaR-style
Self-Improvement

A natural concern is whether Caco’s performance gains stem primarily from knowledge transfer from
the large teacher model (Qwen-2.5-72B-Instruct) used to generate the seed dataset, rather than from
the Caco procedure itself. To isolate this factor, we conducted a control experiment in which the same
teacher model was used to directly produce natural language Chain-of-Thought (CoT) answers for the
same seed questions, resulting in a 300K QA dataset (QWEN72B-SEED-DISTILLED). We compared
models fine-tuned on this dataset to those trained on a 300K subset of Caco (Caco-300K) and the full
Caco-1.3M. Even at equal data size, Caco outperformed the distilled baseline (e.g., 66.2 vs. 65.5
AVG for Qwen-7B), and scaling Caco to 1.3M samples yielded further improvements (up to 67.7
AVG). This suggests that prompt and reasoning diversity, enabled by Caco’s code-based augmentation,
provides benefits beyond direct teacher distillation, and that Caco scales more effectively.

*https://github.com/hiyouga/LLaMA-Factory
*https://github.com/ZubinGou/math-evaluation-harness/tree/main
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Another question is whether the gains could also be achieved by simpler self-improvement methods
such as STaR [48]. Conceptually, Caco differs from these in that it does not focus on iteratively
refining answers to a fixed set of questions; instead, it trains a dedicated code generator to produce
executable CoTs from scratch, enabling scalable, verifiable creation of new problems. Nevertheless,
to provide a direct comparison, we implemented a single iteration of STaR-style self-improvement on
the seed dataset, generating multiple CoTs per seed question, filtering for correctness, and sampling
300K verified solutions (SEED-SELF-IMPROVE). Across both DeepSeek-Math-7B and Qwen-7B
backbones, CAco-300K consistently outperformed SEED-SELF-IMPROVE by substantial margins
(e.g., 53.2 vs. 48.9 AVG for DS-7B, and 66.2 vs. 52.6 for Qwen-7B). These results reinforce that
Caco’s improvements derive from its code-driven, diversity-oriented generation process, rather than
simply inheriting knowledge from a stronger teacher or applying standard self-improvement on seed
data.

Model #Samples MATH GSMSK College DM Olympiad TheoremQA AVG
Qwen-7B-Seed-self-improve 300K 70.7 83.0 47.1 47.6 39.0 28.2 52.6
Qwen-7B-Qwen72B-Seed-distilled 300K 79.0 91.2 52.1 84.4 41.3 45.0 65.5
Qwen-7B-Caco-300K 300K 81.6 92.4 51.2 84.8 42.5 44.9 66.2
Qwen-7B-Caco-1.3M 1.3M 82.4 92.6 514 87.1 46.5 46.0 67.7
DS-7B-Seed-self-improve 300K 53.1 86.7 41.6 62.5 19.3 30.2 48.9
DS-7B-Qwen72B-Seed-distilled 300K 57.4 83.0 42.4 69.0 23.4 31.4 51.1
DS-7B-Caco-300K 300K 61.8 83.2 433 76.0 239 31.1 532
DS-7B-Caco-1.3M 1.3M 68.2 85.1 46.0 80.2 29.5 33.8 57.1

Table 4: Control experiment comparing teacher-distilled natural language CoTs vs. Caco-generated
data at matched size (300K) and at scale (1.3M). Bold indicates the best within each student block.

D Computational Cost and Efficiency

Stage #Samples Time (Hours)
Unifying Code CoT 339K 2h
Scaling Code CoT 5.3M 8h
Question Reversal 4.6M 5h
Answer Generation 4.6M 40h
Total (for 1.3M valid data) - 55h

Table 5: Computation time for each stage in generating the CACO-1.3M dataset on a single 8 xA100
machine.

To quantify the efficiency of our method, we report the full computational cost of generating the
Caco-1.3M dataset (Table[5)). All experiments were conducted on a single machine equipped with
8x NVIDIA A100 GPUs. The pipeline consists of four main stages: unifying Code CoTs (339K
samples, 2h), scaling Code CoTs (5.3M samples, 8h), question reversal (4.6M samples, 6h), and
answer generation (4.6M samples, 38.5h), totaling approximately 55 hours to produce 1.3M verified
samples. Importantly, the entire process relies solely on open-source models, avoiding the substantial
cost of proprietary API usage.

From a cost breakdown perspective, the majority of the runtime is consumed by the answer generation
stage, which is unavoidable in any instruction tuning or self-improvement setup. For example,
prior works such as DartMath [38]] also incur comparable or higher costs in solution generation,
particularly when sampling multiple candidate answers per prompt. The additional steps specific to
Caco—Code CoT generation and question reversal—are lightweight (combined ~16h), as natural
language solutions are substantially longer than questions or Code CoTs.

Overall, these results demonstrate that Caco can generate over one million verified, diverse reasoning
samples in under three days on a single 8-GPU node, highlighting its strong scalability and accessi-
bility. While we acknowledge that data-efficient methods have their merits, Caco is designed with
a complementary focus: producing large-scale, diverse, and verifiable reasoning data to support
cross-domain generalization.
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E Limitations

Although Caco demonstrates strong capabilities in generating diverse reasoning paths and instructions,
its performance is still limited by the predefined problem types used during training. The system
may struggle when faced with highly innovative or unconventional problems, particularly those that
do not align with the templates or problem categories used during training. As a result, generating
high-quality code-based CoTs for more complex or uncommon problem types remains a challenge,
potentially leading to biases in the distribution of generated data.

Additionally, while the code can be executed accurately, converting it back into human-readable
natural language instructions may result in the loss of some details or require simplification, causing
the final output to be less rich or specific than the original reasoning steps.

Furthermore, the generated code is primarily used for filtering data and not for final training purposes.
It helps ensure the correctness and consistency of the reasoning process, but does not directly
contribute to the final training dataset. In future work, it will be essential to explore how the generated
code can be used to further improve the quality of the data and enhance the training process.

Currently, Caco’s application scope is focused mainly on mathematical and algorithmic reasoning
tasks. Future work will need to explore extending it to broader domains, such as logical puzzles or
STEM problem solving, which will require further effort.

F Future Works

We outline three complementary directions: increasing difficulty, expanding diversity, and leveraging
Caco in reinforcement learning (RL).

Raising Difficulty. Since the completion of this work, several math corpora with higher diffi-
culty and quality than DEEPSCALER and BIGMATH have emerged, such as AM-THINKING-V1-
DISTILLED and the DAPO dataset. Starting from harder, cleaner seed sets is likely to further amplify
the benefits of code-based augmentation. Concretely, we plan to (i) replace/augment the seed pool
with high-difficulty problems (e.g., Olympiad-style, exam-grade items) and (ii) adopt hardness-aware
sampling and adversarial program mutations during Code CoT generation.

Expanding Diversity. As demonstrated in Section[5.4] our method generalizes beyond mathematics
and applies naturally to domains with logical, symbolic, or procedural structure. While we discussed
science and logic reasoning, a broader coverage (e.g., data reasoning, procedural planning, code
debugging, diagram/physics problems, proofs) should allow CodeGen to learn richer templates and
compose more diverse problems. Furthermore, extending the framework beyond Python to support
formal languages (e.g., Lean, Coq, or Wolfram Language) could enhance rigor and verifiability. We
will (i) train multi-domain CodeGen with domain tags, (ii) design compositional templates that factor
shared subroutines across domains.

Applications: Reinforcement Learning with Verifiable Rewards (RLVR). Recent RL-based
training has shown strong gains for reasoning models but often depends critically on the correctness
of reference answers. Caco’s executable traces provide a natural, low-noise reward signal. We
will integrate Caco with RL by (i) deriving rewards from execution correctness (ii) employing a
curriculum over program length and control-flow complexity. This combination targets scalable,
verifiable RL training without heavy reliance on noisy external references.

G More Cases

This section presents samples from the Caco dataset, including the subsequence counting problem
(Case[I), geometric sequences problem (Case[2)), permutation and combination problem (Case [3),
mathematical expression calculation problem (Case ), and analytical geometry problem (Case[3)).
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Code Generation Prompt

Given the following math problem in natural language, provide the complete code solution that solves

the problem.

Requirements:

* The final output of the program **must be the correct numerical or symbolic answer** to the problem.

* You must actually **compute** the result using Python code (e.g., using arithmetic or libraries like
‘sympy ‘), **not just explain in text or comments**.

¢ The code must define an ‘input‘ dictionary, call a function using that input, assign the result to a
variable ‘output, and finally ‘print(output)‘.

 Please provide a complete, standalone executable script.

### Example Math Problem:

A snail is at the bottom of a 20-foot well. Each day, it climbs up 3 feet, but at night, it slips back 2 feet.

How many days will it take for the snail to reach the top of the well?

### Example Code Solution:

def days_to_reach_top(well_height, climb_distance, slip_distance):
days = 0
current_height = 0

while current_height < well_height:
current_height += climb_distance
if current_height >= well_height:
break
current_height -= slip_distance
days += 1

return days + 1

# Represent the input as a dictionary named ’input’

input = {{"well_height": 20, "climb_distance": 3, "slip_distance": 2}}

# Call the function with the input dictionary, assign the result to ’output’
output = days_to_reach_top(**input)

# Print the output

print (output)

Now, please provide the code solution for the following math problem directly. Make sure your code
solution defines the input as a dictionary named input, calls the solution function using this dictionary,
stores the result in a variable named output, and prints output.

### Math Problem:
{problem}

### Solution (Optional):
{solution}

### Code Solution:

Prompt 1: Code Generation Prompt for solving a math problem using Python code.
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Code Unifying Prompt

Given the following code and test function, please refactor the solution into the required format:
### Example Output Format:

def add(a, b):
return a + b

# Represent the input as a dictionary named ’input’

input = {{"a": 3, "b": B}}

# Call the function with the input dictionary, assign the result to ’output’
output = add (**input)

# Print the output

print (output)

<answer>8</answer>

Code:

{code}

Test Function:

{test_code}

Please refactor the code to follow the required format.

* The code must define an ‘input’ dictionary, call a function using that input, assign the result to a
variable ‘output’, and finally ‘print(output)’.

« If there are multiple test cases in test function, just select one of them.

 Please provide a complete, standalone executable script.

### Output:

Prompt 2: Prompt for refactoring code into the required input-output format.

CodeGen Training Prompt

<lim_startl>system

You are a helpful assistant.<lim_end|>
<lim_startl>user

{code}<lim_endl>

Prompt 3: Prompt for training the CodeGen model.

CodeGen Sampling Prompt

<lim_startl>system
You are a helpful assistant.<lim_endI|>
<lim_start/>user

Prompt 4: Prompt for sampling from the trained CodeGen model.
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Question Back-translation Prompt

The code represents a solution to a math problem, and your task is to generate the original math problem
that corresponds to the code.

### Example Code:

def change_ref (amt, coins):
if amt <= 0: return O
if amt != O and not coins: return float("inf")
elif coins[0] > amt:
return change_ref (amt, coins[1:])
else:
use_it = 1 + change_ref (amt - coins[0], coins)
lose_it = change_ref (amt, coins[1:])
return min(use_it, lose_it)

# Represent the input as a dictionary named ’input’

input = {"amt": 13, "coins": [1, 3, 5, 71}

# Call the function with the input dictionary, assign the result to ’output’
output = change_ref (x*xinput)

# Print the output

print (output)

### Example Math Problem:

What is the minimum number of coins needed to make a total of 13 units using the available coin
denominations of 1, 3, 5, and 7 units, each in unlimited supply? ### End Problem

Please generate **Math Problem** based on the following code. Ensure the generated problem is fully
self-contained, solvable, and doesn’t miss any necessary conditions or context.

You may add a concrete scenario or express the problem in different styles for diversity.
### Code:

{code}

### Math Problem:

Prompt 5: Question Back-translation Prompt. The prompt for generating a math problem based on a
given code solution, where the generated problem should fully capture the conditions and context of
the code.

Answer Generation Prompt

### Instruction:
{problem}. Please reason step by step, and put your final answer within \boxed{}.
### Response:

Prompt 6: Instructions for generating step-by-step reasoning and the final answer enclosed in a boxed
format.

Consistency Checking Prompt

Solution:

{solution}

Code:

{code}

Please determine if the logic of the code and the chain-of-thought in the solution are consistent.
Answer with a single word: "Yes" or "No".

Answer:

Prompt 7: Prompt for checking the consistency between the logic of the code and the chain-of-thought
in the solution, where the answer is expected to be either "Yes" or "No".
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Solvability Checking Prompt

Problem:

{problem}

Please determine if the problem is solvable.
Answer with a single word: "Yes" or "No".
Answer:

Prompt 8: Prompt for determining the solvability of a given problem, where the answer is expected
to be either "Yes" or "No".

Correctness Checking Prompt

Problem:

{problem}

Solution:

{solution}

Please determine if the chain-of-thought of solution is correct.
Answer with a single word: "Yes" or "No".

Answer:

Prompt 9: Prompt for verifying the correctness of the chain-of-thought in a given solution, where the
answer is expected to be either "Yes" or "No".

Training Prompt

### Instruction:
{question}

### Response:
{solution}

Prompt 10: Training prompt of Caco model and baseline.

Evaluation Prompt

### Instruction:
{question}

### Response: Let’s think step by step.

Prompt 11: Evaluation prompt of Caco model and baseline with step-by-step reasoning.
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Subsequence Counting Problem

Problem:

How many unique subsequences can be formed from the list of numbers [1, 2, 3], where a subsequence
is defined as any sequence that can be derived by deleting some or no elements from the list without
changing the order of the remaining elements?

Code:

def days_to_reach_top(well_height, climb_distance, slip_distance):
days = 0
current_height = 0

while current_height < well_height:
current_height += climb_distance
if current_height >= well_height:
break
current_height -= slip_distance
days += 1

return days + 1

# Represent the input as a dictionary named ’input’

input = {{"well_height": 20, "climb_distance": 3, "slip_distance": 2}}

# Call the function with the input dictionary, assign the result to ’output’
output = days_to_reach_top (**input)

# Print the output

print (output)

Solution:
We are asked to find the number of **unique subsequences** that can be formed from the list of
numbers:

[17273]

### Step 1: Understand what a subsequence is

A **subsequence®* is any sequence that can be derived by **deleting some or no elements** from the
original list, **without changing the order** of the remaining elements.

For example, from [1, 2, 3], valid subsequences include: [1], [2], [3], [1, 2], [1, 31, [2, 3], [1, 2, 3]
Also the empty subsequence (which is often considered, depending on the problem’s context)

### Step 2: Count all possible subsequences

Each element in the list can either be **included** or **excluded** in a subsequence. So for a list of
length n, there are 2" total possible subsequences (including the empty subsequence).

Here, the list has 3 elements, so the total number of subsequences is:

2’ =8
### Step 3: List all the subsequences to verify
Let’s list all 8 possible subsequences of [1, 2, 3]:
[] (empty subsequence), [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]
These are all the possible subsequences. All of them are **unique** because the elements are all

distinct, and the order is preserved.
### Final Answer:

There are **8 unique subsequences** that can be formed from the list [1, 2, 3].

Case 1: Subsequence Counting Problem: Counting the number of unique subsequences formed from
a list of numbers.
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Geometric Sequence Problem

Problem:
If the real numbers —1, a, b, ¢, —9 form a geometric sequence, then b =
Code:

from sympy import symbols, solve

def find_b(a, c):
b = symbols(’b’)

# Since a, b, ¢ form a geometric sequence, b~2 = ac
equation = b**2 - axc
solutions = solve(equation, b)

# We need to determine the correct sign of b
if solutions[0] * solutions[1] < O:
# If the product is negative, one of the solutions is negative
# and the other is positive. We choose the one that is consistent
# with the sequence -1, a, b, c, -9 being decreasing.
if solutions[0] < O:
return solutions [0]
else:
return solutions[1]
else:
return solutions [0]
input = {"a": -1, "c": -9}
output = find_b (x*input)
print (output)

Solution:

We are given that the real numbers —1, a, b, ¢, —9 form a **geometric sequence**. We are to find the value of b.
### Step 1: Understand the structure of a geometric sequence

In a geometric sequence, each term is obtained by multiplying the previous term by a constant ratio 7.

So, if the sequence is:

-1, a, b, ¢, =9

Then:
-a=—-1-r
b=a-r=(-1-7)-r=—7r2
cc=b-r=—-1r%.r=—73
- 9=c-r=—p3.p=—pt
### Step 2: Use the last term to solve for
We are told the last term is —9, so:

—7"4 = -9
Divide both sides by —1:

r*=9

Now solve for 7:

r=4v09
Note that % =vV9 = V3, s0:

r=+V3
### Step 3: Find b = —r2
Recall that:

b= —r2
Now compute 2 for both values of 7:
-Ifr = /3, thenr? = (vV3)2 =3
SIfr = —/3,thenr? = (—v/3)2 =3
So in both cases:

b=—r?=-3

### Final Answer:

Case 2: Geometric Sequence Problem: Solving for b in a geometric sequence with given terms.
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Counting and Combinatorics

Problem:

Using the digits 1 and 3 to form a four-digit number, and both digits 1 and 3 must appear at least once,
there are a total of such four-digit numbers.

Code:

from itertools import product

def count_four_digit_numbers():
count = 0
# Generate all 4-digit combinations of 1 and 3
for combo in product([1, 3], repeat=4):
# Ensure both 1 and 3 appear at least once
if 1 in combo and 3 in combo:
count += 1
return count

# Represent the input as a dictionary named ’input’

input = {}
# Call the function with the input dictionary, assign the result to ’output’
output = count_four_digit_numbers (x*xinput)

# Print the output
print (output)

Solution:
We are asked to find how many **four-digit numbers** can be formed using only the digits **1** and
*#*3%% such that **both digits 1 and 3 appear at least once**.

### Step 1: Total number of four-digit numbers using digits 1 and 3
Each of the 4 positions in the number can be filled with either **1** or **3*%*_ so:

Total combinations = 2* = 16

So, there are **16** total four-digit numbers that can be formed using only digits 1 and 3.

#i## Step 2: Subtract the cases where only one digit is used

We need to exclude the numbers that **do not contain both digits**. That is, the cases where:
- All digits are **1** — number: 1111 - All digits are **3** — number: 3333

So, there are **2** such numbers that we need to exclude.

### Step 3: Compute the valid numbers
Valid numbers = Total combinations — Invalid combinations
=16-2=
### Final Answer:

There are **14** four-digit numbers that can be formed using the digits 1 and 3, with both digits
appearing at least once.

Case 3: Counting and Combinatorics problem: Counting the number of valid four-digit numbers
formed by the digits 1 and 3 where both digits appear at least once. The table includes the problem
description, step-by-step solution, and corresponding Python code to calculate the number of valid
combinations.
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Mathematical Expression Calculation

Problem:
Calculate:

V124 |1 — V3| + (7 — 2023)°
Code:

import math

def calculate_expression():
sqrt_12 = math.sqrt (12)
abs_value = abs(l - math.sqrt(3))
power_0 = (math.pi - 2023) *x 0
result = sqrt_12 + abs_value + power_0
return result

# Represent the input as a dictionary named ’input’

input = {}
# Call the function with the input dictionary, assign the result to ’output’
output = calculate_expression (**input)

# Print the output
print (output)

Solution:
We are asked to calculate the expression:

V124 |1 — V3| + (7 — 2023)°

Let’s break it down step by step.

### Step 1: Simplify /12
We can simplify the square root:

VI2=V4-3=v4-V/3=2V3

### Step 2: Simplify |1 — /3]
We know that v/3 =~ 1.732, so:

1-vV3~1-1.732=—-0.732

Since the result is negative, the absolute value is:
I1-v3=v3-1

##H# Step 3: Simplify (7 — 2023)0
Any non-zero number raised to the power of 0 is 1. Since 7 ~ 3.1416, and m — 2023 # 0, we have:

(r—2023)° =1

#i## Step 4: Add all the simplified parts
Now, add the three parts together:

VI2+ 11— V3| + (r—2023)° =2v3+ (vV3—1) +1
Simplify:

2V3+vV3—-1+1=3V3

### Final Answer:

3v3

Case 4: Mathematical Expression Calculation: Solving the expression involving square roots, absolute
values, and exponentiation. The table provides a detailed breakdown of the problem-solving steps
and the corresponding Python code implementation.
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Tangency Condition of Line and Parabola

Problem:
Given the line x — y — 1 = 0 and the parabola y = az? are tangent to each other, find the value of a.
Code:

import sympy as sp

def find_tangent_coefficient():
X, ¥y, a = sp.symbols(’x, y,a’)
line_eq = x -y - 1
parabola_eq = y - a*x*x2
# Substitute y from the line equation into the parabola equation
substituted_eq = parabola_eq.subs(y, x - 1)
# Simplify the equation
simplified_eq = sp.simplify(substituted_eq)
# For the line and parabola to be tangent, the quadratic equation must have
exactly one solution.

discriminant = sp.discriminant(simplified_eq, x)
# Solve for a
a_value = sp.solve(discriminant, a)

return a_value [0]

# Represent the input as a dictionary named ’input’

input = {}
# Call the function with the input dictionary, assign the result to ’output’
output = find_tangent_coefficient (x*xinput)

# Print the output
print (output)

Solution:

We are given:

-A*line**: x —y —1=0

- A **parabola**: y = az?

We are told that the **line and the parabola are tangent to each other**, which means they intersect at **exactly one point** (i.e., the
system has exactly one solution).

### Step 1: Solve the system of equations

We are given:

lLz—y—-1=0=>y=2—-1

2.y = ax?

Substitute the expression for y from the line into the parabola:

2
r—1=azx

Rewriting:
2
ar” —x+1=0
This is a **quadratic equation** in x:
awz —z+1=0
#it# Step 2: Use the condition for tangency
For the line and the parabola to be **tangent**, the quadratic equation must have **exactly one solution**. That means the

*#*discriminant** of the quadratic must be zero.
Recall that for a quadratic ax? + bx + ¢ = 0, the discriminant is:

A = b — dac
In our case, the quadratic is:

aa)2 —z+1=0
So:
a=ab=—-1,c=1
Now compute the discriminant:
A= (=12 —-4(a)(1) =1—4a
Set the discriminant equal to zero (for tangency):
1—4a=0

Solve for a:

1
da=1=a=—
4

1
4

Case 5: Tangency Condition of Line and Parabola: Finding the value of a for the line and parabola to
be tangent.

### Final Answer:
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist'",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope?

Answer: [Yes]

Justification: In the abstract and Section[I] we claimed our contribution and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not

attained by the paper.
2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Appendix [E} we discuss the limitations of our method.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.
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* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a

complete (and correct) proof?

Answer: [NA]

Justification: Our work is not strictly a purely theoretical work.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-

mental results of the paper to the extent that it affects the main claims and/or conclusions of the

paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided detailed descriptions of the experimental model, data and imple-

mentation in Sectiond.1]and Appendix [B]

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
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results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to

faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Most of the data we used are available in the public. we provide an anonymized url

to share our code.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

» While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if

applicable).

Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,

how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All details are provided in the main paper and Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate

information about the statistical significance of the experiments?

Answer:
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Justification: In both the main paper and the appendix, we conducted extensive experiments.

However, due to resource limitations, we do not report error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: In Appendix [B] we specify the computational resources used for the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS

Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal

impacts of the work performed?

Answer: [NA|

Justification: The purpose of this paper is to explore data synthesis for LLM reasoning. Therefore,

it does not pose any societal impacts.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,

or scraped datasets)?

Answer: [NA|

Justification: The paper poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the

paper, properly credited and are the license and terms of use explicitly mentioned and properly

respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the paper,

have been properly credited and the license and terms of use have been explicitly mentioned and

properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

32


paperswithcode.com/datasets

14.

15.

16.

» If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

. New assets

Question: Are new assets introduced in the paper well documented and is the documentation

provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new dataset and models, both of which are well documented.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as well as

details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals

(or an equivalent approval/review based on the requirements of your country or institution) were

obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-

standard component of the core methods in this research? Note that if the LLM is used only for

writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:
» The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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