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ABSTRACT

Fairness in predictions is of direct importance in practice due to legal, ethical,
and societal reasons. It is often achieved through counterfactual fairness, which
ensures that the prediction for an individual is the same as that in a counterfac-
tual world under a different sensitive attribute. However, achieving counterfac-
tual fairness is challenging as counterfactuals are unobservable. In this paper, we
develop a novel deep neural network called Generative Counterfactual Fairness
Network (GCFN) for making predictions under counterfactual fairness. Specifi-
cally, we leverage a tailored generative adversarial network to directly learn the
counterfactual distribution of the descendants of the sensitive attribute, which we
then use to enforce fair predictions through a novel counterfactual mediator regu-
larization. We further provide theoretical guarantees that our method is effective
in ensuring the notion of counterfactual fairness. Thereby, our GCFN addresses
key shortcomings of existing baselines that are based on inferring latent variables,
yet which (a) are potentially correlated with the sensitive attributes and thus lead
to bias, (b) have weak capability in constructing latent representations and thus
low prediction performance, and (c) do not have theoretical guarantees. Across
various experiments, our method achieves state-of-the-art performance. Using a
real-world case study from recidivism prediction, we further demonstrate that our
method makes meaningful predictions in practice.

1 INTRODUCTION

Fairness in machine learning is mandated for a large number of practical applications due to legal,
ethical, and societal reasons (Angwin et al., 2016; Barocas & Selbst, 2016; De Arteaga et al., 2022;
Feuerriegel et al., 2020; Kleinberg et al., 2019; von Zahn et al., 2022). Examples are predictions in
credit lending or recidivism prediction, where fairness is mandated by anti-discrimination laws.

In this paper, we focus on the notion of counterfactual fairness (Kusner et al., 2017). The notion of
counterfactual fairness has recently received significant attention (e.g., Abroshan et al., 2022; Garg
et al., 2019; Grari et al., 2023; Kim et al., 2021; Kusner et al., 2017; Ma et al., 2023; Xu et al., 2019).
One reason is that counterfactual fairness directly relates to legal terminology in that a prediction is
fair towards an individual if the prediction does not change had the individual belonged to a differ-
ent demographic group defined by some sensitive attribute (e.g., gender, race). However, ensuring
counterfactual fairness is challenging as, in practice, counterfactuals are generally unobservable.

Prior works have developed methods for achieving counterfactual fairness in predictive tasks (see
Sec. 2). Originally, Kusner et al. (2017) described a conceptual algorithm to achieve counterfactual
fairness. Therein, the idea is to first estimate a set of latent (background) variables and then train
a prediction model without using the sensitive attribute or its descendants. More recently, the con-
ceptual algorithm has been extended through neural methods, where the latent variables are learned
using variational autoencoders (VAEs) (Grari et al., 2023; Kim et al., 2021; Pfohl et al., 2019).
However, these methods have key shortcomings: (a) the learned representation can be potentially
correlated with the sensitive attributes, which thus leads to bias; (b) VAEs have weak capability
in constructing latent representations, which leads to a low prediction performance; and (c) have
no theoretical guarantees. We address the shortcomings (a), (b), and (c) in our proposed method
through the theoretical properties of our counterfactual mediator regularization and our tailored
GAN, respectively.
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In this paper, we present a novel deep neural network called Generative Counterfactual Fairness Net-
work (GCFN) for making predictions under counterfactual fairness. Our method leverages a tailored
generative adversarial network to directly learn the counterfactual distribution of the descendants of
the sensitive attribute. We then use the generated counterfactuals to enforce fair predictions through
a novel counterfactual mediator regularization. We further provide theoretical guarantees that our
method is effective in ensuring the notion of counterfactual fairness.

Overall, our main contributions are as follows:1 (1) We propose a novel deep neural network for
achieving counterfactual fairness in predictions, which addresses key limitations of existing base-
lines. (2) We further show that, if the counterfactual distribution is learned sufficiently well, our
method is guaranteed to ensure counterfactual fairness. (3) We demonstrate that our GCFN achieves
the state-of-the-art performance. We further provide a real-world case study of recidivism prediction
to show that our method gives meaningful predictions in practice.

2 RELATED WORK

Several research streams are relevant to our work, and we briefly discuss them in the following:
(1) fairness notions for predictions, (2) methods for counterfactual fairness, (3) generative models
for fair synthetic datasets, and (4) generative models for estimating causal effects.

Fairness notions for predictions: Over the past years, the machine learning community has de-
veloped an extensive series of fairness notions for predictive tasks so that one can train unbiased
machine learning models; see Appendix B for a detailed overview. In this paper, we focus on coun-
terfactual fairness (Kusner et al., 2017), due to its relevance in practice (Barocas & Selbst, 2016;
De Arteaga et al., 2022).

Predictions under counterfactual fairness: Originally, Kusner et al. (2017) introduced a concep-
tual algorithm to achieve predictions under counterfactual fairness. The idea is to first infer a set
of latent background variables and subsequently train a prediction model using these inferred latent
variables and non-descendants of sensitive attributes. However, the conceptual algorithm requires
knowledge of the ground-truth structural causal model, which makes it impractical.

State-of-the-art approaches build upon the above idea but integrate neural learning techniques, typ-
ically by using VAEs. These are mCEVAE (Pfohl et al., 2019), DCEVAE (Kim et al., 2021), and
ADVAE (Grari et al., 2023). In general, these methods proceed by first computing the posterior dis-
tribution of the latent variables, given the observational data and a prior on latent variables. Based on
that, they compute the implied counterfactual distributions, which can either be utilized directly for
predictive purposes or can act as a constraint incorporated within the training loss. Further details
are in Appendix B. In sum, the methods in Grari et al. (2023); Kim et al. (2021); Pfohl et al. (2019)
are our main baselines.

However, the above methods have three main shortcomings. (a) The inferred latent variables can
be potentially correlated with sensitive attributes because some information from sensitive attributes
can leak into latent variables. This could introduce bias in the prediction. (b) It is commonly as-
sumed that the prior distribution of latent variables follows a standard Gaussian in VAEs. However,
this might be inadequate for capturing complex distributions, potentially leading to imprecise ap-
proximations of counterfactual distributions and thus overall low prediction performance. (c) The
methods have no theoretical guarantees. In particular, the latent variable U in VAE-based methods
is not identifiable.2 In our method, we later address (a) through the theoretical properties of our
counterfactual mediator regularization and (b) through our tailored GAN. To address (c), we further
provide theoretical guarantees that our method is effective in ensuring the notion of counterfactual
fairness.

1Codes are in the anonymous GitHub: https://anonymous.4open.science/r/gcfn. Codes
will also be available to a public GitHub repository upon acceptance.

2In causal inference, “identifiability” refers to a mathematical condition that permits a causal quantity to
be measured from observed data (Pearl, 2009). Importantly, identification is different from estimation because
methods that act as heuristics may return estimates but they do not correspond to the true value. For the latter,
see D’Amour (2019) where the authors provide several concerns that, if a latent variable is not unique, it is
possible to have local minima, which leads to unsafe results in causal inference.
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Generating fair synthetic datasets: A different literature stream has used generative models to
create fair synthetic datasets (e.g., van Breugel et al., 2021; Xu et al., 2018; Rajabi & Garibay,
2022; Xu et al., 2019). Importantly, the objective here is different from ours, namely, predictions
under counterfactual fairness. Still, one could potentially adapt these methods to our task by first
learning a fair dataset and then training a prediction model. We thus later adapt the procedure for our
evaluation. Several methods focus on fairness notions outside of counterfactual fairness and are thus
not applicable. We are only aware of one method called CFGAN (Xu et al., 2019) which is aimed
at counterfactual fairness, and we later use it as a baseline. While CFGAN also employs GANs, its
architecture is vastly different from our method. Besides, CFGAN uses the GAN to generate entirely
synthetic data, while we use the GAN to generate counterfactuals of the mediator (see Appendix B
for details). Moreover, baselines based on fair synthetic datasets have crucial limitations for our
task: they learn the predictions not from the original but from the transformed dataset, which leads
to information loss and thus a low prediction performance.

Deep generative models for estimating causal effects: There are many papers that leverage gener-
ative adversarial networks and variational autoencoders to estimate causal effects from observational
data (Kocaoglu et al., 2018; Louizos et al., 2017; Pawlowski et al., 2020; Yoon et al., 2018; Bica
et al., 2020). We later borrow some ideas of modeling counterfactuals through deep generative
models, yet we emphasize that those methods aim at estimating causal effects but without fairness
considerations.

Research gap: Existing baselines that are based on inferring latent variables, can have the problems
that latent variables are potentially correlated with the sensitive attributes and thus lead to bias and
that have weak capability in constructing latent representations and thus low prediction performance.
As a remedy, we develop a novel deep neural network called Generative Counterfactual Fairness
Network (GCFN) that addresses those shortcomings. We directly learn the counterfactual distribu-
tion through a tailored generative adversarial network and enforce counterfactual fairness through a
novel counterfactual mediator regularization. To the best of our knowledge, ours is the first neural
method for counterfactual fair predictions with theoretical guarantees.

3 PROBLEM SETUP

Notation: Capital letters such as X,A,M denote random variables and small letters x, a,m denote
their realizations from corresponding domains X ,A,M. Further, P(M) = PM is the probability
distribution of M ; P(M ∣ A = a ) is a conditional (observational) distribution; P (Ma) the inter-
ventional distribution on M when setting A to a; and P (Ma′ ∣ A = a,M =m) the counterfactual
distribution of M had A been set to a′ given evidence A = a and M =m.

X

MA Y

Figure 1: Causal graph.
The nodes represent:
sensitive attribute, A;
covariate, X; mediator,
M ; target, Y . Ð→
represents direct causal
effect; ⇠⇢ represents
potential presence of
hidden confounders.4

Our causal graph is shown in Fig 1, where the nodes represent: sensi-
tive attribute A ∈ A; mediators M ∈ M, which are possibly causally
influenced by the sensitive attribute; covariates X ∈ X , which are not
causally influenced by the sensitive attribute; and a target Y ∈ Y . In our
setting, A can be a categorical variable with multiple categories k and X
andM can be multi-dimensional. For ease of notation, we use k = 2, i.e.,
A = {0,1}, to present our method below. Our method can be easily ex-
tended to scenarios where the sensitive attribute has multiple categories
(see Appendix G.

We use the potential outcomes framework (Rubin, 1974) to estimate
causal quantities from observational data. Under our causal graph, the
dependence of M on A implies that changes in the sensitive attribute A
mean also changes in the mediator M . We use subscripts such as Ma

to denote the potential outcome of M when intervening on A. Similarly, Ya denotes the potential
outcome of Y . Furthermore, for k = 2, A is the factual, and A′ is the counterfactual outcome of the
sensitive attribute.

4The dashed line allows for a correlation between X and A in our framework. Note that, if there is no
dashed edge between X and A, it is actually a stronger assumption, because it forbids the edge between X
and A to have any hidden confounders. However, our setting is more general and allows for the existence of
confounders (see Appendix H.1 for an experimental analysis).
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Figure 2: Overview of our GCFN for achieving counterfactual fairness in predictions. Step 1: The
generator G takes (X,A,M) as input and outputs M̂A and M̂A′ . The discriminator D differentiates
the observed factual mediator M from the generated counterfactual mediator M̂A′ . Step 2: We then
use generated counterfactual mediator M̂A′ in our counterfactual mediator regularizationRcm. The
counterfactual mediator regularization Rcm enforces the prediction model h to be counterfactual
fairness.

Our model follows standard assumptions necessary to identify causal queries (Rubin, 1974).
(1) Consistency: The observed mediator is identical to the potential mediator given a certain sensi-
tive attribute. Formally, for each unit of observation, A = a⇒M =Ma. (2) Overlap: For all x such
that P(X = x) > 0, we have 0 < P (A = a ∣X = x) < 1, ∀a ∈ A. (3) Unconfoundedness: Conditional
on covariates X , the potential outcome Ma is independent of sensitive attribute A, i.e. Ma ⊥⊥ A ∣X .
We discuss the theoretical guarantee on identifiablity of counterfactuals under bijective generation
mechanisms (BGMs) (Nasr-Esfahany et al., 2023; Melnychuk et al., 2023) in Appendix C.

Objective: In this paper, we aim to learn the prediction of a target Y to be counterfactual fair
with respect to some given sensitive attribute A so that it thus fulfills the notion of counterfactual
fairness (Kusner et al., 2017). Let h(X,M) = Ŷ denote the predicted target from some prediction
model, which only depends on covariates and mediators. Formally, our goal is to have h achieve
counterfactual fairness if under any context X = x, A = a, and M =m, that is,

P (h(x,Ma) ∣X = x,A = a,M =m) = P (h(x,Ma′) ∣X = x,A = a,M =m) . (1)

This equation illustrates the need to care about the counterfactual mediator distribution. Under the
consistency assumption, the right side of the equality simplifies to the delta (point mass) distribution
δ (h(x,m)).

4 GENERATIVE COUNTERFACTUAL FAIRNESS NETWORK

Overview: Here, we introduce our proposed method called Generative Counterfactual Fairness
Network (GCFN). An overview of our method is in Fig. 2. GCFN proceeds in two steps: Step 1 uses
a significantly modified GAN to learn the counterfactual distribution of the mediator. Step 2 uses
the generated counterfactual mediators from the first step together with our counterfactual mediator
regularization to enforce counterfactual fairness. The pseudocode is in Appendix D.

Why do we need counterfactuals of the mediator? Different from existing methods for causal effect
estimation (Bica et al., 2020; Yoon et al., 2018), we are not interested in obtaining counterfactuals
of the target Y . Instead, we are interested in counterfactuals for the mediator M , which captures
the entire influence of the sensitive attribute and its descendants on the target. Thus, by training the
prediction model with our counterfactual mediator regularization, we remove the information from
the sensitive attribute to ensure fairness while keeping the rest useful information of data to maintain
high prediction performance. What is the advantage of using a GAN in our method? The GAN
in our method enables us to directly learn transformations of factual mediators to counterfactuals
without the intermediate step of inferring latent variables. As a result, we eliminate the need for
the abduction-action-prediction procedure (Pearl, 2009) and avoid the complexities and potential
inaccuracies of inferring and then using latent variables for prediction.
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4.1 STEP 1: GAN FOR GENERATING COUNTERFACTUAL OF THE MEDIATOR

In Step 1, we aim to generate counterfactuals of the mediator (since the ground-truth counterfac-
tual mediator is unavailable). Our generator G produces the counterfactual of the mediators given
observational data. Concurrently, our discriminator D differentiates the factual mediator from the
generated counterfactual mediators. This adversarial training process encourages G to learn the
counterfactual distribution of the mediator.

4.1.1 COUNTERFACTUAL GENERATOR G

The objective of the generator G is to learn the counterfactual distribution of the mediator, i.e.,
P (Ma′ ∣X = x,A = a,M =m). Formally, G ∶ X × A ×M → M. G takes the factual sensitive
attribute A, the factual mediator M , and the covariates X as inputs, sampled from the joint (obser-
vational) distribution PX,A,M , denoted as Pf for short. G outputs two potential mediators, M̂0 and
M̂1, from which one is factual and the other is counterfactual. For notation, we use G (X,A,M) to
refer to the output of the generator. Thus, we have

G (X,A,M)a = M̂a for a ∈ {0,1} (2)

In our generator G, we intentionally output not only the counterfactual mediator but also the factual
mediator, even though the latter is observable. The reason is that we can use it to further stabilize
the training of the generator. For this, we introduce a reconstructive loss Lf , which we use to ensure
that the generated factual mediator M̂A is similar to the observed factual mediator M . Formally, we
define the reconstruction loss

Lf(G) = E(X,A,M)∼Pf
[∥M −G (X,A,M)A∥

2
2] , (3)

where ∥ ⋅ ∥2 is the L2-norm.

4.1.2 COUNTERFACTUAL DISCRIMINATOR D

The discriminator D is carefully adapted to our setting. In an ideal world, we would have D dis-
criminate between real vs. fake counterfactual mediators; however, the counterfactual mediators are
not observable. Instead, we train D to discriminate between factual mediators vs. generated coun-
terfactual mediators. Note that this is different from the conventional discriminators in GANs that
seek to discriminate real vs. fake samples (Goodfellow et al., 2014a). Formally, our discriminator
D is designed to differentiate the factual mediator M (as observed in the data) from the generated
counterfactual mediator M̂A′ (as generated by G).

We modify the output ofG before passing it as input toD: We replace the generated factual mediator
M̂A with the observed factual mediator M . We denote the new, combined data by G̃ (X,A,M),
which is defined via

G̃ (X,A,M)a = {
M, if A = a,
G (X,A,M)a , if A = a′, for a ∈ {0,1}. (4)

The discriminator D then determines which component of G̃ is the observed factual mediator and
thus outputs the corresponding probability. Formally, for the input (X, G̃), the output of the dis-
criminator D is

D (X, G̃)
a
= P̂ (M = G̃a ∣X, G̃) = P̂ (A = a ∣X, G̃) for a ∈ {0,1}. (5)

4.1.3 ADVERSARIAL TRAINING OF OUR GAN

Our GAN is trained in an adversarial manner: (i) the generator G seeks to generate counterfactual
mediators in a way that minimizes the probability that the discriminator can differentiate between
factual mediators and counterfactual mediators, while (ii) the discriminator D seeks to maximize
the probability of correctly identifying the factual mediator. Put simply, by viewing A as the true
label in a classification class, our loss is like the cross-entropy loss for the classification task . We
thus use an adversarial loss Ladv

5
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Ladv(G,D) = E(X,A,M)∼Pf
[log (D(X, G̃ (X,A,M))A)] . (6)

Overall, our GAN is trained through an adversarial training procedure with a minimax problem as

min
G

max
D
Ladv(G,D) + αLf(G), (7)

with a hyperparameter α on Lf .

We provide a theoretical justification for our GAN in Appendix C. Therein, we show that,
under mild identifiability conditions, the counterfactual distribution of the mediator, i.e.,
P (Ma′ ∣X = x,A = a,M =m), is consistently estimated by our GAN.

4.2 STEP 2: COUNTERFACTUAL FAIR PREDICTION THROUGH COUNTERFACTUAL MEDIATOR
REGULARIZATION

In Step 2, we use the output of the GAN to train a prediction model under counterfactual fairness in
a supervised way. For this, we introduce our counterfactual mediator regularization that enforces
counterfactual fairness w.r.t the sensitive attribute. Let h denote our prediction model (e.g., a neural
network). We define our counterfactual mediator regularizationRcm(h) as

Rcm(h) = E(X,A,M)∼Pf
[∥h (X,M) − h (X,M̂A′)∥

2

2
] . (8)

Our counterfactual mediator regularization has three important characteristics: (1) It is non-trivial.
Different from traditional regularization, ourRcm is not based on the representation of the prediction
model h but it involves a GAN-generated counterfactual M̂A′ that is otherwise not observable.
(2) Our Rcm is not used to constrain the learned representation (e.g., to avoid overfitting) but it
is used to change the actual learning objective to achieve the property of counterfactual fairness.
(3) OurRcm fulfills theoretical properties (see Sec. 4.3). Specifically, we show later that, under some
conditions, our regularization actually optimizes against counterfactual fairness and thus should
learn our task as desired.

The overall loss L(h) is as follows. We fit the prediction model h using a cross-entropy loss Lce(h).
We further integrate the above counterfactual mediator regularization Rcm(h) into our overall loss
L(h). For this, we introduce a weight λ ≥ 0 to balance the trade-off between prediction performance
and the level of counterfactual fairness. Formally, we have

L(h) = Lce(h) + λRcm(h). (9)

A large value of λ increases the weight ofRcm, thus leading to a prediction model that is strict with
regard to counterfactual fairness, while a lower value allows the prediction model to focus more on
producing accurate predictions. As such, λ offers additional flexibility to decision-makers as they
tailor the prediction model based on the fairness needs in practice.

4.3 THEORETICAL ANALYSIS

Below, we provide theoretical analysis to show that our proposed counterfactual mediator regular-
ization is effective in ensuring counterfactual fairness for predictions. Following Grari et al. (2023),
we measure the level of counterfactual fairness CF via E [∥(h (X,M) − h (X,MA′))∥22]. It is
straightforward to see that, the smaller CF is, the more counterfactual fairness the prediction model
achieves.

We show that by empirically measuring our generated counterfactual of the mediator, we can thus
quantify to what extent counterfactual fairness CF is fulfilled in the prediction model. We give an
upper bound in the following lemma.
Lemma 1 (Counterfactual mediator regularization bound). Given the prediction model h that is
Lipschitz continuous with a Lipschitz constant C, we have

E [∥(h(X,M) − h(X,MA′)∥22] ≤ C E [∥MA′ − M̂A′∥
2

2
] +Rcm(h). (10)

Proof. See Appendix C.

6



Under review as a conference paper at ICLR 2024

The inequality in Lemma 1 states that the influence from the sensitive attribute on the target variable
is upper-bounded by (i) the estimation of counterfactual mediators (first term) and (ii) the counter-
factual mediator regularization (second term).

Given Lemma 1, the natural question arises under which conditions our generator produces consis-
tent counterfactuals and thus leads to the correct estimation of the counterfactual mediator. There-
fore, we give a theoretical guarantee for estimating the counterfactual distribution in the following
lemma. This is a new theoretical result regarding counterfactual identifiability with GANs. To the
best of our knowledge, we are the first to give such a theoretical guarantee on the generated coun-
terfactual with GANs.
Lemma 2 (Consistent estimation of the counterfactual distribution with GAN). Let the observa-
tional distribution PX,A,M = Pf be induced by an SCMM = ⟨V,U,F ,P(U)⟩ with

V = {X,A,M,Y }, U = {UXA, UM , UY },
F = {fX(uXA), fA(x,uXA), fM(x, a, uM), fY (x,m,uY )}, P(U) = P(UXA)P(UM)P(UY ),

and with the causal graph as in Figure 1. Let M ⊆ R and fM be a bijective generation mecha-
nism (BGM) (Nasr-Esfahany et al., 2023; Melnychuk et al., 2023), i.e., fM is a strictly increasing
(decreasing) continuously-differentiable transformation wrt. uM . Then:

1. The counterfactual distribution of the mediator simplifies to one of two possible point mass
distributions

P(Ma′ ∣X = x,A = a,M =m) = δ(F−1(±F(m;x, a) ∓ 0.5 + 0.5;x, a′)), (11)

where F(⋅;x, a) and F−1(⋅;x, a) are a CDF and an inverse CDF of P(M ∣ X = x,A = a),
respectively, and δ(⋅) is a Dirac-delta distribution;

2. If the generator of GAN is a continuously differentiable function with respect to M , then it
consistently estimates the counterfactual distribution of the mediator, P(Ma′ ∣ X = x,A =
a,M =m).

Proof. See Appendix C.

Remark 1. We proved that the generator converges to one of the two BGM solutions in Eq. 11.
Notably, the difference between the two solutions is negligibly small, when the conditional standard
deviation of the mediator is small.

Lemma 2 states that our generator consistently estimates the counterfactual distribution of the me-
diator P(Ma′ ∣ X = x,A = a,M = m). It gives a guarantee that the generated counterfactual
mediators are correctly estimated, which is the first term of the upper bound in Lemma 1. Hence,
by reducing the second term Rcm through minimizing our training loss in Eq. 9, we can effectively
enforce the predictor to be more counterfactual fair.5

5 EXPERIMENTS

5.1 SETUP

Baselines: We compare our method against the following state-of-the-art approaches: (1) CFAN
(Kusner et al., 2017): Kusner et al.’s algorithm with additive noise where only non-descents of sen-
sitive attributes and the estimated latent variables are used for prediction; (2) CFUA (Kusner et al.,
2017): a variant of the algorithm which does not use the sensitive attribute or any descents of the
sensitive attribute; (3) mCEVAE (Pfohl et al., 2019): adds a maximum mean discrepancy to regu-
larize the generations in order to remove the information the inferred latent variable from sensitive
information; (4) DCEVAE (Kim et al., 2021): a VAE-based approach that disentangles the exoge-
nous uncertainty into two variables; (5) ADVAE (Grari et al., 2023): adversarial neural learning
approach which should be more powerful than penalties from maximum mean discrepancy but is
aimed the continuous setting; (6) HSCIC (Quinzan et al., 2022): originally designed to enforces
the predictions to remain invariant to changes of sensitive attributes using conditional kernel mean

5Details how we ensure Lipschitz continuity in h are in Appendix F.
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embeddings but which we adapted for counterfactual fairness. We also adapt applicable baselines
from fair dataset generation: (7) CFGAN (Xu et al., 2019): which we extend with a second-stage
prediction model. Details are in Appendix F.

Performance metrics: Methods for causal fairness aim at both: (i) achieve high accuracy while
(ii) ensuring causal fairness, which essentially yields a multi-criteria decision-making problem. To
this end, we follow standard procedures and reformulate the multi-criteria decision-making prob-
lem using a utility function Uγ(accuracy ,CF) ∶ R2 ↦ R, where CF is the metric for measur-
ing counterfactual fairness from Sec. 4.3. We define the utility function as Uγ(accuracy ,CF) =
accuracy − γ × CF with a given utility weight γ. A larger utility Uγ is better. The weight γ de-
pends on the application and is set by the decision-maker; here, we report results for a wide range
of weights γ ∈ {0.1, . . . ,1.0}.
Implementation details: We implement our GCFN in PyTorch. Both the generator and the dis-
criminator are designed as deep neural networks. We use LeakyReLU, batch normalization in the
generator for stability, and train the GAN for 300 epochs with 256 batch size. The prediction model
is a multilayer perceptron, which we train for 30 epochs at a 0.005 learning rate. Since the utility
function considers two metrics, the weight λ is set to 0.5 to get a good balance. More implementa-
tion details and hyperparameter tuning are in Appendix F.

5.2 RESULTS FOR (SEMI-)SYNTHETIC DATASETS

We explicitly focus on (semi-)synthetic datasets, which allow us to compute the true counterfactuals
and thus validate the effectiveness of our method.
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Figure 3: Results for (semi-)synthetic datasets. Left: fully-synthetic dataset. Center: semi-synthetic
dataset with sigmoid function. Right: with sin function. A larger utility is better. Shown: mean ±
std over 5 runs.

Setting: (1) We follow previous works that simulate a fully synthetic dataset for performance evalu-
ations (Kim et al., 2021; Quinzan et al., 2022). We simulate sensitive attributes and target to follow
a Bernoulli distribution with the sigmoid function while the mediator is generated from a function of
the sensitive attribute, covariates, and some Gaussian noise. (2) We use the Law School (Wightman,
1998) dataset to predict whether a candidate passes the bar exam and where gender is the sensi-
tive attribute. The mediator uses a linear combination together with a sigmoid function. The target
variable is generated from the Bernoulli distribution with a probability calculated by a function of
covariates, mediator, and noise. (3) We follow the previous dataset but, instead of a sigmoid func-
tion, we generate the mediator via a sin function. The idea behind this is to have a more flexible
data-generating function, which makes it more challenging to learn latent variables. For all datasets,
we use 20% as a test set. Further details are in Appendix E.

Table 1: Our GCFN can learn the distribution
of the counterfactual mediator. The normalized
MSE(MA′ ,M̂A′ ) is ≈ 0, showing the generated
counterfactual mediator is similar to the ground-
truth counterfactual mediator. In contrast, both the
factual and the generated counterfactual mediator
are highly dissimilar.

Synthetic Semi-syn. (sigmoid) Semi-syn. (sin)

MSE(M , MA′ ) 1.00±0.00 1.00±0.00 1.00±0.00

MSE(M , M̂A′ ) 1.00±0.005 1.00±0.003 1.01±0.004

MSE(MA′ , M̂A′ ) 0.01±0.002 0.02±0.001 0.03±0.001

M : ground-truth factual mediator; MA′ : ground-truth counterfactual
mediator; M̂A′ : generated counterfactual mediator

Results: Results are shown in Fig. 3. We
make the following findings. (1) Our GCFN
performs best. (2) Compared to the baselines,
the performance gain from our GCFN is large
(up to ∼30%). (3) The performance gain for
our GCFN tends to become larger for larger γ.
(4) Most baselines in the semi-synthetic dataset
with sin function have a large variability across
runs as compared to our GCFN, which fur-
ther demonstrates the robustness of our method.
(5) Conversely, the strong performance of our
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GCFN in the semi-synthetic dataset with sin function demonstrates that our tailed GAN can even
capture complex counterfactual distributions.

Additional insights: As an additional analysis, we now provide further insights into how our GCFN
operates. Specifically, one may think that our GCFN simply learns to reproduce factual mediators
in the GAN rather than actually learning the counterfactual mediators. However, this is not the
case. To show this, we compare the (1) the factual mediator M , (2) the ground-truth counterfactual
mediator MA′ , and (3) the generated counterfactual mediator M̂A′ . The normalized mean squared
error (MSE) between them is in Table 1. We find: (1) The factual mediator and the generated
counterfactual mediator are highly dissimilar. This is shown by a normalized MSE(M,M̂A′) of
≈ 1. (2) The ground-truth counterfactual mediator and our generated counterfactual mediator are
highly similar. This shown by a normalized MSE(MA′ , M̂A′) of close to zero. In sum, our GCFN
is effective in learning counterfactual mediators (and does not reproduce the factual data).

5.3 RESULTS FOR REAL-WORLD DATASETS

We now demonstrate the applicability of our method to real-world data. Since ground-truth counter-
factuals are unobservable for real-world data, we refrain from benchmarking, but, instead, we now
provide additional insights to offer a better understanding of our method.

5.3.1 RESULTS FOR UCI ADULT DATASET
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Figure 4: Density of the predicted target vari-
able (salary) across male vs. female, where the
idea is that similar distributions should be fairer.
Left: w/o our counterfactual mediator regulariza-
tion. Right: w/ our counterfactual mediator regu-
larization.

Setting: We use UCI Adult (Asuncion & New-
man, 2007) to predict if individuals earn a cer-
tain salary but where gender is a sensitive at-
tribute. Further details are in Appendix E.

Insights: To better understand the role of
our counterfactual mediator regularization, we
trained prediction models both with and with-
out applying Rcm. Our primary focus is to
show the shifts in the distribution of the pre-
dicted target variable (salary) across the sensi-
tive attribute (gender). The corresponding den-
sity plots are in Fig. 4. One would expect the
distributions for males and females should be
more similar if the prediction is fairer. However, we do not see such a tendency for a prediction
model without our counterfactual mediator regularization. In contrast, when our counterfactual me-
diator regularization is used, both distributions are fairly similar as desired. Further visualizations
are in Appendix H.
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Figure 5: Trade-off between accu-
racy (ACC) and counterfactual fairness
(CF) across different fairness weights λ.
ACC: the higher (↑) the better. CF: the
lower (↓) the better. Shown: mean ± std
over 5 runs.

Accuracy and fairness trade-off: We vary the fairness
weight λ from 0 to 1 to see the trade-off between predic-
tion performance and the level of counterfactual fairness.
Since the ground-truth counterfactual is not available for
the real-world dataset, we use the generated counterfac-
tual to measure counterfactual fairness on the test dataset.
The results are in Fig. 5. In line with our expectations, we
see that larger values for λ lead the predictions to be more
strict w.r.t counterfactual fairness, while lower values al-
low the predictions to have greater accuracy. Hence, the
fairness weight λ offers flexibility to decision-makers, so
that they can tailor our method to the fairness needs in
practice.

5.3.2 RESULTS ON COMPAS DATASET

Setting: We use the COMPAS dataset (Angwin et al., 2016) to predict recidivism risk of criminals
and where race is a sensitive attribute. The dataset also has a COMPAS score for that purpose, yet
it was revealed to have racial biases (Angwin et al., 2016). In particular, black defendants were
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frequently overestimated of their risk of recidivism. Motivated by this finding, we focus our efforts
on reducing such racial biases. Further details about the setting are in Appendix E.

Table 2: Comparison of predictions against
actual reoffenses.

Method ACC PPV FPR FNR

COMPAS 0.6644 0.6874 0.4198 0.2689
GCFN (ours) 0.6753 0.7143 0.3519 0.3032
ACC (accuracy); PPV (positive predictive value);
FPR (false positive rate); FNR (false negative rate).

Insights: We first show how our method adds more
fairness to real-world applications. For this, we com-
pare the recidivism predictions from the criminal jus-
tice process against the actual reoffenses two years
later. Specifically, we compute (i) the accuracy of the
official COMPAS score in predicting reoffenses and
(ii) the accuracy of our GCFN in predicting the out-
comes. The results are in Table 2. We see that our GCFN has a better accuracy. More important
is the false positive rate (FPR) for black defendants, which measures how often black defendants
are assessed at high risk, even though they do not recidivate. Our GCFN reduces the FPR of black
defendants from 41.98% to 35.19%. In sum, our method can effectively decrease the bias towards
black defendants.
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Figure 6: Distribution of black defendants
that are treated differently using our GCFN.
Left: COMPAS score. Right: Prior charges.

We now provide insights at the defendant level to
better understand how black defendants are treated
differently by the COMPAS score vs. our GCFN.
Fig. 6 shows the number of such different treatments
across different characteristics of the defendants.
(1) Our GCFN makes oftentimes different predic-
tions for black defendants with a medium COMPAS
score around 4 and 5. However, the predictions for
black defendants with a very high or low COMPAS
score are similar, potentially because these are ‘clear-cut’ cases. (2) Our method arrives at signif-
icantly different predictions for patients with low prior charges. This is expected as the COMPAS
score overestimates the risk and is known to be biased (Angwin et al., 2016). Further insights are in
the Appendix H.

To exemplify the above, Fig. 7 shows two defendants from the data. Both primarily vary in their
race (black vs. white) and their number of prior charges (2 vs. 7). Interestingly, the COMPAS score
coincides with race, while our method makes predictions that correspond to the prior charges.

6 DISCUSSION

ID: 9297

Information
Name:  Melvin Thirsty
Age: 61
Race: African-American
Prior charges: 2
Charge degree: Misdemeanor
COMPAS score: 8   

Our GCFN prediction: Low Risk

ID: 319

Information
Name: Henry Nesbitt
Age: 56
Race: Caucasian
Prior charges: 7
Charge degree: Felony
COMPAS score: 1  

Our GCFN prediction: High Risk

Figure 7: Frequency of how often the
predictions from the COMPAS score
and our GCFN are different. Shown are
the frequency across different COM-
PAS scores (left) and different numbers
of prior charges (right).

Flexibility: Our method works with various data types.
In particular, it works with both discrete and multi-
dimensional sensitive attributes (see G). It can also be
straightforwardly extended to, e.g., continuous target
variables. Our further method offers to choose the
fairness-accuracy trade-off according to needs in prac-
tice. By choosing a large counterfactual fairness weight
λ, our method enforces counterfactual fairness in a strict
manner. Nevertheless, by choosing λ appropriately, our
method supports applications where practitioners seek a
trade-off between performance and fairness.

Limitations. We acknowledge that our method for coun-
terfactual fairness rests on mathematical assumptions, in line with prior work. Further, as with all
research on algorithmic fairness, we usher for a cautious, responsible, and ethical use. Sometimes,
unfairness may be historically ingrained and require changes beyond the algorithmic layer.

Conclusion: Our work provides a novel method for achieving predictions under counterfactual
fairness. Thanks to our combination of the counterfactual mediator regularization with GAN, our
GCFN addresses key shortcomings of existing baselines that are based on inferring latent variables,
and our GCFN thus achieves state-of-the-art performance. To the best of our knowledge, ours is the
first neural method for counterfactual fair predictions with theoretical guarantees.

10



Under review as a conference paper at ICLR 2024

REFERENCES

Mahed Abroshan, Mohammad Mahdi Khalili, and Andrew Elliott. Counterfactual fairness in syn-
thetic data generation. In NeurIPS 2022 Workshop on Synthetic Data for Empowering ML Re-
search, 2022.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias: There’s software used
across the country to predict future criminals and it’s biased against blacks. In ProPublica, 2016.

Arthur Asuncion and David Newman. UCI machine learning repository, 2007.

Elias Bareinboim, Juan D Correa, Duligur Ibeling, and Thomas Icard. On Pearl’s hierarchy and the
foundations of causal inference. In Probabilistic and causal inference: the works of Judea Pearl,
2022.

Solon Barocas and Andrew D. Selbst. Big data’s disparate impact. California Law Review, 2016.

Ioana Bica, James Jordon, and Mihaela van der Schaar. Estimating the effects of continuous-valued
interventions using generative adversarial networks. In NeurIPS, 2020.

L Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K Vishnoi. Classification with fairness
constraints: A meta-algorithm with provable guarantees. In FAacT, 2019.

Jiahao Chen, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, and Madeleine Udell. Fairness under
unawareness: Assessing disparity when protected class is unobserved. In FAacT, 2019.

Scott Chen and Ramesh Gopinath. Gaussianization. In NeurIPS, 2000.

Silvia Chiappa. Path-specific counterfactual fairness. In AAAI, 2019.

Alexander D’Amour. On multi-cause causal inference with unobserved confounding: Counterex-
amples, impossibility, and alternatives. In AISTATS, 2019.

Maria De Arteaga, Stefan Feuerriegel, and Maytal Saar.Tsechansky. Algorithmic fairness in business
analytics: Directions for research and practice. Production and Operations Management, 2022.

Pietro G Di Stefano, James M Hickey, and Vlasios Vasileiou. Counterfactual fairness: removing
direct effects through regularization. In arXiv preprint, 2020.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Innovations in Theoretical Computer Science Conference, 2012.

Jake Fawkes, Robin Evans, and Dino Sejdinovic. Selection, ignorability and challenges with causal
fairness. In Conference on Causal Learning and Reasoning. PMLR, 2022.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubra-
manian. Certifying and removing disparate impact. In KDD, 2015.

Stefan Feuerriegel, Mateusz Dolata, and Gerhard Schwabe. Fair ai: Challenges and opportunities.
Business & Information Systems Engineering, 62:379–384, 2020.

Sahaj Garg, Vincent Perot, Nicole Limtiaco, Ankur Taly, Ed H Chi, and Alex Beutel. Counterfactual
fairness in text classification through robustness. In AIES, 2019.

Ian Goodfellow, Jean Pouget.Abadie, Mehdi Mirza, Bing Xu, David Warde.Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014a.

Ian J. Goodfellow, Jean Pouget.Abadie, Mehdi Mirza, Bing Xu, David Warde.Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks (GAN), June 2014b.

Vincent Grari, Sylvain Lamprier, and Marcin Detyniecki. Adversarial learning for counterfactual
fairness. Machine Learning, 2023.

Nina Grgic.Hlaca, Muhammad Bilal Zafar, Krishna P Gummadi, and Adrian Weller. The case for
process fairness in learning: Feature selection for fair decision making. In NIPS Symposium on
Machine Learning and the Law, 2016.

11



Under review as a conference paper at ICLR 2024

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In
NeurIPS, 2016.

Matthew Joseph, Michael Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. Fair algorithms
for infinite and contextual bandits. arXiv preprint, 2016.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational autoen-
coders and nonlinear ica: A unifying framework. In AISTAS, 2020.

Hyemi Kim, Seungjae Shin, JoonHo Jang, Kyungwoo Song, Weonyoung Joo, Wanmo Kang, and
Il.Chul Moon. Counterfactual fairness with disentangled causal effect variational autoencoder. In
AAAI, 2021.

Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Cass R. Sunstein. Discrimination in the age
of algorithms. Journal of Legal Analysis, 2019.

Murat Kocaoglu, Christopher Snyder, Alexandros G Dimakis, and Sriram Vishwanath. CausalGAN:
Learning causal implicit generative models with adversarial training. In ICLR, 2018.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In NeurIPS,
2017.

Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling.
Causal effect inference with deep latent-variable models. In NeurIPS, 2017.

Jing Ma, Ruocheng Guo, Aidong Zhang, and Jundong Li. Learning for counterfactual fairness from
observational data. In KDD, 2023.

David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially fair and
transferable representations. In ICML, 2018.

David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Fairness through causal aware-
ness: Learning causal latent-variable models for biased data. In FAacT, 2019.

Karima Makhlouf, Sami Zhioua, and Catuscia Palamidessi. Survey on causal-based machine learn-
ing fairness notions. arXiv preprint, 2020.

Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Partial counterfactual identification of
continuous outcomes with a curvature sensitivity model. In NeurIPS, 2023.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Razieh Nabi and Ilya Shpitser. Fair inference on outcomes. In AAAI, 2018.

Arash Nasr-Esfahany, Mohammad Alizadeh, and Devavrat Shah. Counterfactual identifiability of
bijective causal models. In ICML, 2023.

Nick Pawlowski, Daniel Coelho de Castro, and Ben Glocker. Deep structural causal models for
tractable counterfactual inference. In NeurIPS, 2020.

Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys, 2009.

Stephen R. Pfohl, Tony Duan, Daisy Yi Ding, and Nigam H Shah. Counterfactual reasoning for fair
clinical risk prediction. In Machine Learning for Healthcare Conference, 2019.

Drago Plecko and Elias Bareinboim. Causal fairness analysis. In arXiv preprint, 2022.

Francesco Quinzan, Cecilia Casolo, Krikamol Muandet, Niki Kilbertus, and Yucen Luo. Learning
counterfactually invariant predictors. arXiv preprint, 2022.

Amirarsalan Rajabi and Ozlem Ozmen Garibay. Tabfairgan: Fair tabular data generation with gen-
erative adversarial networks. In Machine Learning and Knowledge Extraction, 2022.

Lucas Rosenblatt and R Teal Witter. Counterfactual fairness is basically demographic parity. In
AAAI, 2023.

12



Under review as a conference paper at ICLR 2024

Donald B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of Educational Psychology, 1974.

Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. Interventional fairness: Causal database
repair for algorithmic fairness. In International Conference on Management of Data, 2019.

Boris van Breugel, Trent Kyono, Jeroen Berrevoets, and Mihaela van der Schaar. DECAF: Gener-
ating fair synthetic data using causally-aware generative networks. In NeurIPS, 2021.

Moritz von Zahn, Stefan Feuerriegel, and Niklas Kuehl. The cost of fairness in ai: Evidence from
e-commerce. Business & Information Systems Engineering, 64:335–348, 2022.

Christina Wadsworth, Francesca Vera, and Chris Piech. Achieving fairness through adversarial
learning: an application to recidivism prediction. In arXiv preprint, 2018.

Linda F Wightman. LSAC National Longitudinal Bar Passage Study. LSAC Research Report Series.
In ERIC, 1998.

Kevin Xia, Yushu Pan, and Elias Bareinboim. Neural causal models for counterfactual identification
and estimation. In arXiv preprint, 2022.

Depeng Xu, Shuhan Yuan, Lu Zhang, and Xintao Wu. FairGAN: Fairness-aware generative adver-
sarial networks. In ICBD, 2018.

Depeng Xu, Yongkai Wu, Shuhan Yuan, Lu Zhang, and Xintao Wu. Achieving causal fairness
through generative adversarial networks. In IJCAI, 2019.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GANITE: Estimation of individualized
treatment effects using generative adversarial nets. In ICLR, 2018.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi. Fair-
ness constraints: Mechanisms for fair classification. In AISTATS, 2017.

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with adver-
sarial learning. In AIES, 2018.

13



Under review as a conference paper at ICLR 2024

A MATHEMATICAL BACKGROUND

Notation: Capital letters such as U denote a random variable and small letters u its realizations
from corresponding domains U . Bold capital letters such as U = {U1, . . . , Un} denote finite sets of
random variables. Further, P(Y ) is the distribution of a variable Y .

SCM: A structural causal model (SCM) (Pearl, 2009) is a 4-tuple ⟨V,U,F ,P(U)⟩, where U
is a set of exogenous (background) variables that are determined by factors outside the model;
V = {V1, . . . , Vn} is a set of endogenous (observed) variables that are determined by variables
in the model (i.e., by the variables in V∪U ); F = {f1, . . . , fn} is the set of structural functions de-
termining V, vi ← fi (pa (vi) , ui), where pa (Vi) ⊆V/Vi and Ui ⊆U are the functional arguments
of fi; P(U) is a distribution over the exogenous variables U.

Potential outcome: Let X and Y be two random variables in V and u = {u1, . . . , un} ∈ U be a
realization of exogenous variables. The potential outcome Yx(u) is defined as the solution for Y of
the set of equations Fx evaluated with U = u (Pearl, 2009). That is, after U is fixed, the evaluation
is deterministic. Yx(u) is the value variable Y would take if (possibly contrary to observed facts)
X is set to x, for a specific realization u. In the rest of the paper, we use Yx as the short for Yx(U).
Observational distribution: A structural causal model M = ⟨V,U,F ,P(U)⟩ induces a joint
probability distribution P(V) such that for each Y ⊆ V, PM(Y = y) = ∑u 1(Y (u) = y)P(U = u)
where Y (u) is the solution for Y after evaluating F with U = u (Bareinboim et al., 2022).

Counterfactual distributions: A structural causal model M = ⟨V,U,F ,P(U)⟩ induces a fam-
ily of joint distributions over counterfactual events Yx, . . . , Zw for any Y,Z, . . . ,X,W ⊆ V :
PM (Yx = y, . . . , Zw = z) = ∑u 1 (Yx(u) = y, . . . , Zw(u) = z)P(U = u) (Bareinboim et al., 2022).
This equation contains variables with different subscripts, which syntactically represent different po-
tential outcomes or counterfactual worlds.

Causal graph: A graph G is said to be a causal graph of SCMM if represented as a directed acyclic
graph (DAG), where (Pearl, 2009; Bareinboim et al., 2022) each endogenous variable Vi ∈ V is a
node; there is an edge Vi Ð→ Vj if Vi appears as an argument of fj ∈ F (Vi ∈ pa(Vj)); there is
a bidirected edge Vi ⇠⇢ Vj if the corresponding Ui, Uj ⊂ U are correlated (Ui ∩ Uj ≠ ∅) or the
corresponding functions fi, fj share some Uij ∈U as an argument.
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B EXTENDED RELATED WORK

B.1 FAIRNESS

Recent literature has extensively explored different fairness notions (e.g., Feldman et al., 2015;
Di Stefano et al., 2020; Dwork et al., 2012; Grgic.Hlaca et al., 2016; Hardt et al., 2016; Joseph
et al., 2016; Pfohl et al., 2019; Salimi et al., 2019; Zafar et al., 2017; Wadsworth et al., 2018; Celis
et al., 2019; Chen et al., 2019; Zhang et al., 2018; Madras et al., 2019; Di Stefano et al., 2020;
Madras et al., 2018). For a detailed overview, we refer to Makhlouf et al. (2020) and Plecko &
Bareinboim (2022). There have been also theoretical advances (e.g., Fawkes et al., 2022; Rosenblatt
& Witter, 2023) but these are orthogonal to ours.

Existing fairness notions can be loosely classified into notions for group- and individual-level fair-
ness, as well as causal notions, some aim at path-specific fairness (e.g., Nabi & Shpitser, 2018;
Chiappa, 2019). We adopt the definition of counterfactual fairness from Kusner et al. (2017).

Counterfactual fairness (Kusner et al., 2017): Given a predictive problem with fairness consid-
erations, where A,X and Y represent the sensitive attributes, remaining attributes, and output of
interest respectively, for a causal model M = ⟨V = {A,X,Y },U,F ,P(U)⟩, prediction model
Ŷ = h(X,A,U) is counterfactual fair, if under any context X = x and A = a,

P (Ŷa(U) ∣X = x,A = a) = P (Ŷa′(U) ∣X = x,A = a) , (12)

for any value a′ attainable by A. This is equivalent to the following formulation:
P (h(Xa(U), a,U) ∣X = x,A = a) = P (h(Xa′(U), a′,U) ∣X = x,A = a) . (13)

Our paper adapts the later formulation by doing the following. First, we make the prediction model
independent of the sensitive attributes A, as they could only make the predictive model unfairer.
Second, given the general non-identifiability of the posterior distribution of the exogenous noise, i.e.,
P (U ∣X = x,A = a), we consider only the prediction models dependent on the observed covariates.
Third, we split observed covariates X on pre-treatment covariates (confounders) and post-treatment
covariates (mediators). Thus, we yield our definition of a fair predictor in Eq. 1.

Benefits over latent variable baselines: Importantly, the latent variable baselines for counterfactual
fairness (e.g., mCEVAE (Pfohl et al., 2019), DCEVAE (Kim et al., 2021), and ADVAE (Grari et al.,
2023)) are far from being easy as they do not rely on off-the-shelf methods. Rather, they also
learn a latent variable in non-trivial ways. The inferred latent variable U should be independent of
the sensitive attribute A while representing all other useful information from the observation data.
However, there are two main challenges: (1) The latent variable U is not identifiable. (2) It is very
hard to learn such U to satisfy the above independence requirement, especially for high-dimensional
or other more complicated settings. Hence, we argue that baselines based on some custom latent
variables are highly challenging.

Because of (1) and (2), there are no theoretical guarantees for the VAE-based methods. Hence, it
is mathematically unclear whether they actually learn the correct counterfactual fair predictions. In
fact, there is even rich empirical evidence that VAE-based methods are often suboptimal. VAE-
based methods use the estimated variable U in the first step to learn the counterfactual outcome
P (Ŷa′(U) ∣X = x,A = a,M =m) . The inferred, non-identifiable latent variable can be correlated
with the sensitive attribute which may harm fairness, or it might not fully represent the rest of the
information from data and harm prediction performance.

Importantly, the latent variable baselines do not allow for identifability. In causal inference, “iden-
tifiability” refers to a mathematical condition that permits a causal quantity to be measured from
observed data (Pearl, 2009). Importantly, identification is different from estimation because meth-
ods that act as heuristics may return estimates but they do not correspond to the true value. For the
latter, see D’Amour (2019) where the authors provide several concerns that, if a latent variable is
not unique, it is possible to have local minima, which leads to unsafe results in causal inference.

Non-identifiable for VAE-based methods have been shown in prior works of literature. In a recent
paper Xia et al. (2022), the authors show that VAE-based counterfactual inference do not allow for
identifiability. The results directly apply to variational inference-based methods, which do not have
proper identification guarantees. Also, the result from non-linear ICA (which is the task of varia-
tional autoencoders) shows that the latent variables are non-identifiable Khemakhem et al. (2020).
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In simple words, VAE-based methods can estimate the latent variable but it is not guaranteed that
it can be correctly identified, leading to risks that the latent variable is often estimated incorrectly.
Note that non-identifiability of the latent variables means non-identifiability of the counterfactual
queries. We refer to paper Melnychuk et al. (2023), which show that the non-identifiability of the
latent variables means non-identifiability of the counterfactual queries. Hence, VAE-based methods
can not ensure that they correctly learn counterfactual fairness, only our method does so.

B.2 DIFFERENCE FROM CFGAN

Even though CFGAN also employs GANs, it is vastly different from our method.

1. Different tasks: CFGAN is designed for fair data generation tasks, while our model is de-
signed for learning predictors to be counterfactual fairness. Hence, both address different
tasks.

2. Different architectures: CFGAN employs two generators, each aimed at simulating the
original causal model and the interventional model, and two discriminators, which ensure
data utility and causal fairness. We only employ a streamlined architecture with a single
generator and discriminator. Further, fairness enters both architectures at different places.
In CFGAN, fairness is ensured through the GAN setup, whereas our method ensures fair-
ness in a second step through our counterfactual mediator regularization.

3. Different training objectives:The training objectives are different: CFGAN learns to
mimic factual data. In our method, the generator learns the counterfactual distribu-
tion of the mediator through the discriminator distinguishing factual from counterfactual
mediators.

4. No theoretical guarantee for CFGAN: CFGAN is proposed to synthesize a dataset that
satisfies counterfactual fairness. However, a recent paper (Abroshan et al., 2022) has
shown that CFGAN is actually considering interventions (=level 2 in Pearl’s causality
ladder) and not counterfactuals (=level 3).6 Hence, CFGAN does not fulfill the coun-
terfactual fairness notion, but a different notion based on do-operator (intervention). For
details, we refer to (Abroshan et al., 2022), Definition 5 therein, called “Discrimina-
tion avoiding through causal reasoning”): A generator is said to be fair if the follow-
ing equation holds: for any context A = a and X = x, for all value of y and a′ ∈ A,
P (Y = y ∣ X = x, do(A = a)) = P (Y = y ∣X = x, do (A = a′)), which is different from
the counterfactual fairness P (Ŷa = y ∣X = x,A = a) = P (Ŷa′ = y ∣X = x,A = a).. More-
over, CFGAN lacks theoretical support for its methodology (no identifiable guarantee or
counterfactual fairness level). In contrast, our method strictly satisfies the principles of
counterfactual fairness and provides theoretical guarantees on the counterfactual fairness
level. In sum, only our method offers theoretical guarantees for the task at hand.

5. Suboptimal performance of CFGAN: Even though CFGAN can, in principle, be applied
to counterfactual fairness prediction, it is suboptimal. The reason is the following. Un-
like CFGAN, which generates complete synthetic data under causal fairness notions, our
method only generates counterfactuals of the mediator as an intermediate step, resulting
in minimal information loss and better inference performance than CFGAN. Furthermore,
since CFGAN needs to train the dual-generator and dual-discriminator together and opti-
mize two adversarial losses, it is more difficult for stable training, and thus its method is
less robust than ours.

In sum, even though CFGAN also employs GANs, it is vastly different from our method.
6In the context of Pearl’s causal hierarchy**, interventional and counterfactual queries are completely dif-

ferent concepts Bareinboim et al. (2022). (1) Interventional queries are located on level 2 of Pearl’s causality
ladder. Interventional queries are of the form P (y ∣ do(x)). Here, the typical question is “What if? What if I
do X?”, where the activity is “doing”. (2) Counterfactual queries are located on level 3 of Pearl’s causality lad-
der. Counterfactual queries are of the form P (yx ∣ x

′, y′), where x′ and y′ are different values that X,Y took
before. Here, the typical question is “What if I had acted differently?”, where the activity is “imagining” had a
different treatment selected been made in the beginning. Hence, the main difference is that the counterfactual
of y is conditioned on the post-treatment outcome (factual outcome) of y and a different x (where x takes a
different value than x′). For details, we kindly refer to paper Bareinboim et al. (2022); Pearl (2009) for a more
technical definition of why intervention and counterfactual are two entirely different concepts.
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C THEORETICAL RESULTS

Here, we prove Lemma 1 from the main paper, which states that our counterfactual regularization
achieves counterfactual fairness if our generator consistently estimates the counterfactuals.

C.1 PROOF OF LEMMA 1

Lemma 3 (Counterfactual mediator regularization bound). Given the prediction model h that is
Lipschitz continuous with a Lipschitz constant C, we have

E [∥(h(X,M) − h(X,MA′)∥22] ≤ C E [∥MA′ − M̂A′∥
2

2
] +Rcm. (14)

Proof. Using triangle inequality, we yield

E [∥h(X,M) − h(X,MA′)∥22] (15)

=E [∥h(X,M) − h(X,MA′) + h(X,M̂A′) − h(X,M̂A′)∥
2

2
] (16)

≤E [∥h(X,M) − h(X,M̂A′)∥
2

2
] +E [∥h(X,M̂A′) − h(X,MA′)∥

2

2
] (17)

=E [∥h(X,M̂A′) − h(X,MA′)∥
2

2
] +Rcm (18)

≤C E [∥(X,M̂A′) − (X,MA′)∥
2

2
] +Rcm (19)

=C E [∥MA′ − M̂A′∥
2

2
] +Rcm. (20)

C.2 RESULTS ON COUNTERFACTUAL CONSISTENCY

Given Lemma 1, the natural question arises under which conditions our generator produces consis-
tent counterfactuals. In the following, we provide a theory based on bijective generation mechanisms
(BGMs) (Nasr-Esfahany et al., 2023; Melnychuk et al., 2023).

Lemma 4 (Consistent estimation of the counterfactual distribution with GAN). Let the observa-
tional distribution PX,A,M = Pf be induced by an SCMM = ⟨V,U,F ,P(U)⟩ with

V = {X,A,M,Y }, U = {UXA, UM , UY },
F = {fX(uXA), fA(x,uXA), fM(x, a, uM), fY (x,m,uY )}, P(U) = P(UXA)P(UM)P(UY ),

and with the causal graph as in Figure 1. Let M ⊆ R and fM be a bijective generation mecha-
nism (BGM) (Nasr-Esfahany et al., 2023; Melnychuk et al., 2023), i.e., fM is a strictly increasing
(decreasing) continuously-differentiable transformation wrt. uM . Then:

1. The counterfactual distribution of the mediator simplifies to one of two possible point mass
distributions

P(Ma′ ∣X = x,A = a,M =m) = δ(F−1(±F(m;x, a) ∓ 0.5 + 0.5;x, a′)), (21)

where F(⋅;x, a) and F−1(⋅;x, a) are a CDF and an inverse CDF of P(M ∣ X = x,A = a),
respectively, and δ(⋅) is a Dirac-delta distribution;

2. If the generator of GAN is a continuously differentiable function with respect to M , then it
consistently estimates the counterfactual distribution of the mediator, P(Ma′ ∣ X = x,A =
a,M =m), i.e., converges to one of the two solutions in Eq. equation 21.

Proof. The first statement of the theorem is the main property of bijective generation mechanisms
(BGMs), i.e., they allow for deterministic (point mass) counterfactuals. For a more detailed proof,
we refer to Lemma B.2 in (Nasr-Esfahany et al., 2023) and to Corollary 3 in (Melnychuk et al.,
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2023). Importantly, under mild conditions7, this result holds in the more general class of BGMs
with non-monotonous continuously differentiable functions.

The second statement can be proved in two steps. (i) We show that, given an optimal discriminator,
the generator of our GAN estimates the distribution of potential mediators for counterfactual sen-
sitive attributes, i.e., P(G(x, a,Ma)a′ ∣ X = x,A = a) = P(Ma′ ∣ X = x,A = a) in distribution.
(ii) Then, we demonstrate that the outputs of the deterministic generator, conditional on the factual
mediator M =m, estimate P(Ma′ ∣X = x,A = a,M =m).
(i) Let πa(x) = P(A = a ∣ X = x) denote the propensity score. The discriminator of our GAN,
given the covariates X = x, tries to distinguish between generated counterfactual data and ground
truth factual data. The adversarial objective from Eq. 6 could be expanded with the law of total
expectation wrt. X and A in the following way:

E(X,A,M)∼Pf
[log (D(X, G̃ (X,A,M))A)] (22)

=EX∼P(X)E(A,M)∼P(A,M ∣X) [log (D(X, G̃ (X,A,M))A)] (23)

=EX∼P(X)[EM∼P(M ∣X,A=0) [log (D(X, G̃ (X,0,M))0)] π0(X) (24)

+E(M∼P(M ∣X,A=1) [log (D(X, G̃ (X,1,M))1)] π1(X)]

=EX∼P(X)[EM∼P(M ∣X,A=0) [log (D(X,{M,G (X,0,M)1})0)] π0(X) (25)

+EM∼P(M ∣X,A=1) [log (1 −D(X,{G (X,1,M)0 ,M})0)] π1(X)].

Let Z0 = {M,G (X,0,M)1} and Z1 = {G (X,1,M)0 ,M} be two random variables. Then, using
the law of the unconscious statistician, the expression can be converted to a weighted conditional
GAN adversarial loss (Mirza & Osindero, 2014), i.e.,

EX∼P(X)[EZ0∼P(Z0∣X,A=0) [log (D(X,Z0)0)] π0(X) (26)

+EZ1∼P(Z1∣X,A=1) [log (1 −D(X,Z1)0)] π1(X)]

=EX∼P(X)[∫Z ( log
(D(X,z)0)π0(X)P(Z0 = z ∣X,A = 0) (27)

+ log (1 −D(X,z)0)π1(X)P(Z1 = z ∣X,A = 1))dz],

where Z = M ×M. Notably, the weights of the loss, i.e., π0(X) and π1(X), are greater than
zero, due to the overlap assumption. The second term follows analogously. Following the theory
from the standard GANs (Goodfellow et al., 2014b), for any (a, b) ∈ R2 ∖ 0, the function y ↦
log(y)a + log(1 − y)b achieves its maximum in [0,1] at a

a+b . Therefore, for a given generator, an
optimal discriminator is

D(x, z)0 =
P(Z0 = z ∣X = x,A = 0)π0(x)

P(Z0 = z ∣X = x,A = 0)π0(x) + P(Z1 = z ∣X = x,A = 1)π1(x)
. (28)

Both conditional densities used in the expression above can be expressed in terms of the potential
outcomes densities due to the consistency and unconfoundedness assumptions, namely

P(Z0 = z ∣X = x,A = 0) = P({M =m0,G(x,0,M)1 =m1} ∣X = x,A = 0) (29)
= P({M0 =m0,G(x,0,M0)1 =m1} ∣X = x),

P(Z1 = z ∣X = x,A = 1) = P({G(x,1,M)0 =m0,M =m1} ∣X = x,A = 1) (30)
= P({G(x,1,M1)0 =m0,M1 =m1} ∣X = x).

Thus, an optimal generator of the GAN then minimizes the following conditional propensity-
weighted Jensen–Shannon divergence (JSD)

JSDπ0(x),π1(x)(P({M0,G(x,0,M0)1} ∣X = x) ∣∣P({G(x,1,M1)0,M1} ∣X = x)), (31)

7If the conditional density of the mediator has finite values.
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where JSDw1,w2(P1 ∣∣P1) = w1KL(P1 ∣∣w1 P1 + w2 P2) + w2KL(P2 ∣∣w1 P1 + w2 P2) and where
KL(P1 ∣∣P1) is Kullback–Leibler divergence. The Jensen–Shannon divergence is minimized, when
G(x,0,M0)1 = M1 and G(x,1,M1)0 = M0 conditioned on X = x (in distribution), since, in this
case, it equals to zero, i.e.,

P(G(x, a,Ma)a′ ∣X = x) = P(Ma′ ∣X = x). (32)
Finally, due to the unconfoundedness assumption, the generator of our GAN estimates the potential
mediator distributions with counterfactual sensitive attributes, i.e.,

P(G(x, a,Ma)a′ ∣X = x,A = a) = P(Ma′ ∣X = x,A = a) (33)
in distribution.

(ii) For a given factual observation, X = x,A = a,M = m, our generator yields a deterministic
output, i.e.,

P(G(x, a,Ma)a′ ∣X = x,A = a,M =m) = P(G(x, a,m)a′ ∣X = x,A = a,M =m) (34)
= δ(G(x, a,m)a′). (35)

At the same time, this counterfactual distribution is connected with the potential mediators’ distri-
butions with counterfactual sensitive attributes, P(Ma′ = m′ ∣ X = x,A = a), via the law of total
probability:

P(Ma′ =m′ ∣X = x,A = a) = P(G(x, a,M)a′ =m′∣X = x,A = a) (36)

= ∫M δ(G(x, a,m)a′ −m′)P(M =m ∣X = x,A = a)dm (37)

= ∑
m∶G(x,a,m)a′=m′

∣∇mG(x, a,m)a′ ∣−1 P(M =m ∣X = x,A = a). (38)

Due to the unconfoundedness and the consistency assumptions, this is equivalent to
P(M =m′ ∣X = x,A = a′) = ∑

m∶G(x,a,m)a′=m′
∣∇mG(x, a,m)a′ ∣−1 P(M =m ∣X = x,A = a).

(39)
The equation above has only two solutions wrt. G(x, a, ⋅) in the class of the continuously differen-
tiable functions (Corollary 3 in (Melnychuk et al., 2023)), namely:8

G(x, a,m)a′ = F−1(±F(m;x, a) ∓ 0.5 + 0.5;x, a′), (40)
where F(⋅;x, a) and F−1(⋅;x, a) are a CDF and an inverse CDF of P(M ∣ X = x,A = a). Thus, the
generator of GAN exactly matches one of the two BGM solutions from (i). This concludes that our
generator consistently estimates the counterfactual distribution of the mediator, P(Ma′ ∣X = x,A =
a,M =m).
Corollary 1. The results of the Lemma 4 naturally generalize to sensitive attributes with more
categories, i.e., A = {0,1, . . . , k − 1}, k > 2.

Proof. We want to show that, whenA = {0,1, . . . , k−1}, k > 2, the generator is still able to learn the
potential mediator distributions with the counterfactual distributions. For that, we follow the same
derivation steps, as in part (i) of the proof of Lemma 4. This brings us to the following equality for
the loss of the discriminator:

E(X,A,M)∼Pf
[log (D(X, G̃ (X,A,M))A)] (41)

=EX∼P(X)[∫Z ( log
(D(X,z)0)π0(X)P(Z0 = z ∣X,A = 0) (42)

+ log (D(X,z)1)π1(X)P(Z1 = z ∣X,A = 1) (43)

. . . (44)

+ log (D(X,z)k−2)πk−2(X)P(Zk−2 = z ∣X,A = k − 2) (45)

+ log (1 −
k−2
∑
j=0

D(X,z)j)πk−1(X)P(Zk−1 = z ∣X,A = k − 1))dz], (46)

8Under mild conditions, the counterfactual distributions cannot be defined via the point mass distribution
with non-monotonous functions, even if we assume the extension of BGMs to all non-monotonous continuously
differentiable functions.
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where

Z0 = {M,G(X,0,M)1,G(X,0,M)2, . . . ,G(X,0,M)k−1)}, (47)
Z1 = {G(X,1,M)0,M,G(X,1,M)2, . . . ,G(X,1,M)k−1}, (48)
. . . (49)
Zk−1 = {G(X,k − 1,M)0,G(X,k − 1,M)1, . . . ,M}. (50)

Then, it is easy to see that, for a given generator, an optimal discriminator is (analogously to Eq. 28)

D(x, z)a =
P(Za = z ∣X = x,A = a)πa(x)

∑k−1j=0 P(Zj = z ∣X = x,A = j)πj(x)
for all a ∈ A. (51)

This happens, as, for any (a0, . . . , ak−1) ∈ Rk ∖ 0, the function (y0, y1, . . . yk−2) ↦ log(y0)a0 +
log(y1)a1 + ⋅ ⋅ ⋅ + log(yk−2)ak−2 + log(1 − ∑k−2j=0 yj)ak−1 achieves its maximum in [0,1] at

( a0
∑k−1

j=0 aj
, a1
∑k−1

j=0 aj
, . . . , ak−2

∑k−1
j=0 aj

). Then, an optimal generator of the GAN aims to minimize the

propensity-weighted multi-distribution JSD, i.e.,

JSDπ0(x),π1(x),...,πk−1(x) (P({M0,G(x,0,M0)1,G(x,0,M0)2, . . . ,G(x,0,M0)k−1} ∣X = x),
P({G(x,1,M1)0,M1,G(x,1,M1)2, . . . ,G(x,1,M1)k−1} ∣X = x),
. . .

P({G(x, k − 1,Mk−1)0,G(x, k − 1,Mk−1)1, . . . ,Mk−1} ∣X = x)).
(52)

The JSD is minimized, when all the distributions are equal. If we additionally look at the marginal-
ized distributions, the following equalities will hold

P(G(x, a,Ma)a′ ∣X = x) = P(Ma′ ∣X = x) for all a ≠ a′ ∈ A. (53)

This concludes the proof of the Corollary, as all additional steps are analogous to the Lemma 4.

Remark 2. We proved that the generator converges to one of the two BGM solutions in Eq. 21.
Which solution the generator exactly returns depends on the initialization and the optimizer. No-
tably, the difference between the two solutions is negligibly small, when the variability of the me-
diator is low. To demonstrate this, we assume (without the loss of generality) that the ground-truth
counterfactual mediator follows one of the BGM solutions, e.g., P(Ma′ ∣ X = x,A = a,M = m) =
δ(F−1(F(m;x, a);x, a′)); and our GAN estimates another, i.e., P(Ma′ ∣ X = x,A = a,M = m) =
δ(F−1(1 − F(m;x, a);x, a′)). Then, assuming a perfect fit of the GAN, the conditional expectation
of the squared difference between ground-truth counterfactual mediator and estimated mediator is

E [∥MA′ − M̂A′∥
2

2
∣X = x,A = a] (54)

= E [∣F−1(F(M ;x, a);x, a′) − F−1(1 − F(M ;x, a);x, a′)∣ ∣X = x,A = a] (55)

= E [∣F−1(U ;x, a′) − F−1(1 −U ;x, a′)∣] (56)

= ∫
1

0
∣F−1(u;x, a′) − F−1(1 − u;x, a′)∣du (57)

≤ ∫
1

0
∣F−1(u;x, a′) − µ(x, a′)∣du + ∫

1

0
∣F−1(1 − u;x, a′) − µ(x, a′)∣du (58)

= 2E [∣M − µ(x, a′)∣ ∣X = x,A = a′] (59)
(∗)
≤ 2
√
Var [M ∣X = x,A = a′], (60)

where (∗) holds as an inequality between the mean absolute deviation and the standard deviation.
This result also holds for high-dimensional mediators, where there is a continuum of solutions in
the class of continuously differentiable functions (Chen & Gopinath, 2000). Thus, if the conditional
standard deviation of the mediator is high, a combination of multiple GANs might be used to enforce
a worst-case counterfactual fairness.
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D TRAINING ALGORITHM OF GCFN

Algorithm 1 Training algorithm of GCFN
1: Input. Training dataset D; fairness weight λ; number of training GAN epoch e1; number of training

prediction model epoch e2; minibatch of size n; training supervised loss weight α
2: Init. Generator G parameters: θg; discriminator D parameters: θd; prediction model h parameters: θh
3: Step 1: Training GAN to learn to generate counterfactual mediator
4: for e1 do
5: for k steps do ▷ Training the discriminator D
6: Sample minibatch of n examples {x(i), a(i),m(i)}

n

i=1
from D

7: Compute generator output G (x(i), a(i),m(i))
a
= m̂

(i)
a for a ∈ {0,1}

8: Modify G output to G̃
(i)
a = {

m(i), if a(i) = a,
m̂
(i)
a , if a(i) = a′

for a ∈ {0,1}

9: Update the discriminator via stochastic gradient ascent

∇θd

1

n

n

∑
i=1

[log (D(x(i), G̃(i))a(i))]

10: end for
11: for k steps do ▷ Training the generator G
12: Sample minibatch of n examples {x(i), a(i),m(i)}

n

i=1
from D

13: Compute generator output G (x(i), a(i),m(i))
a
= m̂

(i)
a for a ∈ {0,1}

14: Modify G output to G̃
(i)
a = {

m(i), if a(i) = a,
m̂
(i)
a , if a(i) = a′

for a ∈ {0,1}

15: Update the generator via stochastic gradient descent

∇θg

1

n

n

∑
i=1

[log (D(x(i), G̃(i))a(i)) + log (1 −D(x
(i), G̃(i))1−a(i)) + α ∥m

(i)
−G (x(i), a(i),m(i))

a(i)
∥
2

2
]

16: end for
17: end for
18: Step 2: Training prediction model with counterfactual mediator regularization
19: for e2 do ▷ Training the prediction model h
20: Sample minibatch of n examples {x(i), a(i),m(i), y(i)}

n

i=1
from D

21: Generate m̂(i) from G (x(i), a(i),m(i))
22: Compute counterfactual mediator regularization

Rcm = ∥h(x
(i),m(i)) − h(x(i), m̂

(i)

a
′(i))∥

2

2

23: Update the prediction model via stochastic gradient descent

∇θh

1

n

n

∑
i=1

[y(i) log (h(x(i),m(i))) + (1 − y(i)) log (1 − h(x(i),m(i))) + λRcm]

24: end for
25: Output. Counterfactually fair prediction model h
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E DATASET

E.1 SYNTHETIC DATA

Analogous to prior works that simulate synthetic data for benchmarking (Kim et al., 2021; Kusner
et al., 2017; Quinzan et al., 2022), we generate our synthetic dataset in the following way. The
covariatesX is drawn from a standard normal distributionN (0,1). The sensitive attributeA follows
a Bernoulli distribution with probability p, determined by a sigmoid function σ of X and a Gaussian
noise term UA. We then generate the mediator M as a function of X , A, and a Gaussian noise
term UM . Finally, the target Y follows a Bernoulli distribution with probability py , calculated by a
sigmoid function of X , M , and a Gaussian noise term UY . βi (i ∈ [1,6]) are the coefficients. Let
σ(x) = 1

1+e−x represent the sigmoid function. Formally, we yield

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X = UX UX ∼ N (0,1)
A ∼ Bernoulli (σ(β1X +UA)) UA ∼ N (0,0.01)
M = β2X + β3A +UM UM ∼ N (0,0.01)
Y ∼ Bernoulli (σ(β5X + β6M +UY )) UY ∼ N (0,0.01)

(61)

We sample 10,000 observations and use 20% as the test set.

E.2 SEMI-SYNTHETIC DATA

LSAC dataset. The Law School (LSAC) dataset (Wightman, 1998) contains information about the
law school admission records. We use the LSAC dataset to construct two semi-synthetic datasets. In
both, we set the sensitive attribute to gender. We take resident and race from the LSAC dataset as
confounding variables. The LSAT and GPA are the mediator variables, and the admissions decision
is our target variable. We simulate 101,570 samples and use 20% as the test set. We denote M1 as
GPA score, M2 as LSAT score, X1 as resident, and X2 as race. Further, wX1 ,wX2 ,wA,wM1 ,wM2

are the coefficients. UM1 , UM2 , UY are the Gaussian noise. Let σ(x) = 1
1+e−x represent the sigmoid

function. Note that the generation of M in our datasets is non-deterministically.

We then produce the two different semi-synthetic datasets as follows. The main difference is whether
we use a rather simple sigmoid function or a complex sinus function that could make extrapolation
more challenging for our GCFN.

∎ Semi-synthetic dataset “sigmoid”:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M1 = wM1
(σ(wAA +wX1X1 +wX2X2 +UM1)) UM1 ∼ N (0,0.01)

M2 = wM2 +wM1 (σ(wAS +wX1X1 +wX2X2 +UM2)) UM2 ∼ N (0,0.01)
Y ∼ Bernoulli (σ(wM1M1 +wM2M2 +wX1X1 +wX2X2 +UY )) UY ∼ N (0,0.01)

(62)

∎ Semi-synthetic “sin”:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M1 = wA ⋅A − sin (π × (wX1X1 +wX2X2 +UM1)) UM1 ∼ N (0,0.01)
M2 = wA ⋅A − sin (π × (wX1X1 +wX2X2 +UM2)) UM2 ∼ N (0,0.01)
Y ∼ Bernoulli (σ(wM1M1 +wM2M2 +wX1X1 +wX2X2 +UY )) UY ∼ N (0,0.01)

(63)

E.3 REAL-WORLD DATA

UCI Adult dataset: The UCI Adult dataset (Asuncion & Newman, 2007) captures information
about 48,842 individuals including their sociodemographics. Our aim is to predict if individuals
earn more than USD 50k per year. We follow the setting of earlier research (Kim et al., 2021; Nabi
& Shpitser, 2018; Quinzan et al., 2022; Xu et al., 2019). We treat gender as the sensitive attribute
and set mediator variables to be marital status, education level, occupation, hours per week, and
work class. The causal graph of the UCI dataset is in Fig. 8. We take 20% as the test set.

COMPAS dataset: COMPAS (Correctional Offender Management Profiling for Alternative Sanc-
tions) (Angwin et al., 2016) was developed as a decision support tool to score the likelihood of a
person’s recidivism. The score ranges from 1 (lowest risk) to 10 (highest risk). The dataset fur-
ther contains information about whether there was an actual recidivism (reoffended) record within 2
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years after the decision. Overall, the dataset has information about over 10,000 criminal defendants
in Broward County, Florida. We treat race as the sensitive attribute. The mediator variables are the
features related to prior convictions and current charge degree. The target variable is the recidivism
for each defendant. The causal graph of the COMPAS dataset is in Fig. 9. We take 20% as test set.

age, race

gender marital status, education
level, occupation, 

hours per week, work class

income

Figure 8: Causal graph of UCI dataset.

age, gender

race prior convictions
(number of juvenile felony

and misdemeanor charges),
prior charges,

current charge degree

recidivism

Figure 9: Causal graph of COMPAS dataset.

In practice, it is common and typically straightforward to choose which variables act as mediatorsM
through domain knowledge (Nabi & Shpitser, 2018; Kim et al., 2021; Plecko & Bareinboim, 2022).
Hence, mediators M are simply all variables that can potentially be influenced by the sensitive
attribute. All other variables (except for A and Y ) are modeled as covariates X . For example,
consider a job application setting where we want to avoid discrimination by gender. Then A is
gender, and Y is the job offer. Mediators are, for instance, education level or work experience, as
both are potentially influenced by gender. In contrast, age is a covariate because it is not influenced
by gender.
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F IMPLEMENTATION DETAILS

F.1 IMPLEMENTATION OF BENCHMARKS

We implement CFAN (Kusner et al., 2017) in PyTorch based on the paper’s source code in R
and Stan on https://github.com/mkusner/counterfactual-fairness. We use
a VAE to infer the latent variables. For mCEVAE (Pfohl et al., 2019), we follow the imple-
mentation from https://github.com/HyemiK1m/DCEVAE/tree/master/Tabular/
mCEVAE_baseline. We implement CFGAN (Xu et al., 2019) in PyTorch based on the code
of Abroshan et al. (2022) and the TensorFlow source code of (Xu et al., 2019). We implement
ADVAE (Grari et al., 2023) in PyTorch. For DCEVAE (Kim et al., 2021), we use the source
code of the author of DCEVAE (Kim et al., 2021). We use HSCIC (Quinzan et al., 2022)
source implementation from the supplementary material provided on the OpenReview website
https://openreview.net/forum?id=ERjQnrmLKH4. We performed rigorous hyperpa-
rameter tuning for all baselines.

Hyperparameter tuning. We perform a rigorous procedure to optimize the hyperparameters for
the different methods as follows. For DCEVAE (Kim et al., 2021) and mCEVAE (Pfohl et al.,
2019), we follow the hyperparameter optimization as described in the supplement of Kim et al.
(2021). For ADVAE (Grari et al., 2023) and CFGAN (Xu et al., 2019), we follow the hyperparameter
optimization as described in their paper. For both HSCIC and our GCFN, we have an additional
weight that introduces a trade-off between accuracy and fairness. This provides additional flexibility
to decision-makers as they tailor the methods based on the fairness needs in practice (Quinzan et al.,
2022). We then benchmark the utility of different methods across different choices of γ of the utility
function in Sec. 5.1. This allows us thus to optimize the trade-off weight λ inside HSCIC and our
GCFN using grid search. For HSCIC, we experiment with λ = 0.1,0.5,1,5,10,15,20 and choose
the best for them across different datasets. For our method, we experiment with λ = 0.1,0.5,1,1.5,2.
Since the utility function considers two metrics, across the experiments on (semi-)synthetic dataset,
the weight λ is set to 0.5 to get a good balance for our method.

F.2 IMPLEMENTATION OF OUR METHOD

Our GCFN is implemented in PyTorch. Both the generator and the discriminator in the GAN model
are designed as deep neural networks, each with a hidden layer of dimension 64. LeakyReLU is
employed as the activation function and batch normalization is applied in the generator to enhance
training stability. The GAN training procedure is performed for 300 epochs with a batch size of 256
at each iteration. We set the learning rate to 0.0005. Following the GAN training, the prediction
model, structured as a multilayer perceptron (MLP), is trained separately. This classifier can incor-
porate spectral normalization in its linear layers to ensure Lipschitz continuously. It is trained for
30 epochs, with the same learning rate of 0.005 applied. The training time of our GCFN on (semi-)
synthetic dataset is comparable to or smaller than the baselines.
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G GENERALIZATION TO MULTIPLE SOCIAL GROUPS

G.1 STEP 1: GAN FOR GENERATING COUNTERFACTUAL OF THE MEDIATOR

Our method can easily extended to scenarios with multiple social groups. Suppose we have k cate-
gories, then the sensitive attribute A ∈ A, where A = {0,1, . . . , k − 1} and k > 2.

The output of the generator G is k potential mediators, i.e., M̂0, M̂1, . . . , M̂k−1, from which one is
factual and the others are counterfactual.

G (X,A,M)a = M̂a for a ∈ {0,1, ..., k − 1} (64)

The reconstruction loss of the generator is the same as the binary case,

Lf(G) = E(X,A,M)∼Pf
[∥M −G (X,A,M)A∥

2
2] , (65)

where ∥ ⋅ ∥2 is the L2-norm.

The discriminator D is designed to differentiate the factual mediator M (as observed in the data)
from the k − 1 generated counterfactual mediators (as generated by G).

We modify the output ofG before passing it as input toD: We replace the generated factual mediator
M̂A with the observed factual mediator M . We denote the new, combined data by G̃ (X,A,M),
which is defined via

G̃ (X,A,M)a = {
M, if A = a,
G (X,A,M)a , Otherwise ,

for a ∈ {0,1, ..., k − 1}. (66)

The discriminator D then determines which component of G̃ is the observed factual mediator and
thus outputs the corresponding probability. Formally, for the input (X, G̃), the output of the dis-
criminator D is

D (X, G̃)
a
= P̂ (M = G̃a ∣X, G̃) = P̂ (A = a ∣X, G̃) for a ∈ {0,1, ..., k − 1}. (67)

Our GAN is trained in an adversarial manner: (i) the generator G seeks to generate counterfactual
mediators in a way that minimizes the probability that the discriminator can differentiate between
factual mediators and counterfactual mediators, while (ii) the discriminator D seeks to maximize
the probability of correctly identifying the factual mediator. We thus use an adversarial loss Ladv by

Ladv(G,D) = E(X,A,M)∼Pf
[log (D(X, G̃ (X,A,M))A)] . (68)

Overall, our GAN is trained through an adversarial training procedure with a minimax problem as

min
G

max
D
Ladv(G,D) + αLf(G), (69)

with a hyperparameter α on Lf .

G.2 STEP 2: COUNTERFACTUAL FAIR PREDICTION THROUGH COUNTERFACTUAL MEDIATOR
REGULARIZATION

We use the output of the GAN to train a prediction model h under counterfactual fairness in a
supervised way. Our counterfactual mediator regularizationRcm(h) thus is

Rcm(h) = E(X,A,M)∼Pf

⎡⎢⎢⎢⎢⎢⎣

1

(k − 1)
k−1
∑
a=0
a≠A

∥h (X,M) − h (X,M̂a)∥
2

2

⎤⎥⎥⎥⎥⎥⎦
. (70)

The training loss is
L(h) = Lce(h) + λRcm(h). (71)

25



Under review as a conference paper at ICLR 2024

G.3 THEORETICAL INSIGHTS

We provide proof that our method can naturally generalize to sensitive attributes with more cate-
gories in Appendix. C, Corollary. 1.

G.4 RESULTS GENERALIZATION TO MULTIPLE SOCIAL GROUPS

Since some baselines are not adaptable to various social groups, they cannot be benchmarked effec-
tively in this context. Consequently, our focus is on demonstrating the generalization capabilities
of our method across multiple social groups. We carried out experiments on the synthetic dataset
where k = 4. Our GCFN attained an accuracy of approximately 0.92.
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H ADDITIONAL EXPERIMENTAL RESULTS

H.1 RESULTS FOR THE PRESENCE OF CONFOUNDERS BETWEEN COVARIATES AND THE
SENSITIVE ATTRIBUTE

In our causal graph Fig. 1, we allow the potential existence of the hidden confounders between co-
variates X and the sensitive attribute A. We now perform additional experiments where explore
the performance in the presence of confounders, and, to this end, we intentionally introduce con-
founders into our semi-synthetic dataset, and the corresponding causal graph is shown Fig. 10. The
experiment results are shown in Fig. 11. The result shows that having correlations betweenX andA
does not affect the counterfactual level in our prediction in Y , which is consistent with our setting.

X

MA Y

U

Figure 10: Causal graph in the presence of confounders between covariates and the sensitive at-
tribute.
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Figure 11: Utility function value U on dataset contains correlations between the covariate X and
sensitive attribute A. A larger utility is better. Shown: mean ± std over 5 runs.

H.2 RESULTS FOR REAL-WORLD DATASET

We now provide an additional analysis for the UCI real-world dataset. Here, we seek to bench-
mark the performance of the different methods in terms of utility. However, by definition, the true
counterfactuals for real-world datasets are unavailable, which naturally arises in causal inference.
As a remedy, we use our generated counterfactual as the ground-truth counterfactual on the test
dataset. This then allows us to report the utility function value analogous to synthetic datasets. The
experiment results are shown in Fig. 12. We again find that our method is highly effective.

H.3 RESULTS FOR (SEMI-)SYNTHETIC DATASET

We compute the average value of the utility function U over varying utility weights γ ∈
{0.1, . . . ,1.0} on the synthetic dataset (Fig. 13) and two different semi-synthetic datasets (Fig. 14
and Fig. 15).
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Figure 12: Average utility function value U across different utility weights γ on synthetic dataset.
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Figure 13: Average utility function value U across different utility weights γ on synthetic dataset.
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Figure 14: Average utility function value U across different utility weight γ on semi-synthetic (sig-
moid) dataset.
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Figure 15: Average utility function value U across different utility weight γ on semi-synthetic (sin)
dataset.
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H.4 RESULTS FOR UCI ADULT DATASET

We now examine the results for different fairness weights λ. For this, we report results from λ = 0.5
(Fig. 16) to λ = 1000 (Fig. 19). In line with our expectations, we see that larger values for fairness
weight λ lead the distributions of the predicted target to overlap more, implying that counterfactual
fairness is enforced more strictly. This shows that our regularization Rcm achieves the desired
behavior.
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Figure 16: Density plots of the predicted target on UCI Adult dataset. Left: fairness weight λ = 0.
Right: fairness weight λ = 0.5.
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Figure 17: Density plots of the predicted target on UCI Adult dataset. Left: fairness weight λ = 1.
Right: fairness weight λ = 5.
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Figure 18: Density plots of the predicted target on UCI Adult dataset. Left: fairness weight λ = 10.
Right: fairness weight λ = 100.
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Figure 19: Density plots of the predicted target on UCI Adult dataset. Left: fairness weight λ = 500.
Right: fairness weight λ = 1000.
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H.5 RESULTS FOR COMPAS DATASET

In Sec. 5, we show how black defendants are treated differently by the COMPAS score vs. our
GCFN. Here, we also show how white defendants are treated differently by the COMPAS score vs.
our GCFN; see Fig. 20. We make the following observations. (1) Our GCFN makes oftentimes
different predictions for white defendants with a low and high COMPAS score, which is different
from black defendants. (2) Our method also arrives at different predictions for white defendants
with low prior charges, similar to black defendants.
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Figure 20: Distribution of white and black defendants that are treated differently using our GCFN.
Left: COMPAS score. Right: Prior charges.
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I DETAILS ON BASELINE METHODS

We provide details for CFGAN (Xu et al., 2019) and ADVAE (Grari et al., 2023) in the following.
Note that these two methods aim at a different task and a different causal graph setting, respectively.
Hence, we also lay out below how we adapted them to make them applicable for comparison in our
experiments.

I.1 CFGAN

Note that CFGAN (Xu et al., 2019) is designed for fair data generation tasks, while our model is
designed for learning predictors to achieve counterfactual fairness. Hence, both address different
tasks. We made CFGAN applicable for a baseline by first generating the synthetic dataset and then
training a predictor on this dataset.

In CFGAN (Xu et al., 2019), what is referred to as S aligns with the sensitive attribute A in our
paper, and the target variable is both denoted as Y . Since they do not specify the causal graph for
their dataset, we align the set of all other variables X in CFGAN with covariates X plus mediators
M in our paper. Below, we use the notation from CFGAN for ease of description of their method.

The goal of CFGAN is to generate new data (x̂, ŷ, ŝ)which maintains the distribution of all attributes
in the real data and ensures that the generated data Ŝ has no discriminatory effect on Ŷ . The variables
with hat denote the fake data generated by the generator. CFGAN considers S as a binary variable,
where s+ denotes S = 1 and s− denotes S = 0.

CFGAN adopts two generators (G1,G2) and two discriminators (D1,D2). The generator G1 aims
to mimic the real observational distribution, and the generator G2 aims to generate interventional
data. The discriminatorD1 tries to distinguish the generated data from the real data, and the discrim-
inator D2 tries to distinguish the two intervention distributions under do (S = s+) and do (S = s−).
The generatorG1 is designed to agree with the causal graph G = (V,E). It consists of ∣V∣ sub-neural
networks, where each of them corresponds to a node in V. All sub-neural networks are connected
following the connections in G. The generator G2 is designed to agree with the interventional
graph Gs = (V,E/ {Vj → S}Vj∈PaS

), where all incoming edges to S are deleted under intervention
do(S = s). The structure of G2 is similar to that of G1, except for that the sub-neural network G2

S

is set to G2
S ≡ 1 if s = s+, and G2

S ≡ 0 if s = s−.

After training, G1 should generate samples from the observational distribution, and G2 gener-
ates samples from two interventional distributions, i.e., (x̂, ŷ, ŝ) ∼ PG1(X, Y, S), (x̂s+ , ŷs+) ∼
PG2 (Xs+ , Ys+), if s = s+, (x̂s− , ŷs−) PG2 (Xs− , Ys−), if s = s−. The discriminatorD1 is designed to
distinguish between the real observational data (x, y, s) ∼ Pdata (X, Y, S) and the generated fake ob-
servational data (x̂, ŷ, ŝ) ∼ PG1(X, Y, S). The discriminator D2 is designed to distinguish between
the two interventional distributions ŷs+ ∼ PG2 (Ys+)and ŷs− ∼ PG2 (Ys−).
During training, the generator G1 plays an adversarial game with the discriminator D1, and genera-
tor G2 plays an adversarial game with the discriminator D2. The overall minimax game is

min
G1,G2

max
D1,D2

J (G1,G2,D1,D2) = J1 (G1,D1) + λJ2 (G2,D2) , (72)

where
J1 (G1,D1) = E(x,y,s)∼Pdata (X,Y,S) [logD1(x, y, s)]

+E(x̂,ŷ,ŝ)∼PG1(X,Y,S) [1 − logD1(x̂, ŷ, ŝ)]
J2 (G2,D2) = Eŷs+∼PG2(Ys+ [logD2 (ŷs+)]

+Eŷs−∼PG2(Ys−) [1 − logD
2 (ŷs−)]

and λ is a hyperparameter that controls a trade-off between the utility and the fairness of data gen-
eration. The first function J1 aims to achieve PG1(X, Y, S) = Pdata (X, Y, S). The second function
J2 aims to achieve PG2 (Ys+) = PG2 (Ys−). In generating a dataset for counterfactual fairness, the
intervention is performed by conditioning on a subset of variables O = o. For each noise vector z,
CFGAN first generates the observational sample by using G1, and observes whether in the sample
they have O = o. Only for those noise vectors with O = o in the generated samples, they generate
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interventional samples using G2. The interventional distribution generated by G2 is conditioned
on O = o, denoted by PG2 (Xs, Ys ∣ o). The discriminator D2 is designed to distinguish between
ŷs+ ∣ o ∼ PG2 (Ys+ ∣ o) and ŷs− ∣ o ∼ PG2 (Ys− ∣ o), producing the function that aims to achieve
PG2 (Ys+ ∣ o) = PG2 (Ys− ∣ o).
After generating the synthetic dataset, we train a predictor h on the data by minimizing the cross-
entropy loss for a classification task. The overall training process is shown in Algorithm 2

Algorithm 2 CFGAN (Xu et al., 2019)
1: Input: Observational data (X, Y, S), fairness weight λ
2: Output: Generated fair dataset (X̂, Ŷ , Ŝ)
3: Initialize two generators (G1,G2

) and two discriminators (D1,D2
).

4: while G1,G2 has not converged do
5: Update discriminators (D1,D2

) ← argmaxD1,D2 J (G1,G2,D1,D2
) = J1 (G

1,D1
) +

λJ2 (G
2,D2

)

6: Update generators G1,G2
← argminG1,G2 J (G1,G2,D1,D2

) = J1 (G
1,D1

) + λJ2 (G
2,D2

)

7: end while
8: Train a predictor h on the generated dataset (X̂, Ŷ , Ŝ) and minimize the cross-entropy loss.
9: return h

Why CFGAN is different from our GCFN doing counterfactual fairness

In this section, we clarify that CFGAN considers interventions (=level 2 in Pearl’s causality ladder)
and not counterfactuals (=level 3). We refer Bareinboim et al. (2022) for a detailed explanation of
Pearl’s causality ladder.

In the CFGAN paper, the authors say that G2 is generating interventional data (see CFGAN pa-
per Section 3.2 and Figure 2). Besides, the authors give a Definition 4 of counterfactual effect,
CE (x2, x1 ∣ o) = P (Yx2 ∣ o) − P (Yx1 ∣ o). Then, the authors reduce the counterfactual effect to
achieve counterfactual fairness. However, in their paper, o is just the sensitive attribute (see the
caption of Table 2 in their paper). That means. CFGAN just generates outcome Y conditioned on
the sensitive attribute but not conditioned on the post-treatment variable (i.e., factual (observation)
of Y ). This shows that CFGAN works on intervention not counterfactual. Because if you want to
get the counterfactual of a variable taking another different value, you need to conditional on the
factual results of the exact same variable, which CFGAN does not do.

However, in our method, we generate a counterfactual mediator based on the above definition of
counterfactuals. Different from CFGAN, we thus operate not only on level 2 of Pearl’s causality
ladder but on the more complex level 3. To do so, we generate the counterfactual mediator from the
distribution P (Ma′ ∣ X = x,A = a,M = m), that is, we generate counterfactual Ma′ based on the
factual of the mediator.

In summary, we are learning the counterfactual distribution and generating counterfactuals, whereas
CFGAN is doing intervention and generating interventional samples.

I.2 ADVAE

Note that the causal graph for ADVAE (Grari et al., 2023) is different from our setting. We show
the causal graph from ADVAE in Fig. 21. Our setting allows for the existence of the confounders
between the sensitive attribute A and its descendant M , denoted as X in our paper (see our causal
graph in Fig. 1. This is differnet from ADVAE Grari et al. (2023), where such variables are not
explicitly considered.

X

A Y

U

Figure 21: Causal graph in ADVAE (Grari et al., 2023).
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In what follows, the notation for the sensitive attribute is consistent with our paper by using A
and for the target variable by using Y . To make the ADVAE method applicable to our setting for
comparison, we regard that the descendants of the sensitive attribute (denoted by X in ADVAE)
correspond to M in our paper. Below, we use the notation from ADVAE for ease of description.

The first step of ADVAE is counterfactual inference. The common way of using variational autoen-
coding (VAE) to infer the latent variable U is by optimizing the lower bound (ELBO)

LELBO = −E(x,y,a)∼D,u∼qϕ(u∣x,y,a) [log pθ(x, y ∣ u, a)] +DKL (qϕ(u ∣ x, y, a)∥p(u))] (73)

where DKL denotes the Kullback-Leibler divergence of the posterior qϕ(u ∣ x, y, a) from a prior
p(u), typically a standard Gaussian distributionN (0, I). The posterior qϕ(u ∣ x, y, a) is represented
by a deep neural network with parameters ϕ, which typically outputs the mean µϕ and the variance
σϕ of a diagonal Gaussian distribution N (µϕ, σϕI). The likelihood term factorizes as pθ(x, y ∣
u, a) = pθ(x ∣ u, a)pθ(y ∣ u, a), which are defined as neural networks with parameters θ.

ADVAE employs a variant of the ELBO optimization, where the DKL (qϕ(u ∣ x, y, a)∥p(u)) term
is replaced by an MMD term LMMD (qϕ(u)∥p(u)) between the aggregated posterior qϕ(u) and the
prior. Their counterfactual inference is by minimizing

L = − E
(x,y,a)∼D,u∼qϕ(u∣x,y,a)

[ λx log (pθ(x ∣ u, a))+
λy log (pθ(y ∣ u, a)) ] + λMMDLMMD (qϕ(u)∥p(u))

+ λADV
1

ma
∑

ak∈ΩA

LMMD (qϕ (u ∣ a = ak) ∥p(u))

where λx, λy, λMMD, λADV are scalar hyperparameters. ADVAE later proposes to employ an ad-
versarial learning framework. The goal is to find some parameters ϕ which minimize the loss to
reconstruct X and Y , while maximizing the reconstruction loss of A according to the best decoder
pψ(A ∣ U), that is, argmin

θ,ϕ
maxψ LADV(θ, ϕ,ψ) with

LADV(θ, ϕ,ψ) = − E
(x,y,a)∼D,u∼qϕ(u∣x,y,a)

[ λx log (pθ(x ∣ u, a))+
λy log (pθ(y ∣ u, a)) ]

+ λMMDLMMD

(qϕ(u)∥p(u))

+ λADV E
(x,a)∼D,u∼qϕ(u∣x,y,a))

[log (pψ(a ∣ u))]

where λx, λy, λMMD, λADV are scalar hyperparameters.

To learn a fair predictive function hθ, the second step is to minimize the loss L =
1
m ∑

m
i l (hθ (xi) , yi)+λLCF(θ), where λ is a hyperparameter that controls the impact of the coun-

terfactual loss in the optimization, l (hθ (xi, ai) , yi) is the cross-entropy loss and LCF(θ) is the
counterfactual unfairness estimation term. It is defined as

LCF (θ) =
1

m

m

∑
i

l (hθ (xi) , yi)+λ E
u∼P (u∣xi,ai,yi),x̃∼P (x∣ui,ai),a′∼P ′(A),x′∼P(x∣u,a′)

[(hθ(x̃) − hθ (x′))2] ,

where ∆ is a loss function that compares two predictions. Again, they consider a two-player adver-
sarial game, which is formulated as argmin

θ
argmax

ϕ
LDynCF(θ, ϕ) with

LDynCF(θ, ϕ) =
1

m

m

∑
i

l (hθ (xi) , yi)+λ E
u∼P (u∣xi,ai,yi),x̃∼P (x∣u,ai),a′∼Pϕ(a∣u),x′∼P(x∣u,a′)

[(hθ(x̃) − hθ (x′))2] .

This formulation considers an adversarial sampling distribution Pϕ(A ∣ U) rather than a uniform
static distribution P ′(A). It takes the form of a neural network that outputs the parameters of the
sampling distribution for a given individual representation U . The authors use a diagonal logit-
normal distribution sigmoid (N (µϕ(u), σ2

ϕ(u)I)), where µϕ(u) and σ2
ϕ(u) stand for the mean

and variance parameters provided by the network for the latent code U . As done for adversarial
learning in the first step, all parameters are learned cjointly, by alternating steps for the adversarial
maximization and steps of global loss minimization.
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