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ABSTRACT

Performance of machine learning models may differ between training and deploy-
ment for many reasons. For instance, model performance can change between
environments due to changes in data quality, observing a different population than
the one in training, or changes in the relationship between labels and features.
These manifest as changes to the underlying data generating mechanisms, and
thereby result in distribution shifts across environments. Attributing performance
changes to specific shifts, such as covariate or concept shifts, is critical for iden-
tifying sources of model failures, and for taking mitigating actions that ensure
robust models. In this work, we introduce the problem of attributing performance
differences between environments to shifts in the underlying data generating mech-
anisms. We formulate the problem as a cooperative game and derive an importance
weighting method for computing the value of a coalition (or a set) of distributions.
The contribution of each distribution to the total performance change is then quanti-
fied as its Shapley value. We demonstrate the correctness and utility of our method
on two synthetic datasets and two real-world case studies, showing its effectiveness
in attributing performance changes to a wide range of distribution shifts.

1 INTRODUCTION

Machine learning models are widely deployed in dynamic environments ranging from recommenda-
tion systems to personalized clinical care. Such environments are prone to distribution shifts, which
may lead to serious degradations in model performance (Guo et al., 2022; Chirra et al., 2018; Koh
et al., 2021; Geirhos et al., 2020; Nestor et al., 2019). Importantly, such shifts are hard to anticipate
and reduce the ability of model developers to design reliable systems.
When the performance of a model does degrade during deployment, it is crucial for the model
developer to know how the distribution has shifted to cause this change. Cognizant of this informa-
tion, the model developer can then take mitigating actions such as additional data collection, data
augmentation, and model retraining (Ashmore et al., 2021; Zenke et al., 2017; Subbaswamy et al.,
2019).
In this work, we present a method to attribute changes in model performance to shifts in a given set
of distributions. Distribution shifts can occur in various marginal or conditional distributions that
comprise variables involved in the model. Further, multiple distributions can change simultaneously.
We handle this in our framework by defining the effect of changing any set of distributions on
model performance and use the concept of Shapley values (Roth, 1988) to attribute the change to
individual distributions. The Shapley value is a co-operative game theoretic framework with the
goal of distributing surplus generated by the players in the co-operative game according to their
contribution. In our framework, the players correspond to individual distributions.
Most relevant to our contributions is the work of Budhathoki et al. (2021), which attributes a shift
between two joint distributions to a specific set of individual distributions (i.e. factorization of the
joint distribution induced by causal structural assumptions). This line of work defines distribution
shifts as interventions on causal mechanisms (Pearl & Bareinboim, 2011; Subbaswamy et al., 2019;
2021; Budhathoki et al., 2021; Thams et al., 2022). We build on their framework to justify the players
in our cooperative game. We significantly differ from the end goal by attributing a change in model
performance to individual distributions. Note that each shifted distribution may influence model
performance differently and may result in significantly different attributions than their contributions
to the change in the joint distribution.
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Figure 1: Inputs and outputs for attribution. Input: Causal graph, where all variables are observed
providing the candidate distribution shifts we consider. The goal is to attribute the model’s perfor-
mance change ∆ between source and target distributions to these candidate distributions. Here, out
of the three candidate distributions, the marginal distribution of X1 and the conditional distribution
of X2 given X1 change. Our method attributes changes to each one such that the attributions sum to
the total performance change ∆.

In this work, we focus on explaining the discrepancy in model performance as measured by some
metric such as prediction accuracy. Explaining performance discrepancy requires us to develop
specialized methods. We particularly focus on model-free importance sampling approaches and
approximations of Shapley value estimation that allow us to expand the settings where our method is
applicable.
We make the following contributions:
• We formalize the problem of attributing model performance changes due to distribution shifts.
• We propose a principled approach based on Shapley values for attribution, and show that it satisfies

several desirable properties.
• We validate the correctness and utility of our method on synthetic and real-world datasets.

2 PRELIMINARIES

Notation. Consider a learning setup where we have some system variables denoted by V consisting
of two types of variables V = (X,Y ), which comprises of features X and labels Y such that V ∼ D.
Realizations of the variables are denoted in lower case. We assume access to samples from two
environments. We use Dsource to denote the source distribution and Dtarget for the target distribution.
Subscripts on D refer to the distribution of specific variables. For example, DX1

is the distribution of
feature X1 ⊂ X , and DY |X is the conditional distribution of labels given all features X .
Let XM ⊆ X be the subset of features utilized by a given model f . We are given a loss function
ℓ((x, y), f) 7→ R which assigns a real value to the model evaluated at a specific setting x of the
variables. For example, in the case of supervised learning, the model f maps XM into the label space,
and a loss function such as the squared error ℓ((x, y), f) := (y − f(xM))

2 can be used to evaluate
model performance. We assume that the loss function can be computed separately for each data
point. Then, performance of the model in some environment with distribution D is summarized by
the average of the losses:

Perf(D) := E(x,y)∼D[ℓ((x, y), f)]

This implies that a shift in any variables V in the system may result in performance change across
environments, including those that are not directly used by the model, but drive changes to the features
XM used by the model for learning.

Shapley Values. The Shapley values framework (Roth, 1988) is a game theoretic framework which
assumes that there are C := {1, 2, . . . , n} players in a co-operative game, achieving some total value
(in our case, model performance change). We denote by Val : 2C 7→ R, the value for any subset
of players, which is called a coalition. Shapley values correspond to the fair assignment of the
value Val(C) to each player d ∈ C. The intuition behind Shapley values is to quantify the change in
value when a player (here, a distribution) enters a coalition. Since the change in model performance
depends on the order in which players (distributions) may join the coalition, Shapley values aggregate
the value changes over all permutations of C. Thus the Shapley attribution Attr(d) for a player d is
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given by:

Attr(d) =
1

|C|
∑

C̃⊆C\{d}

(
|C| − 1

|C̃|

)−1 (
Val(C̃ ∪ {d})− Val(C̃)

)
(1)

where we measure the change in model performance (denoted by Val) after adding d to the coalition
averaged over all potential coalitions involving d. The computational complexity of estimating
Shapley values is exponential in the number of players. Hence we rely on this exact expression only
for smaller candidate sets. For larger candidate sets, we use previously proposed approximation
methods (Castro et al., 2009; Lundberg & Lee, 2017; Janzing et al., 2020) for reduced computational
effort.

Causal System of Variables. We assume that dependence between variables V is described by a
causal system. This allows us to carefully choose distributions (members of the shapley coalition)
that we will attribute performance changes to. In particular, we assume the existence of an underlying
(unknown) Structural Causal Model (Pearl, 2009) which characterizes the dependence between the
variables in the system. For every variable Xi ∈ V , this dependence is captured by a functional
relationship between Xi and the so-called “causal parents” of Xi driving the variation in Xi. The
causal dependence induces a Markov distribution over the variables in this system. That is, the
joint distribution DV can be factorized as, DV =

∏
Xi∈V DXi|parent(Xi). This dependence can be

summarized graphically using a Directed Acyclic Graph (DAG) with nodes corresponding to the
system variables and directed edges in the direction of the causal mechanisms in the system (see
Figure 1 for an example). Further, these distributions (or alternatively mechanisms) are assumed to be
independent, i.e. an intervention in the system to change one of the distributions does not change any
other distribution in the factorization. We also assume textitcausal sufficiency (Spirtes et al., 2000)
i.e. all common causes of the variables in the DAG are observed. We justify our coalition using this
factorization in Section 3.
Types of distribution shift. There exist several categories of distribution shifts which may impact
model performance (Jacobs & Wallach, 2021; Schrouff et al., 2022). For example, label shift means
that distribution of DY changes. Covariate shift means DZ changes for any subset of features Z ⊆ X .
More generally, any part of the joint distribution can change across domains. For example, a concept
shift implies a change in the conditional distribution of the label DY |Z . In this work, we attribute
model performance changes to all types of shifts (covariate shifts, label shifts, as well as conditional
covariate and concept shifts). The number of marginal and conditional shifts that can be defined over
(X,Y ) is exponential in the dimension of X . Hence, we leverage partial knowledge of the causal
system in the form of a causal graph to identify potential shifts to consider. We justify this choice in
Section 3.

3 METHOD

We now formalize our problem setup and motivate a game theoretic method for attributing perfor-
mance changes to distributions over variable subsets (See Figure 1 for a summary).

3.1 PROBLEM SETUP

Suppose we are given a candidate set of (marginal and/or conditional) distributions CD over V that
may account for the model performance change from Dsource to Dtarget: Perf(Dtarget)− Perf(Dsource).
Our goal is to attribute this change to each candidate distribution in the candidate set CD.
For our method, we assume access to the model f , and samples from Dsource as well as Dtarget (see
Figure 1). We proceed with the following assumptions and justify them further in the following
section:

Assumption 3.1. The causal graph corresponding to the data-generating mechanism is known and
all variables in the system are observed. Thus, the factorization of the joint distribution DV is known.

Assumption 3.2. Distribution shifts of interest are due to (independent) shifts in one or more factors
of DV .
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Figure 2: Sketch of the game theoretic attribution method. Each causal mechanism is a player
that, if present in the coalition, changes to the target distribution and, if absent, remains fixed at the
source distribution. This defines the distribution of the resulting coalition D̃. Performance on D̃ is
estimated using importance sampling from training data samples. After computing values for each
possible coalition, Shapley value (Eq. 1) gives the attribution to each player. Thus, we estimate the
performance change under all possible ways to shift the mechanisms from source to target and use
these to distribute the total performance change among the individual distributions.

3.2 GAME THEORETIC DISTRIBUTION SHIFT ATTRIBUTION

Consider the following attribution game where the set of players in this game are the candidate
distributions. A coalition of any subset of players determines the distributions that are allowed to
shift, keeping the rest fixed. The value for the coalition is the model performance change between the
resulting distribution for the coalition and the training distribution. See Figure 2 for an overview of
the method.

Choice of Candidate Distribution Shifts. First, we clarify the choice of candidate distributions
that will inform the coalition. In order to attribute performance changes to shifts in the distribution
of input features or labels, our candidate distributions can constitute marginal and conditional
distribution of the covariates and labels. For instance, it can be the set of marginal distributions on
each system variable, CD = {DX1 ,DX2 , · · · }, or distribution of each variable after conditioning on
the rest, CD = {DX1|V \X1

,DX2|V \X2
, · · · }. Since we have combinatorially many shifts that can be

defined on subsets of V = (X,Y ), choosing candidate sets that would then inform the coalition is
challenging.
We propose to use the knowledge of the causal graph for the system as our candidate set. As
suggested before, the causal graph specifies the factorization of the joint distribution into a set of
distributions (alternatively called causal mechanisms). That is DV =

∏
Xi∈V DXi|parent(Xi) where

parent(Xi) are the variables that have a directed edge to Xi in the causal graph. This factorization is
known by Assumption 3.1. Then, we can form the candidate set constituting each distribution in this
factorization. That is,

CD = {DX1|parent(X1), · · · ,DXi|parent(Xi), · · · }i=1,··· ,|V |.

For a node without parents in the causal graph, the parent set can be empty, which reduces DXi to a
marginal distribution.
Advantages of using causal mechanisms. This choice of candidate set has three main advantages.
First, it is interpretable since the candidate shifts are specified by domain experts who constructed
the causal graph. Second, it is actionable since identifying the causal mechanisms most responsible
for performance change can inform mitigating methods for handling distribution shifts (Subbaswamy
et al., 2019). Third, it will lead to succinct attributions due to the independence property. Consider the
case where only one conditional distribution D(Xi|parent(Xi)) changes across domains. This will
result in a change in distributions of all descendants of Xi (due to the factorization given above). In
this case, a candidate set defined by all marginals is not succinct, as one would attribute performance
changes to all marginals of descendants of Xi. Instead, focusing on our candidate set determined by
the causal mechanism will isolate the appropriate conditional distribution.
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Value of a Coalition. Consider a coalition of distributions C̃ ⊆ CD. The resulting distribution over
variables V in the system, corresponding to the coalition C̃ is

D̃ =

 ∏
i:DXi|parent(Xi)

∈C̃

Dtarget
Xi|parent(Xi)

 ∏
i:DXi|parent(Xi)

̸∈C̃

Dsource
Xi|parent(Xi)

 (2)

Note that the coalition only consists of distributions that are allowed to change across environments.
All other relevant mechanisms are indeed fixed to the source distribution. We present an example
with a coalition of two players in Figure 2. The value of the coalition C̃ with the full distribution D̃ is
now given by

Val(C̃) := Perf(D̃)− Perf(Dsource) (3)
Note that the above relies on the factorization induced by the causal graph, and the assumption
that the mechanisms change independently (Assumption 3.2). That is, it allows us to represent a
factorization where only members of the coalition change, while all other mechanisms correspond to
the source distribution. If we consider the change in performance for all combinatorial coalitions, we
can estimate the total contribution of a specific distribution by aggregating the value for all possible
coalitions these candidates are a part of. Thus, using the Shapley value framework, we obtain the
attribution of each player d ∈ CD using Equation 1.

Crucially, to compute our attributions, we need estimates of model performance under D̃. Note
that we only have model performance estimates under Dsource and Dtarget, but not for any arbitrary
coalition where only a subset of the distributions have shifted. To estimate the performance of any
coalition, we propose to use importance sampling.

3.3 ESTIMATING PERFORMANCE USING IMPORTANCE SAMPLING

Assumption 3.3. support(Dtarget
Xi|parent(Xi)

) ⊆ support(Dsource
Xi|parent(Xi)

) for all Dtarget
Xi|parent(Xi)

∈CD.

Importance sampling allows us to re-weight the samples drawn from a given distribution, which can
be Dsource or Dtarget, to simulate expectations for a desired distribution, which is the candidate D̃ in
our case. Thus, we re-write the value as

Val(C̃) = Perf(D̃)− Perf(Dsource) (4)
= E(x,y)∼D̃[ℓ((x, y), f)]− E(x,y)∼Dsource [ℓ((x, y), f)]

= E(x,y)∼Dsource

[
D̃((x, y))

Dsource((x, y))
ℓ((x, y), f)

]
− E(x,y)∼Dsource [ℓ((x, y), f)]

The importance weights are themselves a product of ratios of source and target distributions corre-
sponding to the causal mechanisms in CD as follows:

wC̃((x, y)) :=
D̃((x, y))

Dsource((x, y))
=

∏
d∈C̃

Dtarget
d ((x, y))

Dsource
d ((x, y))

=:
∏
d∈C̃

wd((x, y)) (5)

There are multiple ways to estimate importance weights wd((x, y)), which are a ratio of densities
(Sugiyama et al., 2012). By Assumption 3.3, we ensure that all importance weights are finite.

Computing Importance Weights. Here, we use a simple approach for density ratio estimation via
training probabilistic classifiers as described in Sugiyama et al. (2012, Section 2.2).

Let D be a binary random variable, such that when D = 1, Z ∼ Dtarget
d (Z), and when D = 0, Z ∼

Dsource
d (Z). Suppose d = DXi|parent(Xi), then

wd =
P(D = 0|parent(Xi))

P(D = 1|parent(Xi))
· P(D = 1|Xi, parent(Xi))

P(D = 0|Xi, parent(Xi))
,

where each term is computed using a probabilistic classifier trained to discriminate data points from
Dsource and Dtarget from the concatenated dataset. We show the derivation of this equation in Appendix
A. In total, we need to learn O(|CD|) models for computing all importance weights.
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Table 1: Analytical expressions of the attributions for the simple synthetic case described in Section
3.5. For the full derivation, see Appendix C.

Attr(DX ) Attr(DY |X )

Ours ( 12µ
2
2 − 1

2µ
2
1)((θ2 − ϕ)2 + (θ1 − ϕ)2) (σ2

X + 1
2µ

2
1 +

1
2µ

2
2)((θ2 − ϕ)2 − (θ1 − ϕ)2)

Budhathoki et al. (2021) (µ2−µ1)
2

2σ2
X

(θ2−θ1)
2

2σ2
Y

(σ2
X + µ2

2)

3.4 PROPERTIES OF OUR METHOD

Under perfect computation of importance weights, the Shapley values resulting from the performance-
change game have the following desirable properties. We provide proofs of these properties in
Appendix B.

Property 1. (Efficiency)
∑
d∈CD

Attr(d) = Val(CD) = Perf(Dtarget)− Perf(Dsource)

Property 2.1. (Null Player) Dsource
d = Dtarget

d =⇒ Attr(d) = 0.

Property 2.2. (Relevance) Consider a mechanism d. If Perf(C̃∪{d}) = Perf(C̃) for all C̃ ⊆ CD \d,
then Attr(d) = 0.

Property 3. (Attribution Symmetry) Let AttrD1,D2
(d) denote the attribution to some mechanism

d when D1 = Dsource and D2 = Dtarget. Then, AttrD1,D2
(d) = −AttrD2,D1

(d) ∀d ∈ CD.

Thus, the method attributes the overall performance change only to distributions that actually change
in a way that affects the specified performance metric. The contribution of each distribution is
computed by considering how much they impact the performance if they are made to change in
different combinations alongside the other distributions.

3.5 ANALYSIS USING A SYNTHETIC SETTING

We derive analytical expressions for our attributions in a simple synthetic case with the following
data generating process.

Source : X ∼ N (µ1, σ
2
X)

Y ∼ θ1X +N (0, σ2
Y )

Target : X ∼ N (µ2, σ
2
X)

Y ∼ θ2X +N (0, σ2
Y )

The model that we are investigating is f(X) = ϕX , and l((x, y), f) = (y − f(x))2.
We show the attribution of our method, along with the attribution using the joint method from
Budhathoki et al. (2021), in Table 1. The complete derivation, along with experimental verification
of the derived expressions, can be found in Appendix C. We highlight several advantages that our
method has over the baseline.
First, our attribution takes the model parameter ϕ into account in order to explain model performance
changes, whereas Budhathoki et al. (2021) do not, as they only explain shifts in (X,Y ), or changes
in simple functions such as E[X] of the variables. Second, we find that our Attr(DX) is a function
of θ2. This is desirable, as covariate shift may compound with concept shift to increase loss non-
linearly. This also ensures that both attributions always sum to the total shift. Third, we note
that our attributions are signed, which is particularly important as some shifts may decrease loss.
Finally, we note that our attributions are symmetric when the source and target data distributions are
swapped by Property 3. This is not true of the baseline method in general, as the KL divergence is
asymmetric. Since we assume knowledge of the true causal graph (which provides the factorization
that determines the coalition), we also evaluate the attribution when the graph is misspecified. In this
case, the coalition will consist of {DY ,DX|Y }. We include these attribution results in Appendix D.1,
specifically, Figure C.2. In this case, as expected, both DY and DX|Y are attributed the change in
model performance (at varying levels depending on the magnitude of concept drift). While this is
still a meaningful attribution, knowledge of the causal graph provides a more succinct interpretation
of the behavior in the system.
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4 RELATED WORK

Identifying relevant distribution shifts. There has been extensive work that tests whether the data
distribution has shifted (e.g. ones evaluated in Rabanser et al. (2019)). Past work has proposed to
identify sub-distributions (factors constituting the joint distribution as determined by a generative
model for the data) that comprise the shift between two joint distributions and order them by their
contribution to the shift (Budhathoki et al., 2021). However, as suggested before, the sub-distributions
may have different influence on model performance. Even a small change in some (factors) may
have a large effect on model performance (and vice-versa). Thus, a model developer has to filter
distributions to identify ones that actually impact model performance (see Property 2.2 and Appendix
C). Further, Budhathoki et al. (2021) focuses on changes to the joint distribution as measured by
the KL-divergence, which requires assumptions on the class of distributions to leverage closed-form
expressions of KL-divergence (such as exponential families), or non-parametric KL estimation which
is challenging in high dimensions (Wang et al., 2005; 2006).
Other approaches which aim to localize shifts to individual variables (conditional on the rest of the
variables) do not provide a way to identify the ones relevant to performance (Kulinski et al., 2020).
In contrast to testing for shifts, Podkopaev & Ramdas (2022) tests for changes in model performance
when distribution changes in deployment. Recent work by Wu et al. (2021) decomposes performance
change to changes in only marginal distributions using Shapley value framework (Lundberg & Lee,
2017). However, the method as described is restricted to categorical variables.
Shapley values for attribution. Shapley value-based attribution has recently become popular for
interpreting model predictions (Štrumbelj & Kononenko, 2014; Lundberg & Lee, 2017; Wang et al.,
2021). In most prior work, Shapley values have been leveraged for attributing a specific model pre-
diction to the input features (Sundararajan & Najmi, 2020). Challenges to appropriately interpreting
such attributions and desirable properties thereof have been extensively discussed in Janzing et al.
(2020); Kumar et al. (2021). In this work, we advance the use of Shapley values for interpreting
model performance changes to sub-distributions at the dataset level.
Detecting data partitions with low model performance. Recent work aims to find subsets of the
dataset that have significantly worse (or better) performance (d’Eon et al., 2021; Eyuboglu et al.,
2022). However, they do not study changes in the underlying data distribution. The work by Ali
et al. (2022) describes a method to identify and localize a change in model performance, and is
applicable under distribution shifts. The main difference in our work is the data representations used
for attribution. Instead of identifying subsets of data that are relevant to performance change, we find
sub-distributions represented by causal mechanisms.

5 EMPIRICAL EVALUATION

G

Y

X1 X2 X3

(a) Synthetic data

Vitals

Outcome

ElectiveSurgery

Labs

Demo Age

(b) eICU data

Figure 3: Causal graphs for Sections 5.1, 5.2

We experimentally validate the following: 1.
Does the method attribute the performance
change to ground truth shifts? This is a test of
the density ratio procedure for estimating impor-
tance weights, followed by a plugin-estimate
of the Shapley Value attribution. 2. In the
case where multiple shifts are present, does the
method attribute a meaningful proportion of the
total shift to each one? We first evaluate these as-
pects using a synthetic dataset where the ground-
truth shifts are known (Section 5.1). Then, we
evaluate our method on a semi-synthetic dataset
generated from CelebA using a CausalGAN (Ko-
caoglu et al., 2017) (Appendix Section D.2). 3. Finally, we demonstrate the utility of our method on
a real-world clinical mortality prediction task (Section 5.2).

5.1 SYNTHETIC DATASET

Setup. We generate a synthetic binary classification dataset with five variables according to the
following data generating process, corresponding to the causal graph shown in Figure 3a. Here,
ξp : {0, 1} → {0, 1} is a function that randomly flips the input with probability p.
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G ∼ Ber(0.5),

X2 = N (ξ0.25(Y ) +G, 1)

Y = ξq(G), X1 = N (ωξ0.25(Y ), 1)

X3 = N (ξ0.25(Y ) + µG, 1)

Where q, ω and µ are parameters of the data generating process. Here, G represents a spurious
correlation (Aubin et al., 2021; Arjovsky et al., 2019) that is highly correlated with Y , and is easily
inferred from (X2, X3). By selecting a large value for q (the spurious correlation strength) on the
source environment, we can create a dataset where models rely more heavily on using X2 and X3 to
infer G and then Y , instead of infering ξ0.25(Y ) across the three features to estimate Y directly.
In the source environment, we set q = 0.9, ω = 1 and µ = 3. We generate 20,000 samples using
these parameters, and train logistic regression (LR) and XGBoost (XGB, (Chen & Guestrin, 2016))
models on (X1, X2, X3) to predict Y , using 3-fold cross-validation to select the best model. We
attribute performance changes for this model using the proposed method. We explore four data
settings for the target environment:

(a) Label Shift: Vary q ∈ [0, 1]. Keep ω and µ at their source values. Only P (Y |G) changes. This
represents a label shift for the model across domains (which does not have access to G).

(b) Covariate Shift: Vary µ ∈ [0, 5]. Keep q and ω at their source values. Only P (X3|G, Y ) changes
across domains.

(c) Combined Shift 1: Set ω = 0 in the target environment and vary q ∈ [0, 1]. Keep µ at its
source value. Both P (X1|Y ) and P (Y |G) change across domains, but the shift should be largely
attributed to P (Y |G) as the model relies on this correlation much more than X1.

(d) Combined Shift 2: Set µ = −1 in the target environment. Further, vary q ∈ [0, 1]. Keep ω at its
source value. Both P (X3|Y ) and P (Y |G) change across domains, but their specific contribution
to model performance degradation is not known exactly.

We use our method to explain performance changes in accuracy and Brier score for each model on
target environments generated within each setting (with n = 20, 000), computing density ratios using
XGB models. Note that the causal graph shown in Figure 3a implies five potential distribution in the
candidate set: CD = {DG,DY |G,DX1|Y ,DX2|G,Y ,DX3|G,Y }.
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Figure 4: Attributions by our model for the change in accuracy to five potential distributional shifts
on the synthetic dataset for the LR model. Further from 0 implies higher (signed) attribution We
observe that the overall change (Perf Diff) is attributed to the true shift(s) in all cases. All attributions
sum to the true performance change by Property 1.

Our method correctly identifies distribution shifts. We present the output of our method with
LR as the model of interest and accuracy as the metric in Figure 4. We show similar results for
XGB and Brier score, model performance statistics, and the output from Budhathoki et al. (2021),
in Appendix D.1. We find that our method attributes all of the performance changes to the correct
ground truth shifts, both when there is a single shift (Settings (a) and (b)) and when there are multiple
shifts (Settings (c) and (d)). In the case of Setting (c), we find that our method attributes all of the
performance drop to a shift in P (Y |G). This is because the model relies largely on the spurious
information (G inferred from X2 and X3) in the source environment. We verify this by examining
the overall feature importance for both models (see Table D.2 in Appendix for details). Further, in the
presence of multiple shifts which simultaneously impact model performance (Setting (d)), we find
that our method is able to attribute a meaningful fraction of the performance shift to each distribution.
We further demonstrate that our method correctly identifies distribution shifts (and attributions) for a
CelebA gender classification task in Appendix D.2.

5.2 REAL-WORLD CASE STUDY: MORTALITY PREDICTION IN THE ICU

Setup. Clinical machine learning models are being increasingly deployed in the real-world in
hospitals, laboratories, and Intensive Care Units (ICUs) (Sendak et al., 2020). However, prior work
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has shown that such machine learning models are not robust to distribution shifts, and frequently
degrade in performance on distributions different than what is seen during training (Singh et al.,
2022). Here, we explore a simulated case study where a model which predicts mortality in the ICU
is deployed in a different geographical region from where it is trained. We use data from the eICU
Collaborative Research Database V2.0 (Pollard et al., 2018), which contains 200,859 de-identified
ICU records for 208 hospitals across the United States. Here, we simulate the deployment of a
model trained on data from the Midwestern US (source) to the Southern US (target). We restrict
to 4 hospitals in each geography with the most number of samples. We learn an XGB model to
predict mortality given vitals, labs, and demographics data. We assume the causal graph in Figure 3b,
informed by prior work utilizing causal discovery on this dataset (Singh et al., 2022). As prior work
has shown limited performance drops for models in this setting (Zhang et al., 2021), we oversample
younger population in the source environment to create an additional semi-synthetic distribution shift.
We use our method to attribute the increase in Brier score from Midwest to South datasets.

(a) Attribution with resampled source (b) Shifted age distribution (c) Attribution with balanced age

Figure 5: Attributing Brier score differences to candidate distributions on the eICU dataset for an
XGB model trained on either (a) resampled or (c) balanced Midwest, and tested on South datasets.

Our method provides actionable attributions. First, we observe from our attributions (red bar
in Figure 5a) that shifts in the age distribution is responsible for 16.2% of the total shift (0.004 of
0.0262). This confirms the validity of the attributions on a known semi-synthetic shift. Although
there are more significant mechanism shifts (Figure 5a), suppose that the practitioner decides to
focus on mitigating the shift in age. To do so, they first plot the age distribution in the source and
target environments (Figure 5b), finding that the target domain has dramatically more older patients.
Then, they choose to collect additional data from the older population in the source. Training a
new model on this augmented dataset, they find that the drop in performance is reduced by 21.3%
(0.0262 to 0.0206) since the performance on source better reflects the whole population (performance
worsens from 0.0424 to 0.0473). The practitioner may next turn their attention to mitigating shifts in
more impactful conditional mechanisms such as DLabs|Age, Demo, Surgery, using methods such as domain
adversarial training (Ganin et al., 2016) or GAN data augmentation (Mariani et al., 2018), but we
leave such explorations to future work.

6 DISCUSSION

We propose a method to attribute changes in performance of a model deployed on a different
distribution from the training distribution. We assume that distribution shifts are induced due to
changes in the causal mechanisms which result in model performance changes. We use the knowledge
of the causal graph to formulate a game theoretic attribution framework using Shapley values. The
coalition members are mechanisms contributing to the change in model performance. We demonstrate
the correctness and utility of our method on two synthetic and two real-world prediction datasets.

Limitations and Future Work. Our work assumes knowledge of the causal graph to obtain
interpretable and succinct attributions. While we can certainly obtain reasonable attributions from a
misspecified graph, we argue that such attributions may not be minimal. We observe some variance
in the importance weighting estimates, which may potentially be remedied by using more advanced
density estimation techniques (e.g. (Liu et al., 2021)). We note that our experiments on the CelebA
dataset are for demonstration purposes only, and do not advocate for deployment of such models.
Similarly, while we demonstrate a case study on publicly available health data, our work is only a
proof of concept, and we recommend further evaluation before practical deployment. Future work
includes relaxing the assumption that all variables are observed, comparing strategies for mitigating
conditional shifts, and extending the experiments to additional settings such as unsupervised learning
and reinforcement learning.
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E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/846c260d715e5b854ffad5f70a516c88-Paper.pdf.

11

https://arxiv.org/abs/1812.02275
https://proceedings.neurips.cc/paper/2020/file/e2d52448d36918c575fa79d88647ba66-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e2d52448d36918c575fa79d88647ba66-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://openreview.net/forum?id=Ro_zAjZppv
https://proceedings.neurips.cc/paper/2019/file/846c260d715e5b854ffad5f70a516c88-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/846c260d715e5b854ffad5f70a516c88-Paper.pdf


Under review as a conference paper at ICLR 2023

Alvin E Roth. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University Press,
1988.

Jessica Schrouff, Natalie Harris, Oluwasanmi Koyejo, Ibrahim Alabdulmohsin, Eva Schnider, Krista
Opsahl-Ong, Alex Brown, Subhrajit Roy, Diana Mincu, Christina Chen, et al. Maintaining fairness
across distribution shift: do we have viable solutions for real-world applications? arXiv preprint
arXiv:2202.01034, 2022.

Mark P Sendak, Joshua D’Arcy, Sehj Kashyap, Michael Gao, Marshall Nichols, Kristin Corey,
William Ratliff, and Suresh Balu. A path for translation of machine learning products into
healthcare delivery. EMJ Innov, 10:19–00172, 2020.

Harvineet Singh, Vishwali Mhasawade, and Rumi Chunara. Generalizability challenges of mortality
risk prediction models: A retrospective analysis on a multi-center database. PLOS Digital Health,
1(4):e0000023, 2022.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.

Adarsh Subbaswamy, Peter Schulam, and Suchi Saria. Preventing failures due to dataset shift:
Learning predictive models that transport. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 3118–3127, 2019.

Adarsh Subbaswamy, Roy Adams, and Suchi Saria. Evaluating model robustness and stabil-
ity to dataset shift. In Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The
24th International Conference on Artificial Intelligence and Statistics, volume 130 of Pro-
ceedings of Machine Learning Research, pp. 2611–2619. PMLR, 13–15 Apr 2021. URL
http://proceedings.mlr.press/v130/subbaswamy21a.html.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density-ratio matching under the bregman
divergence: a unified framework of density-ratio estimation. Annals of the Institute of Statistical
Mathematics, 64(5):1009–1044, 2012.

Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In
International conference on machine learning, pp. 9269–9278. PMLR, 2020.

Nikolaj Thams, Michael Oberst, and David Sontag. Evaluating robustness to dataset shift via
parametric robustness sets. arXiv preprint arXiv:2205.15947, 2022.
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A DERIVATION OF IMPORTANCE WEIGHTS

Let D be a binary random variable, such that when D = 1, X ∼ Dtarget(X), and when D = 0, X ∼
Dsource(X). Suppose d = DXi|parent(Xi), then, for a particular value (x, y):

Dtarget
d ((x, y)) := P(Xi = x|parent(Xi) = parent(xi), D = 1)

=
P(D = 1, parent(Xi) = xi|Xi = xi) · P(Xi = xi)

P(D = 1, parent(Xi) = xi)

=
P(D = 1|parent(Xi) = xi, Xi = xi) · P(Xi = xi, parent(Xi) = Xi)

P(D = 1|parent(Xi) = xi) · P(parent(Xi) = xi)

Then,

wd =
Dtarget

d ((x, y))

Dsource
d ((x, y))

=
P(D = 0|parent(Xi) = parent(xi))

P(D = 1|parent(Xi) = parent(xi))
· P(D = 1|Xi = xi, parent(Xi) = parent(xi))

P(D = 0|Xi = xi, parent(Xi) = parent(xi))

=
1− P(D = 1|parent(Xi) = parent(xi))

P(D = 1|parent(Xi) = parent(xi))
· P(D = 1|Xi = xi, parent(Xi) = parent(xi))

1− P(D = 1|Xi = xi, parent(Xi) = parent(xi))

Thus, we learn a model to predict D from Xi, and a model to predict D from [Xi; parent(Xi)], on
the concatenated dataset. In practice, we learn these models on a 75% split of both the source and
target data, and use the remaining 25% for Shapley value computation, which only requires inference
on the trained models. Therefore, an upper limit on the number of weight models required is 2|CD|,
though in practice, this number is often smaller as several nodes may have the same parents.

In the case where Xi is a root node, the expression becomes:

wd =
1− P(D = 1)

P(D = 1)
· P(D = 1|Xi = xi)

1− P(D = 1|Xi = xi)

Where we simply compute P (D = 1) as the relative size of the provided source and target datasets.
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B PROOF OF PROPERTIES

Property 1. (Efficiency)
∑
d∈CD

Attr(d) = Val(CD) = Perf(Dtarget)− Perf(Dsource)

By the efficiency property of Shapley values (Roth, 1988), we know that the sum of Shapley values
equal the value of the all-player coalition. Thus, we distribute the total performance change due to
the shift from source to target distribution to the shifts in causal mechanisms in the candidate set.

Property 2.1. (Null Player) Dsource
d = Dtarget

d =⇒ Attr(d) = 0.

Property 2.2. (Relevance) Consider a mechanism d. If Perf(C̃∪{d}) = Perf(C̃) for all C̃ ⊆ CD \d,
then Attr(d) = 0.

We can verify that our method gives zero attribution to distributions that do not shift between the
source and target, and distribution shifts which do not impact model performance. First, we observe
that in both cases, Val(D̃) = Val(D̃ ∪ {d}). For Property 2.1, this is because D̃ = D̃ ∪ {d} for any
D̃ ⊆ CD since the factor corresponding to d remains the same between source and target even when it
is allowed to change as part of the coalition. For Property 2.2, this is clear from Eq. 4. By definition
of Shapley value in Eq. 1, Attr(d) = 0.

Property 3. (Attribution Symmetry) Let AttrD1,D2
(d) denote the attribution to some mechanism

d when D1 = Dsource and D2 = Dtarget. Then, AttrD1,D2
(d) = −AttrD2,D1

(d) ∀d ∈ CD.

We overload Perfsrc→tar(C̃) for some coalition C̃ to denote Perf(D̃) where D̃ is given by Equation 2.
Analogously, we denote Perftar→src(C̃) to be Perf(D̃′) when D̃′ is given by

D̃′ =

 ∏
i:DXi|parent(Xi)

∈C̃

Dsource
Xi|parent(Xi)

 ∏
i:DXi|parent(Xi)

̸∈C̃

Dtarget
Xi|parent(Xi)


Note that Perfsrc→tar(C̃) = Perftar→src(CD \ C̃) for all C̃ ⊆ CD.

We can use Equation 3 to rewrite Equation 1 as:

AttrD1,D2
(d) =

1

|CD|
∑

C̃⊆CD\{d}

(
|CD| − 1

|C̃|

)−1 (
Perfsrc→tar(C̃ ∪ {d})− Perfsrc→tar(C̃)

)
=

−1

|CD|
∑

C̃⊆CD\{d}

(
|CD| − 1

|C̃|

)−1 (
Perftar→src(CD \ C̃)− Perftar→src(CD \ (C̃ ∪ {d}))

)
=

−1

|CD|
∑

C̃
′⊆CD\{d}

(|CD| − 1

|C̃′|

)−1 (
Perftar→src(C̃

′ ∪ {d})− Perftar→src(C̃
′
)
)

= −AttrD2,D1
(d)
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C SHAPLEY VALUES FOR A SYNTHETIC SETTING

C.1 DERIVATION

Suppose that we have the following data generating process for the source environment:

X ∼ N (µ1, σ
2
X)

Y ∼ θ1X +N (0, σ2
Y )

And for the target environment:

X ∼ N (µ2, σ
2
X)

Y ∼ θ2X +N (0, σ2
Y )

The model that we are investigating is Ŷ = f(X) = ϕX , and l((x, y), f) = (y − f(x))2. Then,

Perf(Dsource) = E(x,y)∼Dsource [l((x, y), f)]

= E(x,y)∼Dsource [
(
θ1X +N (0, σ2

Y )− ϕX
)2
]

= E(x,y)∼Dsource [
(
N ((θ1 − ϕ)µ1, (θ1 − ϕ)2σ2

X) +N (0, σ2
Y )

)2
]

= E(x,y)∼Dsource [
(
N ((θ1 − ϕ)µ1, (θ1 − ϕ)2σ2

X + σ2
Y )

)2
]

= (θ1 − ϕ)2σ2
X + σ2

Y + (θ1 − ϕ)2µ2
1

Perf(Dtarget) = E(x,y)∼Dtarget [l((x, y), f)]

= (θ2 − ϕ)2σ2
X + σ2

Y + (θ2 − ϕ)2µ2
2

∆ = Perf(Dtarget)− Perf(Dsource)

= σ2
X((θ2 − ϕ)2 − (θ1 − ϕ)2) + (θ2 − ϕ)2µ2

2 − (θ1 − ϕ)2µ2
1

= Val(CD)

Val({DX}) = (θ1 − ϕ)2(µ2
2 − µ2

1) (θ2 := θ1)

Val({DY |X}) = (σ2
X + µ2

1)((θ2 − ϕ)2 − (θ1 − ϕ)2) (µ2 := µ1)

Attr(DX) =
1

2

(
Val(CD)− Val({DY |X}) + Val({DX})− Val({})

)
=

1

2

(
(θ2 − ϕ)2(µ2

2 − µ2
1) + (θ1 − ϕ)2(µ2

2 − µ2
1)
)

= (
1

2
µ2
2 −

1

2
µ2
1)((θ2 − ϕ)2 + (θ1 − ϕ)2)

Attr(DY |X) =
1

2

(
Val(CD)− Val({DX}) + Val({DY |X})− Val({})

)
=

1

2

(
(σ2

X + µ2
2)((θ2 − ϕ)2 − (θ1 − ϕ)2) + (σ2

X + µ2
1)((θ2 − ϕ)2 − (θ1 − ϕ)2)

)
= (σ2

X +
1

2
µ2
1 +

1

2
µ2
2)((θ2 − ϕ)2 − (θ1 − ϕ)2)

Note that Attr(DX) + Attr(DY |X) = ∆.

Using the method proposed by Budhathoki et al. (2021), we get that:

D(P̃X ||PX) =
(µ2 − µ1)

2

2σ2
X

D(P̃Y |X ||PY |X) = EX∼P̃X
[D(P̃Y |X=x||PY |X=x)]

= EX∼P̃X

[
((θ2 − θ1)X)2

2σ2
Y

]
=

(θ2 − θ1)
2

2σ2
Y

(σ2
X + µ2

2)
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C.2 EXPERIMENTS

Now, we verify the correctness of our method by conducting a simulation of this setting, using
µ1 = 0, θ1 = 1, σ2

X = 0.5, σ2
Y = 0.25, ϕ = 0.9, and varying µ2 (the level of covariate shift), and θ2

(the level of concept drift). We generate 10, 000 samples from the source environment, and, for each
setting of µ2 and θ2, we generate 10, 000 samples from the corresponding target environment. We
then apply our method to attribute shifts to {DX ,DY |X}, using XGB to estimate importance weights.
We also apply the joint method in Budhathoki et al. (2021).

In Figure C.1, we compare our attributions with the baseline, when both covariate and concept drift
are present. We find that for our method, the empirical results match with the previously derived
analytical expressions, where any deviations can be attributed to variance in the importance weight
computations. For Budhathoki et al. (2021), we find that there appears to be very high variance in the
attribution the attribution to DY |X , which is likely a product of the nearest-neighbors KL estimator
Wang et al. (2009) used in their work.

In Figure C.2, we explore the case where we have a misspecified causal graph. Specifically, we exam-
ine the case where only concept drift is present, for the actual graphical model (CD = {DX ,DY |X}),
and for a misspecified graphical model (CD = {DY ,DX|Y }). We find that using the mechanisms
from the true data generating process results in a minimal attribution (i.e. Attr(DX) = 0), whereas
the the misspecified causal graph gives non-zero attribution to both distributions.
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(b) Our method; Fix µ2 = 0.7 and vary θ2.
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(c) Joint method from Budhathoki et al. (2021); Fix
θ2 = 1.3 and vary µ2.
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Figure C.1: Mean squared error differences attributed by our model and Budhathoki et al. (2021) in
the synthetic setting described in Appendix C
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(a) Our method; Fix µ2 = 1 and vary θ2, with CD =
{DX ,DY |X}, the actual causal graph
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Figure C.2: Mean squared error differences attributed by our model when there is only concept drift,
for the actual causal graph (a), and a mis-specified causal graph (b).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 SYNTHETIC DATA

Table D.1: Performance of each model on the source environment for the synthetic dataset.

Accuracy Brier Score

LR 0.871 0.102
XGB 0.870 0.099

Table D.2: Feature importances of each model on the synthetic dataset. For LR, the model coefficient
is shown, and for XGB, the total information gain from each feature.

LR (Coefficient) XGB (Gain)

X1 0.400 31.1
X2 0.381 29.2
X3 1.994 358.2
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Figure D.1: Accuracy differences attributed by our method to five potential distributional shifts on
the synthetic dataset for the XGB model.
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Figure D.2: Brier score differences attributed by our method to five potential distributional shifts on
the synthetic dataset for the LR model.
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Figure D.3: Brier score differences attributed by our method to five potential distributional shifts on
the synthetic dataset for the XGB model.
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Figure D.4: Attributions by the joint method in Budhathoki et al. (2021) to five potential distributional
shifts on the synthetic dataset. We note that the magnitude of the attribution is not informative in
interpreting model performance changes, particularly when multiple shifts are present.
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D.2 GENDER CLASSIFICATION IN CELEBA

Figure D.5: Causal graph for the celebA dataset.

Setup. We use the CelebA dataset (Liu et al., 2015), where the goal is to predict gender from facial
images. We adopt a setup similar to the one presented in Thams et al. (2022). We assume this data
is generated from the causal graph shown in Figure D.5. We train a CausalGAN (Kocaoglu et al.,
2017), a generative model that allows us to synthesize images faithful to the graph. CausalGAN
allows to train attribute nodes (young, bald, etc) which are binary-valued, and then synthesize images
conditioned on specific attributes. This allows us to simulate known distribution shifts (in attributes
and hence images) across environments. We assume that the causal mechanisms in the source
environment have log-odds equal to the ones shown in Table D.3. We omit DImage|Pa(Image) from
CD, as 1) this distribution is parameterized by the CausalGAN and does not change, and 2) it is
high-dimensional and difficult to work with. We investigate attribution to distribution shift of an
ImageNet-pretrained ResNet-18 (He et al., 2016) finetuned to predict gender from the image using
frozen representations. Note that the model is only given access to the image itself, but not any of the
binary attributes in the causal graph. We conduct the following two experiments for evaluation.

Experiment 1. The purpose of this experiment is to demonstrate that our method provides the
correct attributions for a wide range of random shifts. To create the target environment, we first select
the number of mechanisms to perturb, np ∈ {1, 2, ..., 6}. We select np mechanisms from the causal
graph, which we define as the ground truth shift. For each mechanism, we perturb one of the log
odds by a quantity uniformly selected from [−2.0,−1.0] ∪ [1.0, 2.0]. We then use the CausalGAN
to simulate a dataset of 10, 000 images based on the modified mechanisms, and use our method to
attribute the accuracy change between source and target. We select the np distributions from our
method with the largest attribution magnitude, and compare this set with the set of ground truth shifts
to calculate an accuracy score. We repeat this experiment 20 times for each value of np ∈ {1, 2, ..., 6},
and only select experiments with a non-trivial change in model performance (change in accuracy
≥ 1%).

Experiment 2. The purpose of this experiment is to investigate the magnitude of our model
attributions in the presence of multiple shifts. We perturb the log odds for P (Wearing Lipstick|Male)
and P (Mouth Slightly Open|Smiling) jointly by [−3.0, 3.0]. We compare the magnitude of the
attributions for the two associated mechanisms, relative to the total shift in accuracy.

Results. In Table D.4, we show the average accuracy of our method for each value of np. We find
that our method achieves roughly 90% accuracy at this task. However, we note that this is not the
ideal scenario to validate our method, as not all shifts in the ground truth set will result in a decrease
in the model performance. As our method will not attribute a significant value to shifts which do not
impact model performance, this explains the accuracy discrepancy observed.
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Table D.3: Data generating process for the causal graph shown in Figure D.5

Variable Log Odds
Young Base: 0.0
Male Base: 0.0
Eyeglasses Base: 0.0, Young: -0.4
Bald Base: -3.0, Male: 3.5, Young: -1.0
Mustache Base: -2.5, Male: 2.5, Young: 0.5
Smiling Base: 0.25, Male: -0.5, Young: 0.5
Wearing Lipstick Base: 3.0, Male: -5.0
Mouth Slightly Open Base: -1.0, Young: 0.5, Smiling: 1.0
Narrow Eyes Base: -0.5, Male: 0.3, Young: 0.2, Smiling: 1.0

Table D.4: Average accuracy of our method in attributing shifts to the ground truth shift in CelebA
for each number of perturbed mechanisms (np).

np Avg Accuracy

1 1.00 ± 0.00
2 0.72 ± 0.36
3 0.90 ± 0.16
4 0.85 ± 0.13
5 0.93 ± 0.10
6 0.91 ± 0.09
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Figure D.6: We vary the perturbation in log odds in the target environment for the “wearing lipstick”
and “mouth slightly open” attributes. We show (a) the total shift in accuracy, (b) our attribution to
P (Wearing Lipstick|Male), (c) our attribution to P (Mouth Slightly Open|Young, Smiling).

Table D.5: Predictive performance of XGB models trained to predict attributes from the source
environment in CelebA, and the correlation of each attribute the gender label, as measured by the
Matthews Correlation Coefficient (MCC).

Predictive Performance Correlation

AUROC AUPRC MCC

Wearing Lipstick 0.968 0.976 -0.837
Mouth Slightly Open 0.927 0.924 -0.036
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In Figure D.6, we show the output of our method in Experiment 2. First, we find that shifting these
two attributes causes a large decrease in the accuracy (up to 6%), and that P (Wearing Lipstick|Male)
seem to be the stronger factor responsible for the decrease. Looking at our attributions, we find
that we indeed attribute the large majority of the shift to P (Wearing Lipstick|Male). Here, the
relative attribution to P (Wearing Lipstick|Male) is relatively unaffected by the shift in the other
variable, as its effect on the total shift is so minuscule. However, looking at the attribution to
P (Mouth Slightly Open|Young, Smiling), in addition to the small magnitude, we do observe an
interesting effect, where the attributed accuracy drop is greater when the two shifts are combined.

To justify the magnitude of our attributions, we use an ad-hoc heuristic that attempts to approximate
the model reliance on each attribute in making its prediction. First, we train XGBoost models on
the ResNet-18 embeddings from the source environment to predict the two attributes. From Table
D.5, we find that “Wearing Lipstick” is easier to infer from the representations than “Mouth Slightly
Open”. Next, we measure the correlation of each attribute to the label (gender), finding that the
magnitude of the correlation is also much higher for “Wearing Lipstick”. As “Wearing Lipstick” is
both easier to detect from the image, and is also a stronger predictor of gender, it seems reasonable to
conclude that the model trained on the source would utilize it more in its predictions, and thus our
method should attribute more of the performance drop to the “Wearing Lipstick” distribution when it
shifts.

D.3 EICU DATA

Table D.6 lists the features that comprise the nodes in the causal graph. Please refer to (Singh et al.,
2022, Supporting Information Table C) for descriptions. Code for preprocessing the eICU database
for the mortality prediction task is made available at https://github.com/alistairewj/
icu-model-transfer by Johnson et al. (2018).

Table D.6: Features comprising the nodes of the causal graph in Figure 3b.

Variable Features
Demo is female, race black, race hispanic, race asian, race other
Vitals heartrate, sysbp, temp, bg pao2fio2ratio, urineoutput
Labs bun, sodium, potassium, bicarbonate, bilirubin, wbc, gcs
Age age
ElectiveSurgery electivesurgery
Outcome death

Total number of data points are 10,056 in Midwest and 7,836 in South datasets. Both of them have
20 features and a binary outcome. We randomly split both datasets into two halves for training the
XGBoost model (also, for estimating the Shapley values) and evaluation. To create the resampled
Midwest dataset, we subsample 67% of the training set but selectively sample records with age less
than 63 (which is the median age in Midwest dataset) with probability 5 times that of the probability
of sampling the rest of the records.
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