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Abstract

The primary objective of this research is to in-001
vestigate automatic content generation in an002
educational context. In an era characterized003
by an unprecedented influx of information, the004
conventional methods of content creation for005
classroom instruction have been rendered in-006
creasingly inadequate, thus the motivation be-007
hind this research is to aid teachers in generat-008
ing content for educational use such that they009
won’t need to expend much time and energy as010
with traditional methods.011

Modern methods of generating content for the012
classroom are sought after due to the benefits013
when compared with more traditional methods.014
One example of this is a case study carried015
out amongst 48 college students where a pos-016
itive effect occurred in the students’ learning017
outcomes when they used computer-generated018
questions.019

With automated content generation being the020
primary focus of this research, this research021
heavily relies on and investigates Natural Lan-022
guage Processing (NLP) techniques and tech-023
nologies. Thus we delve into how automated024
content generation for previous systems was025
carried out along with Large Language Models026
(LLMs)027

Our methodology relies on making use of the028
GPT model, GPT-3, the proposed system per-029
forms various NLP tasks such as Summariza-030
tion and Information Retrieval (IR) along with031
prompt engineering to generate content within032
an educational context and empower educators033
when it comes to generating content. The sys-034
tem accepts inputs from the user that may be035
plain text, a YouTube video or a PDF and then036
generates content, such as a worksheet with037
questions in return by interfacing with and us-038
ing GPT-3 to generate the content.039

One also must keep in mind that such a sys-040
tem raises ethical qualms, particularly regard-041
ing data privacy and bias. Algorithmic bias is042
a commonly known issue within the field of043

NLP, as bias often arises from biased training 044
data and algorithms. This bias can be harmful 045
as it can directly affect the learning outcomes 046
of certain groups of students. Furthermore, as 047
such a system may collect learner data, data 048
privacy comes into question, particularly who 049
or what has access to this data and how it is 050
used. A limitation of the currently proposed 051
system is that as it uses GPT-3 as a backend, it 052
will incorporate the same bias as GPT-3. The 053
system however does not pose a data privacy 054
risk as no sensitive or personal information is 055
asked for, and the given inputs are only retained 056
up until the corresponding output is generated. 057

In conclusion, this research focuses on the in- 058
tegration of computational linguistics within 059
the field of education through the integration 060
of GPT-3 with the application of automated 061
content generation. The results of this study 062
show a positive trend as 94% of the respon- 063
dents said that the system generated relevant 064
content while 85% of respondents said that they 065
would adopt such a system. 066

This work raises the question of how NLP can 067
be utilised more effectively within the field of 068
education. Furthermore, this system, while cur- 069
rently aimed at primary and secondary level 070
students at a general level, in future work it 071
can potentially be adapted for particular grade 072
levels and particular topics by fine-tuning the 073
model. 074

1 Introduction 075

As the demand for top-notch education rises, the 076

interest in educational tools such as Intelligent Tu- 077

toring Systems (ITS) has also risen. Tools such as 078

the one mentioned mark a significant progression 079

in the field of educational technology. 080

An ITS is a tech-driven system that is primarily 081

focused on offering students an individual and care- 082

fully curated learning experience. This approach to 083

education is not only innovative but also promising 084

as it is set to surpass the more traditional methods 085

of teaching. What sets ITSs apart in education is 086
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their ability to track a student’s progress and un-087

derstanding throughout their educational journey.088

(Graesser et al., 2018)089

This active interplay between technology and090

pedagogy ensures that any barriers to a student’s091

progress are quickly identified and addressed, cre-092

ating a more supportive and effective learning envi-093

ronment. However, despite the undeniable benefits094

of ITS, it’s crucial to recognize a practical consid-095

eration.096

As educators traverse the complex landscape of097

the learning process, they inevitably reach a point098

where they must create custom content that aligns099

perfectly with their classroom’s specific goals and100

student demographics. This customisation while101

crucial for delivering a personalised learning expe-102

rience, requires a significant commitment of time103

and effort that could be better spent on other edu-104

cational tasks. (Nkambou et al., 2010)105

The proposed system interfaces with the GPT-3106

model Curie variant to perform various tasks such107

as generating lesson plans and creating questions108

for students. For example, the system can assess a109

reading comprehension passage and generate a list110

of related questions. This system has the potential111

to revolutionize education by changing how content112

is created, facilitating content distribution, and in-113

troducing the possibility of educators collaborating114

and sharing resources through this system.115

In this study, we explore the potential of Natural116

Language Processing NLP models and techniques117

to assist educators in content generation. Our hy-118

pothesis centres on the capabilities of GPT-3, a119

model that was considered state-of-the-art at the120

time of its introduction, and its potential to signifi-121

cantly contribute to this area.122

1.1 Objectives123

This research seeks to explore the necessary meth-124

ods and technologies for constructing a system ca-125

pable of generating educational content from an126

NLP prompt and to understand the potential impact127

of such a system on networked learning.128

The following objectives have been outlined:129

• Examine cutting-edge NLP models and tech-130

niques that are pertinent to the development of131

the proposed system, with a particular focus132

on the GPT series of models.133

• Identify suitable NLP models and techniques134

for a system that can produce classroom con-135

tent from a natural language prompt.136

1.2 Motivation 137

The inspiration of this research is the exciting possi- 138

bility of automated content creation within an ITS, 139

this would significantly reduce the time and effort 140

educators need to invest in content generation. 141

The primary aim of this project is to make use 142

of automation to streamline and improve the cre- 143

ation of educational materials, thereby addressing 144

several key challenges in modern education. Fun- 145

damentally, automated content production signifies 146

a shift in how we perceive and implement person- 147

alized learning environments. 148

In conventional educational scenarios, customiz- 149

ing instruction to suit each student’s individual 150

needs and learning styles can be labour-intensive 151

and time-consuming. However, the introduction 152

of automated content creation opens up the poten- 153

tial to transform this aspect of education. One of 154

the main benefits of automated content production 155

within ITS is its ability to greatly enhance the scal- 156

ability of customized learning environments. 157

Essentially, it enables educators and ITS develop- 158

ers to efficiently produce a wide variety of tailored 159

educational materials without the time and resource 160

constraints typically associated with manual con- 161

tent creation. This scalability is crucial, especially 162

in educational settings where a diverse group of 163

students with varying learning needs require access 164

to high-quality instruction. 165

2 Literature Review 166

2.1 Intelligent Tutoring Systems 167

The primary objective of any ITS is to deliver a 168

personalised one-on-one education through AI and 169

Machine Learning, enhancing the learning process 170

through guidance and feedback which are instant, 171

along with the analysis of learner behaviour to 172

adapt to the learner’s needs and preferences. 173

An ITS is composed of key elements that work 174

together to provide personalized learning experi- 175

ences: 176

• Student Model: The student model is a repre- 177

sentation of the learner’s performance, knowl- 178

edge and preferences. As the learner pro- 179

gresses, the student model evolves, thus en- 180

abling personalised feedback. The student 181

model is updated through sources such as as- 182

sessments and interactions throughout the ITS. 183

(Chrysafiadi and Virvou, 2013) 184
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• Tutoring Strategy: Perhaps one of the most185

prominent aspects of an ITS is the tutoring186

strategy. This component has a focus on mod-187

elling the domain knowledge and providing188

feedback and guidance to the student based189

on the student model. (Nwana, 1990)190

• Content Library: The content library of an191

ITS can include multimedia resources such192

as text, images, and videos. These resources193

enable flexible and personalized learning ex-194

periences, adapting to changing educational195

demands and staying current with advance-196

ments. (Nwana, 1990)197

• User Interface (UI): The interaction between198

the learner and the system is carried out via the199

UI. It facilitates learning and engagement by200

offering progress tracking, clear instructions201

and adaptive content. (Lopes et al., 2019)202

The components of an ITS work in tandem203

to provide the learner with an adaptive, person-204

alised education through the understanding of the205

learner’s unique needs and progress.206

2.1.1 Benefits & Challenges207

ITSs strive to deliver a personalised learning ex-208

perience, adjusting to the unique needs of each209

student through the analysis of interactions via ma-210

chine learning. Providing immediate feedback, is211

beneficial, especially for more complex subjects.212

ITS also adapt their teaching methods to align213

with students’ learning styles, be it visual or au-214

ditory. (Graesser et al., 2018) These systems of-215

fer instant access to current educational resources,216

encompassing libraries, simulations, and games.217

Educators gain from automated grading and the218

capability to pinpoint students who are struggling219

for timely intervention.220

Despite their benefits, the development and up-221

keep of ITS can be expensive, and evaluating their222

effectiveness poses a challenge. Nevertheless, they223

broaden educational access worldwide and cater to224

a diverse range of learning demographics.225

2.1.2 Automated Content Generation Within226

ITS227

Automated content creation has the benefit of228

quickly producing a large amount of information,229

which is particularly useful in fields such as science230

and technology. Additionally, it can tailor content231

to individual students by analyzing their learning 232

preferences, progress, and performance data. 233

An example of this is MathBot, a conversational 234

chatbot that provides students with feedback. The 235

system uses a conversational graph to generate 236

questions and guide the conversation. When it de- 237

tects a flaw in the learner’s logic, it reviews earlier 238

concepts. (Grossman et al., 2019) 239

2.2 Large Language Models 240

Large Language Models known as LLMs are ca- 241

pable of understanding natural language and pro- 242

ducing text that appears to be written by a human. 243

These LLMs utilize deep neural networks, a type 244

of machine learning model that excels at identi- 245

fying complex patterns in data. During the train- 246

ing phase, LLMs are exposed to vast amounts of 247

text data, including novels, news articles, and web 248

pages. (Cheng et al., 2023) They learn to predict 249

the next word in a sentence based on the preceding 250

words, thereby developing a deep understanding of 251

the relationships between words and their context. 252

Deep neural networks form the basis of large 253

language models. They process input data through 254

interconnected nodes in layers, producing a co- 255

herent sentence. Training these models involves 256

adjusting node weights to minimize the difference 257

between predicted and actual output, using a set of 258

ideal word sequences for comparison. (Schwenk 259

and Gauvain, 2005) 260

2.2.1 Transformers 261

Transformers, initially released by (Vaswani et al., 262

2017), is an LLM model which had an everlasting 263

impact on the field of NLP. Before the introduction 264

of this model, Recurrent Neural Networks, Long 265

Short-Term Memory and Gated Recurrent Neural 266

Networks were established as the state-of-the-art 267

approaches to language modelling, a position that 268

has since been delegated to transformers. 269

While the attention mechanism had been utilised 270

previously, the Transformer was the first to rely en- 271

tirely on the attention mechanism to learn patterns 272

between the model’s input and the output which is 273

of dimension 512. 274

Architecture 275

The Transformer architecture comprises an 276

encoder-decoder structure. The encoder translates 277

the input (symbolic representation) into a sequence 278

of continuous representations. Given this continu- 279

ous representation, the decoder will generate an out- 280
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put sequence which is of a symbolic representation.281

Furthermore, the Transformer is an auto-regressive282

model, meaning that it takes the output it has just283

generated as additional input when generating the284

next token in the output.285

Encoder & Decoder286

The Encoder consists of six identical layers, each287

containing two sub-layers. The first sub-layer288

utilizes a multi-head self-attention mechanism,289

and the second one is a position-wise fully con-290

nected feed-forward network. Each sub-layer is291

surrounded by a residual connection, followed by292

layer normalization.(Vaswani et al., 2017)293

The Decoder, like the Encoder, is composed of294

six identical layers. However, each layer in the295

Decoder has three sub-layers. The first two are296

identical to those in the Encoder, and the third one297

performs multi-head attention over the Encoder’s298

output. Each sub-layer in the Decoder also has a299

residual connection followed by layer normaliza-300

tion. The self-attention sub-layer in the Decoder301

is modified to prevent positions from attending to302

subsequent positions, ensuring that predictions at303

position i depend only on known outputs at posi-304

tions less than i.(Vaswani et al., 2017)305

Attention306

An attention function can be understood as a307

method that maps a query and a collection of key-308

value pairs to an output. All of these elements - the309

keys, values, query, and output - are represented310

as vectors. The output is generated by transform-311

ing the sum of the values. Each value is assigned312

a weight, which is determined by a function that313

takes the query and the corresponding key as in-314

puts.(Vaswani et al., 2017)315

Positional Encoding316

Transformers lack recurrence or convolution,317

which means they need additional information to318

utilize the order of the input. This is where posi-319

tional encoding comes into play. It provides infor-320

mation about the relative and absolute positions321

of the tokens (words) in the sequence. These en-322

codings are added to the input embeddings at the323

base of the encoder and decoder stacks. Since the324

encodings and embeddings share the same dimen-325

sions, they can be summed together. (Vaswani et al.,326

2017)327

Conclusion 328

By making use of the concepts discussed, the trans- 329

former model sets itself apart from other machine- 330

learning models. In recent years, development 331

within the NLP field has only cemented the place 332

of transformers as a state-of-the-art model. 333

2.2.2 GPT-3 334

GPT-3 is a 175-billion-parameter auto-regressive 335

language model that was built as an improvement 336

upon the previously existing GPT-2 model, when 337

introduced GPT-3 was notable for its strong per- 338

formance on tasks such as machine translation and 339

question-answering amongst others. (Brown et al., 340

2020) 341

When introduced GPT-3 was evaluated upon 342

three conditions: 343

• Zero-Shot Learning: Zero-Shot learning is 344

when the model predicts the given answer 345

from a description of the given tasks. 346

• One-Shot Learning: The model is given the 347

task description, along with a singular exam- 348

ple of the given task. 349

• Few-Shot Learning: Few-Shot learning is 350

when the model is given a task description 351

along with some examples of the given task. 352

When evaluated, GPT-3 achieved promising re- 353

sults in the zero-shot and one-shot learning settings. 354

Achieving an 81.5 F1 score on CoQA in a zero-shot 355

setting, 84.0 F1 on CoQA in the one-shot setting, 356

and 85.0 on a few-shot setting. 357

GPT-3 demonstrates proficiency in one-shot and 358

few-shot tasks that require immediate reasoning or 359

quick adaptation. This includes tasks like unscram- 360

bling words, performing arithmetic calculations, 361

and using new words in a sentence after only a 362

single exposure to their definitions. (Brown et al., 363

2020) 364

2.2.3 T5 365

T5 is an open-source model released by Google 366

trained on a text-to-text framework. The text-to- 367

text framework enables T5 to perform a multitude 368

of tasks, with the task being performed dependent 369

on the given prompt. (Raffel et al., 2019) 370

The T5 model, grounded in the transformer ar- 371

chitecture, leverages the self-attention mechanism. 372

This mechanism enables the model to focus on var- 373

ious parts of its input sequence during both encod- 374

ing and decoding processes. Uniquely, T5 adopts 375
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a text-to-text framework where both the input and376

output are sequences of text. This design broadens377

the scope of NLP tasks that T5 can be trained for,378

encompassing areas such as question answering379

and text classification, among others.380

T5, trained on a diverse text corpus, underwent381

two training stages. Initially, it predicted masked382

words in sentences in an unsupervised manner.383

Then, it was fine-tuned on specific NLP tasks.384

This pre-training allowed T5 to develop a gener-385

alized understanding of language, enhancing its386

task-specific performance.387

2.3 Reinforcement Learning388

When training a machine learning model, one389

might use reinforcement learning (RL), RL is a390

training process where the model learns based on391

its interaction with the environment. The model’s392

objective is to maximise a variable called its reward.393

(Li, 2022)394

We define a set of parameters to be the weights395

and biases of the model to parameterise a policy.396

Mathematically speaking, in RL we seek to max-397

imise the reward by following this parameterised398

policy. Typically we need to create a reward func-399

tion. (Li, 2022)400

The model then takes a set of actions called state401

and action pairs, with the total reward being the402

outcome of these steps. A common approach to403

finding the set of parameters is to use the Gradient404

Ascent.405

We use RL when modelling language because of406

the problem of how we define an acceptable answer407

from a machine learning model. Furthermore, we408

want the models to produce not only high-quality409

answers but answers that are free from bias. As410

a loss function which captures these attributes is411

difficult to design, human feedback can be opted for412

as a measurement of the performance of a model,413

this is often called Reinforcement Learning from414

Human Feedback (RLHF)415

2.3.1 ChatGPT Training Process416

In the initial step of training ChatGPT, there was417

a need to collect data and train a supervised pol-418

icy first. Human trainers played out conversations419

where they took both the role of the user, as well420

as that of the AI assistant. Then a pre-trained421

model is fine-tuned on the dataset curated by the hu-422

man trainers along with the old dataset. The given423

prompts are diverse and include a variety of tasks,424

including but not limited to question answering,425

dialogue, summarisation, natural language genera- 426

tion, etc... (Phan, 2020) 427

The next step is to obtain a model that takes an 428

input pair comprising of a prompt and a text and 429

returns a scalar reward which should represent the 430

humans’ preference, this model is the reward func- 431

tion approximated. The fine-tuned model from the 432

initial step is tasked with generating k text samples 433

to an input prompt. Then a human labeller will or- 434

ganise the generated samples in order from best to 435

worst. Since humans might rate a result differently 436

from one another, the reward model is trained on 437

all the human-labeled results as a single batch for 438

each prompt. This is computationally efficient and 439

avoids over-fitting the model. 440

The loss function is then designed according to 441

the reward model for a prompt x and the corre- 442

sponding output y. If the reward for the completion 443

being looked at is higher than the reward of the 444

other completion being considered, then the loss is 445

small. The supervised fine-tuned model with the 446

final unembedding layer replaced takes a prompt 447

and a response and outputs the reward thus it can 448

be trained as a reward model. 449

The objective, which is determined using the re- 450

ward model from the second step and the fine-tuned 451

model from the first step, is defined with several 452

components. These include the Kullback-Leibler 453

reward coefficient, which manages the intensity of 454

the Kullback-Leibler penalty, and a pretraining loss 455

coefficient that oversees the pretraining gradients 456

and the Kullback-Leibler penalty. 457

The model is then updated in several iterations 458

using Gradient Ascent, with steps 2 and 3 iterated 459

continuously. The resulting model (called Instruct- 460

GPT) was then compared to GPT-3, its outputs 461

were given higher scores than that of GPT-3 while 462

having fewer parameters by a magnitude of 100. 463

This model also showed an improvement in the 464

truthfulness of its outputs and an improvement in 465

toxicity. 466

3 System Requirements 467

As established previously, the primary aim of this 468

research is to identify the most effective approach 469

to designing and creating a system that can supply 470

educators with educational materials. The funda- 471

mental premise of this system is to simplify and 472

expedite the process of generating educational con- 473

tent for educators. 474

To fulfil this premise, the system needs to be 475
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simple and user-friendly, allowing teachers to ac-476

cess the information they need while eliminating477

unnecessary complexities. The system needs to be478

intuitive and dependable.479

It’s crucial to emphasize that such a system is480

not intended to replace educators, their expertise,481

or their judgment. Instead, this tool is designed482

to provide a supplementary resource that enhances483

and complements the educator’s work in the class-484

room. It allows them to devote more time and485

energy inside the classroom while also enabling486

the preparation and organization of study materials487

more efficiently and with less effort.488

Therefore, the system has three primary func-489

tions:490

• Input through the form of text is received.491

• Analysis of the given input and processing of492

the given information.493

• After the input has been analyzed and pro-494

cessed, the system should provide a response495

that is both accurate and appropriate.496

4 Methodology497

The system being proposed in this research utilises498

prompt engineering in conjunction with an LLM.499

Prompt engineering allows us to guide the model500

towards our desired output by refining the inputted501

prompt and being explicit about what is required502

of the model. This facilitates the LLM to generate503

outputs which are contextually appropriate and ac-504

curate. The LLM being used in this case is GPT-3505

which has already been trained on a vast dataset,506

giving the LLM a good comprehension of language507

and allowing it to generate accurate and appropriate508

outputs. The system has various functions designed509

to facilitate an educator’s workload.510

The UI comprises a grid of functions each being511

accompanied by an interface designed to be user-512

intuitive, thus enabling the the interaction between513

the user and the system. The functions included514

include the generation of questions, ideas and the515

summarisation of text amongst other functions.516

4.1 Prompt Engineering517

Once a function has been selected, the system will518

gather the input from the user (Figure 1) and start519

prompt engineering to carry out the desired func-520

tion. Prompt engineering is handled by the back-521

end part of the system thus this is not visible to the522

Figure 1: Collecting The Input

user. Thus, before being sent to GPT-3 the prompt 523

is modified in some way, typically by appending 524

text before or after the given input. (White et al., 525

2023) 526

The prompts are similar to the zero-shot learn- 527

ing prompt. Where the textual prompt was written 528

beforehand and then the task description would be 529

included afterwards, an example of this is when 530

making use of the text correction function, the en- 531

gineered text would be "Correct the following text: 532

This food are good. [NEWLINE] Corrected text:" 533

and the model would then generate a correction of 534

the given text. 535

4.2 Training The Model 536

The training of a machine learning model is the pro- 537

cess of supplying the model with data to learn from, 538

this typically includes some form of input data and 539

some corresponding output data. This allows the 540

model to learn from the patterns present within the 541

data and make predictions on new unseen inputs. 542

In our specific application, the GPT-3 model 543

implemented was fine-tuned via a synthetic dataset 544

to improve response quality. A synthetic dataset 545

is a dataset which has been computer-generated, 546

versus a dataset that has been assembled through 547

traditional means such as manual data collection. 548

Synthetic data has its advantages such as being able 549

to generate as much data as you need in little time. 550

This synthetic dataset thus manages to cover a 551

broad range of scenarios given the functions the 552

model was given. The synthetic dataset was created 553

through GPT-3 itself by making use of randomly 554

generated inputs and examples as the input for train- 555

ing and then using the model’s output as the output 556

value for training. This approach was chosen over 557

real-world data due to the ease of collecting AI- 558

generated responses rather than manually crafting 559
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both the input and output values for training the560

model.561

The synthetic dataset comprised of input-output562

pairs such as "Write a poem about: apples" with a563

corresponding output pair. These were then sent to564

the model for fine-tuning. Fine-tuning is the further565

training of a pre-trained model which is used as a566

base model which is trained on further data.567

4.3 System Architecture568

For an efficient system, it was decided to split the569

system into two halves, the back-end and the front-570

end. This division aimed at enhancing performance571

and simplifying development by assigning code572

that is responsible for interfacing with the user to573

the front end while assigning code that interfaces574

with GPT-3 to the back end.575

The back end is responsible for server-side tasks,576

particularly communication with the LLM. On the577

other hand, the front end handles user interface578

interactions, including web pages and visual ele-579

ments. This division allows for a compartmental-580

ized approach to application development, ensur-581

ing that changes in one area don’t disrupt the other,582

thereby facilitating long-term maintenance.583

Figure 2: System Architecture

The system takes advantage of the React frame-584

work, renowned for its modular architecture, which585

simplifies complex user interface development. Us-586

ing a component-based approach, features are built,587

tested, and individually integrated for enhanced588

reliability. Additionally, the system employs a589

server that manages both front-end and back-end 590

tasks, improving efficiency and responsiveness 591

while streamlining management, deployment, and 592

maintenance processes. 593

5 Evaluation 594

To assess the system and methodology of this 595

study, various aspects were identified and analysed. 596

A questionnaire was subsequently distributed to 597

gauge real-world user experiences with these sys- 598

tem aspects. 599

Figure 3: This tool can be useful to create worksheets

Figure 4: The content generated is relevant

Figure 5: The content generated is correct

The initial three questions (Figures 3, 4, 5) in 600

this study were meticulously selected to evaluate 601
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the system’s proficiency in generating accurate and602

relevant content. The fourth question was designed603

to gauge the potential acceptance and adoption of604

such a system in real-world scenarios. The results605

from the first three questions indicate a commend-606

able performance by the system in content genera-607

tion.608

Furthermore, the question “I would use this609

tool in my classroom” had a 47% response rate610

(Strongly Agree) and 38% (Agree) showing an 85%611

rate of system adoption if deployed. (Figure 6)612

Figure 6: I would use this tool in my classroom

The response to the fourth question suggests a613

promising adoption rate for the system upon de-614

ployment. The Chi-Squared Test was run on the615

first three questions against the fourth question.616

The null hypothesis for this test is that the responses617

for the first three questions do not correlate to the618

respondent’s willingness to adopt the system in the619

future, while the alternate hypothesis is that the re-620

sponses do correlate to the willingness to adopt the621

system. When run, all tests scored a p value less622

than 0.05, hence we reject the null hypothesis and623

accept the alternate hypothesis, meaning that the624

positive responses given to the first three questions625

indicate a positive adoption rate.626

The fifth question in this study was designed to627

ascertain whether the system could enable students628

to engage in a more hands-on approach to their629

learning. This question was posed to assess the630

system’s potential to assist not only educators but631

also students directly. The responses were some-632

what divided, with 64% of respondents expressing633

optimism that the system would indeed facilitate634

such an approach. However, 36% of respondents635

did not share this view. The reasons for these nega-636

tive responses varied, ranging from concerns that637

the system might end up doing the students’ work638

for them, to the belief that a physical approach is639

necessary for effective learning. 640

To evaluate the potential benefits of the system 641

when utilized directly by students, respondents 642

were queried about their perceptions of the sys- 643

tem’s impact on learning outcomes. A substantial 644

79% of respondents expressed a positive outlook, 645

suggesting that the system could enhance learning 646

outcomes. Among the reasons cited for this posi- 647

tive response was the belief that the system would 648

foster greater student engagement. 649

6 Conclusion 650

LLMs hold tremendous promise for enhancing lan- 651

guage interaction, including creative writing and 652

natural language processing. However, their ap- 653

plication brings up important ethical issues such 654

as data privacy and bias. It’s crucial to establish 655

protective measures and ethical standards, as any 656

bias in the LLM could result in unjust outcomes 657

for certain student groups. (Weidinger et al., 2021; 658

Baker and Hawn, 2021; Zhang et al., 2023) Addi- 659

tionally, it’s essential to address concerns about the 660

type of data collected when these systems are used. 661

In the future, these concerns could be mitigated by 662

implementing an algorithm on the front end such 663

that the data being sent to the server is stripped 664

of any personal/sensitive data, additionally biased 665

outputs can be avoided by implementing checks 666

which check outputs for bias. 667

Despite these challenges, LLMs have enormous 668

potential in the field of NLP. They are transforming 669

language interaction, enhancing communication, 670

and pushing the boundaries of research across vari- 671

ous fields. 672

In summary, the findings presented in the evalua- 673

tion demonstrate that the proposed system exhibits 674

a robust capability for content generation within an 675

educational context and holds potential for further 676

expansion to interact directly with students. This 677

underscores the promising potential of automated 678

content generation in educational settings when 679

integrated with LLMs. 680

Future enhancements to this system would in- 681

volve further exploration of how to improve au- 682

tomated content generation, integration of GPT-4, 683

expansion of the system to allow direct use by stu- 684

dents and the fine-tuning of the model used to gen- 685

erate subject-specific content at a higher quality. 686

The system could also evolve to generate not only 687

text based content, but multimedia content. 688
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Limitations689

While the system has shown to have good results690

when evaluated, the system still has it’s limitations691

which will be discussed in this section.692

With regards to privacy and bias, while the sys-693

tem does not collect any private or sensitive data694

from users, the inputted data is only processed in695

the prompt engineering phase after which it is sent696

to the LLM and no record of the input is kept,697

however it has been built upon GPT-3 thus it will698

exhibit the same limitations. Particularly:699

• Data Bias: As GPT-3 is trained upon a large700

collection of data, it is not possible to review701

all of the training data for bias. Thus, the702

training data has biases that reflect society’s.703

Due to this bias is captured in the model.704

• Contextual Understanding: As GPT-3 is lim-705

ited to its training training data, it does not706

have access to real-world information. Thus707

on occasion, it’s outputs could be incorrect.708

• Dependency on prompts: The GPT-3 model709

has a dependency on high-quality prompts710

to generate high-quality output, thus it was711

important to use prompt engineering within712

this research.713

Concerns about scalability come to mind as such714

a system requires privacy and security checks along715

with quality assurance and maintenance, all of716

which get progressively more difficult when the717

system is scaled up.718
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