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Abstract

Large language models (LLMs) have demonstrated remarkable reasoning capabili-
ties in math and coding, often bolstered by post-training on the chain-of-thoughts
(CoTs) generated by stronger models. However, existing strategies for curating
such training data predominantly rely on heuristics, limiting generalizability and
failing to capture subtleties underlying in data. To address these limitations, we
leverage influence functions to systematically attribute LLMs’ reasoning ability on
math and coding to individual training examples, sequences, and tokens, enabling
deeper insights into effective data characteristics. Our Influence-based Reasoning
Attribution (Infra) uncovers nontrivial cross-domain effects across math and cod-
ing tasks: high-difficulty math examples improve both math and code reasoning,
while low-difficulty code tasks most effectively benefit code reasoning. Based on
these findings, we introduce a simple yet effective dataset reweighting strategy by
flipping task difficulty, which doubles AIME24 accuracy from 10% to 20% and
boosts LiveCodeBench accuracy from 33.8% to 35.3% for Qwen2.5-7B-Instruct.
Moreover, our fine-grained attribution reveals that the sequence-level exploratory
behaviors enhance reasoning performance in both math and code, and the token-
level influence patterns are distinct for math and code reasoning: the former prefers
natural language logic connectors and the latter emphasizes structural syntax.

1 Introduction

Large language models (LLMs) for reasoning, with OpenAI-o1 [15] and DeepSeek-R1 [9] as popular
examples, have shown great promise in solving complex math and coding problems. Recently, the
community has witnessed the prevalence of reproducing such reasoning capacities on open-source
small- to medium-sized LLMs [19, 5, 29]. An initial stage of the solutions often involves post-training
the model on some chain-of-thought (CoT) reasoning traces curated by leading models (e.g., R1) for
diverse problems [34, 23, 24, 37, 13, 25]. As a data-centric paradigm, the core research question here
is: which attributes of the training data are effective in stimulating reasoning capabilities?

Pioneering studies addressing this question predominantly adopt heuristic approaches. Typically, they
first establish quantitative data quality metrics based on human expertise or empirical preferences, then
selectively retain high-quality data for model training to cultivate robust reasoning capabilities with
minimal data inputs. For example, s1K [24] filters 1k (question, answer) pairs with well-structured
formatting, longer CoT length, and broader domain coverage from an initial pool of 59k data for
training math reasoning LLMs. Similarly, LIMO [37] suggests incorporating more challenging math
questions with complex reasoning chains to enable better math reasoning.

Beyond focusing exclusively on math, Sky-T1 [25] targets competitive reasoning performance across
both math and coding tasks. It notices that the naive incorporation of code data from APPS [10]
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Figure 1: An illustration of our key findings towards the question: Which attributes of training data
effectively stimulate reasoning capabilities? Mixing challenging math problems with easier coding
tasks leads to the highest influence scores for mathematical and coding reasoning (left). Guided by
this insight, we curate an improved dataset and observe enhanced performance (right).

degrades math performance and advocates mitigating this by introducing more difficult math questions
and code tasks for training. Nevertheless, the underlying mechanism of such cross-domain influence
remains underexplored. Furthermore, these heuristic strategies suffer from unreliable generalization
to other reasoning scenarios and cannot clearly explain how some fine-grained reasoning patterns in
the training data (e.g., verification, backtracking, etc.) affect the learned models.

To bridge the gap, we leverage influence functions [17]—a classical technique for tracing the impacts
of individual training data on model behavior—to systematically identify which training examples,
along with their internal patterns and tokens, most significantly enhance the reasoning capabilities on
math and coding tasks. Following previous works on influence functions for LLMs [8, 30], we define
an easy-to-implement and cost-effective influence function for reasoning-oriented supervised fine-
tuning (SFT). We further extend the instance-wise influence function to more fine-grained variants at
the sequence and token levels for an in-depth data attribution. We dub our approach as Infra.

We begin by investigating cross-domain influence in basic math and code reasoning scenarios without
long CoT. To this end, we fine-tune LLaMA3-8B-Base [7] on a mixture of MetaMathQA [39] and
OSS-Instruct [33] datasets and compute the influence function on the accuracy of GSM8k [3] and
MBPP [10]. We rank all training data by their influence scores and find that, while in-domain data
yield the highest scores as expected, cross-domain data also contribute nontrivially. Furthermore,
aggregating these scores by category and difficulty reveals that symbolic math examples and high-
difficulty math problems are particularly effective in improving code reasoning.

Extending Infra to complex long CoT reasoning, we fine-tune Qwen2.5-7B-Instruct [36] on Bespoke-
Stratos-17k2 dataset and measure influence using AIME, MATH500 [11], and LiveCodeBench [16]
benchmarks. Consistent with earlier findings, we observe cross-domain gains, with harder math
problems better helping code reasoning. Going a step further, we find that both high-difficulty
math and code examples are more influential on math reasoning, whereas low-difficulty code tasks
contribute most significantly to code reasoning (see Figure 1). Motivated by these insights, we flip
easy math problems as hard and hard code tasks as easy in the training data. This reweighted dataset
doubles AIME accuracy and improves LiveCodeBench accuracy from 33.8% to 35.3%.

Furthermore, we perform attribution at sequence and token levels in long CoT. Sequence-level
attribution shows that the exploration behavior of seeking alternative approaches after reaching
correctness (refer to Figure 6), which is common in long CoTs, improves both math and code reasoning
performance. Despite being seen as overthinking [2, 32], our studies suggest it is advantageous.
Besides, we observe distinct token-level influence patterns for math and code reasoning. In math,
the most influential tokens are natural language with logical connectors, whereas code CoTs rely
more on syntax markers. This divergence explains why easier code problems with clearer structural
solutions benefit code reasoning when combined with math CoT that already provides logical skills.

2 Related Work

LLM reasoning. Reasoning is a cognitive process that involves using evidence, arguments, and
logic to arrive at conclusions or make judgments. It is widely regarded as a foundational element of

2https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k
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advanced Large Language Models (LLMs) and an essential milestone on the path toward Artificial
General Intelligence (AGI) [12, 28, 29, 15, 35]. A very recent approach to achieve reasoning capacity
in LLMs is through post-training, such as OpenAI-o1 [15], and Deepseek-R1 [9], which expose
the model to large-scale curated reasoning examples after the initial pretraining phase to refine
its inferential abilities [18]. These reasoning datasets predominantly fall into two categories: (1)
Mathematical reasoning: In earlier work, the construction of high-quality mathematical datasets
primarily relied on increasing the quantity of problems and enhancing their difficulty levels [20, 40].
Nevertheless, LIMO dataset [37] demonstrated that complex reasoning capabilities can be elicited
through surprisingly small datasets (hundreds of examples). In addition, some researchers also opted
to distill high-quality reasoning data from strong LLMs [25], leveraging their outputs to construct
more targeted and informative training sets for enhancing reasoning performance in weak LLMs.
(2) Code generation: As a highly structured and formalized type of data, code has a non-negligible
impact on the development of reasoning abilities in large language models. Beyond simply testing
LLMs on newly coding test cases [16], many efforts have focused on investigating how and when
code data influences the development of reasoning abilities in language models [41, 21]. In our work,
we consider mathematical capacity and coding ability as two distinct manifestations of advanced
reasoning, and we aim to analyze and understand the interactions between these capabilities to gain
deeper insights into the underlying mechanisms of LLM reasoning.

Data attribution and influence functions. Training Data Attribution (TDA) methods seek to
interpret a model’s predictions by analyzing the particular training instances that contributed to
shaping its learned representations. Most modern TDA methods can broadly be divided into two
categories: retraining-based methods [22, 31, 14] and gradient-based methods [38, 27, 17]. However,
applying traditional data attribution methods to large language models has remained a significant
challenge, primarily due to issues of computational tractability and the sheer scale of model parame-
ters. Nonetheless, there are several works successfully apply data attribution on LLMs by influence
function. Researchers in Anthropic adapt EK-FAC influence functions to large-scale Transformers,
by which they figured out what kind of pretraining data influences completions of models up to
50B parameters [8]. More specifically, for reasoning capabilities, studies have shown that code data
encountered during the pretraining-phase plays a critical role in the development of mathematical rea-
soning abilities in language models. [30]. In this work, we extend similar methodological approaches
by employing influence functions to attribute the development of reasoning capabilities during the
supervised fine-tuning (SFT) phase, with a particular focus on analyzing the interplay between code
and mathematical data.

3 Methodology

This section reviews the basics of influence functions [17, 8] and presents Infra, our adaptation for
attributing LLM reasoning performance on math and code problems. In particular, we compute
instance-level influence scores using a mean log-likelihood proxy, and further shift to the sequence
and token levels to uncover how specific reasoning steps and tokens shape model behavior.

3.1 Preliminary: Influence Functions

Given a model parameterized by θ and trained on a dataset Dtrain = {zi}Ni=1, influence functions [17]
estimate the influence of a training point zm on θ (or a function thereof) without retraining the model.
Specifically, it is measured by computing the change in θ if zm is upweighted by an infinitesimal
amount ϵ. This perturbation can be formalized as the response function3:

θ(ϵ) = argmin
θ∈RD

J (θ,Dtrain, ϵ) = argmin
θ∈RD

1

N

N∑
i=1

L (zi,θ) + ϵL (zm,θ) , (1)

where L(·) is the training loss. The influence of zm on θ is then defined as the first-order Taylor
approximation to the response function around ϵ = 0 and can be computed using the implicit theorem:

Iθ(zm) =
dθ

dϵ

∣∣∣∣
ϵ=0

= −H−1∇θL (zm,θ) , (2)

3For simplicity, we show the response function for optimal parameters. For non-converged or non-convex
models, the actual response function is the Proximal Bregman response function (refer to [8] for details).
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where H = ∇2
θJ (θ,Dtrain) is the Hessian of the cost function. Direct interpretation of Iθ(zm) can

be difficult due to its high dimensionality, so it is common to instead compute the influence of zm on
a scalar-valued function of the parameters f(θ). Using the chain rule for derivatives, this influence
admits the closed-form:

If (zm) =
df(θ)

dϵ

∣∣∣∣
ϵ=0

= −∇θf (θ)
T
H−1∇θL (zm,θ) . (3)

A complete derivation of Equation 3 is delayed to Appendix A. Consequently, f(θ) is expected to
increase after upweighting the sample zm and then retraining the model if If (zm) > 0, as

f(θ(ϵ))− f(θ) ≈ If (zm)ϵ = −∇θf (θ)
T
H−1∇θL (zm,θ) ϵ. (4)

For transformer-based LLMs with billions of parameters, the above H is intractable. To address
this, Grosse et al. [8] propose to approximate H using the Eigenvalue-Corrected Kronecker-Factored
Approximate Curvature (EK-FAC) method [6], which introduces simplifying assumptions such as
layer-wise independence and restricts computation only to the MLP parameters within the model.
Given the effectiveness of such a strategy, we also employ it to effectively estimate influence scores.

3.2 Attributing LLM Reasoning to Training Data via Influence Functions

We now introduce Infra, our adaptation of influence functions to attribute LLM reasoning on challeng-
ing math and code tasks. As mentioned, our setting is mainly an SFT process with CoTs generated
by a stronger model to improve the reasoning abilities of the LLM at hand. We are interested in
identifying the most influential training data to improve model performance. Since task accuracy is
non-differentiable with respect to θ, we instead adopt a smooth surrogate: the mean log-likelihood
over a set of correctly answered examples. Let Dcorrect = {(xi,yi)}ni=1 denote a collection of
problems xi paired with correct answers yi, we define the surrogate objective as:

f(θ) =
1

n

n∑
i=1

log p(yi|xi;θ), (5)

where n is the size of Dcorrect. The robustness of Dcorrect against variation is ablated in Appendix C.

Instance-level influence scores. Plugging Equation 5 into Equation 3 yields the instance-level
influence score assigned to each SFT training example zm reflecting its effect on f(θ). Consistent
with [8], we restrict our focus to positively influential data, which refers to data points that yield
an increase in the log-likelihood of correct answers and thus more effectively enhances the model’s
reasoning performance.

Sequence-level influence scores. Reasoning traces of recent models often exhibit sequence-level
cognitive behaviors, such as verification or exploration (refer to Figure 6). To attribute the contribution
of an individual sentence y in zm, we employ a simple counterfactual tactic: we remove y from the
example and measure how the influence scores changes. Let z\ym denote the input with sentence y
erased. Then the sequence-level influence of y is given by

If (y) = If (zm)− If (z\ym ), (6)

which isolates the influence of y on the target function f(θ).

Token-level influence scores. Tokens that mark critical transitions—such as ‘wait’—frequently
appear in long CoT. Attributing influence at the token level may therefore help elucidate the underlying
mechanisms that guide the model’s reasoning. Due to the autoregressive nature of LLMs, the training
gradient of a training sequence zm of length T decomposes as:

∇θL (zm,θ) =

T∑
t=1

−∇θ log p(zm,t|zm,<t,θ), (7)

where zm,t denotes the t-th token and zm,<t = {zm,1, . . . , zm,t−1}. Plugging this into Equation 3
yields the token-level influence of zm,t:4

If (zm,t) = ∇θf (θ)
T
H−1∇θ log p(zm,t|zm,<t,θ). (8)

4This term captures the influence of zm,t as the output for the model to fit, ignoring its role as input in other
cases, for simplicity.

4



0 10000 20000 30000 40000
Index

0

5

10

15

20

Lo
ga

ri
th

m
ic

 p
os

it
iv

e 
in

fl
ue

nc
e 

sc
or

es

(a) Source of data with top influence scores on math
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(b) Source of data with top influence scores on code
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Figure 2: Cross-domain influence analysis of LLaMA3-8B-Base fine-tuned on combined Meta-
MathQA and OSS-Instruct for math and code performance. The most beneficial examples for math
performance predominantly come from the math domain, while code-domain data also contributes
non-trivially (left). A similar cross-domain benefit is observed for code performance (right).

4 Experiments

We begin by detailing the experimental setup (§4.1), and then present the main findings, progressing
from coarse- to fine-grained analyses (§4.2–§4.4).

4.1 Experimental Setup

We conduct experiments under two SFT settings and interpret math and code reasoning behaviors
using influence functions in both scenarios. All training and influence scores computation are carried
out on servers equipped with 8 NVIDIA A100 80GB GPUs.

Base models trained w/o long CoT. We fine-tune the Llama3-8B-Base model [7] using a mixed
training dataset comprising MetaMathQA-100k [39] and OSS-Instruct-75k [33]. MetaMathQA-100k
includes reformulated questions bootstrapped from training splits of GSM8k [3] and MATH [11]
paired with brief answers (~100 tokens) generated from GPT-3.5-Turbo [26]. OSS-Instruct-75k
provides synthetically generated instructions covering a range of coding tasks. We evaluate the
resulting model on the test splits of GSM8k and MBPP [1], filtering correctly answered data to
compute influence scores. The MBPP benchmark consists of 1,000 Python programming problems,
each comprising a task description and three automated test cases.

Instruction-tuned models trained w/ long CoT. We fine-tune the Qwen2.5-7B-Instruct model [36]
on the Bespoke-Stratos-17k reasoning dataset5 (BS-17k), which includes SFT distillation data from
DeepSeek-R1 [9], comprising questions, reasoning traces, and answers. We employ the AIME24,
AIME25, MATH500, and LiveCodeBench [16] benchmarks to evaluate reasoning performance.
AIME is a prestigious high school mathematics competition known for its challenging problems.
MATH500 is a subset of 500 problems drawn from the MATH [11] benchmark. LiveCodeBench
evaluates LLMs on diverse coding tasks, including self-repair, code execution, and test output
prediction, and currently hosts 400 coding problems.

Influence scores computation. We estimate the Hessian using EK-FAC on the full SFT training
set, truncating sequences to 4096 tokens to reduce memory usage. We set n = 100 in Equation 5 by
randomly sampling correctly answered math and code examples.

4.2 Instance-level Attribution

Finding 1:

Code data can positively influence math performance, and vice versa.

5https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k
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Figure 3: Average influence score of the training dataset combining MetaMathQA and OSS-Instruct,
evaluated on MBPP and GSM8K performance. Results are grouped by training data category (left)
and MATH problem difficulty (right).

To investigate cross-domain influence after fine-tuning LLaMA3-8B-Base on MetaMathQA and
OSS-Instruct, we rank training samples based on their positive influence on the mean likelihood
of correct answers in math and coding tasks, respectively, and categorize them by domain. As
shown in Figure 2 (a), the most influential samples for improving math performance predominantly
originate from the math domain. However, influence scores from code-domain data are not narrowly
concentrated in the low range (0–10); instead, a substantial number exhibit scores in the 15–20 range,
indicating a non-trivial contribution from code to math. A similar pattern of cross-domain benefit is
observed in Figure 2 (b). This also holds in long CoT reasoning scenarios as shown in Appendix B.

FOBAR Question: 
What is $ 6 \div x - 2 - 8 + 2 \cdot 8$?
If we know the answer to the above question is 
8, what is the value of unknown variable $x$?

Original Question: 
What is $ 6 \div 3 - 2 - 8 + 2 \cdot 8$?

Self-Verification Question: 
$ 6 \div 3 - x - 8 + 2 \cdot 8 = 8$. 
What is the value of the unknown variable $x$?

Rephrased Question: 
Calculate the value of $6 \div 3 - 2 - 8 + 2 \cdot 8$.

Figure 4: Different types of
MATH questions from Meta-
MathQA [39] dataset.

To investigate how various training data types influence code reason-
ing, we further aggregate training samples by category and compute
average influence scores per category. As illustrated in Figure 3
(a), in-domain Python data yields the highest average influence on
MBPP (a benchmark of 1,000 Python problems). Within the math
domain, symbolic problem-answer pairs—such as those introducing
variables x in FOBAR and SV formats shown in Figure 4—most
effectively enhance coding capabilities. Moreover, college-level
math questions from the MATH dataset, which utilize LaTeX-based
formal expressions, contribute more positively to code performance
than simpler, conversational high-school problems from GSM8k.
This suggests that, beyond domain relevance, the complexity and
formality of the data—especially the use of precise symbolic lan-
guage—also play a critical role in enabling models to generalize
effectively to code reasoning tasks.

Finding 2:

Challenging math problems exhibit higher influence scores on both math and code reasoning,
while simpler code problems more effectively enhance code tasks when combined with math data.
The optimal strategy for co-optimizing reasoning across both domains is to mix challenging
math problems with easier code tasks.

To examine how training data difficulty contributes to model performance, we first categorize MATH
training data into different difficulty levels and compute the average influence score for each level.
As shown in Figure 3(b), higher-difficulty problems (Level 5 and 4) contribute more significantly to
performance improvements on GSM8k and MBPP compared to lower-difficulty ones (Level 3, 2,
and 1). This may be attributed to the fact that high-difficulty MATH problems induce more complex
reasoning chains and thus better transfer logical capabilities to other reasoning-intensive tasks.
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(a) Influence of Math and Code Data on Reasoning Across Difficulty Levels                                                             (b) Illustration of Training Dataset Distribution                 

Difficulty Flipped

Difficulty  reverse-Flipped

Original dataset distribution

Figure 5: Left: Average influence scores of math and code training data from varying difficulty
levels on reasoning performance. For instance, Math−→Code denotes the influence of math data on
code reasoning tasks. Right: Distribution of math and code samples across difficulty levels in the
BS17k dataset. The original distribution is shown alongside the adjusted distribution obtained via the
difficulty-flip strategy. See Table 1 for a comparison of SFT results under different mixing strategies.

Table 1: Comparisons of SFT results with different difficulty-mixing strategies applied to the training
dataset on 7B and 14B models. We report pass@1 accuracy of LiveCodeBench.

Model AIME24↑ AIME25↑ MATH500↑ LiveCodeBench↑
Qwen2.5-Instruct-7B
Bespoke-Stratos-17k 10.0 6.7 77.2 33.8
Difficulty-reverse-Flipped 13.0 10.0 76.4 30.0
Difficulty-Flipped (Ours) 20.0 16.7 78.2 35.3
Qwen2.5-Instruct-14B
Bespoke-Stratos-17k 20.0 13.3 84.4 45.3
Difficulty-reverse-Flipped 20.0 23.3 83.0 43.8
Difficulty-Flipped (Ours) 23.0 23.3 84.4 45.5

To further investigate the role of difficulty in long CoT reasoning scenarios, we fine-tune Qwen2.5-
7B-Instruct on the BS17k dataset and analyze influence scores grouped by difficulty levels. The
results, shown in Figure 5(a), indicate that challenging tasks in both mathematics and coding are more
beneficial for math reasoning. In contrast, easier math problems offer limited gains across both math
and coding evaluations. This observation aligns with findings from the w/o long CoT setting and
prior works such as LIMO [37], which highlight the utility of difficult math problems in developing
reasoning capabilities. On the other hand, we find that simpler code problems are more effective
for improving performance on coding tasks when mixed with math data. We hypothesize that, in
addition to logical reasoning, programming tasks rely heavily on learning structural and syntactic
patterns. When paired with math data that enhances logical thinking, simple coding tasks with clearer
structure and more consistent syntax facilitate the model’s acquisition of fundamental programming
patterns, thereby improving code generation performance.

Based on these insights, we design an optimized data mixing strategy: we replace simple math prob-
lems in the original dataset with more challenging ones sourced from a larger scale OpenThoughts-
114k6 dataset, and conversely, we replace difficult coding problems with simpler ones. The modified
dataset retaining the original size of 17k examples, compared in Figure 5(b), is used to retrain the
model. As shown in Table 1, this new difficulty flipped mixing strategy yields consistent improve-
ments across AIME, MATH, and LiveCodeBench benchmarks. In contrast, applying the reverse
strategy—simplifying hard math problems and complicating easy coding tasks—results in the worst
performance, further validating our finding.

6https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k. Note that this dataset is curated using
the same pipeline as BS-17k, with identical question sources and answers distilled from Deepseek-R1.
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Answer: 
<|begin_of_thought|>
Okay, so I need to figure out (...) Therefore, 8 is the only base where \\( 2b^2(b - 1) \\) is not divisible by 3. 
Therefore, the answer is E. 
Wait, but let me cross-check this conclusion.    Let's compute the expression \\( 2b^2(b - 1) \\ (...)
Therefore, the answer is (E) 8.

  

<|end_of_thought|>
<|begin_of_solution|>
 (...)  
<|end_of_solution|>

Question: 
Your role as an assistant involves exploring questions through a systematic long thinking process before 
providing the final precise and accurate solutions (...) 
For which of the following integers $b$ is the base-$b$ number $2021_b - 221_b$
 not divisible by $3$?
 (A) 3        (B) 4       (C) 6       (D) 7      (E) 8

Wait, but let me cross-check this conclusion. Let's compute the expression \\( 2b^2(b - 1) \\ (...)
Therefore, the answer is (E) 8.

But let me just think again if there's another way to approach this problem,  perhaps by considering the 
original subtraction in base \\( b \\) (...) Hence, the answer is E.

But let me check once again by calculating each expression modulo 3 directly (...) 
Therefore, the answer is (E) 8.

Verification 
Exploration

Figure 6: Left: An example of long CoT illustrating cognitive behaviors: verification (systematic
error-checking) and exploration (searching for another approach after reaching the correct answer).
Right: Distribution of different cognitive behaviors in BS-17k training dataset and their average
impact on math and code reasoning performance.

Table 2: Sequence-level attribution of cognitive behaviors in long CoT. Left: Comparison of influence
scores of the example in Figure 6 on math and code reasoning, w/ and w/o verification and exploration
sentences. Right: Comparison of SFT results w/ and w/o exploration behaviors in BS-17k dataset.

Domain full CoT w/o Ver. w/o Exp. w/o both

Math 2.2e+08 1.5e+08 9.0e+07 7.0e+07
Code 2.2e+07 1.6e+07 8.4e+06 7.5e+06

Model MATH500 LiveCodeBench

w/ Exp. 77.2 33.8
w/o Exp. 73.8 32.0

4.3 Sequence-level Attribution

Finding 3:

The presence of ‘searching for another approach after reaching correct answers’ in math reason-
ing traces benefits to both math and code reasoning. While previously considered unnecessary
overthinking, our sequence-level influence analysis and SFT ablations demonstrate its positive
impact, suggesting such exploratory behaviour may promote generalizable reasoning skills.

We are interested in the influence of different cognitive behaviors on reasoning performance. Fol-
lowing prior work [4], we focus on five key behaviors: exploration (seeking alternative approaches
after reaching a correct answer), verification (systematic error-checking), backtracking (abandoning
ineffective strategies), subgoal setting (breaking problems into manageable steps), and backward
chaining (reasoning from desired outcomes to initial inputs). To identify these behaviors in the
BS-17k dataset, we use Qwen-32B-instruct as a classifier, with details provided in Appendix E.

As shown in Figure 6 (right), exploration behavior is notably prevalent in the training dataset.
However, prior research often views exploration as detrimental, considering it a form of overthinking
that can reduce efficiency [2, 32]. We therefore seek to assess whether this cognitive behavior has
a positive or negative impact using influence functions. Specifically, we truncate sentences in the
training data where exploration behavior is present and examine the change in the influence score, as
defined in Equation 6. The results, presented in Table 2 (left), show that exploration behavior is not
redundant; on the contrary, it has a positive effect on both math and code reasoning performance,
with the positive impact of exploration even exceeding that of verification.

To further validate this, we use GPT-4o to truncate all exploration behaviors in the BS-17k dataset
for SFT, with the instruction details shown in Appendix D. The SFT results in Table 2 (right) show
a significant performance drop when exploration behavior is removed. We attribute this decline to
exploration’s role in enabling flexible problem-solving, essential for adapting to diverse reasoning
tasks. Beyond exploration, we compare average influence scores across other cognitive behaviors. As
shown in Figure 6 (right), backtracking is crucial for mathematical reasoning, while subgoal setting
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Figure 7: Left: Visualization of top 5% influential tokens in math CoT. Right: Visualization of top
5% influential tokens in code CoT.

is more impactful in programming tasks. This may be because programming requires breaking down
high-level goals into modular components, making subgoal setting essential.

4.4 Token-level Attribution

Finding 4:

Token-wise attribution analysis reveals distinct paradigms in math and code reasoning. In math
CoT, influential tokens are natural language with logical connectors, whereas code CoT are
dominated by structured code with syntax markers.

To investigate the most influential tokens for stimulating reasoning, we select the top 100 highly influ-
ential examples on math and code reasoning, compute token-wise influence scores using Equation 8,
and highlight the top 5% most influential tokens. Interestingly, as shown in Figure 7, the initial tokens
in CoT—such as ‘Okay, so I...’—are frequently highlighted, suggesting that these openers help orient
the model’s cognitive process to initiate reasoning. Further analysis reveals that, in math CoTs, the
influential tokens are predominantly natural language logical connectors, such as ‘Wait’, ‘However’,
‘Verify’, ‘Hence’, ‘First’, ‘Therefore’, and ‘Alternatively’. In contrast, in code CoTs, the most influen-
tial tokens are structural or syntactic elements such as markdown-style headings (e.g., ### Solution),
fenced code blocks (e.g., ``` bash``` ), and syntax markers (e.g., def (self, A: List [int])-> int: ),
which reflect the highly structured nature of code reasoning. This contrast highlights a divergence in
reasoning paradigms: math reasoning relies more heavily on logical discourse, while code reasoning
is facilitated by explicit structure and formatting. These divergent patterns may explain why easier
code problems with clearer structural formats are particularly beneficial for enhancing code reasoning
when integrated with math CoTs that already provide strong logical skills.

5 Conclusion

In this paper, we propose a fine-grained influence function framework to trace how training data on
SFT phase shapes LLM reasoning in math and code tasks. Our analysis reveals that cross-domain
examples—especially high-difficulty math and low-difficulty code—boost reasoning performance
across domains. We further extend influence functions to the sequence level, revealing that exploratory
behaviors in long CoT consistently enhance performance, challenging prior assumptions that such
behaviors reflect overthinking. Token-level analysis reveals distinct paradigms in math and code
reasoning. Our work highlights the utility of influence-based attribution for data-centric optimization
and opens a path toward more targeted and interpretable reasoning supervised training.

Limitations. The main limitations of this work are as follows. We approximate the Hessian H by
considering only the MLP parameters and treating the attention as fixed to approximate influence
functions for simplicity. Besides, our analysis is limited to mathematical and coding reasoning
tasks; extending this framework to other domains, such as commonsense reasoning, remains an open
direction for future work.
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A Derivation of Influence Score

Given the influence of zm on model parameters θ

Iθ(zm) =
dθ

dϵ

∣∣∣∣
ϵ=0

= −H−1∇θL (zm,θ) , (9)

we can obtain its influence on a function of parameters f(θ) by applying the chain rule for derivatives:

If (zm) =
df(θ)

dϵ

∣∣∣∣
ϵ=0

= ∇θf(θ)
T dθ

dϵ

∣∣∣∣
ϵ=0

(10)

= −∇θf(θ)
TH−1∇θL

(
zm,θ

)
.
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Figure 8: Cross-domain influence analysis of Qwen2.5-7B-Instruct fine-tuned on Bespoke-Stratos-
17k dataset for math and code reasoning performance.

B Cross Domain Influence Analysis in Long CoT Scenarios

In this section, we provide additional instance-level attribution experiment on long CoT reasoning
scenarios. We fine-tune Qwen2.5-7B-Instruct on Bespoke-Stratos-17K reasoning dataset. As shown
in Figure 8(a), the most influential samples for improving math performance predominantly from
the math domain, but the samples from code domain are also significant. In Figure 8(b), there is a
similar pattern of cross-domain benefit. This is consistent with the conclusions we obtained in the
experimental section 4.2.

C Robustness on n

Table 3: Pearson correlation coef-
ficient of rankings on training data
across different choices of n, indicat-
ing stable influence estimation.

n → 10 25 50 100
Math 0.52 0.60 0.70 1.0
Code 0.51 0.62 0.60 1.0

In this section, we evaluate the robustness of the influence
function estimates with respect to the size of the correct sub-
set Dcorrect. Specifically, we fine-tune the LLaMA3-8B-Base
model on a mixed training corpus comprising MetaMathQA
and OSS-Instruct, and compute influence scores on the math
and code performance. We calculate the Pearson correlation
between the rankings of training examples induced by influ-
ence scores using varying values of n, using n = 100 as the
reference. Results in Table 3 shows the robustness of n for
influence scores estimation.

D Case of Truncating Exploration Behavior

To evaluate the impact of exploration behaviors in reasoning processes, we systematically truncate
exploratory content from the BS-17K during SFT. Specifically, any post-correct-answer exploration
(e.g., "Alternatively, maybe there’s a different way to approach the problem?") is removed to isolate
the core problem-solving trajectory, as shown in Figure 9.

E Examples for Reasoning Behaviors Classifier

The five cases below show the prompts of five behaviors on reasoning performance and the corre-
sponding answers. As shown in Figure 10 and 11, the prompts include task description, examples of
each reasoning behavior, task format, etc..
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query

answer

The operation ⊗ is defined for all non - zero numbers as 𝑎⊗b =
𝑎2

𝑏
​. Determine the 

value of [(1⊗2)⊗3]−[1⊗(2⊗3)].

answer
Okay, let me try to figure out this problem.

…(Chain of Thought)

Wait, but let me think again. The operation is defined for all 

nonzero numbers, so we don't have any issues with division by 

zero here. 2⊗3 is 4/3, which is fine, and then 1⊗(4/3) is 3/4. 

Correct.

Alternatively, maybe there's a different way to approach the 

problem? Let me try expanding both expressions using 

variables to see if there's a pattern.

**Final Answer** \boxed{A}

Okay, let me try to figure out this problem.

…(Chain of Thought)

Wait, but let me think again. The operation is defined for all 

nonzero numbers, so we don't have any issues with division by 

zero here. 2⊗3 is 4/3, which is fine, and then 1⊗(4/3) is 3/4. 

Correct.

**Final Answer** \boxed{A}

A. −
2

3
        B. −

1

4
        C. 0 D. 

1

4
        E. 

2

3

Figure 9: To assess whether the exploration behavior has a positive or negative impact, we use
GPT-4o to truncate all exploration behaviors in the BS-17K dataset for SFT. If reasoning contains
any searching for another approach after reaching correct answers, like "Alternatively, maybe there’s
a different way to approach the problem?", the exploration content will be truncated.
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Exploration
Prompt:

#Task Description
You will be provided with text from the internet.
Evaluate whether the text contains any "searching for another approach after
reaching correct answers" behavior, where the writer reaches a correct or
satisfactory solution, but then explicitly continues to explore alternate methods or
perspectives. This is a type of cognitive behavior that reflects intellectual curiosity
or seeking multiple strategies even after solving the problem.

This is not the same as:
- Backtracking, where the writer changes method because the current one does not
work or is incomplete.
- Verification,where the writer checks the correctness of a method without
attempting a different one.

Examples of this behavior include:
- "But let me just think again if there's another way to approach this.“
- "Another way to look at this is...“
- "That’s one way to get the result. Now let’s see if we can also derive it using
geometry.“
- "Alternatively, maybe there's a different way to approach the problem?“
Count the number of distinct backtracking instances and provide the count between
the tags <count> </count>. If the writer does not exploration, please provide a count
of 0 as <count>0</count>.

#Task Format
Format your response in markdown as follows:

##Thoughts
[Brief description describing what behavior was noticed and where exploration
occurred]

##Does exploration thinking?
[yes/no]

##Number of exploration thinking steps
<count> [1/2/...] </count>

#Task to evaluate for exploration
{response}

#Response

Answer:
##
Thoughts
The writer explores multiple ways to approach the problem of proving that a
sequence satisfying certain conditions must be a polynomial. After initially
considering the properties of polynomials and the given conditions, the writer
continues to explore different methods and perspectives, such as using finite
differences, induction, and theorems about integer-valued polynomials. The writer
does not stop at the first satisfactory approach but continues to question and explore
further, indicating a behavior of seeking alternative methods even after reaching a
correct or satisfactory solution.

##
Does alternative thinking?
yes

##
Number of alternative thinking steps

<count> 5 </count>

Prompt:

# Task Description
You will be provided with text from the internet.
Evaluate whether the text contains any verification steps. We want to mark
instances where the writer explicitly checks their own work, such as by comparing
the result to a known value or by checking the result of a calculation.

Verification steps in mathematics might look like:
- "Let's check our answer by substituting x = 3 back into the original equation."
- "To verify this is correct, I'll differentiate the antiderivative and confirm it matches
the original function."
- "Let's test our formula with a simple case: when n = 1, we get f(1) = 2, which
matches our expected result."
- "To ensure this solution is valid, I'll check if it satisfies all the given constraints."

If you find any verification steps, please count them and provide the count between
the tags <count> </count>. If the text does not contain any verification steps, please
provide a count of 0 as <count>0</count>.

# Task Format
Format your response in markdown as follows:

## Thoughts
[Brief description describing what behavior was noticed and where answer
verification may have occurred]

## Does verification?
[yes/no]

## Number of answer verification steps
<count> [1/2/...] </count>

# Task to evaluate for Verification
{response}

# Response

Answer:
##
Thoughts
The provided text is a detailed exploration of a mathematical problem involving
sequences and polynomials. The writer discusses various approaches and theorems
that could be used to prove that a sequence satisfying certain conditions must be a
polynomial. However, the text does not explicitly check any calculations or results
against known values or re-verify any steps taken in the reasoning process.

##
Does verification?
no

##
Number of verification steps

<count> 0 </count>

Verification

Figure 10: Left: Exploration: When performing reasoning, seeking alternative approaches after
reaching a correct answer. We capture this behavior and calculate the number of exploration steps by
analyzing the content like "Another way to look at this is..." etc.. Right: Verification: The behavior
of reasoning from desired outcomes to initial inputs when performing reasoning. We capture and
calculate the number of backward chaining instances by finding the content like "To solve this
equation, let’s start with what we want to prove" etc..

15



Backtracking
Prompt:

# Task Description
You will be provided with text from the internet.
Evaluate whether the text contains any backtracking behavior, where the writer
realizes a path won't work and explicitly goes back to try a different approach.
An example of backtracking is: "Let me try again", "Wait", "I made a mistake",
or "we need to try a different sequence of operations". We want to mark
instances where the writer abandons a thought and backtracks to a previous
computation.

Backtracking in mathematics might look like:
- "I started with the wrong formula. Let's use integration by parts instead."
- "This approach leads to a contradiction. Going back to the original
equation..."
- "I see the error in my calculation. Let's recalculate using..."
- "This algebraic manipulation isn't simplifying as expected. Let's try factoring
differently."

Count the number of distinct backtracking instances and provide the count
between the tags <count> </count>. If the writer does not backtrack, please
provide a count of 0 as <count>0</count>.

# Task Format
Format your response in markdown as follows:

## Thoughts
[Brief description describing what behavior was noticed and where
backtracking occurred]

## Does backtrack?
[yes/no]

## Number of backtrack steps
<count> [1/2/...] </count>

# Task to evaluate for backtracking
{response}

# Response

Answer:
##
Thoughts
The writer initially explores the problem by considering the conditions given
and trying to connect them to known properties of polynomials. They then
realize that their initial approach might not be leading to a solution and start to
consider alternative methods, such as using the method of finite differences,
induction, and other properties of polynomials. The writer explicitly mentions
reconsidering their approach multiple times, indicating backtracking behavior.

##
Does backtrack?
yes

##
Number of backtrack steps

<count> 4 </count>

Prompt:

# Task Description
You will be provided with text from the internet.
Evaluate whether the text contains any backward-chaining behavior, where the
writer is working towards a goal but starts from the goal and works backward.

Backward-chaining in mathematics might look like:
- "To solve this equation, let's start with what we want to prove: x = 4.
Working backward, if x = 4, then x² - 5x + 4 = 0 must be true. Let's verify
this."
- "If we want to find a function whose derivative is 2x + 3, let's start with the
desired result and work backward.
The derivative of x² + 3x + C would give us 2x + 3."
- "To prove this triangle is a right triangle, I'll start by assuming the
Pythagorean theorem holds (c² = a² + b²) and check if our side lengths satisfy
this condition."
- "In this optimization problem, we know the maximum value occurs when the
derivative equals zero. If we set f'(x) = 0 and solve for x, we can find our
critical points."
- "To determine the initial velocity, I know the ball reaches a height of 20
meters. Working backward from this final state using the kinematic equation h
= vt - 0.5gt², I can solve for the initial velocity v."

Count the number of distinct backward-chaining instances and provide the
count between the tags `<count> </count>`. If the reasoning does not contain
any backward-chaining behavior, provide a count of 0 as `<count>0</count>`.

# Task Format
Format your response in markdown as follows:

## Thoughts
[Brief description of the observed behavior and where backward chaining may
have occurred]

## Does the text exhibit backward chaining?
[yes/no]

## Number of backward chaining instances
<count> [1/2/...] </count>

# Task to evaluate for backward chaining
{response}

# Response

Answer:
##
Thoughts
The provided text does not exhibit backward-chaining behavior. The writer is
attempting to prove a statement about a sequence of integers satisfying certain
conditions, but the reasoning is forward-looking, starting from the given
conditions and working towards a conclusion. The writer explores various
mathematical concepts and theorems to understand the problem and does not
start from a goal and work backward.

##

##
Does the text exhibit backward chaining?
no

Number of backward chaining instances

<count> 0 </count>

Backward Chaining

Figure 11: Left: Backtracking: The behavior of realizing a path won’t work and explicitly going
back to try a different approach. We capture this behavior and calculate the number of backtracking
steps by finding the content like "This approach leads to a contradiction. Going back to the original
equation..." etc.. Right: Backward Chaining: The behavior of systematic error-checking when
performing reasoning. We capture and calculate the number of backward chaining instances by
finding the content like "To ensure this solution is valid, I’ll check if it satisfies all the given
constraints." etc..
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