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Abstract

Federated Learning has gained traction in privacy-sensitive collaborative environ-
ments, with local SGD emerging as a key optimization method in decentralized
settings. While its convergence properties are well-studied, asymptotic statisti-
cal guarantees beyond convergence remain limited. In this paper, we present two
generalized Gaussian approximation results for local SGD and explore their impli-
cations. First, we prove a Berry-Esseen theorem for the final local SGD iterates,
enabling valid multiplier bootstrap procedures. Second, motivated by robustness
considerations, we introduce two distinct time-uniform Gaussian approximations
for the entire trajectory of local SGD. The time-uniform approximations support
Gaussian bootstrap-based tests for detecting adversarial attacks. Extensive simu-
lations are provided to support our theoretical results.

1 Introduction

Federated Learning (FL), introduced by McMahan et al. [2017] as a decentralized model training
paradigm while maintaining privacy, has seen rapid advancements driven by its applicability in
domains such as next-word prediction on mobile devices, healthcare, and cross-silo collaborations
among institutions. Subsequent works Kairouz et al. [2021], Li et al. [2020], Karimireddy et al.
[2020], Wang et al. [2020b], Alistarh et al. [2017], Lin et al. [2018] have addressed key challenges
around privacy and computational efficiency. Research has also extended to decentralized federated
learning (DFL) Lalitha et al. [2019], Lian et al. [2017], He et al. [2019], Kim et al. [2020], Lian
et al. [2017], Wang and Joshi [2021], Singh et al. [2023], which eliminates reliance on a central
server by enabling peer-to-peer collaboration, thereby enhancing robustness, fairness, and resilience
to adversarial threats. We refer to Gabrielli et al. [2023], Yuan et al. [2024] for a comprehensive
survey of the literature. In this regard, Local SGD Stich [2019], Khaled et al. [2020], Woodworth
et al. [2020b] has emerged as a widely adopted algorithm, allowing clients to perform multiple local
updates before synchronizing, significantly reducing communication overhead.

While theoretical guarantees for convergence and speed in local SGD have been developed Haddad-
pour et al. [2019], Woodworth et al. [2020a], Koloskova et al. [2020], a gap remains in understand-
ing the statistical properties of fluctuations around the true parameter vector. This gap has practical
implications: first, statistical guarantees on the final iterates are essential for inference; second, mon-
itoring the entire trajectory is crucial for detecting adversarial behavior in high-stakes settings like
traffic networks, autonomous systems, and financial platforms. For the first issue, emerging works
on central limit theory Li et al. [2022], Gu and Chen [2024] provide initial insights, but estimat-
ing local covariance structures is numerically intensive. Multiplier bootstrap methods Fang et al.
[2018], Fang [2019] offer computational relief, but require stronger results beyond the central limit
theory. The second issue is even more challenging, as it demands control over the entire trajectory
of local SGD, not just the last iterate. Classical inferential methods struggle with DFLs complex
dependency structure, and a key open question is how to develop statistically valid, computationally
efficient inference methods with minimal distributional assumptions and explicit error control.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



1.1 Main Contributions

In this article, we address this gap by proposing different refined Gaussian approximations that nat-
urally lead to suitable bootstrap procedures. Our results go beyond central limit theory to establish
sharper, step-by-step as well as uniform control over the DFL iterates {Yt}. These results not only fa-
cilitate relevant bootstrap-based inference to produce asymptotically-valid confidence sets, but also
enables us to perform statistical hypothesis tests to detect attacks, which are inaccessible otherwise.
Our main contributions can be summarized as follows:

(1) In Section 2, we provide an explicit characterization of the Berry-Esseen error for the Polyak-
Ruppert version of the local SGD algorithm (Algorithm 1) iterates. In particular, under standard
regularity conditions on the client-level optimization problems as well as for a general class of
connection graph of clients, we prove:
Theorem 1.1 (Theorem 2.1, Informal). For a decentralized federated learning set-up with K clients,
the Polyak-ruppert averaged iterates of the local SGD algorithm with n iterations, and step size
ηt � t−β , achieves

dBerry-Esseen ≲ n1/2−β
√
K.

Our result explicitly underpins the source of the assumption K = o(n2β−1) used to derive central
limit theory for the local SGD iterates Gu and Chen [2024]. Theorem 2.1 is accompanied by a cor-
responding Berry-Esseen theorem (Theorem 2.2) for final iterates of the DFL algorithm. Both these
theorems involve a finite sample scaling (equivalently, scaling by a covariance matrix depending
upon n, the number of iterations) of the local SGD iterates, leading to optimal error bounds. Our
result is first such Berry-Esseen bounds for the local SGD updates.

(2) The finite sample scaling considered in Theorems 2.1 and 2.2 is usually not estimable. Shifting
focus to an asymptotic, global scaling, our results uncover a novel computation-communication
trade-off involving the Berry-Esseen result. In Theorem 2.3, we show that for K = o(

√
n), β = 3/4

represents an optimal choice of step-size; however, for K ≳ √n, for no β ∈ (1/2, 1) does the Berry-
Esseen bound converge towards zero. This observation is not merely an artifact of our proof, and
the phase-transition are empirically validated through extensive simulations.

(3) A key motivation behind the local SGD algorithm is maintaining privacy. From this perspective,
asymptotic inference on the final iterates is insufficient for detecting breach of privacy through some
adversarial attack. Indeed, in Section 3, we discuss a general framework to detect a broad class of
model poisoning in a distributed setting. Through an example in Section 3.1, we point out a class of
maximal statistics which can be used to detect such attacks. Moreover, to perform inference on such
statistics, we move beyond controlling simply the end-term iterates to a more general time-uniform
Gaussian coupling of the entire local SGD process. Motivated from above, in Theorem 3.1, we
establish a time-uniform Gaussian approximation.
Theorem 1.2 (Theorem 3.1, Informal). If the local SGD algorithm with K clients runs n iterations
with step size ηt � t−β , then there exists a Gaussian process Y G

t = (I − ηtA)Y G
t−1 + ηtZt with Zt

i.i.d. N(0,Γ) for some matrix Γ and A being the Hessian of the problem, such that,

max
1≤t≤n

|
t∑

s=1

(Ys − Y G
s )| ≈ oP(n

1−β +
n1/p

√
K

).

Here we assume p ≥ 2 finite moments of the local noisy gradients. To facilitate bootstrap, we also
provide an explicit characterization of Γ. To the best of our knowledge, these results constitute the
first time-uniform Gaussian approximation results for stochastic approximation algorithms.

(4) In particular, Theorem 3.1 presents a Gaussian approximation (referred to as Aggr-GA) with
a slightly sharper rate, but one requiring extensive synchronization during the bootstrap procedure.
Recognizing that this may not be ideal from a privacy perspective, we further present a separate,
client-level Gaussian approximation Client-GA in Theorem 3.2, which completely mimics the
local SGD procedure. The approximation Client-GA is much more localized, leading to slight
worsening of the approximation error but increased efficiency with regards to synchronization and
computational cost. We argue and validate with simulations, that our Gaussian approximations are
much sharper than that indicated by a standard, off-the-shelf functional central-limit theorem. In
fact, our Gaussian approximations represent a version of the covariance-matching approximations
introduced by Bonnerjee et al. [2024], however in a multivariate, non-stationary environment.
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(5) Finally, in Section 4, we validate our theoretical findings with extensive numerical exercises.
Our simulation results in Sections 4.1 and 4.2 not only indicate the sharpness of our theoretical re-
sults, but also project vividly the computation-communication trade-offs discussed in Remark 2.2.
Moreover, the numerical results in Section 4.3 shows that the proposed Gaussian approximations
Aggr-GA and Client-GA are significantly better than an off-the-shelf Brownian-motion based ap-
proximation, even in finite sample, complementing Theorems 3.1 and 3.2 well.

1.2 Notations

In this paper, we denote the set {1, . . . , n} by [n]. The d-dimensional Euclidean space is Rd, with
Rd

>0 the positive orthant. For a vector a ∈ Rd, |a| denotes its Euclidean norm. The set of m×n real
matrices is denoted by Rm×n, and correspondingly, for M ∈ Rm×n, |M |F denotes its Frobenius
norm. For a random vector X ∈ Rd, we denote ‖X‖ :=

√
E[|X|2]. We also denote in-probability

convergence, and stochastic boundedness by oP and OP respectively. We write an ≲ bn if an ≤ Cbn
for some constant C > 0, and an � bn if C1bn ≤ an ≤ C2bn for some constants C1, C2 > 0.

1.3 Related Literature

In view of the plethora of classical literature for central limit theorems (CLT) on SGD and its differ-
ent variants Ruppert [1988], Polyak and Juditsky [1992], Chen et al. [2020], it is rather surprising
that this area has remained relatively untouched for local SGD or DFL. Li et al. [2022] establish a
functional CLT for local SGD, but only when the number of clients is held fixed. More recently, Gu
and Chen [2024] established a central limit theory for DFL while allowing an increasing number of
clients. Non-asymptotic guarantees for SA algorithms exist in terms of MSE guarantees Nemirovski
et al. [2009], Moulines and Bach [2011], Lan [2012], Mou et al. [2024]. Recently, Anastasiou et al.
[2019] employed Stein’s method to derive Gaussian approximation for a class of smooth functions
of the SGD iterates. Later, Shao and Zhang [2022] obtains the first Berry-Esseen result for online
SGD. Samsonov et al. [2024] extended the result to linear stochastic approximation algorithms and
temporal difference learning, before being further improved by Wu et al. [2024], Sheshukova et al.
[2025].

On the other hand, to the best of our knowledge, time-uniform ‘entire-path’ Gaussian approxima-
tion results have not appeared in the stochastic approximation literature. From classical time-series
literature, such approximations are known as “Komlos-Major-Tusnady”(KMT) approximations, and
have a long history Komlós et al. [1975], Sakhanenko [1984, 1989, 2006], Götze and Zaitsev [2008],
Berkes et al. [2014], Karmakar and Wu [2020] and varied uses in change-point detection Wu and
Zhao [2007], wavelet analysis Bonnerjee et al. [2024], simultaneous and time-uniform inference Liu
and Wu [2010], Xie et al. [2020], Karmakar et al. [2022], Waudby-Smith et al. [2024]. However, this
results require fast enough decay, and well-conditioned covariance structure, which are not usually
available in even stochastic approximation algorithms with decaying step-size, let alone a general
local SGD algorithm. Therefore, such results are not readily applicable in the current settings.

2 Berry-Esseen theory for local SGD

In this section we establish a general, Berry-Esseen type Gaussian approximation result in the de-
centralized federated learning setting. In order to rigorously state our results, it is imperative that
we formally introduce the local stochastic gradient descent (SGD) algorithm and underline the key
assumptions behind our theoretical results. This is done in Section 2.1. Finally, we present our first
Gaussian approximation results in Section 2.2, and discuss the implications therein.

2.1 Preliminaries

Consider a typical decentralized heterogeneous federated learning setting with K clients, each hav-
ing access to a loss function fk : Rd × Rnk → R, and a distribution Pk on Rnk for k ∈ [K].
Here, Pk determines the distribution of the local noisy gradient for each client, realized by sam-
pling ξk ∼ Pk. We allow for heterogeneity among the clients i.e. Pk’s are allowed to be different.
However, noise sampling (i.e. the ξk) is assumed to be independent from one client to the another.
The corresponding risk or regret for the k-th client is denoted by Fk(θ) = Eξk∼Pk

fk(θ, ξ
k). Con-
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sider a pre-specified “importance” or weight schedule, given by {w1, w2, . . . , wK} ∈ RK , such that∑K
k=1 wk = 1. In an online federated learning setting, the weight schedule are typically known a-

priori, usually informed by the level of heterogeneity for each client, and specified by the moderator
of the decentralized system. The goal of DFL is to obtain

θ⋆K = argmin
θ

K∑
k=1

wkFk(θ) ∈ Rd. (2.1)

2.1.1 Communication

The client-level information is defined by loss functions fk and weights wk. A key aspect of fed-
erated learning (FL) is preserving client privacy, often achieved via a synchronization step with
parameter τ ∈ N. At each τ -th step, the moderator aggregates client data and redistributes it fol-
lowing a policy. In decentralized SGD, averaging schemes Chaturapruek et al. [2015], Lian et al.
[2017], Ivkin et al. [2019] or gossip-based methods Koloskova et al. [2020], Li et al. [2019], Qin
et al. [2021], Wang and Joshi [2021] are common. In other words, a linear aggregation based on a
fixed connection graph, is employed at the synchronization step. Following the notation of Gu and
Chen [2024], we consider a connection network of the participating clients in the FL system, defined
by an undirected graph G = (V,E) where V = {vk}Kk=1 represents the set of clients and E specifies
the edge set such that (i, j) ∈ E if and only if clients i and j are connected. Let C = (cij) ∈ RK×K

be a symmetric connection matrix defined on G = (V,E), where cij is a nonnegative constant that
specifies the contribution of the j th data block to the estimation at node i. It is required that cij > 0
if and only if (i, j) ∈ E and C1 = 1. Moreover, let ci,i > 0.

Suppose Θt = (θ1t , . . . , θ
K
t ) ∈ Rd×K denotes the local parameter updates of each client at

the t-th step. Suppose the corresponding local gradient updates be summarized in the matrix
Gt = K(w1∇f1(θ1t−1, ξ

1
t ), . . . , wK∇fK(θKt−1, ξ

K
t )) ∈ Rd×K . Here, the initial points θk0 ∈ Rd

are arbitrarily initialized for k ∈ [K], and have no bearing on the theoretical results. For the sake of
completion, we also re-state the local SGD algorithm using the notations and the set-up established
in the preceding sections 2.1 and 2.1.1.

Algorithm 1 local SGD
Input: Initializations Θ0 = (θ10, . . . , θ

K
0 ) ∈ Rd×K ; Connection matrix C; Synchronization param-

eter τ ∈ N; Loss functions fk(·, ξk), ξk ∼ Pk, k ∈ [K], weights {wk}Kk=1, number of iterations n,
step-size schedules {ηt}nt=1.

• Let Eτ = {τ, 2τ, . . . , Lτ}, where L =
⌊
n
τ

⌋
.

• For t = 1, . . . , n : Θt = (Θt−1 − ηtGt)Ct, Ct =

{
C, t ∈ Eτ ,

IK , otherwise.
(2.2)

Output: Yn := K−1Θn1 = K−1
∑K

k=1 θ
k
n.

To simplify Algorithm 1, each client runs an SGD in parallel till every τ -th step, when they must
synchronize their updates in order to properly solve the optimization problem (2.1). Clearly, for
τ = 1, Algorithm 1 reduces to the vanilla SGD algorithm for (2.1), which hampers privacy as
well as incurs great cost at each step, since typically, the number of clients K increases with the
number of iterations n. On the other hand, when τ > n, there is no synchronization, and each client
would solve their own local optimization problem argminθ Fk(θ), defeating the benefits of sharing
information. For the purpose of this paper, we assume τ to be fixed. Moreover, on a client level, we
also assume that there exists constants b1, b2 > 0 such that for every k ∈ [K], b1 ≤ Kwk ≤ b2.

2.2 Berry-Esseen theorems for client-averaged local SGD updates

Before we describe the Berry-Esseen theorems, it is important we briefly describe the conditions
under which it hold. We assume the usual conditions of strong-convexity (Assumption A.1), and the
stochastic Lipschitz-ness of the noisy gradients ∇fk (Assumption A.2). Moreover, we also assume
the continuous differentiability of fk’s (Assumption A.3). Due to space constraints, the detailed
description of these assumptions, alongside an extended discussion, is relegated to Appendix A.
Here, we discuss an additional condition unique to the decentralized federated learning setting.
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Assumption 2.1. The connection matrix C satisfies C1 = 1 and C⊤ = C. Moreover, if λ1 ≥
. . . ≥ λK denote the ordered eigen-values of C, then λ1 = 1, and λ2 = ρ < 1 for some ρ ∈ (0, 1).

This assumption also appears in Gu and Chen [2024]. Assumption 2.1 ensures that C is irreducible
and the corresponding stationary distribution is unique; equivalently the underlying graph G is
connected, ensuring an overall information sharing between each pair of clients through repeated
synchronization steps. Mathematically, this can also be observed by noting that lims→∞ Cs =
K−111⊤. Now, we present the first Gaussian approximation result concerning local SGD updates.
Define the generalized Kolmogorov-Smirnov metric between two random variables Y and Z as

dC(Y, Z) := sup
ℵ∈B(Rd):A convex

∣∣P(Y ∈ ℵ)− P(Z ∈ ℵ)
∣∣. (2.3)

Consider the local SGD output Yn from Algorithm 1. Our first theorem considers its corresponding
Polyak-Ruppert averaged version

Ȳn := n−1
n∑

t=1

Yt = K−1
K∑

k=1

n−1
n∑

t=1

θkt , (2.4)

and provides a Berry-Esseen theorem, proved in appendix Section B.1.
Theorem 2.1. DefineAt

s :=
∏t

j=s+1(I−ηtA),At
t = I , where A := ∇2F (θ⋆K) for t ∈ [n]. Further,

for s ∈ [n], define the random vectors

us = ηs

K∑
k=1

wk

( n∑
j=s

Aj
s

)
gk(θ

⋆
K , ξks ),with Σn := n−1

n∑
s=1

E[|usu
⊤
s |], gk(θ, ξk) = ∇Fk(θ)−∇fk(θ, ξk).

Let there exist a constant C such that for ξk ∼ Pk, k ∈ [K], it holds maxk∈[K] E[|gk(θ⋆K , ξk)|2] ≤
C. Suppose that the step-size schedules of the clients satisfy that ηt = η0(t+ k0)

−β for some fixed
η0, k0 > 0, and β ∈ (1/2, 1). Then, under Assumptions 2.1, A.1 and A.2 and A.3 with p = 4, and
Ȳn as in (2.4), it holds that

dC(
√
n(Ȳn − θ⋆K), Z) ≲ 1√

nK
+ n

1
2−β
√
K +

n− β
2

√
K

, (2.5)

where ≲ hides constants involving d, β, µ, L and ρ, and Z ∼ N(0,Σn).

A slightly more general result, characterizing the effects of heterogeneity and synchronization, is
presented in Corollary F.1 in the appendix. We present Theorem 2.1 here due to its enhanced
amenability to interpretation, which we provide in subsequent remarks.
Remark 2.1. For a fixed β ∈ (1/2, 1), the term n1/2−β

√
K dominates, requiring K = o(T 2β−1)

for the central limit theory to hold for Ȳn. This condition, also noted in Theorem 3 of Gu and Chen
[2024] without justification, is explicitly clarified by (2.5). As β → 1, the rate in (2.5) becomes√
K/n. The inclusion of the three terms highlights the influence of K, which is unique to federated

systems. The 1/
√
nK term reflects the central limit theorem’s convergence rate. The n1/2−β

√
K

term captures the problem’s difficulty, which increases with the number of clients running local
SGD in parallel. Lastly, n−β/2K−1/2 represents the benefit of synchronization and information
aggregation across clients. Even though this term is asymptotically dominated by n1/2−β

√
K, this

commands considerable finite sample effects as shown in Section 4.1.

Often, due to privacy reasons, clients might be unwilling to share n−1
∑n

i=1 θ
k
i at time-point n,

which makes the application of Theorem 2.1 impossible. In such cases, one can simply use a corre-
sponding Berry-Esseen bound for the end-term iterates, which we provide in the following.
Theorem 2.2. Under the assumptions of Theorem 2.1, it holds that

dC(n
β/2(Yn − θ⋆K), Z) ≲ n−β/2

√
K

+ n
1
2−β
√
K, (2.6)

where Z ∼ N(0, Σ̃n) with Σ̃n := nβ
∑n

s=1 Var(An
s

∑K
k=1 ηs,kwkgk(θ

⋆
K , ξks )).

Theorem 2.2 is proved in appendix Section B.2. When K � 1, the rate (2.6) is consistent with the
well-established asymptotic theory of SGD Chung [1954], Sacks [1958], Fabian [1968] for the end-
term iterates. Hereafter, till the end of this section, we will continue to analyze Ȳn further; exactly
similar analysis also holds for Yn, which we do not present separately to maintain continuity.
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2.2.1 Estimating Σn

In Theorem 2.1, the local SGD updates are scaled by the matrix Σn, which is not usually known or
estimable. This matrix originates as the covariance of the sum of independent vectors us, which acts
as a linearized version of the updates Ȳt = K−1

∑K
k=1 θ

k
t . If S = KVar(

∑K
k=1 wkgk(θ

⋆
K , ξk)),

then it can be shown that KΣn → Σ for Σ = A−1SA−⊤ as n → ∞. In general, we show the
following theorem, proved in appendix Section C.
Theorem 2.3. Under the assumptions of Theorem 2.1, it holds that

|Σn −K−1Σ|F ≲ K−1/2nβ−1, (2.7)

and consequently, it holds that, with Z ′ ∼ N(0,K−1Σ),

dC(
√
n(Ȳn − θ⋆K), Z ′) ≲

√
K(n1/2−β + nβ−1). (2.8)

If K = O(1), Theorem 2.3 reduces to Lemma 1 of Sheshukova et al. [2025].
Remark 2.2 (Computation-communication trade-off). Theorems 2.1 and 2.3 reveal a phase transition
between classical central limit theory and the Berry-Esseen rate, which isn’t clear from the condition
K = o(n2β−1) alone. This transition arises from a computation-communication trade-off Tsiatsis
et al. [2005], Le Ny and Pappas [2013], Dieuleveut and Patel [2019], Ballotta et al. [2020], which,
in our context, reflects a trade-off between the step-size parameter β and the number of clients K.
Specifically, if K = o(nc) for some 0 ≤ c ≤ 1/2, the optimal β0 ∈ (1/2, 1) minimizing (2.8) is
β0 = 3/4. Conversely, if K ≳ nc for c > 1/2, no β ∈ (1/2, 1) ensures that

√
K(n1/2−β+nβ−1)→

0. This implies that when K � nc for some c > 1/2, the Kolmogorov error remains significant,
regardless of the step-size, even though central limit theory still holds for β ∈ (1/2 + c/2, 1). This
phase transition highlights a new theoretical insight into the hardness of local SGD as K increases.

An one pass estimation of Σ is discussed in Gu and Chen [2024]. Additionally, in our appendix
Section B.3, we point towards a new direction of multiplier bootstrap, leveraging our Berry-Esseen
result, that does not require covariance estimation.

3 A time-uniform Gaussian coupling for the DFL updates

Section 2 quantifies the Gaussian approximation of the final local SGD updates Ȳn, with an error
of order

√
n in terms of iterations. However, maintaining privacy in a federated setting requires

one to draw sharp inferences not only on the final output but on the entire local SGD trajectory,
particularly for detecting model poisoning or adversarial attacks. From a theoretical standpoint,
when the Assumption A.3 guarantees the existence of moments p > 4 (for example, when the data
may be close to Gaussian), we should be able to derive sharper bounds on approximation errors,
beyond the

√
n result in Section 2. Since central-limit theory and Berry-Esseen estimates rely on

fourth moments, we turn to classical strong approximation theory to exploit higher moments for
precise bounds on the entire trajectory.

3.1 Motivation and Applications

A time-uniform Gaussian coupling for the entire local SGD updates has strong practical moti-
vations, particularly for anomaly detection in "Internet-of-Vehicles" (IoV) Shalev-Shwartz et al.
[2017], Ghimire and Rawat [2024], Zhu et al. [2024]. Assume that at some time point t0 ∈ [n], a
subset of clients K0 ⊆ [K] becomes malicious. This model poisoning can be mathematically de-
scribed by a change in their local risk functions Fk, k ∈ K0, which affects the distribution of the
local SGD updates Yt. This perspective extends to other attacks, such as LIE (Little is Enough)
or MITM (Man in the middle) Shen et al. [2016], Blanchard et al. [2017], Yin et al. [2018], Baruch
et al. [2019], where an adversary injects noise or perturbs communication at time t0, disrupting the
distribution and trajectory of Yt for t ≥ t0 (Ding et al. [2024]). Methods offering explicit theoretical
guarantees on precisely detecting attack initiation are rare; most of the literature concentrates around
robustness guarantees (error bounds, convergence rates) assuming a certain adversarial profile or de-
tection of malicious clients [Blanchard et al., 2017, Wang et al., 2020a, Qian et al., 2024], rather than
provably devising poisoning alarm. Relatedly, Mapakshi et al. [2025] observed that attacks starting
in later rounds can be more damaging compared to those present from the start.
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Assume that at some time point t0 ∈ [n], a subset of clients K0 ⊆ [K] becomes malicious.
This model poisoning can be mathematically described by a change in their local risk functions
Fk, k ∈ K0, which affects the distribution of the local SGD updates Yt. To identify the time-point
t0 sequentially, we examine a CUSUM-type statistic Rt := max1≤s≤t s|Ȳs − Ȳt|, widely used in
change-point analysis. We expect Rt to be large for t > t0 if an attack has altered the mean behavior
of the local SGD updates at t0. The null distribution (i.e. when no attack takes place) of Rt is
usually mathematically intractable, hence posing a hindrance to performing valid inference. This
necessitates a bootstrap procedure.

To identify the time-point t0 sequentially, we examine a CUSUM-type statistic Rt :=
max1≤s≤t s|Ȳs − Ȳt|, widely used in change-point analysis. We expect Rt to be large for t > t0 if
an attack has altered the mean behavior of the local SGD updates at t0.

Suppose there exists a Gaussian process Gt such that a time-uniform approximation holds:

max
1≤t≤n

|tȲt − Gt| = oP(
√
n). (3.1)

Let RG
t = max1≤s≤t |Gs − s

tGt| Then it follows that,

n−1/2 max
1≤t≤n

|Rt −RG
t | ≤ n−1/2 max

1≤t≤n
max
1≤s≤t

|(sȲs − sθ⋆K − Gs)−
s

t
(tȲt − tθ⋆K − Gt)|

≤ 2n−1/2 max
1≤t≤n

|tȲt − tθ⋆K − Gt|

= oP(1). (3.2)

Equation (3.2) immediately suggests using Gaussian multiplier bootstrap leveraging Gt with pre-
cisely quantifiable approximation error. In particular, if Q1−α(X) denotes the (1 − α)-th quantile
of random variable X , then for a suitable positive sequence {an},

P(Rt > Q1−α(R
G
t ) + an for some t ∈ [n]) ≤ α+ P( max

1≤t≤n
|Rt −RG

t | > an)→ α, (3.3)

as long as n−1/2an ≥ c. We provide more details on these bootstrap algorithms in Appendix Section
G. The two major questions that remain, are

• Does such a Gt exist? If yes, can we get a rate τn,K such that τn,K �
√
n?

• Can we explicitly characterize its covariance structure, so as to enable bootstrap sampling?

The main results in Section 3.2 provide answers to both the questions above.

3.2 Optimal coupling for local SGD

The following theorem, proved in Section D.1, establishes a Gaussian approximation echoing (3.1).
Theorem 3.1. For W k := gk(θ

⋆
K , ξk), ξk ∼ Pk independently for k ∈ [K], let VK =

Var(
∑K

k=1 wkWk). Suppose Assumption A.3 holds for a general p ≥ 2. Then, under Assumptions

A.1, A.2 and 2.1, (on a possibly richer probability space) there exists Z1, . . . , Zn
i.i.d.∼ N(0,KVK),

such that with

Y G
t,1 = (I − ηtA)Y G

t−1,1 + ηtZtK
−1/2, Y G

0,1 = 0, (3.4)

it holds that,

max
1≤t≤n

|
t∑

s=1

(Ys − θ⋆K − Y G
s,1)| = OP(n

1−β) + oP(n
1/pK−1/2 log n). (3.5)

We call the Gaussian approximation iterates (3.5) “Aggregated Gaussian approximation”(Aggr-GA).
Note that Aggr-GA requires a complete sharing of the covariance structure to construct VK , which
may affect privacy at inference-time. However, it turns out that one can further refine Theorem 3.1 to
provide another Gaussian approximation results that exactly mimics the local SGD updates in their
use of local structure along with periodic sharing. We call this latter approximation by Client-GA.
Theorem 3.2. Under the assumptions of Theorem 3.1, on a possibly richer probability space, for
each k ∈ [K], there exist Zk

1 , . . . , Z
k
n

i.i.d.∼ N(0,Var(W k)), such that with

Θ̃G
t =

(
(I − ηtA)Θ̃G

t−1 + ηtMt

)
Ct, Θ̃

G
0 = (0, . . . ,0), (3.6)
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where Mt := K(w1Z
1
t , . . . , wKZK

t ) ∈ Rd×K , and Ct as in (2.2), it holds that

max
1≤t≤n

|
t∑

s=1

(Ys − θ⋆K − Y G
s,2)| = OP(n

1−β + (n/K)
1
4+

1
2p (log n)3/2), Y G

t,2 = K−1Θ̃G
t 1. (3.7)

Note that for p = 2, the rates of Theorems 3.1 and 3.2 coincide. Theorem 2.2 is proved in Section
D.2. In both the results, n1−β reflects the fundamental error of a generic uniform Gaussian ap-
proximation for the local SGD updates Yn, and as such, does not depend on K. The second error
decreases with the number of clients, as an increasing number of clients enables local SGD updates
to track a larger horizon, and the corresponding client-averaged Yt becomes more concentrated in
their trajectory towards θ⋆K , leading to sharper approximations.
Remark 3.1 (Computational differences between Aggr-GA and Client-GA). At each iteration t,
Aggr-GA has a computational complexity of O(d2), since it involves generating one random sample
followed by a matrix-vector multiplication. In contrast, Client-GA has a complexity of O(Kd2)
per iteration. Importantly, the structure of Client-GA naturally allows for parallel computation
between synchronization steps, significantly reducing the computational burden while preserving
periodic peer-to-peer communication.
Remark 3.2 (Difference with functional CLT). Li et al. [2022] proved a functional CLT for local
SGD when the number of clients K is fixed. Although such a result can theoretically be extended to
the general setting considered here, nevertheless our approximations (3.5) and (3.7) are much sharper
than a functional CLT approximation. As a toy example, consider the vanilla SGD setting, i.e. local
SGD with τ = 1, and suppose K = 1. Suppose F (θ) = (θ − µ)2/2, and ∇f(θ, ξ) := θ − µ+ ξ. In
this setting, both Aggr-GA and Client-GA collapse to the same Gaussian approximation

Y G
t = (I − ηtA)Y G

t−1 + ηtZt, Zt ∼ N(0,Var(ξ)), Y G
0 = 0. (3.8)

Here A = ∇2F (µ) = I . On the other hand, the vanilla SGD iterates can also be seen as
Yt − µ = (I − ηtA)(Yt−1 − µ) + ηtξt. Therefore, it can be seen that Yt − µ and Y G

t have ex-
actly the same covariance structure, i.e. Cov(Y G

s , Y G
t ) = Cov(Ys, Yt); on the other hand, even in

such a simplified setting, an approximation by Brownian motion, such as that by functional CLT, cap-
tures the covariance structure of the iterates {Yt−µ}t≥1 only in an asymptotic sense. The Gaussian
approximation Y G

t in (3.8) is a particular example of covariance-matching approximations, intro-
duced by Bonnerjee et al. [2024]. By extension, same intuition holds for Aggr-GA and Client-GA
as well. However, at this point, we note that the covariance-matching approximations in Bonnerjee
et al. [2024] were for short-range, univariate non-stationary process. On the other hand, in the local
SGD setting, the polynomially decaying step-size introduces a non-stationarity that can possibly be
long-range dependent. Moreover, our result allows for multivariate parameters in a direct general-
ization of these aforementioned, covariance-matching approximations. We empirically validate this
in Section 4.

Note that n1−β indicates the fixed error for the local SGD updates with step-sizes ηt � t−β , and in
order to completely underpin the effect of the assumption of additional moments p > 2, an optimal
choice of step-size must be given so that n1−β becomes negligible compared to the second error
term involving the moment p. This choice is indicated in the following proposition.

Proposition 1. Grant the assumptions of Theorems 3.1 and 3.2, and consider the Gaussian approx-
imations Y G

s,1 and Y G
s,2 defined therein. Suppose K = o(nc) for some c ∈ (0, 1).

(i) If c < 2/p, then β ≥ 1 − 1/p + c/2 ensures max1≤t≤n |
∑t

s=1(Ys − θ⋆K − Y G
s,1)| =

oP(n
1
p−

c
2 log n).

(ii) For a general c ∈ (0, 1), a choice of β > 1−(1−c)( 14+
1
2p ) ensures that max1≤t≤n |

∑t
s=1(Ys−

θ⋆K − Y G
s,2)| = oP(n

(1−c)( 1
4+

1
2p )(log n)3/2).

Cases (i) and (ii) reveal a trade-off between Aggr-GA and Client-GA. While Aggr-GA requires
information sharing at each step, yielding better approximation, it demands a stricter choice of β,
since 1− 1

p +
c
2 > 1−(1−c)( 14 +

1
2p ) for all p > 2, c > 0. In contrast, Client-GA’s local operation

supports K = o(n) clients, aligning with Zhang et al. [2013], Gu and Chen [2023]. Both methods
require known Hessians and local covariances, estimable efficiently via Gu and Chen [2024].
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4 Simulation results

Here, we summarize the various empirical exercises to accompany our theory in Sections 2 and 3. In
particular, in Section 4.1, we discuss the Berry-Esseen error dC(

√
n(Ȳn−θ⋆K), Z) for Z ∼ N(0,Σn)

with varying choices of the number of iterations N , number of clients K and synchronization pa-
rameter τ . In Section 4.2, we numerically explore the computation-communication trade-off dis-
cussed in Section 2.2. Finally, in Section 4.3, we explore the approximation error of Aggr-GA and
Client-GA via Q-Q plots. Detailed explanations, and additional experiments, along with the model
specifications, can be found in Appendix Section F. All codes are available in github.

4.1 Effect of n and K on the Berry-Esseen rate

As a proxy of dC, we consider d̃c = supx∈[0,c]

∣∣P(|√nΣ−1/2
n (Ȳn− θ⋆K)| ≤ x)−P(|Z| ≤ x)

∣∣ where
Z ∼ N(0, I) for a large enough c > 0. Figure 1 shows how d̃c varies with varying n,K, τ when the
step-size is kept fixed at ηt = 0.3t−0.75. In particular, d̃c decays with N for fixed K, and increases
with K for fixed n. Additional simulations and further insights can be found in Appendix section
F.1.

Figure 1: Plot of d̃c against n and K for γ = 1, and Settings 1(left), and 2(right).

4.2 Computation-communication trade-off

Here, we fix n ∈ {100, 200, 300, 400, 500}, and K = bnrc for r ∈ {0.2, 0.6} and numerically
investigate the computation-communication trade-off hinted at in Remark 2.2. We run the local
SGD algorithm with τ = 5, and ηt = 0.5t−β , for β ∈ {0.85, 0.9, 0.95}. Clearly, d̃c decays with n
for r = 0.2, and increases with n for r = 0.6, exemplifying our assertion about the computation-
communication trade-off between K and β. Appendix Section F.2 contains additional details.

Figure 2: Plot of d†c against (n, β) for r = 0.2 (left), and r = 0.6 (right). Here γ = 0.

4.3 Performance of the time-uniform Gaussian approximations

In this section, we fix N = 500, τ = 20, and let K ∈ {10, 25, 50}, and compare the quantiles
of the maximum partial sums of local SGD Un, Aggr-GA U

Aggr-GA
n , Client-GA UClient-GA

n and
approximation by Brownian motion: Uf-CLT

n . Clearly, Aggr-GA seems to be performing the best, as
suggested by Theorems 3.1 and 3.2. Furthermore, Uf-CLT

n consistently has the worst approximation.
Additional details can be found in appendix Section F.6.
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Figure 3: QQ-plots of UAggr-GA
n (blue), UClient-GA

n (green) and Uf-CLT
n (orange) against Un for γ = 1,

N = 500, τ = 20. Here K = 10(left), K = 25(middle), K = 50(right). Rest of the FRand-eff
model specifications are as in Section F.1.1.

5 Conclusion

Sharper theoretical results beyond the central limit theorem is extremely crucial to perform valid
and powerful statistical inference, yet such results have not previously appeared in the literature
for local SGD and in general, decentralized federated learning. In this context, to the best of our
knowledge, this is the first work deriving Berry-Esseen bounds as well as sharp time-uniform Gaus-
sian approximations over the local SGD trajectory. These results enable the development of valid
and powerful statistical inference methods, including bootstrap procedures Fang et al. [2018], Fang
[2019], Zhong et al. [2023], which can be adapted to decentralized settings. The technical frame-
work developed herein offers a pathway to sharper results in many other related settings including
multi-agent systems and transfer learning Duan and Wang [2023], Pan et al. [2023], Knight and Duan
[2023], Lin and Reimherr [2024]. It is also crucial to make explicit the effect of synchronization in
the derived rates, which can reflect more trade-offs and constitute a suitable future work.

6 Acknowledgment

The authors would like to thank the reviewers, the area chair and the senior area chair for their
constructive feedbacks that helped improve the paper significantly. SK and WBW thank NSF DMS
grant 2124222 and NSF DMS grant 2311249 respectively for supporting their research.

References
D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-efficient sgd

via gradient quantization and encoding. In Advances in Neural Information Processing Systems
(NeurIPS), volume 30, 2017.

A. Anastasiou, K. Balasubramanian, and M. A. Erdogdu. Normal approximation for stochastic
gradient descent via non-asymptotic rates of martingale clt. In Conference on Learning Theory,
pages 115–137. PMLR, 2019.

F. Bach. Self-concordant analysis for logistic regression. Electron. J. Stat., 4:384–414, 2010. ISSN
1935-7524. doi: 10.1214/09-EJS521. URL https://doi.org/10.1214/09-EJS521.

L. Ballotta, L. Schenato, and L. Carlone. Computation-communication trade-offs and sensor selec-
tion in real-time estimation for processing networks. IEEE Transactions on Network Science and
Engineering, 7(4):2952–2965, 2020.

G. Baruch, M. Baruch, and Y. Goldberg. A little is enough: Circumventing defenses for distributed
learning. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 8632–8642, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html.

I. Berkes, W. Liu, and W. B. Wu. Komlós-Major-Tusnády approximation under dependence. Ann.
Probab., 42(2):794–817, 2014. ISSN 0091-1798. doi: 10.1214/13-AOP850. URL http://dx.
doi.org/10.1214/13-AOP850.

10

https://doi.org/10.1214/09-EJS521
https://proceedings.neurips.cc/paper/2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html
http://dx.doi.org/10.1214/13-AOP850
http://dx.doi.org/10.1214/13-AOP850


P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer. Machine learning with adversaries:
Byzantine tolerant gradient descent. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,
R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA, pages 119–129, 2017. URL https://proceedings.
neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html.

S. Bonnerjee, S. Karmakar, and W. B. Wu. Gaussian approximation for nonstationary time series
with optimal rate and explicit construction. Ann. Statist., 52(5):2293–2317, 2024. ISSN 0090-
5364,2168-8966. doi: 10.1214/24-aos2436. URL https://doi.org/10.1214/24-aos2436.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
SIAM Rev., 60(2):223–311, 2018. ISSN 0036-1445,1095-7200. doi: 10.1137/16M1080173. URL
https://doi.org/10.1137/16M1080173.

S. Chaturapruek, J. C. Duchi, and C. Ré. Asynchronous stochastic convex optimization: the noise
is in the noise and SGD don’t care. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 1531–1539, 2015. URL https://proceedings.neurips.cc/paper/2015/
hash/c8c41c4a18675a74e01c8a20e8a0f662-Abstract.html.

X. Chen, J. D. Lee, X. T. Tong, and Y. Zhang. Statistical inference for model parameters in stochastic
gradient descent. Ann. Statist., 48(1):251–273, 2020. ISSN 0090-5364,2168-8966. doi: 10.1214/
18-AOS1801. URL https://doi.org/10.1214/18-AOS1801.

V. Chernozhukov, D. Chetverikov, and K. Kato. Detailed proof of nazarov’s inequality. arXiv
preprint arXiv:1711.10696, 2017.

K. L. Chung. On a stochastic approximation method. Ann. Math. Statistics, 25:463–483, 1954.
ISSN 0003-4851. doi: 10.1214/aoms/1177728716. URL https://doi.org/10.1214/aoms/
1177728716.

L. Devroye, A. Mehrabian, and T. Reddad. The total variation distance between high-dimensional
gaussians with the same mean. arXiv preprint arXiv:1810.08693, 2018.

A. Dieuleveut and K. K. Patel. Communication trade-offs for local-sgd with large step size. Ad-
vances in Neural Information Processing Systems, 32, 2019.

A. Dieuleveut, A. Durmus, and F. Bach. Bridging the gap between constant step size stochastic gra-
dient descent and Markov chains. Ann. Statist., 48(3):1348–1382, 2020. ISSN 0090-5364,2168-
8966. doi: 10.1214/19-AOS1850. URL https://doi.org/10.1214/19-AOS1850.

Z. Ding, W. Wang, X. Li, X. Wang, G. Jeon, J. Zhao, and C. Mu. Identifying alternately poisoning
attacks in federated learning online using trajectory anomaly detection method. Scientific Reports,
14(1):20269, 2024.

Y. Duan and K. Wang. Adaptive and robust multi-task learning. Ann. Statist., 51(5):2015–2039,
2023. ISSN 0090-5364,2168-8966. doi: 10.1214/23-aos2319. URL https://doi.org/10.
1214/23-aos2319.

V. Fabian. On asymptotic normality in stochastic approximation. Ann. Math. Statist., 39:1327–1332,
1968. ISSN 0003-4851. doi: 10.1214/aoms/1177698258. URL https://doi.org/10.1214/
aoms/1177698258.

Y. Fang. Scalable statistical inference for averaged implicit stochastic gradient descent. Scand.
J. Stat., 46(4):987–1002, 2019. ISSN 0303-6898,1467-9469. doi: 10.1111/sjos.12378. URL
https://doi.org/10.1111/sjos.12378.

Y. Fang, J. Xu, and L. Yang. Online bootstrap confidence intervals for the stochastic gradient descent
estimator. J. Mach. Learn. Res., 19:Paper No. 78, 21, 2018. ISSN 1532-4435,1533-7928.

E. Gabrielli, G. Pica, and G. Tolomei. A survey on decentralized federated learning. arXiv preprint
arXiv:2308.04604, 2023.

11

https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
https://doi.org/10.1214/24-aos2436
https://doi.org/10.1137/16M1080173
https://proceedings.neurips.cc/paper/2015/hash/c8c41c4a18675a74e01c8a20e8a0f662-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/c8c41c4a18675a74e01c8a20e8a0f662-Abstract.html
https://doi.org/10.1214/18-AOS1801
https://doi.org/10.1214/aoms/1177728716
https://doi.org/10.1214/aoms/1177728716
https://doi.org/10.1214/19-AOS1850
https://doi.org/10.1214/23-aos2319
https://doi.org/10.1214/23-aos2319
https://doi.org/10.1214/aoms/1177698258
https://doi.org/10.1214/aoms/1177698258
https://doi.org/10.1111/sjos.12378


F. Gëttse and A. Y. Zaı̆tsev. The accuracy of approximation in the multidimensional invariance
principle for sums of independent identically distributed random vectors with finite moments.
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 368:110–121, 283–284,
2009. ISSN 0373-2703. doi: 10.1007/s10958-010-9935-8. URL https://doi.org/10.1007/
s10958-010-9935-8.

B. Ghimire and D. B. Rawat. A communication-efficient machine learning framework for the in-
ternet of vehicles. IEEE Transactions on Cognitive Communications and Networking, pages 1–1,
2024. doi: 10.1109/TCCN.2024.3508776.

M. R. Glasgow, H. Yuan, and T. Ma. Sharp bounds for federated averaging (local SGD) and continu-
ous perspective. In G. Camps-Valls, F. J. R. Ruiz, and I. Valera, editors, International Conference
on Artificial Intelligence and Statistics, AISTATS 2022, 28-30 March 2022, Virtual Event, vol-
ume 151 of Proceedings of Machine Learning Research, pages 9050–9090. PMLR, 2022. URL
https://proceedings.mlr.press/v151/glasgow22a.html.

F. Götze and A. Y. Zaitsev. Bounds for the rate of strong approximation in the multidimen-
sional invariance principle. Teor. Veroyatn. Primen., 53(1):100–123, 2008. ISSN 0040-
361X,2305-3151. doi: 10.1137/S0040585X9798350X. URL https://doi.org/10.1137/
S0040585X9798350X.

J. Gu and S. X. Chen. Distributed statistical inference under heterogeneity. J. Mach. Learn. Res.,
24:Paper No. 387, 56, 2023. ISSN 1532-4435,1533-7928.

J. Gu and S. X. Chen. Statistical inference for decentralized federated learning. Ann. Statist., 52
(6):2931–2955, 2024. ISSN 0090-5364,2168-8966. doi: 10.1214/24-aos2452. URL https:
//doi.org/10.1214/24-aos2452.

F. Haddadpour, M. Kamani, and M. Mahdavi. Local sgd with periodic averaging: Tighter analysis
and adaptive synchronization. In Advances in Neural Information Processing Systems (NeurIPS),
pages 11082–11094, 2019.

C. He, M. Annavaram, and S. Avestimehr. Central server free federated learning over single-sided
trust social networks. arXiv preprint arXiv:1910.04956, 2019.

N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and R. Arora. Communication-efficient
distributed SGD with sketching. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 13144–13154, 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/75da5036f659fe64b53f3d9b39412967-Abstract.html.

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles,
G. Cormode, R. Cummings, et al. Advances and open problems in federated learning. Founda-
tions and trends® in machine learning, 14(1–2):1–210, 2021.

S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh. Scaffold: Stochastic
controlled averaging for federated learning. In International Conference on Machine Learning
(ICML), pages 5132–5143. PMLR, 2020.

S. Karmakar and W. B. Wu. Optimal Gaussian approximation for multiple time series. Statist.
Sinica, 30(3):1399–1417, 2020. ISSN 1017-0405,1996-8507. doi: 10.5705/ss.202017.0303. URL
https://doi.org/10.5705/ss.202017.0303.

S. Karmakar, S. Richter, and W. B. Wu. Simultaneous inference for time-varying models. J. Econo-
metrics, 227(2):408–428, 2022. ISSN 0304-4076,1872-6895. doi: 10.1016/j.jeconom.2021.03.
002. URL https://doi.org/10.1016/j.jeconom.2021.03.002.

A. Khaled, K. Mishchenko, and P. Richtárik. Tighter theory for local sgd on identical and heteroge-
neous data. In International conference on artificial intelligence and statistics, pages 4519–4529.
PMLR, 2020.

H.-W. Kim, J. Kim, and M. Bennis. Blockchained on-device federated learning. IEEE Communica-
tions Letters, 24(6):1279–1283, 2020.

12

https://doi.org/10.1007/s10958-010-9935-8
https://doi.org/10.1007/s10958-010-9935-8
https://proceedings.mlr.press/v151/glasgow22a.html
https://doi.org/10.1137/S0040585X9798350X
https://doi.org/10.1137/S0040585X9798350X
https://doi.org/10.1214/24-aos2452
https://doi.org/10.1214/24-aos2452
https://proceedings.neurips.cc/paper/2019/hash/75da5036f659fe64b53f3d9b39412967-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/75da5036f659fe64b53f3d9b39412967-Abstract.html
https://doi.org/10.5705/ss.202017.0303
https://doi.org/10.1016/j.jeconom.2021.03.002


P. Knight and R. Duan. Multi-task learning with summary statistics. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a924b7178e5975dfed1de235f0b72973-Abstract-Conference.html.

A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. U. Stich. A unified theory of decen-
tralized SGD with changing topology and local updates. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research, pages 5381–5393. PMLR, 2020. URL
http://proceedings.mlr.press/v119/koloskova20a.html.

J. Komlós, P. Major, and G. Tusnády. An approximation of partial sums of independent RV’s and
the sample DF. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 32:111–131, 1975. doi:
10.1007/BF00533093. URL https://doi.org/10.1007/BF00533093.

A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar. Peer-to-peer federated learning on graphs.
arXiv preprint arXiv:1901.11173, 2019.

G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming,
133(1):365–397, 2012.

J. Le Ny and G. J. Pappas. Differentially private filtering. IEEE Transactions on Automatic Control,
59(2):341–354, 2013.

J. Li, Z. Lou, S. Richter, and W.-B. Wu. The stochastic gradient descent from a nonlinear time series
perspective. preprint, 2024.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated optimization in heterogeneous networks.
In Proceedings of Machine Learning and Systems, volume 2, pages 429–450, 2020.

X. Li, W. Yang, S. Wang, and Z. Zhang. Communication-efficient local decentralized sgd methods.
arXiv preprint arXiv:1910.09126, 2019.

X. Li, J. Liang, X. Chang, and Z. Zhang. Statistical estimation and online inference via local sgd. In
Proceedings of the 35th Conference on Learning Theory (COLT), volume 178, pages 1613–1661.
PMLR, 2022.

X. Lian, C. Zhang, H. Zhang, C. Hsieh, W. Zhang, and J. Liu. Can decentralized algorithms
outperform centralized algorithms? A case study for decentralized parallel stochastic gradient
descent. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 5330–5340, 2017. URL https://proceedings.neurips.cc/paper/
2017/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html.

H. Lin and M. Reimherr. Smoothness adaptive hypothesis transfer learning. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net, 2024. URL https://openreview.net/forum?id=v0VUsQI5yw.

Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. Don’t use large mini-batches, use local sgd. In
International Conference on Learning Representations (ICLR), 2018.

W. Liu and W. B. Wu. Simultaneous nonparametric inference of time series. Ann. Statist., 38
(4):2388–2421, 2010. ISSN 0090-5364,2168-8966. doi: 10.1214/09-AOS789. URL https:
//doi.org/10.1214/09-AOS789.

R. Mapakshi, S. Akther, and M. Stamp. Temporal Analysis of Adversarial Attacks in Federated
Learning. In Machine Learning, Deep Learning and AI for Cybersecurity, pages 359–392.
Springer, 2025. doi: 10.1007/978-3-031-83157-7\_13. URL https://arxiv.org/abs/2501.
11054.

13

http://papers.nips.cc/paper_files/paper/2023/hash/a924b7178e5975dfed1de235f0b72973-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a924b7178e5975dfed1de235f0b72973-Abstract-Conference.html
http://proceedings.mlr.press/v119/koloskova20a.html
https://doi.org/10.1007/BF00533093
https://proceedings.neurips.cc/paper/2017/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
https://openreview.net/forum?id=v0VUsQI5yw
https://doi.org/10.1214/09-AOS789
https://doi.org/10.1214/09-AOS789
https://arxiv.org/abs/2501.11054
https://arxiv.org/abs/2501.11054


H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial Intelligence and Statistics, pages
1273–1282. PMLR, 2017.

F. Mies and A. Steland. Sequential gaussian approximation for nonstationary time series in high
dimensions. Bernoulli, 29(4):3114–3140, 2023.

W. Mou, A. Pananjady, M. J. Wainwright, and P. L. Bartlett. Optimal and instance-dependent guar-
antees for Markovian linear stochastic approximation. Math. Stat. Learn., 7(1-2):41–153, 2024.
ISSN 2520-2316,2520-2324. doi: 10.4171/msl/44. URL https://doi.org/10.4171/msl/44.

E. Moulines and F. Bach. Non-asymptotic analysis of stochastic approximation algorithms for ma-
chine learning. Advances in neural information processing systems, 24, 2011.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on optimization, 19(4):1574–1609, 2009.

Q. Pan, R. Wu, T. Liu, T. Zhang, Y. Zhu, and W. Wang. Fedgkd: Unleashing the power of collabo-
ration in federated graph neural networks. arXiv preprint arXiv:2309.09517, 2023.

I. Pinelis. Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab., 22
(4):1679–1706, 1994. ISSN 0091-1798,2168-894X. URL http://links.jstor.org/sici?
sici=0091-1798(199410)22:4<1679:OBFTDO>2.0.CO;2-2&origin=MSN.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838–855, 1992.

C. Qian, M. Wang, H. Ren, and C. Zou. ByMI: Byzantine Machine Identification with False Discov-
ery Rate Control. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, and
F. Berkenkamp, editors, Proceedings of the 41st International Conference on Machine Learning
(ICML 2024), volume 235 of Proceedings of Machine Learning Research, pages 41357–41382.
PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/qian24b.html.

T. Qin, S. R. Etesami, and C. A. Uribe. Communication-efficient decentralized local sgd over undi-
rected networks. In 2021 60th IEEE Conference on Decision and Control (CDC), pages 3361–
3366, 2021. doi: 10.1109/CDC45484.2021.9683272.

D. Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical Re-
port, 1988.

J. Sacks. Asymptotic distribution of stochastic approximation procedures. Ann. Math. Statist., 29:
373–405, 1958. ISSN 0003-4851. doi: 10.1214/aoms/1177706619. URL https://doi.org/
10.1214/aoms/1177706619.

A. I. Sakhanenko. Rate of convergence in the invariance principle for variables with exponential
moments that are not identically distributed. In Limit theorems for sums of random variables,
volume 3 of Trudy Inst. Mat., pages 4–49. “Nauka” Sibirsk. Otdel., Novosibirsk, 1984.

A. I. Sakhanenko. On the accuracy of normal approximation in the invariance principle. Trudy Inst.
Mat. (Novosibirsk), 13:40–66, 197, 1989. ISSN 0208-0060.

A. I. Sakhanenko. Estimates in the invariance principle in terms of truncated power moments.
Sibirsk. Mat. Zh., 47(6):1355–1371, 2006. ISSN 0037-4474. doi: 10.1007/s11202-006-0119-1.
URL http://dx.doi.org/10.1007/s11202-006-0119-1.

S. Samsonov, E. Moulines, Q.-M. Shao, Z.-S. Zhang, and A. Naumov. Gaussian approximation and
multiplier bootstrap for polyak-ruppert averaged linear stochastic approximation with applications
to td learning. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

S. Shalev-Shwartz, S. Shammah, and A. Shashua. On a formal model of safe and scalable self-
driving cars. arXiv preprint arXiv:1708.06374, 2017.

14

https://doi.org/10.4171/msl/44
http://links.jstor.org/sici?sici=0091-1798(199410)22:4<1679:OBFTDO>2.0.CO;2-2&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199410)22:4<1679:OBFTDO>2.0.CO;2-2&origin=MSN
https://proceedings.mlr.press/v235/qian24b.html
https://doi.org/10.1214/aoms/1177706619
https://doi.org/10.1214/aoms/1177706619
http://dx.doi.org/10.1007/s11202-006-0119-1


Q.-M. Shao and Z.-S. Zhang. Berry-Esseen bounds for multivariate nonlinear statistics with appli-
cations to M-estimators and stochastic gradient descent algorithms. Bernoulli, 28(3):1548–1576,
2022. ISSN 1350-7265,1573-9759. doi: 10.3150/21-bej1336. URL https://doi.org/10.
3150/21-bej1336.

S. Shen, S. Tople, and P. Saxena. Auror: defending against poisoning attacks in collaborative deep
learning systems. In S. Schwab, W. K. Robertson, and D. Balzarotti, editors, Proceedings of
the 32nd Annual Conference on Computer Security Applications, ACSAC 2016, Los Angeles, CA,
USA, December 5-9, 2016, pages 508–519. ACM, 2016. URL http://dl.acm.org/citation.
cfm?id=2991125.

M. Sheshukova, S. Samsonov, D. Belomestny, E. Moulines, Q.-M. Shao, Z.-S. Zhang, and A. Nau-
mov. Gaussian approximation and multiplier bootstrap for stochastic gradient descent. arXiv
preprint arXiv:2502.06719, 2025.

A. Singh, A. Bhowmick, and N. Chakraborty. Privacy-preserving decentralized federated learning:
Algorithms, challenges, and opportunities. IEEE Transactions on Artificial Intelligence, 2023.

S. U. Stich. Local SGD converges fast and communicates little. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=S1g2JnRcFX.

V. Tsiatsis, R. Kumar, and M. B. Srivastava. Computation hierarchy for in-network processing.
Mobile Networks and Applications, 10:505–518, 2005.

H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal, J. yong Sohn, K. Lee, and D. S.
Papailiopoulos. Attack of the tails: Yes, you really can backdoor federated learning. In Advances
in Neural Information Processing Systems 33 (NeurIPS 2020), 2020a.

J. Wang and G. Joshi. Cooperative SGD: a unified framework for the design and analysis of local-
update SGD algorithms. J. Mach. Learn. Res., 22:Paper No. 213, 50, 2021. ISSN 1532-4435,1533-
7928.

J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. Tackling the objective inconsistency problem
in heterogeneous federated optimization. Advances in Neural Information Processing Systems
(NeurIPS), 33:7611–7623, 2020b.

I. Waudby-Smith, D. Arbour, R. Sinha, E. H. Kennedy, and A. Ramdas. Time-uniform central limit
theory and asymptotic confidence sequences. Ann. Statist., 52(6):2613–2640, 2024. ISSN 0090-
5364,2168-8966. doi: 10.1214/24-aos2408. URL https://doi.org/10.1214/24-aos2408.

Z. Wei, W. Zhu, and W. B. Wu. Weighted averaged stochastic gradient descent: Asymptotic normal-
ity and optimality. arXiv preprint arXiv:2307.06915, 2023.

B. E. Woodworth, K. K. Patel, and N. Srebro. Minibatch vs local SGD for heteroge-
neous distributed learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020a. URL https://proceedings.neurips.cc/paper/2020/hash/
45713f6ff2041d3fdfae927b82488db8-Abstract.html.

B. E. Woodworth, K. K. Patel, S. U. Stich, Z. Dai, B. Bullins, H. B. McMahan, O. Shamir, and
N. Srebro. Is local SGD better than minibatch sgd? In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 10334–10343. PMLR, 2020b. URL http:
//proceedings.mlr.press/v119/woodworth20a.html.

W. Wu, G. Li, Y. Wei, and A. Rinaldo. Statistical inference for temporal difference learning with
linear function approximation. arXiv preprint arXiv:2410.16106, 2024.

W. B. Wu and Z. Zhao. Inference of trends in time series. J. R. Stat. Soc. Ser. B Stat. Methodol., 69
(3):391–410, 2007. ISSN 1369-7412,1467-9868. doi: 10.1111/j.1467-9868.2007.00594.x. URL
https://doi.org/10.1111/j.1467-9868.2007.00594.x.

15

https://doi.org/10.3150/21-bej1336
https://doi.org/10.3150/21-bej1336
http://dl.acm.org/citation.cfm?id=2991125
http://dl.acm.org/citation.cfm?id=2991125
https://openreview.net/forum?id=S1g2JnRcFX
https://doi.org/10.1214/24-aos2408
https://proceedings.neurips.cc/paper/2020/hash/45713f6ff2041d3fdfae927b82488db8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/45713f6ff2041d3fdfae927b82488db8-Abstract.html
http://proceedings.mlr.press/v119/woodworth20a.html
http://proceedings.mlr.press/v119/woodworth20a.html
https://doi.org/10.1111/j.1467-9868.2007.00594.x


C. Xie, O. Koyejo, I. Gupta, and C. Hegde. Asynchronous federated optimization. In Advances in
Neural Information Processing Systems, volume 33, pages 19359–19369, 2020.

D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett. Byzantine-robust distributed learning: Towards
optimal statistical rates. In J. G. Dy and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-
15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 5636–5645. PMLR,
2018. URL http://proceedings.mlr.press/v80/yin18a.html.

L. Yuan, Z. Wang, L. Sun, P. S. Yu, and C. G. Brinton. Decentralized federated learning: A survey
and perspective. IEEE Internet of Things Journal, 2024.

Y. Zhang, J. C. Duchi, and M. J. Wainwright. Communication-efficient algorithms for statistical
optimization. J. Mach. Learn. Res., 14:3321–3363, 2013. ISSN 1532-4435,1533-7928.

Y. Zhong, T. Kuffner, and S. Lahiri. Online bootstrap inference with nonconvex stochastic gradient
descent estimator. arXiv preprint arXiv:2306.02205, 2023.

M. Zhu, W. Ning, Q. Qi, J. Wang, Z. Zhuang, H. Sun, J. Huang, and J. Liao. FLUK: pro-
tecting federated learning against malicious clients for internet of vehicles. In J. Carretero,
S. Shende, J. García-Blas, I. Brandic, K. Olcoz, and M. Schreiber, editors, Euro-Par 2024: Par-
allel Processing - 30th European Conference on Parallel and Distributed Processing, Madrid,
Spain, August 26-30, 2024, Proceedings, Part II, volume 14802 of Lecture Notes in Com-
puter Science, pages 454–469. Springer, 2024. doi: 10.1007/978-3-031-69766-1\_31. URL
https://doi.org/10.1007/978-3-031-69766-1_31.

W. Zhu, X. Chen, and W. B. Wu. Online covariance matrix estimation in stochastic gradient descent.
J. Amer. Statist. Assoc., 118(541):393–404, 2023. ISSN 0162-1459,1537-274X. doi: 10.1080/
01621459.2021.1933498. URL https://doi.org/10.1080/01621459.2021.1933498.

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims of the paper are accurately reflected in both the abstract
and introduction. The paper proposes a two sharp Gaussian approximation theorems for
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• The answer NA means that the abstract and introduction do not include the claims
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goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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3. Theory assumptions and proofs
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a complete (and correct) proof?
Answer: [Yes]
Justification: All the assumptions can be found in the theorem statements, and are discussed
in main paper as well as appendix Section A. All the proofs can be found in Section B-E.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
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sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
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the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the codes to reproduce the results can be found anonymously in github as
well as in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details are provided in Sections 4 and F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include hypothesis testing or statistical significance anal-
ysis, and error bars are not a focus of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The experiments are lightweight and run quickly on a modern laptop.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research follows all ethical guidelines. No human data or ethically sensi-
tive content is involved.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper mentions certain societal motivations, such as privacy protec-
tion and computational efficiency while maintaining statistical validity, in the introduction.
Since our work is theoretical in nature, we do not anticipate any negative impacts, and
as such the paper does not include a dedicated speculative discussion of broader societal
impacts in a separate section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models or datasets with high risk of misuse.
All released components are synthetic and pose no privacy or safety risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
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A Technical assumptions and Some comments on Section 2

A.1 Technical Assumptions

For the validity of our theoretical results, we require some mild regularity conditions on the loss
functions as well as the noise level of each client. We remark, that the following assumptions have
appeared extensively in the theoretical analysis of iterative convex optimization algorithms, and here,
are merely adapted to the federated learning setting.

Assumption A.1 (Strong convexity). There exists µ > 0 such that for each k ∈ [K],

〈∇Fk(θ)−∇Fk(θ
′), θ − θ′〉 ≥ µ|θ − θ′|2, θ, θ′ ∈ Rd.

Assumption of strong convexity is common in the analysis of SGD iterates, appearing in Ruppert
[1988], Polyak and Juditsky [1992], Bottou et al. [2018], Chen et al. [2020], and as such, Assumption
A.1 adapts this condition to the decentralized setting.

Assumption A.2. (Stochastic Lipschitzness of noisy gradients) There exists L > 0 such that for
each k ∈ [K],

EPk
[|∇fk(θ, ξk)− fk(θ

′, ξk)|2] ≤ L|θ − θ′|2, θ, θ′ ∈ Rd.

Assumption A.2 combines the L-smoothness condition on the risk functions Fk, with a stochastic
Lipschitz condition on the gradient noise vectors gk(θ, ξk) = ∇Fk(θ)−∇fk(θ, ξk).
Assumption A.3. (Control on noisy gradients) The functions fk(θ, ξ) is assumed to be continuously
differentiable with respect to θ for any fixed ξ. Moreover, assume that maxk∈[K] E[|gk(θ, ξk)|p] <
∞ for some p ≥ 2.

Assumption A.3 ensures that Newton-Leibnitz’s integration rule holds and consequently,∑K
k=1 wkgk(θ

k
t , ξ

k
t ) constitutes a martingale difference sequence adapted to the filtration σ(Ξs :

s ≤ t), where Ξs = (ξ1s , . . . , ξ
K
s ). Moreover, Assumptions A.2 and A.3 jointly imply that there

exists a constant LQ such that for all θ ∈ Rd

max
k∈K
|∇Fk(θ)−∇2F (θ⋆K)(θ − θ⋆K)| ≤ LQ|θ − θ⋆K |2. (A.1)

See Lemma 5 of Sheshukova et al. [2025]. The assumptions A.2 and A.3 are fairly ubiquitous in the
stochastic optimization literature Zhu et al. [2023], Wei et al. [2023], Li et al. [2024]. In particular,
assumption A.2 is much weaker than the corresponding Assumption A2(p) − (ii) in Sheshukova
et al. [2025].

A.2 Is strong-convexity Assumption A.1 necessary?

It is important to note that Assumption A.1 fails to hold in certain M-estimation problems including
logistic regression Bach [2010]. Gu and Chen [2024] addressed this issue by invoking a weaker
local strong-convexity assumption, also known as the “local concordance” condition.

Assumption A.4 (Local strong concordance). There exists µ⋆ > 0 such that ∇2F (θ⋆K) � µ⋆.
Moreover, there exists a constant C > 0, and compact set Φ ⊆ Rd, such that for all θ1, θ2 ∈ Φ, it
holds that

|φ′′′(u)| ≤ C |θ1 − θ2|φ′′(u), where φ : u 7→ F (θ1 + u (θ2 − θ1)) , u ∈ R.

In view of Assumption A.4, for theoretical validity of our results, one requires a projected local
SGD updates Θt = MΦ((Θt−1−Gt)Ct) instead of (2.2), where MΦ denotes the projection operator
on the set compact Φ. The key difference in the treatment of Assumption A.4 compared to that of
Assumption A.1 lies in the analysis of the term |θ − η∇F (θ)|2 for some small enough η > 0. In
particular, a recurring theme of our proofs is to show that

|θ − θ⋆K − η∇F (θ)|2 ≤ (1− ηc)|θ − θ⋆K |2 for some c > 0, θ ∈ Rd. (A.2)

We highlight the different arguments leading up-to (A.2), leveraging Assumptions A.1 and A.4 re-
spectively.
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A.2.1 Proof of (A.2) via Assumptions A.1 and A.2

Note that

|θ − θ⋆K − η∇F (θ)|2 =|θ|2 − 2η(θ − θ⋆K)⊤∇F (θ) + η2|∇F (θ)|2

≤(1− 2ηµ+ η2L2)|θ − θ⋆K |2, (A.3)

and hence, (A.2) is inferred by choosing η to be small enough. In particular, since we work with
decaying step size ηt ∝ t−β , it follows that 1 − 2ηtµ + η2tL

2 ≤ 1 − ηtc for some c > 0 and all
sufficiently large t ∈ N.

A.2.2 Proof of (A.2) via Assumptions A.4, A.2 and |x| ≤ R

Fix θ ∈ Rd, and choose ϕ(u) = F (θ⋆K + u(θ − θ⋆K)), u ∈ [0, 1]. Note that ϕ′′(0) ≥ µ⋆|θ − θ⋆K |2.
From Assumption A.4, one directly has

ϕ′′(u) ≥ ϕ′′(0) exp(−C|θ − θ⋆K |u),

and therefore, recalling |x| ≥ R

(θ − θ⋆K)⊤∇F (θ) =ϕ′(1)− ϕ′(0)

≥µ⋆|θ − θ⋆K |2
∫ 1

0

exp(−C|θ − θ⋆K |u)du

=µ⋆|θ − θ⋆K |2
1− exp(−C|θ − θ⋆K |)

C|θ − θ⋆K |
≥µ⋆C exp(−R)|θ − θ⋆K |2, (A.4)

which immediately can be applied to (A.3) to deduce (A.2).

In view of the analysis in Sections A.2.1 and A.2.2 coming to the same conclusion, for the sake
of simplicity, our subsequent theoretical findings are stated and proved using Assumption A.1 only.
We remark that an accompanying result invoking Assumption A.4 and the projected local SGD
updates can easily be obtained via minor modifications of our arguments following Section A.2.2.
For a more detailed discussion on the implications of Assumption A.4, we refer the interested readers
to Assumption 3.4 and the associated remark in Gu and Chen [2024].

A.3 A comment on step-size

Our choice of the step-size is motivated from the extensive literature of asymptotics of various
stochastic approximation algorithm. In particular, it is well-known that SGD with a constant step-
size is asymptotically biased Dieuleveut et al. [2020], Li et al. [2024], Glasgow et al. [2022], whereas
central limit theory based on polynomially decaying schedule ηt ∝ t−β , β ∈ (1/2, 1) has an exten-
sive literature for different algorithms. In practice, often a combination of the two kinds of step-size
is used, where a constant-step size algorithm provides a warm start, and after discarding initial few
iterates pre-specified by the fixed burn-in period k0, local SGD can be run with the polynomially
decaying step-size to ensure appropriate convergence. This is tantamount to the step-size choice
ηt = η0(t− k0)

−β , t > k0, which is also covered by our theory.

B Proof of Theorems 2.1 and 2.2

In this section we rigorously derive the Berry-Esseen bounds on Ȳn and Yn, as stated in Theorems
2.1 and 2.2 respectively. Similar to the simpler analysis for stochastic gradient descent in Samsonov
et al. [2024], we aim to leverage Theorem 2.1 of Shao and Zhang [2022]. However, the regular
synchronization step, as well as the general connection matrix C, induces some significant non-
triviality in the problem, requiring, in particular, careful analysis of the difference between client-
wise estimates and the aggregated estimate. Before we delve deeper into the mathematical details,
we summarize the road-map to prove Theorem 2.1 below.

• In Section B.1.1, we decompose the local SGD updates into a linear component and the
remainder terms.
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• In Section B.1.2, we echo the Lindeberg method, and define a coupling for the remainder
terms. In particular, our choice of the coupling is novel, and rooted into the uniqueness of
the decentralized setting.

• Finally, in Sections B.1.3-B.1.7, we control the different terms arising out of the application
of the abstract Theorem 2.1 of Shao and Zhang [2022] to the steps above. We remark that
this is where our treatment diverges from the preceding works proving Berry-Esseen in a
stochastic approximation framework. To accommodate an increasing number of clients K
as well as to control the error of the each local client-level iterates, we derive and apply the
Auxiliary results 4-8.

The proof for Theorem 2.2 will follow a similar structure.

B.1 Proof of Theorem 2.1

B.1.1 Linearization

Noting that Yt = K−1Rt1 no matter if t ∈ Eτ or t /∈ Eτ , it is easy to observe

Yt = Yt−1 − ηt

K∑
k=1

wk∇fk(θkt−1, ξ
k
t ), t ∈ [n], Y0 = K−1

K∑
k=1

θk0 . (B.1)

Write (B.1) as follows:

Yt − θ⋆K =Yt−1 − θ⋆K − ηt∇F (Yt−1) + ηt

K∑
k=1

wk(∇Fk(Yt−1)−∇Fk(θ
k
t−1)) + ηt

K∑
k=1

wkgk(θ
k
t−1, ξ

k
t )

=(I − ηtA)(Yt−1 − θ⋆K) + ηt
(
A(Yt−1 − θ⋆K)−∇F (Yt−1)

)
+ ηt

K∑
k=1

wk(∇Fk(Yt−1)−∇Fk(θ
k
t−1)) + ηt

K∑
k=1

wkgk(θ
k
t−1, ξ

k
t ),

(B.2)

where gk(θ, ξ) := ∇Fk(θ)−∇fk(θ, ξ) denote the gradient noise. DenoteAt
s =

∏t
j=s+1(I − ηjA),

At
t = I with A := ∇2F (θ⋆K), and define Qs = ηs

∑n
j=sAj

s. Recursively, (B.2) can be simplified
to

Yt − θ⋆K =At
0(Y0 − θ⋆K) +

t∑
s=1

ηsAt
s

((
A(Ys−1 − θ⋆K)−∇F (Ys−1)

)
+

+

K∑
k=1

wk(∇Fk(Ys−1)−∇Fk(θ
k
s−1)) +

K∑
k=1

wkgk(θ
k
s−1, ξ

k
s )
)
,

(B.3)

which immediately yields,

Ȳn − θ⋆K =n−1η−1
0 Q0(Y0 − θ⋆K) + n−1

n∑
s=1

QsNs + n−1
n∑

s=1

Qs

((
A(Ys−1 − θ⋆K)−∇F (Ys−1)

)
+

K∑
k=1

wk(∇Fk(Ys−1)−∇Fk(θ
k
s−1)) +

K∑
k=1

wk

(
gk(θ

k
s−1, ξ

k
s )− gk(θ

⋆
K , ξks )

))
,

(B.4)

where we define that Nt =
∑K

k=1 wkW
k
t , with W k

t = gk(θ
⋆
K , ξkt ). Let H = n−1/2

∑n
s=1 QsNs,

and let Σn = E[HH⊤]. Then, (B.4) can be re-written as
√
nΣ−1/2

n (Ȳn − θ⋆K) = W +D1 +D2 +D3 +D4, (B.5)
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where

W = Σ−1/2
n H =

n∑
s=1

us, where us =
1√
n
Σ−1/2

n QsNs, (B.6)

D1 =
1√
nη0

Σ−1/2
n Q0(Y0 − θ⋆K), (B.7)

D2 =
1√
n
Σ−1/2

n

n∑
s=1

Qs

(
A(Ys−1 − θ⋆K)−∇F (Ys−1)

)
, (B.8)

D3 =
1√
n
Σ−1/2

n

n∑
s=1

Qs

( K∑
k=1

wk(∇Fk(Ys−1)−∇Fk(θ
k
s−1))

)
, (B.9)

D4 =
1√
n
Σ−1/2

n

n∑
s=1

Qs

( K∑
k=1

wk

(
gk(θ

k
s−1, ξ

k
s )− gk(θ

⋆
K , ξks )

))
. (B.10)

B.1.2 Definition of the Lindeberg Coupling

Note that

|D3|2 ≤C
b2
√
L

K
√
n
|Σ−1/2

n |F
n∑

s=1

K∑
k=1

|Ys−1 − θks−1|2 (B.11)

≤C b2
√
L√

nK
|Σ−1/2

n |F
n∑

s=1

√√√√ K∑
k=1

|Ys−1 − θks−1|2 (B.12)

=C
b2
√
L√

nK
|Σ−1/2

n |F
n∑

s=1

|Θs(I − J)|F := ∆3. (B.13)

In the above series of inequalities, (B.11) follows from wk ≤ b2K
−1, maxs |Qs|F ≤ C, and

Assumption A.2; (B.12) is a trivial consequence of Cauchy-Schwarz inequality. Additionally, define
∆l = |Dl|2 for l = 1, 2, 4. Let Ξt = (ξ1t , . . . , ξ

K
t ), and for each i ∈ [n], let us denote

Ξt,{i} =

{
Ξt, t 6= i

Ξ′
i := (ξ1

′

t , . . . , ξK
′

t ), t = i,

where ξk
′

t , ξkt
i.i.d.∼ Pk, k ∈ [K], t ∈ [n]. For each i ∈ [n], define the coupled DFL iterates as

Θt,{i} = (Θt−1,{i} − ηtGt,{i})Ct, Θ0,{i} = Θ0, (B.14)

where Gt,{i} = K(w1∇f1(θ1t−1,{i}, ξ
1
t,{i}), . . . , wK∇fK(θKt−1,{i}, ξ

K
t,{i})). Let Yt,{i} =

K−1Θt,{i}1. Based on (B.14), we can define coupled versions of ∆l, l = 2, 3, 4 as follows:

∆2,{i} =
1√
n

∣∣∣∣Σ−1/2
n

n∑
s=1

Qs

(
A(Ys−1,{i} − θ⋆K)−∇F (Ys−1,{i})

)∣∣∣∣, (B.15)

∆3,{i} =C
b2
√
L√

nK
|Σ−1/2

n |F
n∑

s=1

∣∣Θs,{i}(I − J)
∣∣
F
, (B.16)

∆4,{i} =
1√
n

∣∣∣∣Σ−1/2
n

n∑
s=1

Qs

( K∑
k=1

wk

(
gk(θ

k
s−1,{i}, ξ

k
s,{i})− gk(θ

⋆
K , ξks,{i})

))∣∣∣∣. (B.17)

Note that D1,{i} = D1 for all i ∈ [n]. With these definitions, along with the fact that E[WW⊤] = I
allows us to apply Shao and Zhang [2022], Theorem 2.1 on (B.5) to obtain

dC(
√
nΣ−1/2

n (Ȳn − θ⋆K), Z) ≤ c1
√
dΥn + E[|W ||∆n|] +

n∑
i=1

E[|ui| |∆n −∆n,{i}|], (B.18)

where Z ∼ N(0, I), Υn =
∑n

s=1 E[|us|3], ∆n =
∑4

l=1 |∆l|, and ∆n,{i} =
∑4

l=1 ∆l,{i}.

27



B.1.3 Bound on
∑n

i=1 E[|ui| |∆n −∆n,{i}|

Recall that maxk |Var[W k
s ]| = O(1). Clearly Ns are i.i.d. and E[NsN⊤

s ] =
∑K

k=1 w
2
kVar[W

k
s ],

which directly implies |Σn| = O(K−1) in view of the fact wk � K−1 for k ∈ [K]. Therefore, from
(B.6) it follows E[|us|2] = O(1/n), and consequently,

n∑
i=1

E[|ui| |∆−∆n,{i}|] ≲
1√
n

4∑
l=2

n∑
i=1

√
E[|∆l −∆l,{i}|2]. (B.19)

We will deal with the three terms in the right side of (B.19) one-by-one.

Bound on ∆2−∆2,{i} We start with controlling E[|∆2−∆2,{i}|2]. It is easy to see from (B.8) and
(B.15) that

E[|∆2 −∆2,{i}|2] ≲
K

n
E
[∣∣∣ n∑

s=i

(
A(Ys − Ys,{i})−∇F (Ys) +∇F (Ys,{i})

)∣∣∣2]

≲K

n∑
s=i

E[|Ys − Ys,{i}|4] = O(Kn1−4β −Ki1−4β), (B.20)

where (B.20) follows from Cauchy-Schwarz inequality and Proposition 8.

B.1.4 Bound on ∆3 −∆3,{i}

Note that, since Θt,{i} = Θt for all t < i, hence we must have

E[|∆3 −∆3,{i}|2] ≲
1

n
E
[( n∑

s=i

∣∣(Θs −Θs,{i})(I − J)
∣∣
F

)2]

≤
n∑

s=i

E[
∣∣(Θs −Θs,{i})(I − J)

∣∣2
F
]

= E[
∣∣(Θi −Θi,{i})(I − J)

∣∣2
F
] +

n∑
s=i+1

E[
∣∣(Θs −Θs,{i})(I − J)

∣∣2
F
]. (B.21)

Note that,

E[
∣∣(Θi −Θi,{i})(I − J)

∣∣2
F
] =η2i E[|(Gs −Gs,{i})(Ci − J)|2F ]

≤η2i E[|
K∑

k=1

wk

(
gk(θ

k
i−1, ξ

k
i )− gk(θ

k
i−1, ξ

k′

i )
)
|2]

≤2η2i E[|
K∑

k=1

wkgk(θ
k
i−1, ξ

k
i )|2] = O(

η2i
K

). (B.22)

Hence, Proposition 5 and (B.22) simultaneously imply via (B.21) that

E[|∆3 −∆3,{i}|2] ≲
η2i
K

+K

n∑
s=i+1

η4s = O(i−2βK−1 +Kn1−4β −Ki1−4β). (B.23)

B.1.5 Bound on ∆4 −∆4,{i}

This term is the simplest to deal with. In view of the facts (i)
∑K

k=1 wk

(
gk(θ

k
t−1, ξ

k
t ) −

gk(θt−1,{i}, ξ
k
t )
)

is a martingale difference sequence adapted to the filtration Ft = σ(Ξs : s ≤
t)
∨
σ(Ξ′

i), and (ii) for a fixed t, gk(θkt−1, ξ
k
t ) − gk(θt−1,{i}, ξ

k
t ) are independent conditional on
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Ft−1, one readily obtains

E[|∆4 −∆4,{i}|2] ≲
K

n

( n−1∑
s=i

E[|
K∑

k=1

wk(gk(θ
k
s , ξ

k
s+1)− gk(θ

k
s,{i}, ξ

k
s+1))|2]

+ E[|
K∑

k=1

wk(gk(θ
k
i−1, ξ

k
i )− gk(θ

⋆
K , ξki )− gk(θ

k
i−1, ξ

k′

i ) + gk(θ
⋆
K , ξk

′

i ))|2]
)

≲K

n

(
K−2

n−1∑
s=i

K∑
k=1

E[|θks − θks,{i}|
2] + 2K−2E[

K∑
k=1

|θki−1 − θ⋆K |2
)

≲ 1

nK

( n−1∑
s=i

E[|Θs(I − J)|2F +K|Ys − Ys,{i}|2 + |Θs,{i}(I − J)|2F ]

+ 2E[|Θi−1(I − J)|2F +K|Yi−1 − θ⋆K |2]
)

≲ ηi
nK

+
1

n

n−1∑
s=i−1

η2s = O(
i−β

nK
+

n1−2β − i1−2β

n
), (B.24)

where (B.24) follows from Theorem 2.(ii) and Lemma S16 of Gu and Chen [2024], and Proposition
4.

Combining (B.20), (B.23) and (B.24), for (B.19) we obtain

n∑
i=1

E[|ui| |∆−∆n,{i}|] ≲
1√
n

n∑
i=1

( i−β/2

√
nK

+
i−β

√
K

+
√
K(n1/2−2β − i1/2−2β) +

n
1
2−β − i

1
2−β

√
n

)
≲n

1
2−β + n− β

2

√
K

+
√
Kn1−2β . (B.25)

B.1.6 Bound on E[|W ||∆n|]

From E[|us|2] ≲ n−1/2, we have E[|W |2] = O(1), where O(·) hides constants involving d. More-
over, we also have E[|∆n|2] ≲

∑4
l=1 E[|∆l|2]. For ∆1, observe that from (B.7),

E[|D1|2] ≲
K

n
|Q0|2F ≲ K

n
exp(−Cβn

1−β) for some constant Cβ > 0. (B.26)

On the other hand, for ∆2, we can invoke Assumption A.3 and Minkowsky’s inequality to deduce

√
E[|∆2|2] ≲

√
K

n

n∑
s=1

√
E[|A(Ys−1 − θ⋆K)−∇F (Ys−1)|2]

≲
√

K

n

n∑
s=1

√
E[|Ys−1 − θ⋆K |4]

≲
√

K

n

n∑
s=1

(
ηs
K

+ η2t ) = O(
n

1
2−β

√
K

+
√
Kn

1
2−2β), (B.27)

where (B.27) follows from Proposition 7. Moving on, for ∆3, it is immediate that

√
E[∆2

3] ≲
1√
n

n∑
s=1

√
E[|Θs(I − J)|2F ] ≲

1√
n

n∑
s=1

ηs
√
K = O(n

1
2−β
√
K). (B.28)
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Finally, for ∆4, we recall the argument in (B.24) to provide

E[|∆4|2] ≲
K

n

n∑
s=1

E[|
K∑

k=1

wk

(
gk(θ

k
s−1, ξ

k
s )− gk(θ

⋆
K , ξks )

)
|2]

≲ 1

nK

n∑
s=1

(
|Θs−1(I − J)|2F +K|Yt−1 − θ⋆K |2

)
≲ 1

nK

n∑
s=1

(
η2sK + ηs

)
≲n−β

K
+ n−2β . (B.29)

Combining (B.26)-(B.29), we obtain

E[|W ||∆n|] ≲
√

K

n
exp(−Cβn

1−β) + n
1
2−β
√
K +

n− β
2

√
K

+ n−β . (B.30)

B.1.7 Final Berry Esseen bound

Note that, for any t ∈ [n], Pinelis-Rosenthal inequality (Theorem 4.1 of Pinelis [1994]) applies to
yield

E[|Σ−1/2
n Nt|3] ≲K3/2E[|

K∑
k=1

wkW
k
t |3] = O(K−1/2),

which immediately implies that

Υn ≲
n∑

s=1

E[n−3/2|Σ−1/2
n Ns|3] = O(

1√
nK

). (B.31)

Therefore, combining (B.25), (B.30) and (B.31), we have that

dC(
√
nΣ−1/2

n (Ȳn − θ⋆K), Z) ≲ 1√
nK

+ n
1
2−β
√
K +

n− β
2

√
K

,

which completes the proof.

B.2 Proof of Theorem 2.2

Let Γ = Var(
∑n

s=1 ηsAn
sNs) =

∑n
s=1 η

2
sAn

sVKAn⊤

s . Clearly, |Γ|F ≲ n−β

K . Define vs =

Γ−1/2ηsAn
sNs. Recall (B.3), and rewrite it as

Γ−1/2(Yn − θ⋆K) = W̃ + D̃1 + D̃2 + D̃3 + D̃4, (B.32)

where

W̃ =

n∑
s=1

vs,

D̃1 =Γ−1/2An
0 (Y0 − θ⋆K),

D̃2 =Γ−1/2
n∑

s=1

ηsAn
s

(
A(Ys−1 − θ⋆K)−∇F (Ys−1)

)
,

D̃3 =Γ−1/2
n∑

s=1

ηsAn
s

K∑
k=1

wk(∇Fk(Ys−1)−∇Fk(θ
k
s−1)),

D̃4 =Γ−1/2
n∑

s=1

ηsAn
s

K∑
k=1

wkgk(θ
k
s−1, ξ

k
s ).
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Let ∆̃l = |D̃l|2 for l = 1, 2, 4, and let

∆̃3 := |Γ−1/2|FK−1/2
n∑

s=1

ηsAn
s |Θs(I − J)|F .

Note that |D̃3|2 ≤ ∆̃3. The terms |∆̃l| and |∆̃l,{i}| are defined and controlled very similarly to

Theorem 2.1, and the details are omitted. The n−β/2
√
K

appears by controlling Υ̃n :=
∑n

s=1 E[|vs|3],
which we show below. Since |H|F ≲ n−βK−1, therefore

n∑
s=1

E[|vs|3] ≲ K3/2n
3β
2

n∑
s=1

η3s |An
s |3E[|N 3

s |] ≲ n−β/2K−1/2.

B.3 Application of Section 2: weighted multiplier bootstrap

In the context of vanilla SGD, Fang et al. [2018], Fang [2019], Sheshukova et al. [2025] introduced a
novel multiplier bootstrap paradigm that precludes the necessity of estimating Σn while performing
inference. In this section, we adapt this approach for the particular decentralized setting, and hint
towards the applicability of our Berry-Esseen theorems 2.1 and 2.2. Specifically, for each client
k ∈ [K], let Pk

W be a distribution of a random variable with E[W k] = 1 and Var[W k] = σ2
k,

W k ∼ Pk
W . For the validity of the bootstrap procedure, we assume that, for all k, σ2

k ≤ C0 for
some constant C0 > 0. Moreover, we assume that W k’s uniformly bounded, i.e. that there exists
universal constants c1, c2 > 0 such that c1 ≤ W k ≤ c2 for all k ∈ [K] almost surely. For b ∈ [B]
where B is the number of bootstrap samples, consider the augmented local SGD updates

Θ
{b}
t = (Θ

{b}
t−1 − ηtG

{b}
t )Ct,

where
G

{b}
t = K(w1W

{b}
t,1 ∇f1(θ1t−1, ξ

1
t ), . . . , wKW

{b}
t,K∇fK(θKt−1, ξ

K
t ))

and for each k ∈ [K], {W {b}
t,k } are i.i.d. random variables from Pk

W , t ∈ [n], b ∈ [B]. For each

b ∈ [B], define Ȳ
{b}
n = n−1K−1

∑
t,k θ

k{b}

t . Suppose Fn := σ(ξks : s ∈ [n], k ∈ [K]). Following
standard arguments (see Theorem 3 of Sheshukova et al. [2025]), adapting the proof of Theorem
2.1 as well as off-the-self Gaussian comparison results Chernozhukov et al. [2017], Devroye et al.
[2018], it is possible to show that

sup
A∈B(Rd):A convex

∣∣∣∣P(√n(Ȳ {b}
n − Ȳn) ∈ A|Fn)− P(

√
n(Ȳn − θ⋆K) ∈ A)

∣∣∣∣ ≲ n1/2−β
√
K,

modulo logarithmic factors, with high probability with respect to Fn. This result enables one to
approximate the distribution of Ȳn − θ⋆K via the bootstrap samples Ȳ

{b}
n . We remark that this

approach works when our focus is on Ȳn; we do not expect this multiplier bootstrap to approximate
the entire process {Yt}. We leave the detailed derivations to future work, since the focus of this
paper is on establishing the fundamental Gaussian approximation theorems.

C Proof of Theorem 2.3

Recall that Σn = n−1
∑n

s=1 QsVKQ⊤
s , and Σ = KA−1VKA−⊤. We aim to decompose Σn −

K−1Σ into manageable terms, and then control them piecemeal. To be precise, write

Σn −K−1Σ =
1

n

n∑
s=1

(
(Qs −A−1)VKA−⊤ +A−1VK(Qs −A−1)⊤ + (Qs −A−1)VK(Qs −A−1)⊤

)
.

Crucial to our proof is the observation that At
s −At

s−1 = ηsAAt
s for all s, t ∈ [n]. Therefore,

n∑
s=1

Qs =

n∑
s=1

n∑
j=s

ηsAj
s =

n∑
j=1

j∑
s=1

ηsAj
s =

n∑
j=1

j∑
s=1

A−1(Aj
s −A

j
s−1) = A−1

n∑
j=1

(I −Aj
0),

(C.1)
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where the last equality is via a telescoping argument. From (C.1), we obtain
∑n

s=1(Qs − A−1) =

−A−1
∑n

j=1A
j
0. Consequently, recalling that |VK |F = K−1/2, it is immediate that

n−1|A−1VK |F
∣∣ n∑
s=1

(Qs −A−1)
∣∣ ≲ 1

n
√
K

n∑
j=1

|Aj
0| ≲

1

n
√
K

∫ n

1

exp(−x1−β) dx = O(K−1/2nβ−1).

Moving on, the term (Qs−A−1)VK(Qs−A−1)⊤ can be similarly controlled by K−1/2nβ−1 from
Lemma A.5 of Wu et al. [2024] (also see Lemma 11 and 12 of Sheshukova et al. [2025]). This
completes the proof of (2.7). Finally, (2.8) follows from (2.7) on the account of Proposition 9, and
the fact that Σn is positive-definite, and hence maps a convex set to a convex set.

D Proofs of Section 3

In this section, we derive the time-uniform Gaussian approximation results Theorem 3.1 and 3.2.
Our proofs are divided into four successive approximation steps. We summarize our arguments in
the following. In the step I, we control the difference between the aggregated and the local client-
level local SGD updates. In step II, we replace the martingale structure of the gradient noise by
i.i.d. mean zero noise. In step III, we further linearize the local SGD updates, which we finally
approximate by a stochastically linear Gaussian process such as (3.4) or (3.6) in Step IV.

D.1 Proof of Theorem 3.1

D.1.1 Step I

Consider Θ◦
0 = (θ⋆K , . . . , θ⋆K) ∈ Rd×K , and let

Θ◦
t = (Θ◦

t−1 − ηtG
◦
t )Ct, (D.1)

where G◦
t is defined similar to Gt in (2.2), but with θk

◦

t instead of θkt . Moreover, let Y ◦
t =

K−1Θ◦
t1 ∈ RK . Suppose Rt = (r1t , . . . , r

K
t ) = Θt−1 − ηtGt, and R◦

t is defined likewise. Recall
(B.1) and (B.2). Define two more intermediate oracle processes:

Ỹt = Ỹt−1 − ηt∇F (Ỹt−1) + ηt

K∑
k=1

wkgk(θ
k
t−1, ξ

k
t ), t ∈ [n], Ỹ0 = Y0 (D.2)

Ỹ ◦
t = Ỹ ◦

t−1 − ηt∇F (Ỹ ◦
t−1) + ηt

K∑
k=1

wkgk(θ
k◦

t−1, ξ
k
t ), t ∈ [n], Ỹ ◦

0 = Y0. (D.3)

For a random variable X , let ‖X‖ = (E[|X|2])1/2 be the random variable L2-norm. Then,

‖Yt − Ỹt‖ ≤ ‖(Yt−1 − Ỹt−1)− ηt(∇F (Yt−1)−∇F (Ỹt−1))‖+ ηt‖
K∑

k=1

wk(Fk(Yt−1)− Fk(θ
k
t−1)‖ := A+B.

(D.4)

Now, for the term A in (D.4), invoking Assumptions A.1 and A.2, it is easy to observe that

A2 =‖Yt−1 − Ỹt−1‖2 + η2t ‖∇F (Yt−1)−∇F (Ỹt−1)‖2 − 2ηtE[(Yt−1 − Ỹt−1)
⊤(∇F (Yt−1)−∇F (Ỹt−1))]

≤(1− 2ηtµ+ η2tL
2)‖Yt−1 − Ỹt−1‖2. (D.5)

On the other hand, for B in (D.4), Assumption A.2 entails,

B2 ≤η2tK
K∑

k=1

w2
k‖Fk(Yt−1)− Fk(θ

k
t−1)‖2 ≤ η2t b

2
2L

2K−1E[‖Θt(I − J)‖2F ] = O(η4t ), (D.6)

through an application of Lemma S.16 of Supplement of Gu and Chen [2024]. Combining (D.5)
and (D.6) and choosing a c > µ ∨ L, it must hold that

‖Yt − Ỹt‖ ≤ (1− ηtc)‖Yt−1 − Ỹt−1‖+O(η2t ),
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which readily yields

‖Yt − Ỹt‖ = O(ηt). (D.7)

Very similarly, one can show that ‖Y ◦
t − Ỹ ◦

t ‖ = O(ηt). Finally it remains to show that Ỹt and Ỹ ◦
t is

approximately close. We show it as follows.

‖Ỹt − Ỹ ◦
t ‖2

=‖Ỹt−1 − Ỹ ◦
t−1 − ηt(∇F (Ỹt−1)−∇F (Ỹ ◦

t−1))‖2 + η2t

K∑
k=1

w2
k‖gk(θkt−1, ξ

k
t )− gk(θ

k◦

t−1, ξ
k
t )‖2

(D.8)

≤(1− ηtc)‖Ỹt − Ỹ ◦
t ‖2 + 4η2t b

2
2K

−2
K∑

k=1

(‖θkt−1 − Yt−1‖2 + ‖Yt−1 − θ⋆K‖2 + ‖θk
◦

t−1 − Y ◦
t−1‖2 + ‖Y ◦

t−1 − θ⋆K‖2)

(D.9)

≤(1− ηtc)‖Ỹt − Ỹ ◦
t ‖2 + 4η2t b

2
2(2

ηt
K2

+ 2
η2t
K

) (D.10)

≤(1− ηtc)‖Ỹt − Ỹ ◦
t ‖2 +O(

η3t
K2

+
η4t
K

). (D.11)

Here, (D.8) employs Assumption A.3 to deduce that gk(θkt−1, ξ
k
t ) − gk(θ

k◦

t−1, ξ
k
t ) are mean-zero

martingale differences adapted to Ft := σ(ξks , s ≤ t, k ∈ [K]); moreover, since {ξkt }Kk=1 are
independent for a fixed t, hence gk(θ

k
t−1, ξ

k
t ) − gk(θ

k◦

t−1, ξ
k
t ) are also uncorrelated. Additionally,

(D.9) uses a treatment analogous to (D.5) along with applying Assumption A.2 to the gk terms; and
(D.10) involves applications of Lemmas S.16 and Theorem 2(ii) from Gu and Chen [2024]. Finally,
(D.11) immediately implies that

‖Ỹt − Ỹ ◦
t ‖2 = O(η2tK

−2 + η3tK
−1),

which, coupled with (D.7), yields,

max
1≤t≤n

|
t∑

s=1

(Ys − Ỹ ◦
s )| ≤

n∑
t=1

|Yt − Ỹ ◦
t | = OP(n

1−β). (D.12)

D.1.2 Step II

Moving on, we approximate Ỹ ◦
t by another oracle descent sequence, given by

Y †
t = Y †

t−1 − ηt∇F (Y †
t−1) + ηt

K∑
k=1

wkgk(θ
⋆
K , ξkt ), Y

†
0 = Y0. (D.13)

Importantly, (D.13) can be leveraged to linearize the original sequence Yt−1 in (B.1). Before we
proceed in that direction, we still need to approximate Ỹ ◦

t by Y †
t . From (D.3) and (D.13), it follows

very similarly to (D.8)-(D.11), that,

‖Ỹ ◦
t − Y †

t ‖2

=‖Ỹ ◦
t−1 − Y †

t−1 − ηt(∇F (Ỹ ◦
t−1)−∇F (Y †

t−1))‖2 + η2t

K∑
k=1

w2
k‖gk(θk

◦

t−1, ξ
k
t )− gk(θ

⋆
K , ξkt )‖2

≤(1− ηtc)‖Ỹ ◦
t−1 − Y †

t−1‖2 + η2tL
2b22K

−2(E[|Θ◦
t (I − J)|2F ] + Cηt + Cη22K)

≤(1− ηtc)‖Ỹ ◦
t−1 − Y †

t−1‖2 +O(η3tK
−2 + η4tK

−1),

which immediately yields ‖Ỹ ◦
t − Y †

t ‖ = O(ηtK
−1 + η

3/2
t K−1/2). Similar to (D.12), here too we

finally obtain

max
1≤t≤n

|
t∑

s=1

(Ỹ ◦
s − Y †

s )| = OP(n
1−βK−1 + n1−3β/2K−1/2). (D.14)
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D.1.3 Step III

Define Ỹ †
t as

Ỹ †
t = Y †

t−1 − ηt∇F (Ỹ †
t−1) + ηt

K∑
k=1

wkgk(θ
⋆
K , ξkt ), Ỹ0 = θ⋆K .

Then it trivially follows that

‖Y †
t − Ỹ †

t ‖2 =‖(Y †
t−1 − Ỹ †

t−1)− ηt(∇F (Y †
t−1)−∇F (Ỹ †

t−1))‖2

≤(1− ηtc)‖Y †
t−1 − Ỹ †

t−1‖2 ≲ exp(−t1−β)|Y0 − θ⋆K |2, (D.15)

which implies max1≤t≤n |
∑t

s=1(Y
†
s − Ỹ †

s )| = OP(1), since
∫ n

1
exp(−t1−β) dt = O(1). Moving

on, to linearize Ỹ †
t , write (D.13) as

Ỹ †
t − θ⋆K = (I − ηtA)(Ỹ †

t−1 − θ⋆K)− ηt(∇F (Ỹ †
t−1)−A(Ỹ †

t−1 − θ⋆K)) + ηt

K∑
k=1

wkgk(θ
⋆
K , ξkt ),

(D.16)
where A = ∇2F (θ⋆K). Note that, Assumption A.1 along with

∑
wk = 1 implies that A � µI .

Mimicking (D.16), define

Y ⋄
t = (I − ηtA)Y ⋄

t−1 + ηt

K∑
k=1

wkgk(θ
⋆
K , ξkt ), Y

⋄
0 = 0. (D.17)

Clearly, it follows that

E[|Ỹ †
t − θ⋆K − Y ⋄

t |] ≤(1− ηtµ)E[|Ỹ †
t−1 − θ⋆K − Y ⋄

t−1|] + ηtE[|∇F (Ỹ †
t−1)−A(Y †

t−1 − θ⋆K)|]

≤(1− ηtµ)E[|Ỹ †
t−1 − θ⋆K − Y ⋄

t−1|] + LQηtE[|Ỹ †
t−1 − θ⋆K |2] (D.18)

≤(1− ηtµ)E[|Ỹ †
t−1 − θ⋆K − Y ⋄

t−1|] +O(η2tK
−1 + η3t ), (D.19)

where, (D.18) follows from Assumption A.3 , and (D.19) is a trivial consequence of Theorem 2.(ii)
of Gu and Chen [2024]. Finally, (D.19) yields that

max
1≤t≤n

|
t∑

s=1

(Y †
s − θ⋆K − Y ⋄

s )| = OP(n
1−βK−1/2 + n1−2β). (D.20)

D.1.4 Step IV

Note that Y ⋄
t is a linear process, and thus we can hope to bear down standard strong invariance prin-

ciple results Komlós et al. [1975], Sakhanenko [2006], Gëttse and Zaı̆tsev [2009] on it to yield an
asymptotically optimal Gaussian approximation. In particular, let VK = Var(

∑K
k=1 wkgk(θ

⋆
K , ξk)),

ξk ∼ Pk, k ∈ [K]. Note that, Assumption 4.2 in Gu and Chen [2024] can also be sum-
marized as ‖KVK‖F � 1. We pursue two different type of Gaussian approximation. Let
W k

t = gk(θ
⋆
K , ξkt ), and Nt =

∑K
k=1 wkW

k
t . By Gëttse and Zaı̆tsev [2009], there exists i.i.d.

Z1, . . . , Zn
i.i.d.∼ N(0,KVK), such that max1≤t≤n |

∑t
s=1(
√
KNs − Zs)| = oP(n

1/p). Write
(D.17) as

Y ⋄
t = (I − ηtA)Y ⋄

t−1 + ηtNt,
which immediately yields

t∑
s=1

Y ⋄
s =

t∑
s=1

ηsNsBs,t, Bs,t =

t∑
j=s

Aj
s, (D.21)

where At
s =

∏t
j=s+1(I − ηjA), At

t = I . Mimicking Y ⋄
t , define Y G

t,1 as in (3.4), to which we can
simplify

∑t
s=1 Y

G
s,1 = K−1/2

∑t
s=1 ηsZs

∑t
j=sAj

s. Note that,

max
1≤t≤n

|
t∑

s=1

(Y ⋄
s − Y G

s,1)| ≤ max
1≤t≤n

Ωt max
1≤t≤n

|
t∑

s=1

(Ns −K−1/2Zs)| = oP( max
1≤t≤n

Ωt n
1/pK−1/2).

(D.22)

where Ωt := |B1,t|F +
∑t

s=2 |Bs,t − Bs−1,t|F . The proof of (3.5) is completed after combining
(D.12), (D.14), (D.20) and (D.22) in view of Proposition 2.

34



D.2 Proof of Theorem 3.2 and Proposition 1

In this subsection, we pursue a finer, client-level Gaussian approximation, with slight sacrifice to
the optimality in terms of error rate. In particular, the steps I, II and II from the proof of Theorem
3.1 carry forward verbatim. Consequently, it enables us to invoke from Theorem 2.1 of Mies and
Steland [2023] so that for each k ∈ [K], there exists Zk

1 , . . . , Z
k
n ∼ N(0,Var(W k)), such that

max
1≤t≤n

K∑
k=1

|
t∑

s=1

(W k
s − Zk

s )| = OP(K
3
4−

1
2pn

1
2p+

1
4

√
log n). (D.23)

Here W k denotes a generic gk(θ
⋆
K , ξk). For θ̃1

G

t , . . . , θ̃K
G

t ∈ Rd, define Θ̃G
t = (θ̃1

G

t . . . θ̃K
G

t ) ∈
Rd×k, and simultaneously define the recursion (3.6). Letting Y G

t,2 = K−1Θ̃G
t 1, one arrives at the

recursion

Y G
t,2 = (I − ηtA)Y G

t−1,2 + ηt

K∑
k=1

wkZ
k
t , (D.24)

to which, from (D.23), one has

max
1≤t≤n

|
t∑

s=1

(Y ⋄
t − Y G

t,2)| ≤ max
1≤t≤n

Ωt|
t∑

s=1

K∑
k=1

wk(W
k
t − Zk

t )| ≤b2 log n max
1≤t≤n

K−1
K∑

k=1

|
t∑

s=1

(W k
t − Zk

t )|

=OP((n/K)
1
4+

1
2p (log n)3/2),

(D.25)

where the second inequality is due to Proposition 2 and maxk wk ≤ b2K
−1. Again, we conclude

(3.7) in light of (D.12), (D.14), (D.20) and (D.25). Finally, Proposition 1 follows trivially from
Theorems 3.1 and 3.2.

E Auxiliary propositions

In this section, we present some technical results required to prove our main theorems. Propositions
2 and 3 relates the local SGD updates to its asymptotic covariance matrices. In particular, Proposi-
tion 2 controls the implicit total variation between the linearized local SGD updates, and as such,
is crucial in deriving the time-uniform approximations Aggr-GA and Client-GA.
Proposition 2. Let A ∈ Rd×d be a positive definite matrix with smallest eigen value λmin > 0, and
define At

s =
∏t

j=s+1(I − ηjA), At
t = I . If

Ωt := |B1,t|F +

t∑
s=2

|Bs,t −Bs−1,t|F ,

then it holds that max1≤t≤n Ωt = O(log n).
Proposition 3. Let Bs,t be as in Proposition 2. Then, for all s ≥ 1, t ≥ s, it holds that

|Bs,t −A−1|F ≲ s−1 + exp
(
− cβ(t

1−β + s1−β)
)
,

where cβ is some constant depending on β, λmin.

Propositions 4-8 characterizes the various properties of the local SGD updates and its difference
with its corresponding Lindeberg coupling. These results hold under the conditions of Theorem 2.1,
and can be considered as its building blocks.
Proposition 4. Under the assumptions of Theorem 2.1, it holds that for all i ∈ [n], t ≥ i, it holds
that

E[|Yt − Yt,{i}|2] = O(η2t ). (E.1)

Proposition 5. Under the conditions of Theorem 2.1, for all i ∈ [n], t > i, it holds that

E[
∣∣(Θt −Θt,{i})(I − J)

∣∣2
F
] = O(η4tK).
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Proposition 6. Under the conditions of Theorem 2.1, it holds that

E[|Θt(I − J)|4F ] = O(η4tK
2). (E.2)

Proposition 7. Under the conditions of Theorem 2.1, it holds that

E[|Yt − θ⋆K |4] = O(
η2t
K2

+ η4t ). (E.3)

Proposition 8. Grant the assumptions of Theorem 2.1. Then, for t ≥ i, it holds that

E[|Yt − Yt,{i}|4] = O(η4t ). (E.4)

Proposition 9 is a typical Gaussian comparison results that relates the finite-sample covariance Σn to
the asymptotic covariance Σ in terms of the corresponding normal distributions. This result enables
theorem 2.3 to reflect the computation-communication trade-off of Remark 2.2.

Proposition 9 (Gaussian comparison lemma; Theorem 1.1, Devroye et al. [2018]). Let Σ1 and Σ2

be positive definite covariance matrices in Rp×p. Let X ∼ N (0,Σ1) and Y ∼ N (0,Σ2). Then

dTV(X,Y ) ≤ 3

2

∥∥∥Σ−1/2
2 Σ1Σ

−1/2
2 − Ip

∥∥∥
F
.

E.1 Proofs of the auxiliary results

Proof of Proposition 2. In the following, all ≲ solely depend on β and λmin. Observe that for s < t,
Bs,t = ηs

(
I + η−1

s+1(I − ηsA)Bs+1,t

)
. Therefore, it can be written that

Bs,t −Bs−1,t =
ηs − ηs−1

ηs
Bs,t + ηs−1(Bs,tA− I) := I1 + I2. (E.5)

The I1 term is relatively straightforward by noting that maxs,t |Bs,t|F = O(1), and |ηs−ηs−1

ηs
| =

O(s−1). On the other hand, for I2, Proposition 3 instructs that

ηs−1|Bs,tA− I|F ≲ s−β−1 + s−β exp
(
− cβ(t

1−β + s1−β)
)
. (E.6)

Combining (E.5) and (E.6), we obtain

|Bs,t −Bs−1,t|F ≲ s−1 + s−β exp
(
− cβ(t

1−β + s1−β)
)
,

which immediately shows

Ωt ≲
t∑

s=1

s−1 + exp(−cβt1−β)

∫ t

1

s−β exp(cβs
1−β) ≲ log t,

which completes the proof.

Proof of Proposition 3. Decompose Bs,t = ηs
∑t

j=sAs
j as

Bs,t −A−1 = −A−1At
s +

t−1∑
j=s

(ηj+1 − ηs)As
j + ηsAt

s, (E.7)

where the sum
∑t−1

j=s is interpreted as 0 if s = t. For the term A−1At
s in (E.7), we deduce |At

s| ≲
exp(−cβ(t1−β + s1−β)). On the other hand,

t−1∑
j=s

(ηj+1 − ηs)|As
j |F ≲s−β−1 exp(cβs

1−β)

t−1∑
j=s

(j − s) exp(−j1−β) ≲ s−1.

This completes the proof.
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Proof of Proposition 4. From (B.2) we write

Yt − Yt,{i} =


ηi
∑K

k=1

(
gk(θ

k
i−1, ξ

k
i )− gk(θ

k
i−1, ξ

k′

i )
)
, t = i,

(Yt−1 − Yt−1,{i})− ηt(∇F (Yt−1)−∇F (Yt−1,{i}))

+ηt
∑K

k=1 wk

(
∇Fk(Yt−1)−∇F (Yt−1,{i})−∇Fk(θ

k
t−1) +∇Fk(θ

k
t−1,{i})

)
+ηt

∑K
k=1 wk

(
gk(θ

k
t−1, ξ

k
t )− gk(θt−1,{i}, ξ

k
t )
)
, t > i.

(E.8)

Clearly, when t = i, we have trivially that E[|Yi − Yi,{i}|2] = O(η2iK
−1). Hence, we focus on

t > i. Consider the observation that
∑K

k=1 wk

(
gk(θ

k
t−1, ξ

k
t ) − gk(θt−1,{i}, ξ

k
t )
)

is a martingale
difference sequence adapted to the filtration Ft = σ(Ξs : s ≤ t)

∨
σ(Ξ′

i). Moreover, for a fixed t,
gk(θ

k
t−1, ξ

k
t )− gk(θt−1,{i}, ξ

k
t ) are independent conditional on Ft−1. Therefore, rewriting (E.8) as

Yt − Yt,{i} = T1 + T2 + T3 (E.9)
with

T1 = (Yt−1 − Yt−1,{i})− ηt(∇F (Yt−1)−∇F (Yt−1,{i})),

T2 = ηt

K∑
k=1

wk

(
∇Fk(Yt−1)−∇F (Yt−1,{i})−∇Fk(θ

k
t−1) +∇Fk(θ

k
t−1,{i})

)
, and,

T3 = ηt

K∑
k=1

wk

(
gk(θ

k
t−1, ξ

k
t )− gk(θt−1,{i}, ξ

k
t )
)
,

it is easy to see that E[T⊤
1 T3] = E[T⊤

2 T3] = 0. Consequently, from (E.8), one computes

E[|Yt − Yt,{i}|2] = E[|T1|2] + E[|T2|2] + E[|T3|2] + 2E[T⊤
1 T2]. (E.10)

Now all that is required is to build a recursion by analyzing (E.10) term-by-term. Note that standard
arguments invoking Assumptions A.2 and A.1 yields

E[|T1|2] ≤ (1− ηtc)E[|Yt−1 − Yt−1,{i}|2]. (E.11)
On the other hand, for T3, we proceed as follows:

E[|T3|2] =η2t

K∑
k=1

w2
kE[|gk(θkt−1, ξ

k
t )− gk(θ

k
t−1,{i}, ξ

k
t )|2]

≲η2t

K∑
k=1

w2
k

(
E[|θkt−1 − Yt−1|2] + E[|θkt−1,{i} − Yt−1,{i}|2] + E[|Yt−1 − Yt−1,{i}|2]

)
≲η2t
K

E[|Yt−1 − Yt−1,{i}|2] +O(
η4t
K

), (E.12)

where O(η4tK
−1) bound in (E.12) is derived upon applying Lemma S16 of Gu and Chen [2024].

Very similarly, one can bound T2 as

E[|T2|2] ≲η2tK

K∑
k=1

w2
kE[|Yt−1 − θkt−1|2 + |Yt−1,{i} − θkt−1,{i}|

2] = O(η4t ). (E.13)

Finally we tackle the cross-product term in (E.10). Again, Assumption A.2 and yet another applica-
tion of Lemma S16 of Gu and Chen [2024] produces

E[T⊤
1 T2] ≤ηt

√
E[|T1|2]

√√√√E[|
K∑

k=1

wk

(
∇Fk(Yt−1)−∇F (Yt−1,{i})−∇Fk(θkt−1) +∇Fk(θkt−1,{i})

)
|2]

≤ηt
√

E[|T1|2]
b2
√
L√

K

√√√√ K∑
k=1

E[|Yt−1 − θkt−1|2 + |Yt−1,{i} − θkt−1,{i}|2]

≲η2t
√
E[|T1|2]

≤ηt(
1

4c
η2t + cE[|T1|2]) (E.14)

≤ηt
c

4
E[|T1|2] +O(η3t ), (E.15)
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where (E.14) involves an application of Young’s inequality xy ≤ ϵx2 + (4ϵ)−1y2 with ϵ = (4c)−1,
where c is as in (E.11). Therefore, in view of (1 + ηt

c
2 )(1 − ηtc) ≤ 1 − ηt

c
2 , we combine (E.11)

-(E.15) into (E.10) to obtain

E[|Yt − Yt,{i}|2] ≤ (1− ηt
c

2
+

η2t
K

)E[|Yt−1 − Yt−1,{i}|2] +O(η3t +
η4t
K

), t > i,

which immediately shows (E.1) with standard manipulations (see Lemma A.1 and A.2 of Zhu et al.
[2023]; Polyak and Juditsky [1992]

Proof of Proposition 5. Recall Ct from (2.2). Let rt,s be the number of synchronization steps be-
tween s− 1 and t, satisfying

⌊
t−s
τ

⌋
+ 1 ≥ rt,s ≥

⌊
t−s
τ

⌋
. Further note that Crt,s =

∏t
j=s Cj . From

(2.2) and (B.14), it is easy to see that

(Θt −Θt,{i})(I − J) = −
t∑

s=i

ηs(Gs −Gs,{i})(C
rt,s − J), (E.16)

where we have repeatedly used the fact that C1 = 1. Moreover, it also holds that

‖Crt,s − J‖2 ≤
(
ρ

1
τ

)max{t−s−(τ−2),0}
= 1{t−s<τ−1} + 1{t−s≥τ−1}ρ̃

t−s−(τ−1) := κρ,τ (t, s),

(E.17)

where ρ̃ = ρ1/τ . Equation E.17 also appears as (S7) in Gu and Chen [2024]. In view of (E.17), one
can expand (E.16) as follows:

E[|
t∑

s=i

ηs(Gs −Gs,{i})(C
rt,s − J)|2F ]

≤
t∑

s=i

κ2
ρ,τ (t, s)η

2
sE[|Gs −Gs,{i}|2F ]

+

t∑
s=i

t∑
l=i,l ̸=s

κρ,τ (t, s)κρ,τ (t, l)ηsηlE
[
Tr
[
(Gs −Gs,{i})

⊤(Gl −Gl,{i})
]]

(E.18)

≤
t∑

s=i

κ2
ρ,τ (t, s)η

2
sE[|Gs −Gs,{i}|2F ]

+

t∑
s=i

t∑
l=i,l ̸=s

κρ,τ (t, s)κρ,τ (t, l)2
−1E

(
η2s |Gs −Gs,{i}|2F + η2l |Gl −Gl,{i}|2F

)

≤
t∑

s=i

κ2
ρ,τ (t, s)η

2
sE[|Gs −Gs,{i}|2F ] +

t∑
s=i

κρ,τ (t, s)η
2
sE[|Gs −Gs,{i}|2F ]

( t∑
l=i,l ̸=s

κρ,τ (t, l)
)
.

(E.19)

Now we are required to tackle E[|Gs −Gs,{i}|2F ]. To that end, observe that for s > i

E[|Gs −Gs,{i}|2F ] =K2
K∑

k=1

w2
kE[|∇fk(θks−1, ξ

k
s )−∇fk(θks−1,{i}, ξ

k
s )|2]

≤2b22L
K∑

k=1

E[|θks−1 − θks−1,{i}|
2]

≲
K∑

k=1

E[|θks−1 − Ys−1|2] +
K∑

k=1

E[|θks−1,{i} − Ys−1,{i}|2] +
K∑

k=1

E[|Ys−1 − Ys−1,{i}|2]

=O(η2sK), (E.20)
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where (E.20) follows from Lemma S16 of Gu and Chen [2024] and Proposition 4 respectively.
Putting (E.20) back into (E.19), we obtain

E[|(Θt −Θt,{i})(I − J)|2F ] ≲
t∑

s=i

η4sKκ2
ρ,τ (t, s) ≤

t∑
s=i

η4s ρ̃
t−s = O(η4tK),

where the last assertion uses
∫ n

1
x−aeyxdx ≲ n−aeny for a, y > 0, where ≲ is independent of n.

This completes the proof.

Proof of Proposition 6. We can re-purpose significant portions of the proof of Lemma S16 of Gu
and Chen [2024] to prove (E.2). Indeed, writing Θt =

∑t
s=1 ηsGsCs, we have from the referenced

proof that

E[|Θt(I − J)|4F ] =E[|
t∑

s=1

ηsGs(C
rt,s − J)|4F ]

≤2E
[( t∑

s=1

η2sκ
2
ρ,τ (t, s)|Gs|2

)2]
+ 2E

[( t∑
s=1

κρ,τ (t, s)

t∑
l=1,l ̸=s

κρ,τ (t, l)ηsηl|G⊤
s Gl|

)2]
:=S1 + S2. (E.21)

For S1 in (E.21), it is straightforward to obtain

S1 ≲
t∑

s=1

η4sκ
4
ρ,τ (t, s)E[|Gs|4] +

t∑
s=1

t∑
l=1,l ̸=s

η2sη
2
l κ

2
ρ,τ (t, s)κ

2
ρ,τ (t, l)E[|Gs|2|Gl|2]

≲
t∑

s=1

η4sκ
4
ρ,τ (t, s)E[|Gs|4] +

t∑
s=1

κ2
ρ,τ (t, s)η

4
sE[|Gs|4]max

s

t∑
l=1,l ̸=s

κ2
ρ,τ (t, l) (E.22)

≲
t∑

s=1

K2η4s(κ
4
ρ,τ (t, s) + κ2

ρ,τ (t, s)) = O(η4tK
2), (E.23)

where, in (E.22) we apply AM-GM inequality to derive

η2sη
2
l E[|Gs|2|Gl|2] ≤

η4sE[|Gs|4] + η4l E[|Gl|4]
2

.

A very similar treatment yields the same bound on S2, completing the proof of (E.2).

Proof of Proposition 7. Write
Rt := Yt − θ⋆K = E1 + E2 + E3, where,

E1 = Rt−1 − ηt∇F (Yt−1),

E2 = ηt

K∑
k=1

wk(∇Fk(Yt−1)−∇Fk(θ
k
t−1)), and

E3 = ηt

K∑
k=1

wkgk(θ
k
t−1, ξ

k
t ). (E.24)

Note that trivially, Assumptions A.1 and A.2 imply that
E[|E1|4] ≤ (1− ηtc)E[|Rt−1|4]. (E.25)

Moving on, for E2 we proceed as follows:

E[|E2|4] =η4tE[|
K∑

k=1

wk(∇Fk(Yt−1)−∇Fk(θ
k
t−1))|4]

≤C2
η4t
K2

E
[( K∑

k=1

|Yt−1 − θkt−1|2
)2]

≤C2
η4t
K2

E[|Θt−1(I − J)|4F ] ≤ C ′
2η

8
t , (E.26)
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for some constants C2, C
′
2 > 0, where the final assertion is drawn from Proposition 6. Finally, for

E3, we obtain,

E[|E3|4] =η4tE[|
K∑

k=1

wkgk(θ
k
t−1, ξ

k
t )|4] ≤ C3

η4t
K2

, (E.27)

for some constant C3 > 0, where we have used the fact that gk(θkt−1, ξ
k
t ) are mean-zero and inde-

pendent random vectors conditional on Ft. Now, we will leverage (E.25)-(E.27) to develop bounds
on the cross-product terms. In particular,

E[|E1|2|E2|2] ≤
√
E[|E1|4]

√
E[|El|4]

≤C3η
4
t

√
E[|E1|4]

≤C3 min{ηtεE[|E1|4] + (4ε)−1η7t , η
2
t εE[|E1|4] + (4ε)−1η6t }, (E.28)

and similarly

E[|E1|2|E3|2] ≤C3 min{ηtεE[|E1|4] + (4ε)−1 η3t
K2

, η2t εE[|E1|4] + (4ε)−1 η2t
K2
}, (E.29)

where the final assertions follow from Young’s inequality. Here, ε is chosen to be small enough,
however it remains a constant; the explicit choice of ε will be indicated towards the end of the proof,
when we collect terms to establish the recursion. Note that, quite trivially, from (E.26) and (E.27),
one has

E[|E2|2|E3|2] ≤ C4
η6t
K

for some constant C4 > 0. (E.30)

Rest of the cross-products are strictly dominated by some combinations of the terms analyzed till
now. For example, for l, r, q ∈ {1, 2, 3}, Cauchy-Schwarz and AM-GM inequalities implies that

E[(E⊤
l Eq)

2] ≤E[|El|2|Eq|2],

E[|El|2(E⊤
r Eq)] ≤

√
E[|El|4]

√
E[(E⊤

r Eq)2],

E[|(E⊤
l Er)(E

⊤
l Eq)|] ≤2−1(E[(E⊤

l Er)
2] + E[(E⊤

l Eq)
2]). (E.31)

A careful collection of terms from (E.25)-(E.31) yields

E[|R|4t ] ≤ (1− ηtc)(1 + ηtC0ε)E[|Rt−1|4] +O(
η3t
K2

+ η5t ), (E.32)

where C0 is a large constant depending upon C2, C3 and C4. Now, choose ε > 0 so that C0ε < c/2,
upon which we immediately obtain (1−ηtc)(1+ηtC0ε) < 1−ηtc/2. Therefore, (E.32) immediately
yields (E.3).

Proof of Proposition 8. Recall (E.8). Clearly, for t = i, the result is trivial. For t > i, we leverage
(E.9). A proof very similar to (E.3), which uses a similar decomposition (E.24), can then be followed.
The crucial term is E[|T1|2|T3|2], which is computed below. Note that

E[|T3|4] ≤
η4t
K

E
[ K∑
k=1

|gk(θkt−1, ξ
k
t )− gk(θ

k
t−1,{i}, ξ

k
t )
∣∣4]

≤L′ η
4
t

K
E
[ K∑
k=1

|θkt−1 − θkt−1,{i}|
4
]

≤27L′ η
4
t

K
E
[ K∑
k=1

|θkt−1 − Yt−1|4 +K|Yt−1 − Yt−1,{i}|4 +
K∑

k=1

|θt−1,{i} − Yt−1,{i}|4
]

≲η4t
K

E[K−1|Θt−1(I − J)|4F +K−1|Θt−1,{i}(I − J)|4F +K|Yt−1 − Yt−1,{i}|4]

≲η4tE[|Yt−1 − Yt−1,{i}|4] +O(η8t ). (E.33)
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Therefore, from (E.33), it follows

E[|T1|2|T3|2] ≤
√

E[|T1|4]
√
E[|T3|4]

≤
√
E[|T1|4]

(√
Lη2t

√
E[|Yt−1 − Yt−1,{i}|4] +O(η4t )

)
≲η2tE[|Yt−1 − Yt−1,{i}|4] + η4t

√
E[|T1|4]

≲η2tE[|Yt−1 − Yt−1,{i}|4] + η3tE[|T1|4] +O(η5t ). (E.34)

Rest of the terms are computed similar to Proposition 7, and the details are omitted. The final
recursion can be derived to be

E[|Yt − Yt,{i}|4] ≤ (1− ηtc)E[|Yt−1 − Yt−1,{i}|4] +O(η5t ) for some small constant c > 0,

which immediately yields (E.4).

F Additional Simulations

F.1 Effect of n and K on the Berry-Esseen rate

In this subsection, we empirically investigate the behavior of the Berry-Esseen error dC(
√
n(Ȳn −

θ⋆K), Z) for Z ∼ N(0,Σn) with varying choices of the number of iterations N and the number of
clients K. If the bound (2.5) is sharp, we expect the Berry-Esseen error to decay with increasing
N , and increase with an increasing number of clients. Since the distance dC involves taking a
supremum over all convex sets, which is computationally infeasible, we restrict ourselves to the
following measure of the approximation error:

d̃c = sup
x∈[0,c]

∣∣P(|√nΣ−1/2
n (Ȳn − θ⋆K)| ≤ x)− P(|Z| ≤ x)

∣∣, Z ∼ N(0, I).

For large enough c > 0, we expect d̃c to be a reasonable proxy for dC. For our numerical exercises
to quantify d̃c, we analyze the output Ȳn of the local SGD algorithm under a federated random
effects model, hereafter denoted as FRand-eff. We describe the set-up below.

F.1.1 FRand-eff formulation

Consider a positive definite matrix Γ ∈ Rd×d and β0 ∈ Rd, and let DK := {β1, . . . , βK}
i.i.d.∼

Nd(β0,Γ). Moreover, consider ΣK := {σ2
1 , . . . , σ

2
K} ⊂ RK

>0. For k ∈ [K] and at t ∈ [n]-th
iteration, suppose that the k-th client has access to data (ytk, xtk) ∈ R × Rd generated from the
linear model ytk ∼ N(x⊤

tkβk, σ
2
k). If the weights are chosen such that w1 = . . . = wK = K−1,

then clearly θ⋆K =
∑K

k=1 wkβk → β0 as K → ∞. Therefore, local SGD can be employed,
and we expect Ȳn to consistently estimate β0 as n and K grow. This model highlights the need
for information-sharing across client, since unless Γ = 0, the output of local vanilla SGD for any
particular client is inconsistent for β0.

For the purpose of the numerical exercises in this section, we choose d = 2 and β0 = (2,−3)⊤, and
let Γ = γI with γ ≥ 0. In particular, γ = 0 corresponds to a fixed effect β0 from which each client
generates their observations. For each K, we generate ΣK uniformly from the set {1, . . . , 5}, DK

from the specification above, and keep them fixed throughout the corresponding experiments as n
varies. The underlying connection matrix C is taken as Cij =

1
3I{|i− j| ≤ 1}, i, j ∈ [K]. In other

words, every client is connected to only its two immediate neighbors.

F.1.2 d̃c versus n and K

In this set, we analyze the behavior of d̃c versus n for different choices of K, τ, and γ. In particular,
we aim to verify the Berry-Esseen error rate of n1/2−β

√
K from Theorems 2.1 and 2.2. Let γ = 1.

Consider the following two separate settings corresponding to n,K, and τ .

• Setting 1. Let K = 10, and vary n ∈ {100, 200, 300, 400, 500}, and τ ∈ {10, 15, 20}. For
each pair of (n, τ), we plot d̃c against n.
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• Setting 2. fix n = 300, and vary K ∈ {20, 40, 60, 80, 100}, and τ ∈ {10, 15, 20}. For
each pair of (K, τ), we plot d̃c against K.

We provide the practical details behind empirically estimating d̃c. For each of the experimental
settings described above, we generate (ytk, xtk) ∈ R × Rd, k ∈ [K], t ∈ [n] from the FRand-eff
specification described above, and run the local SGD algorithm with step size ηt = 0.3t−0.75

for t ∈ [n]. For the large choice of c = 100, d̃c is empirically estimated by nsim = 1000 many
independent Monte-Carlo repetitions of our experiments.

Figure 1 allows us to draw important practical insights from the rates of Theorems 2.1 and 2.3.
Firstly, from the Settings 1 and 3, the synchronization parameter τ does not seem to have a significant
effect on the behavior of d̃c. Moreover, Figure 1(left) seems to corroborate well with the conclusion
of Theorem 2.1, with d̃c decaying with n for a fixed K. On the other hand, for Setting 2, Figure
1(right) seems to point towards a trade-off in terms of K for fixed n. This particular behavior
becomes clearer as we recall (2.5). For fixed n = 300, the initial decay of d̃c (and by extension,
dC) with increasing K, is caused by the n−β/2K−1/2 term. However, as K increases, the term
n1−β/2

√
K starts to dominate, leading the error d̃c to increase with increasing K. This numerical

exercise establish the sharpness of our upper-bound (2.5), complementing the discussions in Remark
2.1.

To investigate the behavior of d̃c further, we also consider the case γ = 5. In Figure 4, due to the
increased heterogeneity across βk, the effect of synchronization becomes more pronounced; for the
same values of n,K, τ , the d̃c values are much lesser compared to that in Figure 1. In particular, in
Figure 4(right), the inflection point in K beyond which n1/2−β

√
K starts to dominate, has shifted

to the right. This is understandable, since increased variability among βk means a greater reward for
sharing information, and thus the effect of increasing the clients leads to lowering the error d̃c for a
longer regime, before the asymptotics of n1/2−β

√
K eventually kicks in.

F.2 Computation-communication trade-off

In this section, we numerically investigate the computation-communication trade-off hinted at in
Remark 2.2. There, we noted that if K � nc for c > 1/2, then, based on our upper bounds, we
argued that for no β ∈ (1/2, 1) does dC converge to 0. In particular, this observation is trivial
for β ∈ (1/2, 1/2 + c/2] since the central limit theory itself fail to help in view of violation of
K ≳ n2β−1. Of particular interest is the range β ∈ (1/2 + c/2, 1), where, as per Theorem 3 of Gu
and Chen [2024], central limit theory continues to hold, but (2.8) suggests that the upper bound to
dC is no longer o(1).

To explore this phenomena through numerical examples, we invoke FRand-efffor γ = 0, and let
n ∈ {100, 200, 300, 400, 500}, and K = bnrc for r ∈ {0.2, 0.6}. In conjunction with Theorem 2.3,
we consider the following error:

d†c = sup
x∈[0,c]

∣∣P(|√nΣ−1/2(Ȳn − θ⋆K)| ≤ x)− P(|Z| ≤ x)
∣∣,

where Σ = A−1SA−⊤. Moreover, we consider the local SGD algorithm with τ = 5, and ηt =
0.5t−β . In light of 1/2 + r/2 ∈ {0.6, 0.8}, we ensure the validity of central limit theory by letting
β ∈ {0.85, 0.9, 0.95}. Finally, for each value of r, we plot d̃c against n for the different choices
of β. For r = 0.2 and r = 0.6, the evident decreasing and increasing trends of d̃c in Figure 2
respectively, vindicate not only the sharpness of our Berry-Esseen bounds Theorems 2.1-2.3, but
also clearly highlights trade-off at the region

√
n� K � n.

F.3 Effect of heterogeneity

In this section, we characterize the effect of data hetero-geneity on the Berry-Esseen errors of The-
orem 2.1. To start with, we note the following generalized version of Theorem 2.1, whose proof
merely follows from careful tracking of constants, and is therefore omitted.

Corollary F.1. For ξ(k) ∼ Pk (the data distribution of client k ∈ [K]), define µl,k = E[|∇Fk(θ
⋆
K)−

∇fk(θ⋆K , ξ(k))|l] for l = 2, 3, 4. Denote Ml =
∑

k µk,l, and M22 =
∑K

k ̸=l µ
2
2,kµ

2
2,l. Assume that for
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some constant c > 0, mink µ4,k ≥ c. Further, assume maxθ
∑K

k=1 wk‖∇F (θ) −∇Fk(θ)‖4 ≤ κ4

for some κ ≥ 0. As long as τ ≤ θn, for some θ ∈ (0, 1), under the assumptions of Theorem 2.1, it
follows that:

dC(
√
n(Ȳn − θ⋆K), Z)

≲(κc + 1)
(√

τ +
1√

1− ρ1/τ

)( M3
√
nM

3/2
2

+
n−β/2

√
M2

+ n1/2−β
(√

K +

√
M4 +M22

K
√
M2

+

√
M2

K

)
+ n1−2β

(√
K

√
M4

M2
+
√
M2

)
+ n1/2−2β M4√

M2

+ n−β

)
, (F.1)

for some constant c ≥ 0.

The effect of heterogeneity can also be verified empirically, by noticing that γ plays the role of
heterogeneity in the Frand-eff formulation in Section F.1.1 in the supplement. The corresponding
simulation results can be seen in the following.

γ n = 100 n = 200 n = 300
1 0.222 0.224 0.154
2 0.258 0.188 0.112
3 0.322 0.322 0.302
4 0.374 0.272 0.232
5 0.542 0.292 0.302

Table 1: Berry-Esseen error across different levels of heterogeneity under step-size= 0.3t−0.75, num-
ber of clients K = 10, τ = 2, Cij = 1/3I{|j − i| ≤ 1}, dimension d = 2. All the results are based
on 500 Monte-Carlo simulations.

F.4 Effect of Synchronization

Note that, from the verbose Corollary F.1, one can glean the following result that condenses the
effect of synchronization in an interpretable manner.
Corollary F.2. As long as τ ≤ θn, for some θ ∈ (0, 1), under the assumptions of Theorem 2.1 it
follows that:

dC(
√
n(Ȳn − θ⋆K), Z) ≲

(√
τ +

1√
1− ρ1/τ

)( 1√
nK

+ n
1
2−β
√
K +

n− β
2

√
K

)
. (F.2)

for some constant c ≥ 0.

In particular, we allow the synchronization parameter τ to grow linearly with n. Clearly, as the
number of local updates τ increases, the errors increase with a

√
τ rate. This have also been verified

empirically in the following table.

τ n = 100 n = 200 n = 300
10 0.087 0.100 0.110
20 0.118 0.146 0.155
30 0.139 0.168 0.171
40 0.155 0.183 0.185
50 0.164 0.196 0.211
60 0.176 0.225 0.220
70 0.175 0.218 0.231
80 0.176 0.230 0.252
90 0.176 0.234 0.253
100 0.175 0.241 0.261

Table 2: Comparison of Berry-Esseen error across different values of τ under step-size= 0.3t−0.75,
number of clients K = 10, , dimension d = 2, Connection matrix Cij = 1/3I{|j − i| ≤ 1}.
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F.5 Effect of connection matrix

In the following, we provide experimental results on how the Berry-Esseen errors depend on the
network topology (ρ), where ρ is the second largest eigen value of the connection graph C. As the
network topology becomes less connected (ρ ↑ 1), the GA error scales as (1 − ρ1/τ )−1/2. On the
other hand, when ρ = 0, the network is densest as C = K−11K1⊤

K , and the algorithm essentially
becomes a centralized one.

ρ n = 100 n = 200 n = 300
0.1 0.094 0.084 0.089
0.2 0.106 0.107 0.104
0.3 0.121 0.126 0.124
0.4 0.136 0.143 0.138
0.5 0.149 0.164 0.154
0.6 0.165 0.192 0.175
0.7 0.184 0.217 0.203
0.8 0.203 0.245 0.250
0.9 0.212 0.275 0.294

Table 3: Comparison of Berry-Esseen error across different values of ρ under step-size= 0.3t−0.75,
number of clients K = 10, , dimension d = 2, synchronization parameter τ = 10. For each ρ,
C = ρIK + (1− ρ)K−111K .

F.6 Performance of the time-uniform Gaussian approximations

This section devotes itself to numerical studies to validate the efficacy of the Gaussian approxima-
tions Aggr-GAand Client-GA, discussed in Section 3. Consider the quantities

Un = max
1≤t≤n

|
t∑

s=1

(Ys − θ⋆K)|, UAggr-GA
n = max

1≤t≤n
|

t∑
s=1

Y G
s,1|, and UClient-GA

n = max
1≤t≤n

|
t∑

s=1

Y G
s,2|,

where Y G
s,1 and Y G

s,2 are defined as in Theorem 3.1. Moreover, we also consider the Brownian motion
approximation by functional central limit theorem as another competitor, and as such, consider

Uf-CLT
n = max

1≤t≤n
|

t∑
s=1

Zs|, Z1, . . . , Zn
i.i.d.∼ N(0,Σ),

where Σ is as in Section 2.2.1. In order to compare the distributions of UAggr-GA
n , UClient-GA

n and
Uf-CLT
n to that of Un, we resort to Q-Q plots. Fix N = 500, τ = 20, and let K ∈ {10, 25, 50}.

For each triplet of of (N,K, γ), we simulate nsim = 500 parallel independent local SGD chains
with step-sizes ηt = 0.7t−0.85, and observations from the FRand-eff model in order to empirically
simulate Un. Concurrently, we also simulate nsim independent observations from the distributions
of UAggr-GA

n , UClient-GA
n and Uf-CLT

n by running the corresponding chains in parallel. The QQ-plots
are shown in Figure 3.

The sub-optimality of the functional CLT as a time-uniform Gaussian approximation to {Yt} is em-
pirically evident from the QQ-plots. Both our proposals Aggr-GA and Client-GA uniformly dom-
inate the approximation via Brownian motion across different settings. Moreover, as K increases
from left panel to the right, Aggr-GA out-performs Client-GA. This in line with Proposition 1 (i)
and (ii) underpinning the sharper approximation rate for Aggr-GA. However, we must recall that
Client-GA requires local covariance estimation for each client, thus protecting the privacy of the
federated setting.
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Figure 4: Plot of d̃c against n and K for γ = 5, and Settings 1(left), and 2(right).

F.7 Ablation Studies

In the following, we further investigate the affect of heterogeneity and synchronization for the time-
uniform Gaussian approximations. In particular, we carry out two ablation studies for the parameters
τ and γ in the FRand-eff formulation. In the first experiment, we fix N = 500,K = 15, d =
2,Cij = 1/3I{|j − i| ≤ 1} and γ = 1, and vary τ = 5, 50, 100. For each particular setting, we
report the following quantities:

Qf-CLT = max
α∈(0,1)

|q1−α(Un)− q1−α(U
f-CLT
n )|

q1−α(Un)
, QAggr-GA = max

α∈(0,1)

|q1−α(Un)− q1−α(U
Aggr-GA
n )|

q1−α(Un)
, and,

QClient-GA = maxα∈(0,1)
|q1−α(Un)−q1−α(UClient-GA

n )|
q1−α(Un)

. The following table summarizes the results.

τ Qf-CLT QAggr-GA QClient-GA
5 1.495 0.214 0.327
10 2.009 0.44 0.53
15 2.476 0.663 0.883

Clearly, as the number of local steps τ increase, the efficacy of each Gaussian approximation wors-
ens; however, the two Gaussian approximations proposed, Aggr-Ga and Client-GA consistently
outperforms a functional-CLT based approach, mirroring our results from Section 4.3. Moreover,
Aggr-GA consistently provides the sharpest approximation, vindicating the theory outlined in Sec-
tion 3.

Moreover, we also fix N = 500,K = 15, τ = 20, and vary the heterogeneity parameter γ = 1, 5, 10.
The results are as follows.

γ Qf-CLT QAggr-GA QClient-GA
1 1.047 0.237 0.275
5 2.047 0.605 0.646
10 2.805 0.547 0.782

We again see the worsening performance of the Gaussian approximations with increasing hetero-
geneity.

G Experiments on attack instance detection via time-uniform
approximations

G.1 Attack instance detection

To round off our discussion in Section 3.1, one can exploit the time-uniform approximation guar-
antees of Theorems 3.1 and 3.2 to propose valid, Gaussian bootstrap-based algorithms for attack
instance detection. For convenience, we only state an algorithm based on Theorem 3.1; a corre-
sponding algorithm based on Theorem 3.2 can be likewise constructed.
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Algorithm 2 Time-uniform Gaussian bootstrap
Input: Initializations Θ0 = (θ10, . . . , θ

K
0 ) ∈ Rd×K ; Connection matrix C; Synchronization pa-

rameter τ ; Loss functions fk(·, ξk), ξk ∼ Pk, k ∈ [K], weights {wk}Kk=1, number of iterations n,
step-size schedules {ηt}nt=1, Hessian A; number of bootstrap samples B; covariance matrix VK .

• Let Eτ = {τ, 2τ, . . . , Lτ}, where L =
⌊
n
τ

⌋
. Initialize t = 1. Stopping time T̂0 = 1,

estimated attack instance ŝ0 = + inf .
• While t ≤ n:

1. Store the local SGD iterates Yt, and calculate Rt = max1≤s≤t s|Ȳs − Ȳt| and st =
argmax1≤s≤t s|Ȳs − Ȳt|.

2. For B = 1, . . . , B:
Draw Z

(b)
t ∼ N(0,VK), and do Y

G,(b)
t,1 = (I−ηtA)Y

G,(b)
t−1,1 +ηtZ

(b)
t K−1/2, Y

G,(b)
0,1 =

0. Calculate R
G,(b)
t = max1≤s≤t s|Ȳ G,(b)

s,1 − Ȳ
G,(b)
t,1 |

• q̂1−α ← sample quantile({RG,(b)
t }).

• Thresholding: If Rt > q̂1−α + c
√
n:

T̂0 ← t, ŝ0 ← sT̂0
. Stop.

Else t+ = 1.
Output: T̂0I{T̂0 < n}, sT̂0

.

We remark that Algorithm 2 is directly motivated from (3.3); it not only detects the attack instance,
but detects it as soon as possible in a sequential manner. We provide some numerical experiments
validating this algorithm in Section G.2.

G.2 Numerical experiments on attack instance detection

For a corresponding numerical validation, we consider the Frand-eff model in Section F, and
consider an attack at time point t0 = T/2 for K0 = K/2 many clients, where their corresponding
parameters βk change to β′

k = βk + µ. We take T = 500, K = 10, τ = 20 and for each setting,
the above algorithm is run for B = 500 bootstrap samples. The empirical power of the described
algorithm is reported below, based on 500 Monte-carlo simulations.

µ Probability of detection Attack instance (mean, 95% CI) Stopping time T̂0 (mean, 95% CI)
0 (No attack) 0.046 (False positive) – –
0.5 0.172 201.233, (58.75, 290.875) 400.67, (141.25, 496.875)
1 0.966 265.203, (144.05, 309) 412.49, (345.05, 482)
1.5 1 255.772, (155.9, 310.525) 389.61, (292.475, 470.525)
2 1 249.672, (118.85, 286.575) 356.32, (311.475, 397.525)
2.5 1 247.098, (113.8, 281) 343.39, (294.95, 379.525)
3 1 249.572, (94.275, 276) 334.57, (282.95, 367)

Table 4: Simulation results of attack detection.

Clearly, the higher the severity of the attack (µ being large), the more probable it is to be detected,
and the quicker it gets detected. Moreover, the estimated attack time also stabilizes around the
correct attack instance. Finally, we note that the algorithm can be modified to perform the sequential
test only at the synchronization steps, instead of testing for all t.

G.2.1 Experiments based on MNIST dataset

As a further application of Algorithm 2, we work on a federated learning (FL) setup with K = 5
clients collaboratively training a linear classifier on MNIST data. Let each image be xi ∈ R28×28.
To get rid of high-dimensionality, a PCA transform P : R28×28 → Rd with d = 3 is fitted on
the full training set zi = P (xi) ∈ R3. At time point t, each client k ∈ [K] sequentially receives
ξkt = (ykt , z

k
t )’s where ykt are corresponding digit labels. Following the notation of the paper, the

loss function of client k is the cross-entropy loss:

fk(W, b; ξkt ) = −ykt log(ŷkt )− (1− ykt ) log(1− ŷkt ), ŷ
k
t = σ(Wzkt + b),
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where σ is the sigmoid/logit function, and W ∈ R10×3 and b ∈ R10, so the parameter vector
θ = Vec([W : b]) ∈ Rd with d = 40. The weight parameters for the aggregated objective function
are wk = K−1, k ∈ [K], and the step-size is ηt = 0.3t−0.75 in conjunction with our empirical
exercises. The synchronization parameter is τ = 5, and we use the connection matrix from the
simulation: Cij = 1/3I{|j − i| ≤ 1}. Finally, we run the local SGD iterates for n = 200 iterations.

For a randomly selected set of K0 = 3 clients, a label-flipping attack (the label of image of digits
1, 2, 4 are switched to 7, 5, 8, and vice-versa) is injected at t = 50, and Algorithm 2 is employed to
detect this attack. The matrices A and VK are inputs to this algorithm, and are therefore estimated
by a pre-trainining/warm-start transient phase. The results are summarized in the following table.

Probability of detection Attack instance ŝ0 (mean, 95% CI) Stopping time T̂0 (mean, 95% CI)
No attack 0.06 – –
Label flipping attack 0.90 58.49, (31.7, 96.25) 95.67, (89.1, 98.9)

Table 5: Simulation results for label-flipping attack detection.

We note that the empirically validity under level 0.05 is approximately maintained, and the algorithm
also achieves high detection power under the label-flipping attack. We remark that the detection
can be made earlier by tuning the constant c in the thresholding step appropriately by eg. cross-
validation, but overall this experiment shows the applicability of such Gaussian-bootstrap based
algorithm beyond theoretical rates, in practical scenarios.
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