Sharp Gaussian approximations for Decentralized
Federated Learning

Soham Bonnerjee Sayar Karmakar Wei Biao Wu
sohambonner jeeQuchicago.edu sayarkarmakar@ufl.edu wbwuQuchicago.edu

Abstract

Federated Learning has gained traction in privacy-sensitive collaborative environ-
ments, with local SGD emerging as a key optimization method in decentralized
settings. While its convergence properties are well-studied, asymptotic statistical
guarantees beyond convergence remain limited. In this paper, we present two gener-
alized Gaussian approximation results for local SGD and explore their implications.
First, we prove a Berry-Esseen theorem for the final local SGD iterates, enabling
valid multiplier bootstrap procedures. Second, motivated by robustness consider-
ations, we introduce two distinct time-uniform Gaussian approximations for the
entire trajectory of local SGD. The time-uniform approximations support Gaussian
bootstrap-based tests for detecting adversarial attacks. Extensive simulations are
provided to support our theoretical results.

1 Introduction

Federated Learning (FL), introduced by McMahan et al. [2017] as a decentralized model training
paradigm while maintaining privacy, has seen rapid advancements driven by its applicability in
domains such as next-word prediction on mobile devices, healthcare, and cross-silo collaborations
among institutions. Subsequent works Kairouz et al. [2021], Li et al. [2020], Karimireddy et al.
[2020], Wang et al. [2020b], Alistarh et al. [2017], Lin et al. [2018] have addressed key challenges
around privacy and computational efficiency. Research has also extended to decentralized federated
learning (DFL) Lalitha et al. [2019], Lian et al. [2017], He et al. [2019], Kim et al. [2020], Lian
et al. [2017], Wang and Joshi [2021], Singh et al. [2023], which eliminates reliance on a central
server by enabling peer-to-peer collaboration, thereby enhancing robustness, fairness, and resilience
to adversarial threats. We refer to Gabrielli et al. [2023], Yuan et al. [2024] for a comprehensive
survey of the literature. In this regard, Local SGD Stich [2019], Khaled et al. [2020], Woodworth
et al. [2020b] has emerged as a widely adopted algorithm, allowing clients to perform multiple local
updates before synchronizing, significantly reducing communication overhead.

While theoretical guarantees for convergence and speed in local SGD have been developed Haddad-
pour et al. [2019], Woodworth et al. [2020a], Koloskova et al. [2020], a gap remains in understanding
the statistical properties of fluctuations around the true parameter vector. This gap has practical
implications: first, statistical guarantees on the final iterates are essential for inference; second,
monitoring the entire trajectory is crucial for detecting adversarial behavior in high-stakes settings
like traffic networks, autonomous systems, and financial platforms. For the first issue, emerging works
on central limit theory Li et al. [2022], Gu and Chen [2024] provide initial insights, but estimating
local covariance structures is numerically intensive. Multiplier bootstrap methods Fang et al. [2018],
Fang [2019] offer computational relief, but require stronger results beyond the central limit theory.
The second issue is even more challenging, as it demands control over the entire trajectory of local
SGD, not just the last iterate. Classical inferential methods struggle with DFL’s complex dependency
structure, and a key open question is how to develop statistically valid, computationally efficient
inference methods with minimal distributional assumptions and explicit error control.
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1.1 Main Contributions

In this article, we address this gap by proposing different refined Gaussian approximations that
naturally lead to suitable bootstrap procedures. Our results go beyond central limit theory to establish
sharper, step-by-step as well as uniform control over the DFL iterates {Y; }. These results not only
facilitate relevant bootstrap-based inference to produce asymptotically-valid confidence sets, but also
enables us to perform statistical hypothesis tests to detect attacks, which are inaccessible otherwise.
Our main contributions can be summarized as follows:

(1) In Section 2, we provide an explicit characterization of the Berry-Esseen error for the Polyak-
Ruppert version of the local SGD algorithm (Algorithm 1) iterates. In particular, under standard
regularity conditions on the client-level optimization problems as well as for a general class of
connection graph of clients, we prove:

Theorem 1.1 (Theorem 2.1, Informal). For a decentralized federated learning set-up with K clients,
the Polyak-ruppert averaged iterates of the local SGD algorithm with n iterations, and step size
ne < t=P, achieves

dBerry—Esseen S 77,1/275 \% K

Our result explicitly underpins the source of the assumption K = o(n??~1) used to derive central
limit theory for the local SGD iterates Gu and Chen [2024]. Theorem 2.1 is accompanied by a
corresponding Berry-Esseen theorem (Theorem 2.2) for final iterates of the DFL algorithm. Both
these theorems involve a finite sample scaling (equivalently, scaling by a covariance matrix depending
upon n, the number of iterations) of the local SGD iterates, leading to optimal error bounds. Our
result is first such Berry-Esseen bounds for the local SGD updates.

(2) The finite sample scaling considered in Theorems 2.1 and 2.2 is usually not estimable. Shifting
focus to an asymptotic, global scaling, our results uncover a novel computation-communication
trade-off involving the Berry-Esseen result. In Theorem 2.3, we show that for K = o(y/n), 8 = 3/4
represents an optimal choice of step-size; however, for K > /n, for no 8 € (1/2,1) does the
Berry-Esseen bound converge towards zero. This observation is not merely an artifact of our proof,
and the phase-transition are empirically validated through extensive simulations.

(3) A key motivation behind the local SGD algorithm is maintaining privacy. From this perspective,
asymptotic inference on the final iterates is insufficient for detecting breach of privacy through some
adversarial attack. Indeed, in Section 3, we discuss a general framework to detect a broad class of
model poisoning in a distributed setting. Through an example in Section 3.1, we point out a class of
maximal statistics which can be used to detect such attacks. Moreover, to perform inference on such
statistics, we move beyond controlling simply the end-term iterates to a more general time-uniform
Gaussian coupling of the entire local SGD process. Motivated from above, in Theorem 3.1, we
establish a time-uniform Gaussian approximation.

Theorem 1.2 (Theorem 3.1, Informal). If the local SGD algorithm with K clients runs n iterations
with step size 1, < t~P, then there exists a Gaussian process Y = (I —n,A)Y,C | + 0 Z; with Z,
i.i.d. N(0,T) for some matrix T’ and A being the Hessian of the problem, such that,

t 1/p
— G ~ 1_ﬂ L
fgggnIZ;(Y; YO~ op(n' ™7 4+ ).

Here we assume p > 2 finite moments of the local noisy gradients. To facilitate bootstrap, we also
provide an explicit characterization of I'. To the best of our knowledge, these results constitute the
first time-uniform Gaussian approximation results for stochastic approximation algorithms.

(4) In particular, Theorem 3.1 presents a Gaussian approximation (referred to as Aggr-GA) with a
slightly sharper rate, but one requiring extensive synchronization during the bootstrap procedure.
Recognizing that this may not be ideal from a privacy perspective, we further present a separate,
client-level Gaussian approximation Client-GA in Theorem 3.2, which completely mimics the
local SGD procedure. The approximation Client-GA is much more localized, leading to slight
worsening of the approximation error but increased efficiency with regards to synchronization and
computational cost. We argue and validate with simulations, that our Gaussian approximations are
much sharper than that indicated by a standard, off-the-shelf functional central-limit theorem. In
fact, our Gaussian approximations represent a version of the covariance-matching approximations
introduced by Bonnerjee et al. [2024], however in a multivariate, non-stationary environment.



(5) Finally, in Section 4, we validate our theoretical findings with extensive numerical exercises. Our
simulation results in Sections 4.1 and 4.2 not only indicate the sharpness of our theoretical results, but
also project vividly the computation-communication trade-offs discussed in Remark 2.2. Moreover,
the numerical results in Section 4.3 shows that the proposed Gaussian approximations Aggr-GA and
Client-GA are significantly better than an off-the-shelf Brownian-motion based approximation, even
in finite sample, complementing Theorems 3.1 and 3.2 well.

1.2 Notations

In this paper, we denote the set {1,...,n} by [n]. The d-dimensional Euclidean space is R?, with
Rio the positive orthant. For a vector a € R4, a| denotes its Euclidean norm. The set of m x n real
matrices is denoted by R™*™, and correspondingly, for M € R™*™ | M|r denotes its Frobenius
norm. For a random vector X € R%, we denote || X|| := \/E[| X |2]. We also denote in-probability
convergence, and stochastic boundedness by op and Op respectively. We write a,, < by, if a,, < Cb,
for some constant C' > 0, and a,, < b, if C1b,, < a,, < C3b, for some constants C7,Cy > 0.

1.3 Related Literature

In view of the plethora of classical literature for central limit theorems (CLT) on SGD and its different
variants Ruppert [1988], Polyak and Juditsky [1992], Chen et al. [2020], it is rather surprising that this
area has remained relatively untouched for local SGD or DFL. Li et al. [2022] establish a functional
CLT for local SGD, but only when the number of clients is held fixed. More recently, Gu and Chen
[2024] established a central limit theory for DFL while allowing an increasing number of clients.
Non-asymptotic guarantees for SA algorithms exist in terms of MSE guarantees Nemirovski et al.
[2009], Moulines and Bach [2011], Lan [2012], Mou et al. [2024]. Recently, Anastasiou et al. [2019]
employed Stein’s method to derive Gaussian approximation for a class of smooth functions of the
SGD iterates. Later, Shao and Zhang [2022] obtains the first Berry-Esseen result for online SGD.
Samsonov et al. [2024] extended the result to linear stochastic approximation algorithms and temporal
difference learning, before being further improved by Wu et al. [2024], Sheshukova et al. [2025].

On the other hand, to the best of our knowledge, time-uniform ‘entire-path’ Gaussian approximation
results have not appeared in the stochastic approximation literature. From classical time-series
literature, such approximations are known as “Komlos-Major-Tusnady”(KMT) approximations, and
have a long history Komlés et al. [1975], Sakhanenko [1984, 1989, 2006], Gotze and Zaitsev [2008],
Berkes et al. [2014], Karmakar and Wu [2020] and varied uses in change-point detection Wu and
Zhao [2007], wavelet analysis Bonnerjee et al. [2024], simultaneous and time-uniform inference Liu
and Wu [2010], Xie et al. [2020], Karmakar et al. [2022], Waudby-Smith et al. [2024]. However, this
results require fast enough decay, and well-conditioned covariance structure, which are not usually
available in even stochastic approximation algorithms with decaying step-size, let alone a general
local SGD algorithm. Therefore, such results are not readily applicable in the current settings.

2 Berry-Esseen theory for local SGD

In this section we establish a general, Berry-Esseen type Gaussian approximation result in the
decentralized federated learning setting. In order to rigorously state our results, it is imperative that
we formally introduce the local stochastic gradient descent (SGD) algorithm and underline the key
assumptions behind our theoretical results. This is done in Section 2.1. Finally, we present our first
Gaussian approximation results in Section 2.2, and discuss the implications therein.

2.1 Preliminaries

Consider a typical decentralized heterogeneous federated learning setting with K clients, each having
access to a loss function f, : R x R™ — R, and a distribution P; on R™* for k € [K]. Here, Py
determines the distribution of the local noisy gradient for each client, realized by sampling £* ~ Py..
We allow for heterogeneity among the clients i.e. Pj’s are allowed to be different. However, noise
sampling (i.e. the £¥) is assumed to be independent from one client to the another. The corresponding
risk or regret for the k-th client is denoted by Fj,(0) = E¢r p, fi(0,£"). Consider a pre-specified

“importance” or weight schedule, given by {w1,ws, ..., wx} € RE, such that Zle wy = 1. In an



online federated learning setting, the weight schedule are typically known a-priori, usually informed
by the level of heterogeneity for each client, and specified by the moderator of the decentralized
system. The goal of DFL is to obtain

K
05 = arg minZkak(G) € R% 2.1
o k=

2.1.1 Communication

The client-level information is defined by loss functions f; and weights wy,. A key aspect of federated
learning (FL) is preserving client privacy, often achieved via a synchronization step with parameter
7 € N. At each 7-th step, the moderator aggregates client data and redistributes it following a policy.
In decentralized SGD, averaging schemes Chaturapruek et al. [2015], Lian et al. [2017], Ivkin et al.
[2019] or gossip-based methods Koloskova et al. [2020], Li et al. [2019], Qin et al. [2021], Wang
and Joshi [2021] are common. In other words, a linear aggregation based on a fixed connection
graph, is employed at the synchronization step. Following the notation of Gu and Chen [2024], we
consider a connection network of the participating clients in the FL system, defined by an undirected
graph G = (V,E) where V = {vk}szl represents the set of clients and E specifies the edge set such
that (i, j) € E if and only if clients i and j are connected. Let C = (¢;;) € RE*X be a symmetric
connection matrix defined on G = (V, E), where ¢;; is a nonnegative constant that specifies the
contribution of the j th data block to the estimation at node :. It is required that ¢;; > 0 if and only if
(1,7) € E and C1 = 1. Moreover, let ¢; ; > 0.

Suppose ©®; = (6},...,0K) € R¥*X denotes the local parameter updates of each client at
the ¢-th step. Suppose the corresponding local gradient updates be summarized in the matrix
Gi = K VO 1,6, ..., wk V(0K |, &) € R9*K. Here, the initial points 85 € RY are
arbitrarily initialized for k € [K], and have no bearing on the theoretical results. For the sake of
completion, we also re-state the 1local SGD algorithm using the notations and the set-up established
in the preceding sections 2.1 and 2.1.1.

Algorithm 1 local SGD

Input: TInitializations @y = (64,...,0L) € R¥X; Connection matrix C; Synchronization
parameter 7 € N; Loss functions fi (-, &%), &8 ~ Py, k € [K], weights {wy} |, number of
iterations n, step-size schedules {n; }?_;.

* Let E; = {r,27,..., L7}, where L = | 2].

C, tekFE,,

2.2
Iy, otherwise. 2.2)

°F0rt:1,...,n: ®t:(®t—1_7lth)Ct, Ct:{

Output: Y, := K1©,1 = K1 5 6k,

To simplify Algorithm 1, each client runs an SGD in parallel till every 7-th step, when they must
synchronize their updates in order to properly solve the optimization problem (2.1). Clearly, for
7 = 1, Algorithm 1 reduces to the vanilla SGD algorithm for (2.1), which hampers privacy as well as
incurs great cost at each step, since typically, the number of clients K increases with the number of
iterations n. On the other hand, when 7 > n, there is no synchronization, and each client would solve
their own local optimization problem arg ming F (), defeating the benefits of sharing information.
For the purpose of this paper, we assume 7 to be fixed. Moreover, on a client level, we also assume
that there exists constants by, ba > 0 such that for every k € [K], by < Kwy < bs.

2.2 Berry-Esseen theorems for client-averaged local SGD updates

Before we describe the Berry-Esseen theorems, it is important we briefly describe the conditions
under which it hold. We assume the usual conditions of strong-convexity (Assumption A.1), and the
stochastic Lipschitz-ness of the noisy gradients V fi (Assumption A.2). Moreover, we also assume
the continuous differentiability of fj,’s (Assumption A.3). Due to space constraints, the detailed
description of these assumptions, alongside an extended discussion, is relegated to Appendix A. Here,
we discuss an additional condition unique to the decentralized federated learning setting.



Assumption 2.1. The connection matrix C satisfies C1 = 1 and CT = C. Moreover, ifa>...>
Ak denote the ordered eigen-values of C, then Ay = 1, and Ao = p < 1 for some p € (0,1).

This assumption also appears in Gu and Chen [2024]. Assumption 2.1 ensures that C is irreducible and
the corresponding stationary distribution is unique; equivalently the underlying graph G is connected,
ensuring an overall information sharing between each pair of clients through repeated synchronization
steps. Mathematically, this can also be observed by noting that lim,_,o, C* = K~'11"7. Now,
we present the first Gaussian approximation result concerning local SGD updates. Define the
generalized Kolmogorov-Smirnov metric between two random variables Y and Z as

dc(Y,Z) := sup |P(Y € X) —P(Z e )] (2.3)

ReB(R%): A convex

Consider the 1local SGD output Y,, from Algorithm 1. Our first theorem considers its corresponding
Polyak-Ruppert averaged version

n K n
Y, = n—lzy; :K—lzn—lzef, (2.4)
t=1 k=1 t=1
and provides a Berry-Esseen theorem, proved in appendix Section B.1.
Theorem 2.1. Define A’ := [ (I —mA), AL = I, where A := Vo F(0%) fort € [n]. Further,

Jj=s+1
for s € [n], define the random vectors
K n
Uus = 1 Zm(ZAg)gk(e;(,s ), with ¥, :=n"" ZE lusul [], ge(6, %) = VF(0) — V (6, 5.
k=1 Jj=s s=1

Let there exist a constant C such that for ¥ ~ Py, k € [K], it holds maxe(x] El|gr (0%, M2 < C.

Suppose that the step-size schedules of the clients satisfy that 1, = no(t + ko)™? for some Sixed
Mo, ko > 0,and 8 € (1/2,1). Then, under Assumptions 2.1, A.1 and A.2 and A.3 withp = 4, and Y,,
as in (2.4), it holds that

do(Vn(Y, — 0%), )Nf+n§‘f”f+\/7(

where < hides constants involving d, 8, pu, L and p, and Z ~ N (0, X,,).

w\m

(2.5)

A slightly more general result, characterizing the effects of heterogeneity and synchronization, is
presented in Corollary F.1 in the appendix. We present Theorem 2.1 here due to its enhanced
amenability to interpretation, which we provide in subsequent remarks.

Remark 2.1. For a fixed 8 € (1/2,1), the term n'/2~#/K dominates, requiring K = o(T2#~!)
for the central limit theory to hold for Y,,. This condition, also noted in Theorem 3 of Gu and Chen
[2024] without justification, is explicitly clarified by (2.5). As § — 1, the rate in (2.5) becomes
v/ K /n. The inclusion of the three terms highlights the influence of K, which is unique to federated
systems. The 1/v/nK term reflects the central limit theorem’s convergence rate. The n'/2=8\/K
term captures the problem’s difficulty, which increases with the number of clients running local
SGD in parallel. Lastly, n=?/2K ~1/2 represents the benefit of synchronization and information
aggregation across clients. Even though this term is asymptotically dominated by n'/2=%+v/K this
commands considerable finite sample effects as shown in Section 4.1.

Often, due to privacy reasons, clients might be unwilling to share n ! Zz 1 9; k at time-point 7, which
makes the application of Theorem 2.1 impossible. In such cases, one can simply use a corresponding
Berry-Esseen bound for the end-term iterates, which we provide in the following.

Theorem 2.2. Under the assumptions of Theorem 2.1, it holds that

-B/2
do(n??(Y, - 0%),2) S = T VK, 2.6)

where Z ~ N(0,%,) with £, := n " Var(A? 1 ne pwrgr (0%, €5)).

Theorem 2.2 is proved in appendix Section B.2. When K =< 1, the rate (2.6) is consistent with
the well-established asymptotic theory of SGD Chung [1954], Sacks [1958], Fabian [1968] for the
end-term iterates. Hereafter, till the end of this section, we will continue to analyze Y,, further; exactly
similar analysis also holds for Y,,, which we do not present separately to maintain continuity.



2.2.1 Estimating >,

In Theorem 2.1, the local SGD updates are scaled by the matrix X,,, which is not usually known
or estimable. This matrix originates as the covariance of the sum of independent vectors u4, which
acts as a linearized version of the updates ¥; = K1 S°8 08 If § = K Var(3 1, wigr (0%, €F)),
then it can be shown that KY,, — S forY = A1SA-T asn — oo. In general, we show the
following theorem, proved in appendix Section C.

Theorem 2.3. Under the assumptions of Theorem 2.1, it holds that

1S, — K718 p S K V/2p871, 2.7
and consequently, it holds that, with Z' ~ N (0, K~'%),
do(Vn(Y, = 0%),2") SVEn'?~0 4071, 2.8)

If K = O(1), Theorem 2.3 reduces to Lemma 1 of Sheshukova et al. [2025].

Remark 2.2 (Computation-communication trade-off). Theorems 2.1 and 2.3 reveal a phase transition
between classical central limit theory and the Berry-Esseen rate, which isn’t clear from the condition
K = o(n?’~1) alone. This transition arises from a computation-communication trade-off Tsiatsis
et al. [2005], Le Ny and Pappas [2013], Dieuleveut and Patel [2019], Ballotta et al. [2020], which,
in our context, reflects a trade-off between the step-size parameter S and the number of clients K.
Specifically, if K = o(n®) for some 0 < ¢ < 1/2, the optimal 5y € (1/2,1) minimizing (2.8) is
Bo = 3/4. Conversely, if K > n¢forc > 1/2,n0 3 € (1/2,1) ensures that VK (n/2=% 4-nf~1) —
0. This implies that when K =< n° for some ¢ > 1/2, the Kolmogorov error remains significant,
regardless of the step-size, even though central limit theory still holds for 8 € (1/2 4 ¢/2,1). This
phase transition highlights a new theoretical insight into the hardness of local SGD as K increases.

An one pass estimation of ¥ is discussed in Gu and Chen [2024]. Additionally, in our appendix
Section B.3, we point towards a new direction of multiplier bootstrap, leveraging our Berry-Esseen
result, that does not require covariance estimation.

3 A time-uniform Gaussian coupling for the DFL updates

Section 2 quantifies the Gaussian approximation of the final 1ocal SGD updates Y,,, with an error
of order v/n in terms of iterations. However, maintaining privacy in a federated setting requires
one to draw sharp inferences not only on the final output but on the entire local SGD trajectory,
particularly for detecting model poisoning or adversarial attacks. From a theoretical standpoint, when
the Assumption A.3 guarantees the existence of moments p > 4 (for example, when the data may
be close to Gaussian), we should be able to derive sharper bounds on approximation errors, beyond
the 4/n result in Section 2. Since central-limit theory and Berry-Esseen estimates rely on fourth
moments, we turn to classical strong approximation theory to exploit higher moments for precise
bounds on the entire trajectory.

3.1 Motivation and Applications

A time-uniform Gaussian coupling for the entire local SGD updates has strong practical motivations,
particularly for anomaly detection in "Internet-of-Vehicles" (IoV) Shalev-Shwartz et al. [2017],
Ghimire and Rawat [2024], Zhu et al. [2024]. Assume that at some time point ¢y € [n], a subset of
clients Koy C [K] becomes malicious. This model poisoning can be mathematically described by
a change in their local risk functions Fy, k € K, which affects the distribution of the local SGD
updates Y;. This perspective extends to other attacks, such as LIE (Little is Enough) or MITM (Man
in the middle) Shen et al. [2016], Blanchard et al. [2017], Yin et al. [2018], Baruch et al. [2019],
where an adversary injects noise or perturbs communication at time t, disrupting the distribution
and trajectory of Y; for ¢t > ¢y (Ding et al. [2024]). Methods offering explicit theoretical guarantees
on precisely detecting attack initiation are rare; most of the literature concentrates around robustness
guarantees (error bounds, convergence rates) assuming a certain adversarial profile or detection of
malicious clients [Blanchard et al., 2017, Wang et al., 2020a, Qian et al., 2024], rather than provably
devising poisoning alarm. Relatedly, Mapakshi et al. [2025] observed that attacks starting in later
rounds can be more damaging compared to those present from the start.



Assume that at some time point ¢y € [n], a subset of clients Ky C [K] becomes malicious. This model
poisoning can be mathematically described by a change in their local risk functions Fy, k € Ko,
which affects the distribution of the 1ocal SGD updates Y;. To identify the time-point ¢ sequentially,
we examine a CUSUM-type statistic R; := maxi<s<; s|Ys — Y;|, widely used in change-point
analysis. We expect R; to be large for ¢t > ¢, if an attack has altered the mean behavior of the
local SGD updates at 5. The null distribution (i.e. when no attack takes place) of R; is usually
mathematically intractable, hence posing a hindrance to performing valid inference. This necessitates
a bootstrap procedure.

To identify the time-point t; sequentially, we examine a CUSUM-type statistic R; :=
maxi<s<¢ S|Ys — Yz, widely used in change-point analysis. We expect R, to be large for t > ¢ if
an attack has altered the mean behavior of the 1ocal SGD updates at .

Suppose there exists a Gaussian process G; such that a time-uniform approximation holds:
max [tY; — Gi| = op(v/n). (3.1

1<t

Let RY = maxj<s<; |Gs — 2Gt| Then it follows that,

—-1/2 R _RG < —-1/2 Y . 9* . . f t? _te* B
K éltaﬁxn,' ‘ loson 1?3%1%3%“8 s — st —Ga) t( t Kk — Gl

IN

on~1/?2 max [tY; — t05 — Gyl

Equation (3.2) immediately suggests using Gaussian multiplier bootstrap leveraging G, with precisely
quantifiable approximation error. In particular, if Q1_,(X) denotes the (1 — «)-th quantile of random
variable X, then for a suitable positive sequence {a,, },

P(R; > Q1_o(RE) + a, for some t € [n]) < o + P(max [R; — RE|>a,) —a, (3.3)

as long as n~'/2a,, > ¢. We provide more details on these bootstrap algorithms in Appendix Section
G. The two major questions that remain, are

* Does such a G, exist? If yes, can we get a rate 7, g such that 7,, x < V/n?
» Can we explicitly characterize its covariance structure, so as to enable bootstrap sampling?

The main results in Section 3.2 provide answers to both the questions above.

3.2 Optimal coupling for local SGD

The following theorem, proved in Section D.1, establishes a Gaussian approximation echoing (3.1).
Theorem 3.1. For W* = g.(0%,¢), ¢ ~ Py independently for k € [K|, let Vi =

Var(X:f:1 wiWy). Suppose Assumption A.3 holds for a general p > 2. Then, under Assumptions

A.l, A.2 and 2.1, (on a possibly richer probability space) there exists Z1, ..., Zy e N(0, KVk),

such that with

VS = -mA)YS  +nZ K72 Y =0, (3.4)
it holds that,
t
x| Z;(Ys — 0 = Y3)| = Op(n' ") + 0p(n'/PK =" log n). (3.5)

We call the Gaussian approximation iterates (3.5) “Aggregated Gaussian approximation”(Aggr-GA).
Note that Aggr-GA requires a complete sharing of the covariance structure to construct Vg, which
may affect privacy at inference-time. However, it turns out that one can further refine Theorem 3.1 to
provide another Gaussian approximation results that exactly mimics the local SGD updates in their
use of local structure along with periodic sharing. We call this latter approximation by Client-GA.
Theorem 3.2. Under the assumptions of Theorem 3.1, on a possibly richer probability space, for

each k € K|, there exist Z¥, ... ZF vr N(0, Var(W*)), such that with
Of = ((I —nA)OY | +mM;)Cy, OF = (0,...,0), (3.6)



where My := K (w1 Z}, ..., wxZK) € RYK and C, as in (2.2), it holds that

t
max |Z(YS — 05 — YSGQ)| = Op(n*=" + (n/K)iJrﬁ(logn)?’/Q)7 Yt% =K'0%. 3.7
s=1

1<t<n

Note that for p = 2, the rates of Theorems 3.1 and 3.2 coincide. Theorem 2.2 is proved in Section D.2.
In both the results, n' 7 reflects the fundamental error of a generic uniform Gaussian approximation
for the local SGD updates Y,,, and as such, does not depend on K. The second error decreases with
the number of clients, as an increasing number of clients enables 1local SGD updates to track a larger
horizon, and the corresponding client-averaged Y; becomes more concentrated in their trajectory
towards 07, leading to sharper approximations.

Remark 3.1 (Computational differences between Aggr-GA and Client-GA). At each iteration ¢,
Aggr-GA has a computational complexity of O(d?), since it involves generating one random sample
followed by a matrix-vector multiplication. In contrast, Client-GA has a complexity of O(K d?) per
iteration. Importantly, the structure of Client-GA naturally allows for parallel computation between
synchronization steps, significantly reducing the computational burden while preserving periodic
peer-to-peer communication.

Remark 3.2 (Difference with functional CLT). Li et al. [2022] proved a functional CLT for local
SGD when the number of clients K is fixed. Although such a result can theoretically be extended to
the general setting considered here, nevertheless our approximations (3.5) and (3.7) are much sharper
than a functional CLT approximation. As a toy example, consider the vanilla SGD setting, i.e. local
SGD with 7 = 1, and suppose K = 1. Suppose F(6) = (0 — p)?/2,and Vf(0,£) :=0 — p+ . In
this setting, both Aggr-GA and Client-GA collapse to the same Gaussian approximation

YE = (I —nAYE, +mZ, Zi ~ N(0,Var(¢)), Y& = 0. (3.8)

Here A = Vo F () = I. On the other hand, the vanilla SGD iterates can also be seen as Y; — pu =
(I —nsA)(Yi_1 — p) + n¢&;. Therefore, it can be seen that Y; — y and Y,¢ have exactly the same
covariance structure, i.e. Cov(Y.¢, Y,¢) = Cov(Y, Y;); on the other hand, even in such a simplified
setting, an approximation by Brownian motion, such as that by functional CLT, captures the covariance
structure of the iterates {Y; — p}+>1 only in an asymptotic sense. The Gaussian approximation YtG
in (3.8) is a particular example of covariance-matching approximations, introduced by Bonnerjee
et al. [2024]. By extension, same intuition holds for Aggr-GA and Client-GA as well. However,
at this point, we note that the covariance-matching approximations in Bonnerjee et al. [2024] were
for short-range, univariate non-stationary process. On the other hand, in the 1ocal SGD setting,
the polynomially decaying step-size introduces a non-stationarity that can possibly be long-range
dependent. Moreover, our result allows for multivariate parameters in a direct generalization of these
aforementioned, covariance-matching approximations. We empirically validate this in Section 4.

Note that ' ~# indicates the fixed error for the local SGD updates with step-sizes 1; < ¢t~ and in
order to completely underpin the effect of the assumption of additional moments p > 2, an optimal
choice of step-size must be given so that n'~# becomes negligible compared to the second error term
involving the moment p. This choice is indicated in the following proposition.

Proposition 1. Grant the assumptions of Theorems 3.1 and 3.2, and consider the Gaussian approxi-
mations Y. and Y5, defined therein. Suppose K = o(n*) for some ¢ € (0, 1).

(i)Ifc < 2/p, then B > 1—1/p+c/2 ensures maxi<i<n, | ZZZI(YS—H‘;{—Y;}I)\ = Op(n%7§ logn).

(i) For a general ¢ € (0,1), a choice of 3 > 1—(1—c)(5+ %) ensures that maxy <<, | ZZZI(Y; -

O = Yh)| = op(n( =43 (log n)?/2).

Cases (i) and (ii) reveal a trade-off between Aggr-GA and Client-GA. While Aggr-GA requires
information sharing at each step, yielding better approximation, it demands a stricter choice of [,
since 1 — 2 4§ > 1—(1—¢)(5 + ;) forallp > 2,¢ > 0. In contrast, CLient-GA’s local operation
supports K = o(n) clients, aligning with Zhang et al. [2013], Gu and Chen [2023]. Both methods
require known Hessians and local covariances, estimable efficiently via Gu and Chen [2024].



4 Simulation results

Here, we summarize the various empirical exercises to accompany our theory in Sections 2 and 3. In
particular, in Section 4.1, we discuss the Berry-Esseen error dc (v/n(Y,, —0%), Z) for Z ~ N(0,%,,)
with varying choices of the number of iterations N, number of clients K and synchronization
parameter 7. In Section 4.2, we numerically explore the computation-communication trade-off
discussed in Section 2.2. Finally, in Section 4.3, we explore the approximation error of Aggr-GA and
Client-GA via Q-Q plots. Detailed explanations, and additional experiments, along with the model
specifications, can be found in Appendix Section F. All codes are available in github.

4.1 Effect of n and K on the Berry-Esseen rate

As a proxy of dc, we consider d,. = SUPge0,¢] ‘IP’(\\/EEZLI/Q(}_Q —0%)| < x) —P(|Z| < x)| where
Z ~ N(0,I) for a large enough ¢ > 0. Figure 1 shows how d, varies with varying n, K, 7 when the

step-size is kept fixed at i; = 0.3t =97, In particular, d.. decays with N for fixed K, and increases
with K for fixed n. Additional simulations and further insights can be found in Appendix section F.1.
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Figure 1: Plot of d, against n and K for v = 1, and Settings 1(left), and 2(right).

4.2 Computation-communication trade-off

Here, we fix n € {100,200, 300,400,500}, and K = |n"] for r € {0.2,0.6} and numerically
investigate the computation-communication trade-off hinted at in Remark 2.2. We run the local
SGD algorithm with 7 = 5, and 7, = 0.5¢t=7, for 8 € {0.85,0.9,0.95}. Clearly, d,. decays with n
for r = 0.2, and increases with n for » = 0.6, exemplifying our assertion about the computation-
communication trade-off between K and 3. Appendix Section F.2 contains additional details.

085 100

10 20 0 40 500 100 20 300 200 500
n

Figure 2: Plot of d! against (n, 3) for r = 0.2 (left), and r = 0.6 (right). Here v = 0.

4.3 Performance of the time-uniform Gaussian approximations

In this section, we fix N = 500, 7 = 20, and let K € {10,25,50}, and compare the quantiles
of the maximum partial sums of local SGD U,, Aggr-GA Un® ®* Client-GA UCtient-GA and
approximation by Brownian motion: UZ-T | Clearly, Aggr-GA seems to be performing the best, as
suggested by Theorems 3.1 and 3.2. Furthermore, UZ-°T consistently has the worst approximation.
Additional details can be found in appendix Section F.6.


https://github.com/sohamb01/DFL-GA

g

Figure 3: QQ-plots of UAZ8 % (blue), UCent-CA (green) and UL-LT (orange) against U, for y = 1,
N = 500,7 = 20. Here K = 10(left), K = 25(middle), K = 50(right). Rest of the FRand-eff
model specifications are as in Section F.1.1.

5 Conclusion

Sharper theoretical results beyond the central limit theorem is extremely crucial to perform valid and
powerful statistical inference, yet such results have not previously appeared in the literature for local
SGD and in general, decentralized federated learning. In this context, to the best of our knowledge, this
is the first work deriving Berry-Esseen bounds as well as sharp time-uniform Gaussian approximations
over the local SGD trajectory. These results enable the development of valid and powerful statistical
inference methods, including bootstrap procedures Fang et al. [2018], Fang [2019], Zhong et al.
[2023], which can be adapted to decentralized settings. The technical framework developed herein
offers a pathway to sharper results in many other related settings including multi-agent systems
and transfer learning Duan and Wang [2023], Pan et al. [2023], Knight and Duan [2023], Lin and
Reimherr [2024]. It is also crucial to make explicit the effect of synchronization in the derived rates,
which can reflect more trade-offs and constitute a suitable future work.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims of the paper are accurately reflected in both the abstract
and introduction. The paper proposes a two sharp Gaussian approximation theorems for local
SGD, which go beyond CLT in facilitating statistical inference. All claims are theoretically
proven and empirically validated throughout the work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: All the theoretical assumptions about the local SGD settings, are explicitly
mentioned and discussed at length in Sections 2 and A. It also points out the fundamental
restrictions on the number of clients for theoretical validity of the local SGD algorithm.
These discussions appear in the theoretical analysis sections and remarks following theorems.
We also remark some limitations and possible extensions in our conclusion.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the assumptions can be found in the theorem statements, and are discussed
in main paper as well as appendix Section A. All the proofs can be found in Section B-E.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The complete model specifications along with parameters, are provided in
Section F.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the codes to reproduce the results can be found anonymously in github as
well as in the supplemental material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experimental details are provided in Sections 4 and F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include hypothesis testing or statistical significance analysis,
and error bars are not a focus of the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The experiments are lightweight and run quickly on a modern laptop.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research follows all ethical guidelines. No human data or ethically
sensitive content is involved.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper mentions certain societal motivations, such as privacy protection
and computational efficiency while maintaining statistical validity, in the introduction. Since
our work is theoretical in nature, we do not anticipate any negative impacts, and as such the
paper does not include a dedicated speculative discussion of broader societal impacts in a
separate section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The paper does not release any models or datasets with high risk of misuse.
All released components are synthetic and pose no privacy or safety risk.

Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All baseline methods are standard, and citations to prior work are provided
with proper attribution and licensing notices.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces novel Gaussian approximation results, which are the-
oretically validated with extensive proofs. All the accompanying empirical evidence is
documented and released via a GitHub repository in anonymized form. Hyperparameters,
dependencies, and usage instructions are all included.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: The paper does not involve crowdsourcing or human subject research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: No human subjects are involved in this research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
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A Technical assumptions and Some comments on Section 2

A.1 Technical Assumptions

For the validity of our theoretical results, we require some mild regularity conditions on the loss
functions as well as the noise level of each client. We remark, that the following assumptions have
appeared extensively in the theoretical analysis of iterative convex optimization algorithms, and here,
are merely adapted to the federated learning setting.

Assumption A.1 (Strong convexity). There exists p > 0 such that for each k € [K],
(VF(0) = VEL(0),0 —0') > ulf — 0|, 0,6 € RY.

Assumption of strong convexity is common in the analysis of SGD iterates, appearing in Ruppert
[1988], Polyak and Juditsky [1992], Bottou et al. [2018], Chen et al. [2020], and as such, Assumption
A.1 adapts this condition to the decentralized setting.

Assumption A.2. (Stochastic Lipschitzness of noisy gradients) There exists L > 0 such that for each
ke [K],
EP}« [|vfk(97€k) - fk(9l7€k)|2] < L|9 - 9I|27 670/ € Rd'

Assumption A.2 combines the L-smoothness condition on the risk functions F}, with a stochastic
Lipschitz condition on the gradient noise vectors g (6, %) = VEL(0) — V £ (6, £F).
Assumption A.3. (Control on noisy gradients) The functions fi.(0,&) is assumed to be continuously

differentiable with respect to 8 for any fixed {. Moreover, assume that max¢|x) E[|gx (0, EM)IP] < oo
for some p > 2.

Assumption A.3 ensures that Newton-Leibnitz’s integration rule holds and consequently,
Zszl wrgk(0F, €F) constitutes a martingale difference sequence adapted to the filtration o (=, :
s < t), where =, = (£1,...,¢K). Moreover, Assumptions A.2 and A.3 jointly imply that there

exists a constant L¢ such that for all § € R4
max [V F(0) = VaF(05)(0 — 0%)| < Lq0 — 05 [*. (A1)

See Lemma 5 of Sheshukova et al. [2025]. The assumptions A.2 and A.3 are fairly ubiquitous in the
stochastic optimization literature Zhu et al. [2023], Wei et al. [2023], Li et al. [2024]. In particular,
assumption A.2 is much weaker than the corresponding Assumption A2(p) — (i) in Sheshukova
et al. [2025].

A.2 Is strong-convexity Assumption A.1 necessary?

It is important to note that Assumption A.1 fails to hold in certain M-estimation problems including
logistic regression Bach [2010]. Gu and Chen [2024] addressed this issue by invoking a weaker local
strong-convexity assumption, also known as the “local concordance” condition.

Assumption A.4 (Local strong concordance). There exists ;1* > 0 such that Vo F(05) = p*.

Moreover, there exists a constant C' > 0, and compact set ® C R?, such that for all 61,05 € ®, it
holds that

| (u)| < C'101 — 2] ©" (u), where p : u s F (01 +u (0 — 01)),u € R.
In view of Assumption A.4, for theoretical validity of our results, one requires a projected local
SGD updates ©; = Mg ((©;—1 — G¢)C}) instead of (2.2), where Mg denotes the projection operator
on the set compact ®. The key difference in the treatment of Assumption A.4 compared to that of

Assumption A.1 lies in the analysis of the term |§ — nV F(#)|? for some small enough 1 > 0. In
particular, a recurring theme of our proofs is to show that

10 — 0% —nVF(6))* < (1 —nc)|0 — 0%]? for some ¢ > 0, § € R%. (A2)
We highlight the different arguments leading up-to (A.2), leveraging Assumptions A.l1 and A.4

respectively.
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A.2.1 Proof of (A.2) via Assumptions A.1 and A.2
Note that
10— 05 —nVEO)] =[0* — 20(0 — 05) " VF(0) + 7| VF(0)[
<(1 = 2nu+n*L?)|0 - 05|, (A3)

and hence, (A.2) is inferred by choosing n to be small enough. In particular, since we work with
decaying step size 1; o< t=72, it follows that 1 — 2n,u + n2L? < 1 — n,c for some ¢ > 0 and all
sufficiently large ¢t € N.

A.2.2 Proof of (A.2) via Assumptions A.4, A2 and [z| < R

Fix 0 € RY, and choose ¢(u) = F (0% + u(f — 0%)), u € [0,1]. Note that ¢ (0) > pu*|0 — 0%|2.
From Assumption A.4, one directly has

¢"(u) = ¢"(0) exp(=Clf — O |w),

and therefore, recalling |z| > R
(0 —05%) "VF(0) =¢'(1) — ¢(0)

1
ST / exp(—C60 — B [u)du
0

1 —exp(—C|0 — 0%])
—u*le — o0* 2 K
>p*Cexp(—R)|0 - 05|, (A4)

which immediately can be applied to (A.3) to deduce (A.2).

In view of the analysis in Sections A.2.1 and A.2.2 coming to the same conclusion, for the sake of
simplicity, our subsequent theoretical findings are stated and proved using Assumption A.1 only. We
remark that an accompanying result invoking Assumption A.4 and the projected 1local SGD updates
can easily be obtained via minor modifications of our arguments following Section A.2.2. For a
more detailed discussion on the implications of Assumption A.4, we refer the interested readers to
Assumption 3.4 and the associated remark in Gu and Chen [2024].

A.3 A comment on step-size

Our choice of the step-size is motivated from the extensive literature of asymptotics of various
stochastic approximation algorithm. In particular, it is well-known that SGD with a constant step-size
is asymptotically biased Dieuleveut et al. [2020], Li et al. [2024], Glasgow et al. [2022], whereas
central limit theory based on polynomially decaying schedule 7, &< =7, 8 € (1/2, 1) has an extensive
literature for different algorithms. In practice, often a combination of the two kinds of step-size is
used, where a constant-step size algorithm provides a warm start, and after discarding initial few
iterates pre-specified by the fixed burn-in period kg, local SGD can be run with the polynomially
decaying step-size to ensure appropriate convergence. This is tantamount to the step-size choice
n: = Mot — ko) ™P, t > ko, which is also covered by our theory.

B Proof of Theorems 2.1 and 2.2

In this section we rigorously derive the Berry-Esseen bounds on Y;, and Y,,, as stated in Theorems
2.1 and 2.2 respectively. Similar to the simpler analysis for stochastic gradient descent in Samsonov
et al. [2024], we aim to leverage Theorem 2.1 of Shao and Zhang [2022]. However, the regular
synchronization step, as well as the general connection matrix C, induces some significant non-
triviality in the problem, requiring, in particular, careful analysis of the difference between client-wise
estimates and the aggregated estimate. Before we delve deeper into the mathematical details, we
summarize the road-map to prove Theorem 2.1 below.

* In Section B.1.1, we decompose the local SGD updates into a linear component and the
remainder terms.
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* In Section B.1.2, we echo the Lindeberg method, and define a coupling for the remainder
terms. In particular, our choice of the coupling is novel, and rooted into the uniqueness of
the decentralized setting.

* Finally, in Sections B.1.3-B.1.7, we control the different terms arising out of the application
of the abstract Theorem 2.1 of Shao and Zhang [2022] to the steps above. We remark that
this is where our treatment diverges from the preceding works proving Berry-Esseen in a
stochastic approximation framework. To accommodate an increasing number of clients
as well as to control the error of the each local client-level iterates, we derive and apply the
Auxiliary results 4-8.

The proof for Theorem 2.2 will follow a similar structure.

B.1 Proof of Theorem 2.1
B.1.1 Linearization

Noting that Y; = K “IR,1 nomatterift € E, ort ¢ E,, itis easy to observe

K
Yi=Yi—m Yy wiV (01, 8), t € [n, 1290. (B.1)
k=1
Write (B.1) as follows:
K K
Y, — 0 =Yi1 — 0% = VE (Y1) +ne Y wi(VE(Yi1) = VE(OF 1) +m > wegk (051, €F)
k=1 k=1
—(I = A) (Vi1 — %) + me(A(Yiey — 6) — VF(Yio1))
K K
1Y we(VER(Yim1) = VE(O_1)) + e Y wieg(9F_1, €F),
k=1 k=1

(B.2)

where g (0, &) := VFi(0) — V f1(0, ) denote the gradient noise. Denote A’ = H§:S+1(I —njA),

A} = I with A := V3 F (0} ), and define Qs = n, >__, AJ. Recursively, (B.2) can be simplified to

— AL (Yo — 0%) +Zn5At( A(Yeor = 03) = VF(Ys1))+

s=1

K K
+ > w(VE(Yoo1) = VE(OE) + D wegn(0F_1, 68 ).
k=1 k=1 (B_3)

which immediately yields,

Yo — 05 =n"lng 1 Qo(Yo — 05) + _1ZQN+n_1ZQs( Yoo1 —05) — V(Y1)

K
S (VR 1)~ VR + 3 wn(an 06 - 9 (07c,€5)) ),
k=1 k=1
(B.4)

where we define that N; = 31w, WE, with WF = g (0%, €F). Let H = n= /2" Q.N,,
and let 3, = E[H H "]. Then, (B.4) can be re-written as

VS, V2(Y, — 0%) = W + Dy + Dy + D3 + Dy, (B.5)
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where

" 1
—_y-1/2p _ _ T y-1/2
W =3S."2H =" u,, where u, ﬁzn Q.N,, (B.6)
s=1
1
D, = So2Q0 (Y — 0%, B.7
1 \/5770 n QO( 0 K) ( )
Dy = J”ZQS Yoo1 = 0%) = VF(Ys 1)), (B.8)
\/7
1 K
Dy = —=%,'/2 ZQS(ZkaFk(m_l) ~ VE(65.))). (B.9)
Vn =\
K
Dy *Z UQZQS(Zwk gr(05_1,€8) — gr (0% fk))) (B.10)
s=1
B.1.2 Definition of the Lindeberg Coupling
Note that
bV'L
|Ds|, <C 2f|2 172 ZZW e (B.11)
s=1 k=1
be 1
< 12 Y, — 0% (B.12)
F' Zl ZI 1 12
bovV'L 4
=== |n 12 O,(I—J)|p:=As. B.13

In the above series of inequalities, (B.11) follows from wy < by K —1, max, |QslFr < C, and
Assumption A.2; (B.12) is a trivial consequence of Cauchy-Schwarz inequality. Additionally, define
Ay = |Dylaforl =1,2,4. Let Z; = (¢},...,¢K), and for each i € [n], let us denote

{:h t#£1q
\_‘t{} : (gtv"'7£t )7 t:7’7

where &, & Pk e [K],t € [n]. For each i € [n], define the coupled DFL iterates as
O iy = (©1—1, 153 — Gy, 1i3)Ct, Op iy = O, (B.14)
where Gt,{i} = K(w1Vf1 (etlfl,{i}’ Etl,{i})’ ce ,vafK(etIiL{i}, ftj’({Z})) Let Yt,{i} =

K*1®t){i}1. Based on (B.14), we can define coupled versions of A, [ = 2,3, 4 as follows:
Ag iy = ‘ b ZQS Yo 1,0y —0%) = VF(Ye_1.01))) |, (B.15)

bQ\/i 1
Ag iy = |21/ O, (I =D, (B.16)
sty =C s Z:l 195,01} |
K
Ay iy = ‘ 1/2ZQ5<Zwk gk (05— 1{}75 {}) gk(g}k(vff,{i})))‘~ (B.17)
=1

Note that Dy ;3 = Dy for all i € [n]. With these definitions, along with the fact that E[WW '] =
allows us to apply Shao and Zhang [2022], Theorem 2.1 on (B.5) to obtain

de(VnE, VA (Y, = 05). 2) < et/ d L T E[IWI[ AL + Y Ellug| [An — Ay gy, (B.18)

i=1

where Z ~ N(0,1), T, = 30 ElJug)?], Ap = - [Arland A, iy = S0 Ay gy
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B.1.3 Boundon ) Ef|u] [A, — A, (1y]

Recall that max;, [Var[W¥]| = O(1). Clearly N, are i.i.d. and E]N.N] = T8, w2 Var[WF],
which directly implies |%,,| = O(K 1) in view of the fact wy, < K~ for k € [K]. Therefore, from
(B.6) it follows E[|us|?] = O(1/n), and consequently,

4 n
1
ZE il [A = An ] S %ZZ E[|A; — Ay (i3]?]- (B.19)
1=2

i=1 =2 i=1
We will deal with the three terms in the right side of (B.19) one-by-one.

Bound on Ay — A, ;3 We start with controlling E[| Ay — Ay (;3]?]. It is easy to see from (B.8) and
(B.15) that

SKY E[Y, = Ya ' = O(Kn' =% — Ki' =), (B.20)

s=1

where (B.20) follows from Cauchy-Schwarz inequality and Proposition 8.

B.1.4 Bound on Az — Az ¢y

Note that, since @t,{i} = O, for all t < 7, hence we must have
2
[|A3—A3{}|]< E[(Z‘ -6, i} )(I_J)‘F)]
2
< ZEH(QS -0, () = )|}
2 2
=E[|(0: — 0 i) = )| ]+ Y E[[(0s — O, )T = J)[]. (B2D)
Note that,

E[(©; — ©; ()L — J)| 3] —mE[I(G — Gy 1))(Ci — 3]

<n7E]| Zwk (g (OF 1, €F) — gu(0F 1, €)) ]
k=1

s 2
<2PE[] Y wigi (0} 1.65)P] = O(3%)- (B.22)

Hence, Proposition 5 and (B.22) simultaneously imply via (B.21) that

E[|As — Az (4] +K Z nt=0G"PKt 4 Kn'=1 — Kil=%). (B.23)
s=i+1

B.1.5 Boundon Ay — Ay ¢y

This term is the simplest to deal with. In view of the facts (i) Zkl,(:l wi (91 (0F_, &F) —
gr(0e—1, (5} ff)) is a martingale difference sequence adapted to the filtration 7; = o(Z, : s <
)V (), and (ii) for a fixed ¢, g (0F_1,&F) — gr(0s—1,{iy, &F) are independent conditional on
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Fi—1, one readily obtains

E[1As — Ag gy’ (ZEZ ({85, €5,1) — (8 1y, €5 )P

k=1

K
FEIY. welge (05 1,€8) — 0165, €8) — (01, €F) + gkw;(,sf’))m)
k=1
K n—1 K K
ST (K2 S B - 0+ 2K R 165, — 05 [?)
s=i k=1 k=1

n—1

1
S ( S EIOMT — D+ KIY: = Yoo + [0 (7 = ]

B[Oy (I = ) + K|Yiy a;ﬂ)

n—1 . _ 11—
i—B  pl-28 _1-28

Ui 1 E: 2
+ n s (nK + n ), (B.24)

where (B.24) follows from Theorem 2.(ii) and Lemma S16 of Gu and Chen [2024], and Proposition
4.

Combining (B.20), (B.23) and (B.24), for (B.19) we obtain

n 1 Oy B2 ns—B _ 3-8
El|lu;| |A — A, 1 gi L + f 1/2—-28 _ i1/272,6 +
Y el 8-l 572 (7 7 VRO )
1. _B
5% 4+ VEn"28. (B.25)

B.1.6 Bound on E[|IV||A,]]

From E[|u,|?] < n~'/2, we have E[|[IW]?] = O(1), where O(-) hides constants involving d. More-
over, we also have E[|A,|?] < 37/, E[|A|?]. For Ay, observe that from (B.7),

K
B[P S -

K
|Qo|% < - exp(—Cn'~*) for some constant Cz > 0. (B.26)

On the other hand, for Ay, we can invoke Assumption A.3 and Minkowsky’s inequality to deduce

VETEP 5/ 50 Blaw s o0 - VR

K n
V= SRVL T AT
s=1

K S ns 9 nz=F 1_9
<4/ = 15 — B
</ ~ ;:l(K +n;) =0( i K ), (B.27)

where (B.27) follows from Proposition 7. Moving on, for Ag, it is immediate that
VE[ Z,/ 1©:(1 = N)2] < Z WK =0(n PVK). (B.28)
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Finally, for A4, we recall the argument in (B.24) to provide

E[|A4)?] ZE|Zwk gk (05_1,€5) — 9k (0%, €5))17]

1
an

3

\@s (I = J)|%+ K|V 1—9K|)

=1

3

1

- > (2K +.)
s=1

n

A A
ShE

+n28, (B.29)

Combining (B.26)-(B.29), we obtain

E

2

E[[W]A.l £ \/fexp(_cﬁn )+n2 B\ﬁq_ \/]?

nh. (B.30)

B.1.7 Final Berry Esseen bound

Note that, for any ¢ € [n], Pinelis-Rosenthal inequality (Theorem 4.1 of Pinelis [1994]) applies to
yield

E[|27Y2 N %) <K32E|| Zwkwk ] = O(K~Y?),
k=1

which immediately implies that

1
En_3/2 2—1/2/\/‘83 =0
S B A ) = Ol

Therefore, combining (B.25), (B.30) and (B.31), we have that

M=

T, < ). (B.31)

[

_ 1
do (VS Y2 (Y, = 0%), 2) S +nt VK 4+ 2

%
%

which completes the proof.

B.2 Proof of Theorem 2.2

Let I' = Var(}_, neAZN;) = Y0 17]SA”VKA” . Clearly, T'|rp < %. Define v, =
I‘*l/QnsA;‘N’s. Recall (B.3), and rewrite it as

I=Y2(Y,, —05%) = W + Dy + Dy + D3 + Dy, (B.32)

where
=3
Dy =I'~ 1/2,4"( — %),

D, :F_l/Q ZUS-A? (A(Ys—l - 9}({) - VF(YS—I))v
s=1

n K
Dy =I'"1/2 ZnSA? Zwk(ka(stl) — VF,(0%_,)),

s=1 k=1

n K
D, :Fil/Q Z 779-/4? Z WGk (65—17 5?)
s=1 k=1
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Let A; = |bl|2 forl =1,2,4, and let

Ag = D72 p K2 "0 AIOL(T - J)|r

s=1

Note that |Ds|s < As. The terms |A;| and |Al,{i}| are defined and controlled very similarly to

Theorem 2.1, and the details are omitted. The ":/%/2 appears by controlling T,, := S7_ E[jv,]?],
which we show below. Since |H|r < n~ 8K ~!, therefore

- ﬁ - n — —
S E[us] S K2 Y ALPEING] S v R,
s=1

s=1
B.3 Application of Section 2: weighted multiplier bootstrap

In the context of vanilla SGD, Fang et al. [2018], Fang [2019], Sheshukova et al. [2025] introduced a
novel multiplier bootstrap paradigm that precludes the necessity of estimating 3J,, while performing
inference. In this section, we adapt this approach for the particular decentralized setting, and hint
towards the applicability of our Berry-Esseen theorems 2.1 and 2.2. Specifically, for each client
k € [K], let P, be a distribution of a random variable with E[W*] = 1 and Var[W*] = o2,
Wk ~ ]P”ﬁv. For the validity of the bootstrap procedure, we assume that, for all k, a,% < () for some
constant Cy > 0. Moreover, we assume that Wks uniformly bounded, i.e. that there exists universal
constants ¢y, cz > 0 such that ¢; < W¥ < ¢, for all k € [K] almost surely. For b € [B] where B is
the number of bootstrap samples, consider the augmented local SGD updates

@{b} (@{b} r]tG;{b})C’t,

where
G = K(w WV 0}, €h), .. owke WV fre (011, €5))

and for each k& € [K], {Wt{z}} are i.i.d. random variables from P¥,, t € [n],b € [B]. For each

b € [B), define Y,{" = n~1K—1 Dok %" Suppose F,, := o(¢" : s € [n], k € [K]). Following
standard arguments (see Theorem 3 of Sheshukova et al. [2025]), adapting the proof of Theorem 2.1
as well as off-the-self Gaussian comparison results Chernozhukov et al. [2017], Devroye et al. [2018],
it is possible to show that

sup  [P(Vn(Y (" —Y,) € AIF,) - P(Vi(Y, - 05) € A)| Sn'/PPVE,

AeB(R4): A convex

modulo logarithmic factors, with high probability with respect to F,,. This result enables one to

approximate the distribution of Y;, — 6% via the bootstrap samples Y,;{b}. We remark that this approach
works when our focus is on Y,,; we do not expect this multiplier bootstrap to approximate the entire
process {Y;}. We leave the detailed derivations to future work, since the focus of this paper is on
establishing the fundamental Gaussian approximation theorems.

C Proof of Theorem 2.3

Recall that 3, = n 'Y QVkQ/), and ¥ = KA~V A~T. We aim to decompose %,, —
K'Y into manageable terms, and then control them piecemeal. To be precise, write

Y, - K'Y= 1 Z (Qs — A WKA T+ A Wk(Qs — AN +(Qs — AV (Qs —A™HT).

n
s=1

n

Crucial to our proof is the observation that AL — A!_; = n,AAL forall s,¢ € [n]. Therefore,

Z ZZnSAJ DD A=Y > ATHA - A ZI Ad),s

s=1 j=s j=1s=1 j=1s=1
(C.1)
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where the last equality is via a telescoping argument. From (C.1), we obtain > (Q, — A™1) =
—A7! =1 Ap. Consequently, recalling that [Vic|p = K —1/2 it is immediate that

nHATY Qs — A< Al < 7/ exp(—2'7?) dz = O(K~1/2nf71),
ATVl | 2 ) DM S oz [ et de = O )

VK ¢

Moving on, the term (Qs — A~')Vi (Qs — A1) can be similarly controlled by K ~'/2n~1 from
Lemma A.5 of Wu et al. [2024] (also see Lemma 11 and 12 of Sheshukova et al. [2025]). This
completes the proof of (2.7). Finally, (2.8) follows from (2.7) on the account of Proposition 9, and
the fact that X,, is positive-definite, and hence maps a convex set to a convex set.

D Proofs of Section 3

In this section, we derive the time-uniform Gaussian approximation results Theorem 3.1 and 3.2. Our
proofs are divided into four successive approximation steps. We summarize our arguments in the
following. In the step I, we control the difference between the aggregated and the local client-level
local SGD updates. In step II, we replace the martingale structure of the gradient noise by i.i.d. mean
zero noise. In step III, we further linearize the local SGD updates, which we finally approximate by
a stochastically linear Gaussian process such as (3.4) or (3.6) in Step IV.

D.1 Proof of Theorem 3.1
D.1.1 Stepl
Consider ©F = (0%, ...,0%) € R¥>¥ and let
07 = (071 —nG{)Cy, (D.1)
where G¢ is defined similar to G, in (2.2), but with 65" instead of #¥. Moreover, let Y,° =

K~1©%1 € RX. Suppose R; = (r},...,7K) = ©;_1 — n:Gy, and Ry is defined likewise. Recall
(B.1) and (B.2). Define two more intermediate oracle processes:

K
Y, =Yy = VE(Yioa) +me Y wege(0F 1, &F), t € [n], Yo = Yp (D.2)
k=1
K
O __ \r0 o) k° k Y
Ve =YV = VEY2 ) +me Yy wegn(611,€5), t € [n], Y5 = Yo (D.3)
k=1

For a random variable X, let || X || = (E[|X|?])*/? be the random variable £;-norm. Then,

K
1V = Vil < |(Yeet = Vi) = 0 (VE(Yic1) = VE )| + el Y wi(Fe(Yier) — Fi(0F )] == A + B.
k=1
(D.4)

Now, for the term A in (D.4), invoking Assumptions A.1 and A.2, it is easy to observe that
A2 =Yy = Yo |2+ 0f [VE(Yir) = VE(Vi)|P = 20E[(Yier = Viet) "(VF(Yio1) = VF(Yi-1))]
<(1=2nep 4 L2)[[Yir = Yia || (D.5)
On the other hand, for B in (D.4), Assumption A.2 entails,
K
B? <t Ky wil| Fi(Yeo1) = Fr(0f_1)|* < i L*K'E[[|©(1 - J)||F] = O(n), (D.6)

k=1

through an application of Lemma S.16 of Supplement of Gu and Chen [2024]. Combining (D.5) and
(D.6) and choosing a ¢ > p V L, it must hold that

1Y = Y[l < (1= mee)[[ Vi1 = Yiea|l + O,
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which readily yields
1Y; = Vi = O(m).- (D.7)

Very similarly, one can show that ||Y,°> — ¥;°|| = O(1;). Finally it remains to show that Y; and Y;° is
approximately close. We show it as follows.

1¥e — Y22

=[lYio1 = Y2, —m(VF(Yi1) = VE(Y2 ) + 07 Zwkllgk (0F 1, €8) — ge(0F 1, €012
k=1
(D.8)

<(1=ne0)|Yy = Y7 |? + dnfts K 22 1651 = Yoot I? + Vo1 = 03[ + 1070 — Y2 I* + V.2, = 6511%)

D.9)

<(1 =m0V —11°||2+4ntb2<2f+2K) (D.10)
¥ 012 noon

<L =me)||Y: = Y72 +O(ﬁ+?)' (D.11)

Here, (D.8) employs Assumption A.3 to deduce that g (0¥ |, £F) — g(6F°,, £F) are mean-zero

martingale differences adapted to F; := o(¢¥,s < ¢,k € [K]); moreover, since {¢F}E_| are

independent for a fixed ¢, hence gx(0F_1,¢F) — gx. (05_1, £F) are also uncorrelated. Additionally,
(D.9) uses a treatment analogous to (D.5) along with applying Assumption A.2 to the g terms; and
(D.10) involves applications of Lemmas S.16 and Theorem 2(ii) from Gu and Chen [2024]. Finally,
(D.11) immediately implies that

IV = Y2 |? = O K2 + i K™1),
which, coupled with (D.7), yields,

t n
max [ Y (Vi —Y9) <> [V = Y| = Op(n' 7). (D.12)
=1 =

1<t<n
D.1.2 StepII
Moving on, we approximate )7t° by another oracle descent sequence, given by

K
Y =Y - VEE) + 00 weg (0%, €F), Yo = Yo (D.13)
k=1

Importantly, (D.13) can be leveraged to linearize the original sequence Y;_; in (B.1). Before we

proceed in that direction, we still need to approximate f’to by YtT. From (D.3) and (D.13), it follows
very similarly to (D.8)-(D.11), that,

hompalk
=1V, =YL = m(VF(Y,2)) = VEY )P + 7 Zwkllgk 121, 68) — gk (0%, D)1

S(l—mC)llff{il—YLHQerLQbQ *(Ell®7 (1 - J)IF]+C77t+Cn2 )
(L= no|Y2y = YL+ O K i K1),

which immediately yields | — Y| = O(n K1 + /> K~=1/2). Similar to (D.12), here too we
finally obtain

max |Z — Y| = Op(n'PK= 4 pt =382 g —1/2), (D.14)

1<t<n
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D.1.3 Step III

Define YJ as

YT Y;f 1 ntVF( 1) +77tzwk9k gvat) YEJ—G*
k=1
Then it trivially follows that

DA A ARES AR B VACAR ER WA AR
<t —mo)|viL, =V |1P S exp(—t"7) Yo — 0%, (D.15)
which implies maxi<;<, | S0_; (Y] — Y1) = Op(1), since [;" exp(—t'~7) dt = O(1). Moving

on, to linearize f/tT, write (D.13) as
K

Vi =05 = (I —mA) Yy = 05) —n(VEY, ) — AV = 05) +me Y wign(05c, &),
= (D.16)

where A = V3 F(0%). Note that, Assumption A.l along with Y wy, = 1 implies that A > pl.
Mimicking (D.16), define

K
Y2 = (I =AY+ Y wngr(05. &), Y5 =0, (D.17)
k=1
Clearly, it follows that
E[)Y,) - 0 — Y2 <(1—mwE[Y,, — 05 — Y2, | + nE[[VF(Y, ) — A, - 05)]]
< - mwE[YL, = 0 = Y2 || + LomE[V, — 05/ (D.18)
<A - B[V, -0 — Y2 || + OmE " + ), (D.19)

where, (D.18) follows from Assumption A.3 , and (D.19) is a trivial consequence of Theorem 2.(ii)
of Gu and Chen [2024]. Finally, (D.19) yields that

max |Z —Y2)| = Op(n'PK Y2 4 nl=28), (D.20)

1<t<n

D.14 StepIV

Note that Y,° is a linear process, and thus we can hope to bear down standard strong invariance
principle results Komlos et al. [1975], Sakhanenko [2006], Géttse and Zaitsev [2009] on it to yield an

asymptotically optimal Gaussian approximation. In particular, let Vi = Vaur(ZkK:1 wrgk (0%, €%)),
&% ~ Py, k € [K]. Note that, Assumption 4.2 in Gu and Chen [2024] can also be summarized as
| K Vi || =< 1. We pursue two different type of Gaussian approximation. Let W} = g.(0%, £F), and

Ni = 3K w,WE. By Géttse and Zaitsev [2009], there exists i.i.d. Z1,. .., Z, - N0, KVie),
such that max; <<y, | Zizl(ﬁNS — Z,)| = op(n'/?). Write (D.17) as
VP =T —nA)YZ, +mN,
which immediately yields
t t t
DY =D nNeBay, By = Al (D:21)
s=1 s=1 j=s
where A% = H?‘:SH(I n;A), Af = 1. Mimicking Y;°, define Y, as in (3.4), to which we can
simplify Zi VYG =K naZ. Y, Al Note that,
—YS)| < Q K27 = Q, nt/PK-1/?
e, Z )l < o O o 'Z W= KTHEZ)| = onl g Qe ! PKHE)

(D.22)

where Q; := |B1|r + Zi:z | Bs,t — Bs—1.|r. The proof of (3.5) is completed after combining
(D.12), (D.14), (D.20) and (D.22) in view of Proposition 2.
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D.2 Proof of Theorem 3.2 and Proposition 1

In this subsection, we pursue a finer, client-level Gaussian approximation, with slight sacrifice to the
optimality in terms of error rate. In particular, the steps I, II and II from the proof of Theorem 3.1
carry forward verbatim. Consequently, it enables us to invoke from Theorem 2.1 of Mies and Steland
[2023] so that for each k € [K], there exists ZF, ..., ZF ~ N(0, Var(W*)), such that

t

max Z|Z (WF — Z¥)| = Op(K Ki-zpst 1/logn). (D.23)

-

1<t<n
Here W* denotes a generic gi (0%, ¢%). For 61°,...,0K% € R4, define ¢ = (17 ...0K7)
Rk and simultaneously define the recursion (3.6). Letting Yt% =K *1@? 1, one arrives at the

recursion

K
YtG2 =~ 777514)5/;(31,2 + M Z wi Zy, (D.24)
k=1
to which, from (D.23), one has
¢t K Kt
< Q k_ ZE) <by1 -1 ko
fggg)IZ Vo) < max |y > wi(Wy = Z§)| <bslogn max K Z\Z(Wt

= s=1k=1 s=1

=1
=Op((n/K)* +QIJ(logn)?’/Q),
(D.25)

where the second inequality is due to Proposition 2 and maxy wy, < by K ~!. Again, we conclude
(3.7) in light of (D.12), (D.14), (D.20) and (D.25). Finally, Proposition 1 follows trivially from
Theorems 3.1 and 3.2.

E Auxiliary propositions

In this section, we present some technical results required to prove our main theorems. Propositions 2
and 3 relates the 1ocal SGD updates to its asymptotic covariance matrices. In particular, Proposition
2 controls the implicit total variation between the linearized local SGD updates, and as such, is
crucial in deriving the time-uniform approximations Aggr-GA and Client-GA.

Proposition 2. Let A € R be a positive definite matrix with smallest eigen value Ay, > 0, and
define A = H] s+1<I njA), Ay = L If

t
Q= |B1r + Z |Bs,t — Bs—
s=2

then it holds that maxi <<, 2 = O(logn).
Proposition 3. Let B, ; be as in Proposition 2. Then, for all s > 1,t > s, it holds that

|Bst — A7 p S 4exp (—ep(t 7P +5177)),
where cg is some constant depending on 3, Amin.

Propositions 4-8 characterizes the various properties of the local SGD updates and its difference
with its corresponding Lindeberg coupling. These results hold under the conditions of Theorem 2.1,
and can be considered as its building blocks.

Proposition 4. Under the assumptions of Theorem 2.1, it holds that for all i € [n],t > i, it holds that

E[|Y; — Vi (53] = O(n}). (E.1)

Proposition 5. Under the conditions of Theorem 2.1, for all i € [n],t > 1, it holds that

E[[(©; — ©1:)(I — J)|3] = O} K).
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Proposition 6. Under the conditions of Theorem 2.1, it holds that
E[|©.(I - J)|x] = O(n; K?). (E:2)

Proposition 7. Under the conditions of Theorem 2.1, it holds that

2

n
BJY; — 0]'] = O + ). (E3)
Proposition 8. Grant the assumptions of Theorem 2.1. Then, for t > 1, it holds that
E[lY; = Yi (" = O(n;). (E4)

Proposition 9 is a typical Gaussian comparison results that relates the finite-sample covariance 3, to
the asymptotic covariance X in terms of the corresponding normal distributions. This result enables
theorem 2.3 to reflect the computation-communication trade-off of Remark 2.2.

Proposition 9 (Gaussian comparison lemma; Theorem 1.1, Devroye et al. [2018]). Let 31 and ¥4
be positive definite covariance matrices in RP*P. Let X ~ N (0,%21) and Y ~ N (0,X2). Then

dTV(X ) Y) < - .
E.1 Proofs of the auxiliary results

Proof of Proposition 2. In the following, all < solely depend on 3 and Ay,i,. Observe that for s < ¢,
By =15 (I + 773_+11 (I- T]SA)BS+17t). Therefore, it can be written that

Byt~ Bs1y= %Bf + i1 (BegA — 1) =1 + L. (ES)
The I; term is relatively straightforward by noting that max ¢ | Bs :|r = O(1), and %| =
O(s71). On the other hand, for I, Proposition 3 instructs that
Ns—1|BstA—I|p < sl s Pexp ( — cB(tl_’B + 51_5)). (E.6)
Combining (E.5) and (E.6), we obtain
Bt = Bomiplr Ss7' s Pexp (= et ™7 +5177)),
which immediately shows
t t
Q2 S Zs_l + exp(—Cgtl_B)/ s P exp(cps' ™) < logt,
s=1 1
which completes the proof. O
Proof of Proposition 3. Decompose B, + = 15 Z;ZS Aj as
t—1
Byy— A™h = —ATVALH Y (51— 1) A5 + s AL, (E7)
j=s

where the sum Z;;i is interpreted as 0 if s = t. For the term A~ A% in (E.7), we deduce

|AL| < exp(—cp(t' =P 4 s'=7)). On the other hand,

t—1 t—1

S (1 — )[4l e S5 explegs' ™) S (7 — ) exp(—5 ) S 57
j=s j=s

This completes the proof. O
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Proof of Proposition 4. From (B.2) we write
M et (r (O 1,€8) — (01, €)), t=1
(Yier = Yio1 iy) = ne(VE(Yio1) = VE(Yio1 (1y))
i Yoy Wk (VFR(Ye1) = VF(Yioy () — VER(0F_,) + VE(0F_ W)
e ey Wi (9101, €F) = 9 (011,117, €F)). t> .
(E.8)
Clearly, when ¢ = i, we have trivially that E[|Y; — Y (;1|?] = O(n?K~'). Hence, we focus on

Yi—Yi =

t > 4. Consider the observation that 34—, wy (g (0F_1,€F) — g(6;—1 (i1, &F)) is a martingale
difference sequence adapted to the filtration 7, = o(E; : s < t) \/ o(E}). Moreover, for a fixed ¢,
9e(0F_1,&F) — g1 (04—1,(s}, &F) are independent conditional on F;_. Therefore, rewriting (E.8) as

Yi—-Yi=T1+T2+T3 (E.9)
with
Ty = (Y1 = Yoy y) = m(VFE(Yi1) = VE(Y_1 (45))),
K
T =, Zwk(ka(y}fl) —VE(Y;—10y) — VF(0F 1) + VFu(0;_, i }))a and,
k=1
K
T3 = ZWk (91(0F_1, €F) — g (011,113, €F)),
k=1
it is easy to see that E[T}" T3] = E[T, T3] = 0. Consequently, from (E.8), one computes
E[[Y; — Yoy ] = E[Ti[?) + EIIT3[?] + BT[] + 2B(T) T5). (E10)

Now all that is required is to build a recursion by analyzing (E.10) term-by-term. Note that standard
arguments invoking Assumptions A.2 and A.1 yields

E[|T1°] < (1 — mo)E[|Yie1 — Yio1, /7). (E.11)
On the other hand for T3, we proceed as follows:

E[|T5 2] me,iEmk 08 1. €F) — gr(61_y 11y, €D

k=1

K
<ot > wf (EN0Rs — Yioa 2] + BIOE, iy = Yo,y 2] + B[ Y1 = Yoy g0y ?])
k=1

<"f E[|Vioy — Yie1 (] HO(nt) (E.12)

where O(n K1) bound in (E.12) is derived upon applying Lemma S16 of Gu and Chen [2024].
Very similarly, one can bound 75 as
K
IEHTQ| NWtKZwi]E Y1 — 95 1| + [Yio1, iy — t—l,{i}|2] = 0(7721)- (E.13)
k=1

Finally we tackle the cross-product term in (E.10). Again, Assumption A.2 and yet another application
of Lemma S16 of Gu and Chen [2024] produces

E[T) To] <ni/E[|T1|?] |Zwk VE(Yio1) = VE(Yio1,0y) = VE(07_1) + VER(OF | (1) ]
k=1

K
<tV E[[T1]?] Z]E Vi1 — 9571|2 +1Yeo1, iy — 9571,{i}|2]
k=1
< VE[T1)?]
1
Sm(f}f + cE[|T1[?)) (E.14)
<77t E[IT[*] + O(n}), (E.15)
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where (E.14) involves an application of Young’s inequality zy < ex? + (4¢)~1y? with € = (4c) 71,
where c is as in (E.11). Therefore, in view of (1 4 7;5)(1 — nc) < 1 — 5, we combine (E.11)
-(E.15) into (E.10) to obtain

4

E[|Y: = Yo < (1= mg + ”f) E[|Yim1 = Yio1, (7] + Ol +55), ¢ > i,
which immediately shows (E.1) with standard manipulations (see Lemma A.1 and A.2 of Zhu et al.
[2023]; Polyak and Juditsky [1992] ]

Proof of Proposition 5. Recall Cy from (2.2). Let r;, be the number of synchronization steps
between s — 1 and ¢, satisfying L J +1>rs > V_TSJ Further note that C™s = H§'=s C
From (2.2) and (B.14), it is easy to see that

(©;— 0, ;)T —J) Z"s G, — G, j)(C™ = J), (E.16)

s=1

where we have repeatedly used the fact that C1 = 1. Moreover, it also holds that

~t—s—(17—1) :in(t,s),

(E.17)

( l)ma»x{t—s—(‘r'—2)70}

Icre =T, < = Mtmscr-1)  Lt-s2r-1yP

where p = pl/ 7. Equation E.17 also appears as (S7) in Gu and Chen [2024]. In view of (E.17), one
can expand (E.16) as follows:

t

E[| Y 1s(Gs — Go ) (C™ = J)[7]

s=1

<Z"€p~r t S |G Gs {7,}|F]

¢t
3N kit s)rpn(t, Z)nSmJE[Tr[(GS —G) (G- GZV{Z—})H
s=i 1=i,ls
(E.18)
¢
Z E[|Gs =Gy }|F]
- ¢t
30 Kot ) (W02 E(R1G, — G gy [F + 171G — Gy}
s=1 l=1,l#s
¢
<ZHPT (t, $)2E[|Gs — Gy 113 [2] +Z,@pr (t, s) fIEHGS—GS,{i}@]( 3 /@,,7T(t,l)).
s=1 l=i,l#s
(E.19)
Now we are required to tackle E[|G — G {;3]%]. To that end, observe that for s > i
E[|Gs — Gy iy |7] —KQZWI%E IV f(05_1,€5) = V [0y 11y €)1
k=1

K
<2V3L Y E[l7_y — 6y (3]

k=1

K K
SD E[6E Yl +ZE\9S Ly = Yeor a1+ D E[Yen = Yoy (]
k=1 k=1

=0(1;K), (E.20)
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where (E.20) follows from Lemma S16 of Gu and Chen [2024] and Proposition 4 respectively. Putting
(E.20) back into (E.19), we obtain

E[[(©; — ©; 1i))(I — J)|3] <Zn4Kmths <Z774 it = O(iK),

s=1

where the last assertion uses fln z”%V"dz < n” %" for a,y > 0, where < is independent of n.

This completes the proof. O
Proof of Proposition 6. We can re-purpose significant portions of the proof of Lemma S16 of Gu

and Chen [2024] to prove (E.2). Indeed, writing ©; = 22:1 1sGsCs, we have from the referenced
proof that

E(|©:( — J)|%] =E[ |Z77s (Cmr = J)|E]

t

<2E[(Zns Ko (L, )| Gyl ) } +2E[(;@,T(t $) Y. kpr(t,nem|G| Gz|>

1=1,l#s
=51 + Ss. (E.21)
For S7 in (E. 21) it is straightforward to obtain

Sl <Zns pT ‘G | +Z Z nsnl pT t 5) (t7l)EHGS|2|Gl|2]

s=11=1,l#s
t
<Z173 K E[|G,|*] —&—anTts)n [G4|"] max Z f<a (E.22)
s=1 1=1,l%#s
S Z K203 (k.7 (L, 5) + g 1 (t,5)) = O(ni K?), (E23)

where, in (E.22) we apply AM-GM inequality to derive
B[ G| "] + /B[ Gi|*]
5 .
A very similar treatment yields the same bound on S5, completing the proof of (E.2). O

Mt E[lGs*|Gal?] <

Proof of Proposition 7. Write
R, :=Y; — 0} = E1 + Es + E3, where,
Ey =R — ﬁtVF(Y}A),
K

Ey =m Zwk(VFk(Y;&fl) - VFk(ef—ﬂ)a and
k=1
K
E3 =T Z wkgk(efil, ff) (E24)
k=1
Note that trivially, Assumptions A.1 and A.2 imply that
E[[E1|*] < (1 = mo)E[|Re—a]*]. (E.25)
Moving on, for E5 we proceed as follows:
K
E[|Eo|') =niEl Y wie(VEs(Yeo1) — VE(611))["]
k=1
<Cy— E{(ZD@ 1— 0 1|)}
<c, E|01 (I = D)[F) < Chr (E.26)
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for some constants Cy, C > 0, where the final assertion is drawn from Proposition 6. Finally, for
FE3, we obtain,

K 4
"
E[| E3|*] =n/E]| kEflwkgk(af_l,gf)m < Gy, (E.27)

for some constant C3 > 0, where we have used the fact that g;, (0¥ ;,¢F) are mean-zero and
independent random vectors conditional on F;. Now, we will leverage (E.25)-(E.27) to develop
bounds on the cross-product terms. In particular,

E[|E1 |?| B2 ] <VE[E1[]VE[El|1]
<Csn}v/E[|E1]Y]

<Cymin{neE[|B1['] + (42) '], PeE[Eaf] + (4)nf},  (B28)
and similarly
3 2
E[|E1[*| Ba[?) <Comin{nieB[| Ex|] + (4) ' 05, PeEl|EL") + (40) 15}, (E29)

where the final assertions follow from Young’s inequality. Here, ¢ is chosen to be small enough,
however it remains a constant; the explicit choice of € will be indicated towards the end of the proof,
when we collect terms to establish the recursion. Note that, quite trivially, from (E.26) and (E.27),
one has

6
E[|Es|?|E3?] < 04% for some constant Cy > 0. (E.30)

Rest of the cross-products are strictly dominated by some combinations of the terms analyzed till
now. For example, for [, r, ¢ € {1, 2,3}, Cauchy-Schwarz and AM-GM inequalities implies that

E[(E] Eq)’] <E[|E*|E,|),
E[E|* (B E,)] <vEIE[\/E(ET E,)?),
E[[(E, E:)(B) Eo)l] <271 (E[(E] E,)*] + E[(E] E,)?]). (E.31)
A careful collection of terms from (E.25)-(E.31) yields

3
E[|RI{] < (1= mo)(1+ :Coe)E[| Re '] + O + 1)), (E32)

where Cj is a large constant depending upon Cs, C5 and Cyy. Now, choose € > 0 so that Cye < ¢/2,
upon which we immediately obtain (1 —n;c)(1+1:Coe) < 1—mn.c/2. Therefore, (E.32) immediately
yields (E.3). O

Proof of Proposition 8. Recall (E.8). Clearly, for ¢ = 14, the result is trivial. For ¢t > ¢, we leverage
(E.9). A proof very similar to (E.3), which uses a similar decomposition (E.24), can then be followed.
The crucial term is E[|T1]2|T3|?], which is computed below. Note that

4 r K
n 4
BTl < T8 | 5 lon (68 1068) — 6, .|
k=1

K

4
SL'%E[Z 1071 = 01 iy "]
k=1

. K K
3271/%1[5[2 07, — Yo' + K[Yiq — Yol + Z 100—1,0iy — Yier gy |*
k=1 k=1
4
S%E[K_1|@t—1(f =N+ K MOy (I = J)|p + K|V = Yioq ]
SnfE[[Yiq — Yt71,{z‘}\4} +0(n}). (E.33)
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Therefore, from (E.33), it follows

E(|Ty | T3] </E[T1[*]V/E[|T5[*]
<VE[TF(VIn? \JE[Y 1 — Yir (4] + O(r})
SPE(Yi—1 — Yo, '] + ni VE[ T1[4]
SIEY 1 = Y1 Y+ ilEI T2 ] + O(np). (E.34)

Rest of the terms are computed similar to Proposition 7, and the details are omitted. The final
recursion can be derived to be

E[Y; = Y, (i3"] < (1 = mo)E[[Ys1 — Vi1 (3 *] + O(n?) for some small constant ¢ > 0,
which immediately yields (E.4). O

F Additional Simulations

F.1 Effect of n and K on the Berry-Esseen rate

In this subsection, we empirically investigate the behavior of the Berry-Esseen error d¢(1/n(Y,, —
0%), Z) for Z ~ N(0, ¥,,) with varying choices of the number of iterations N and the number of
clients K. If the bound (2.5) is sharp, we expect the Berry-Esseen error to decay with increasing IV,
and increase with an increasing number of clients. Since the distance d¢ involves taking a supremum
over all convex sets, which is computationally infeasible, we restrict ourselves to the following
measure of the approximation error:

d.= sup [P(vnS, 2V, — )| < z) ~P(1Z] < x)
z€[0,c]

. Z ~N(0,I).

For large enough ¢ > 0, we expect d, to be a reasonable proxy for dc. For our numerical exercises to
quantify d., we analyze the output Y,, of the local SGD algorithm under a federated random effects
model, hereafter denoted as FRand-eff. We describe the set-up below.

F.1.1 FRand-eff formulation

Consider a positive definite matrix I' € R%*? and 8, € RY, and let DX := {,...,8K} i1
Na(Bo,T). Moreover, consider $X := {0?,...,0%} C RE,. Fork € [K] and att € [n]-th
iteration, suppose that the k-th client has access to data (yi, z¢x) € R x R generated from the
linear model y;, ~ N(x;ﬁk, 0,%). If the weights are chosen such that wy = ... = wxg = K1,
then clearly 07 = 22{21 wiPBr — Bo as K — oo. Therefore, local SGD can be employed, and
we expect Y,, to consistently estimate 5y as n and K grow. This model highlights the need for
information-sharing across client, since unless I' = 0, the output of local vanilla SGD for any
particular client is inconsistent for 3.

For the purpose of the numerical exercises in this section, we choose d = 2 and By = (2, —3) T, and
let I" = I with v > 0. In particular, v = 0 corresponds to a fixed effect 5y from which each client
generates their observations. For each K, we generate XX uniformly from the set {1,...,5}, DX
from the specification above, and keep them fixed throughout {he corresponding experiments as n

varies. The underlying connection matrix C is taken as C;; = 5 I{|i — j| < 1}, 4, j € [K]. In other

words, every client is connected to only its two immediate neighbors.

F.1.2 JC versus n and K

In this set, we analyze the behavior of Jc versus n for different choices of K, 7, and ~y. In particular,

we aim to verify the Berry-Esseen error rate of n'/2~%+y/K from Theorems 2.1 and 2.2. Let v = 1.
Consider the following two separate settings corresponding to n, K, and 7.

* Setting 1. Let K = 10, and vary n € {100,200, 300,400,500}, and 7 € {10, 15, 20}. For
each pair of (n, 7), we plot d. against n.
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* Setting 2. fix n = 300, and vary K € {20, 40, 60, 80,100}, and 7 € {10, 15,20}. For each
pair of (K, 7), we plot d. against K.

We provide the practical details behind empirically estimating d.. For each of the experimental
settings described above, we generate (ys1, 7¢x) € R x R k € [K],t € [n] from the FRand-eff
specification described above, and run the local SGD algorithm with step size n; = 0.3t=0-7°
for t € [n]. For the large choice of ¢ = 100, d, is empirically estimated by ng, = 1000 many
independent Monte-Carlo repetitions of our experiments.

Figure 1 allows us to draw important practical insights from the rates of Theorems 2.1 and 2.3. Firstly,
from the Settings 1 and 3, the synchronization parameter 7 does not seem to have a significant effect
on the behavior of czc. Moreover, Figure 1(left) seems to corroborate well with the conclusion of
Theorem 2.1, with d, decaying with n for a fixed K. On the other hand, for Setting 2, Figure 1(right)
seems to point towards a trade-off in terms of K for fixed n. This particular behavior becomes clearer
as we recall (2.5). For fixed n = 300, the initial decay of d, (and by extension, d¢) with increasing
K, is caused by the n=%/2K~1/2 term. However, as K increases, the term n'~#/2y/K starts to
dominate, leading the error d, to increase with increasing K. This numerical exercise establish the
sharpness of our upper-bound (2.5), complementing the discussions in Remark 2.1.

To investigate the behavior of d, further, we also consider the case ~ = 5. In Figure 4, due to the
increased heterogeneity across [y, the effect of synchronization becomes more pronounced; for the
same values of n, K, 7, the d.. values are much lesser compared to that in Figure 1. In particular, in
Figure 4(right), the inflection point in K beyond which n'/2=#/K starts to dominate, has shifted to
the right. This is understandable, since increased variability among /3, means a greater reward for
sharing information, and thus the effect of increasing the clients leads to lowering the error d, fora
longer regime, before the asymptotics of n'/2~%y/K eventually kicks in.

F.2 Computation-communication trade-off

In this section, we numerically investigate the computation-communication trade-off hinted at in
Remark 2.2. There, we noted that if K < n° for ¢ > 1/2, then, based on our upper bounds, we
argued that for no 8 € (1/2,1) does dc converge to 0. In particular, this observation is trivial
for 8 € (1/2,1/2 + ¢/2] since the central limit theory itself fail to help in view of violation of
K > n?P~1, Of particular interest is the range 3 € (1/2 + ¢/2, 1), where, as per Theorem 3 of Gu
and Chen [2024], central limit theory continues to hold, but (2.8) suggests that the upper bound to d¢
is no longer o(1).

To explore this phenomena through numerical examples, we invoke FRand-efffor v = 0, and let
n € {100,200, 300, 400, 500}, and K = |n" | for r € {0.2,0.6}. In conjunction with Theorem 2.3,
we consider the following error:

dl = sup [P(|vnS V2(Y, —05%)| < z) —P(|Z| < x)
z€[0,c]

)

where ¥ = A~1SA~T. Moreover, we consider the Local SGD algorithm with 7 = 5, and 7, =
0.5t=#. In light of 1/2 + /2 € {0.6, 0.8}, we ensure the validity of central limit theory by letting

B € {0.85,0.9,0.95}. Finally, for each value of r, we plot d.. against n for the different choices of 3.

For r = 0.2 and r = 0.6, the evident decreasing and increasing trends of d, in Figure 2 respectively,
vindicate not only the sharpness of our Berry-Esseen bounds Theorems 2.1-2.3, but also clearly
highlights trade-off at the region /n < K < n.

F.3 Effect of heterogeneity

In this section, we characterize the effect of data hetero-geneity on the Berry-Esseen errors of
Theorem 2.1. To start with, we note the following generalized version of Theorem 2.1, whose proof
merely follows from careful tracking of constants, and is therefore omitted.

Corollary F.1. For £%) ~ Py, (the data distribution of client k € [K)), define 1, = E[|V Fy(0%) —
V [ (0%, %N forl = 2,3,4. Denote My = 3", ik, and Moy = ZkK# ,ug’k,u%’l. Assume that for
some constant ¢ > 0, miny, p4 , > c. Further, assume maxg Zszl w||[VE() — VEL(0)]|* < k*
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for some k > 0. As long as T < On, for some 0 € (0, 1), under the assumptions of Theorem 2.1, it
follows that:

de(Vn(Y, — 0k), Z)
S+ D (VT +

M. nhz Vv My + M.
\/71/7)<IMB?)/2 \/*"’_n/ B(\F—F K4\/+722+\/K7)

| M, M
1-28 K 4 1/2-2p "4 -6 F.1
n (v YA +\/Mz> +n L +n , FED

for some constant ¢ > 0.

The effect of heterogeneity can also be verified empirically, by noticing that v plays the role of
heterogeneity in the Frand-eff formulation in Section F.1.1 in the supplement. The corresponding
simulation results can be seen in the following.

n =100 | n =200 | n =300
0.222 0.224 0.154
0.258 0.188 0.112
0.322 0.322 0.302
0.374 0.272 0.232
0.542 0.292 0.302
Table 1: Berry-Esseen error across different levels of heterogeneity under step-size= 0.3t =972,
number of clients K = 10, 7 = 2, C;; = 1/3I{|j — i| < 1}, dimension d = 2. All the results are
based on 500 Monte-Carlo simulations.

DN AW =D

F.4 Effect of Synchronization
Note that, from the verbose Corollary F.1, one can glean the following result that condenses the effect
of synchronization in an interpretable manner.

Corollary F.2. As long as T < On, for some 0 € (0, 1), under the assumptions of Theorem 2.1 it
follows that:

_B
do(Vi(Yy — 0%),Z) S (V7 + N ”K> (E2)

for some constant ¢ > 0.

In particular, we allow the synchronization parameter 7 to grow linearly with n. Clearly, as the
number of local updates 7 increases, the errors increase with a /7 rate. This have also been verified
empirically in the following table.

T n =100 | n =200 | n =300
10 | 0.087 0.100 0.110
20 | 0.118 0.146 0.155
30 | 0.139 0.168 0.171
40 | 0.155 0.183 0.185
50 | 0.164 0.196 0.211

60 | 0.176 0.225 0.220
70 | 0.175 0.218 0.231

80 | 0.176 0.230 0.252
90 | 0.176 0.234 0.253
100 | 0.175 0.241 0.261
Table 2: Comparison of Berry-Esseen error across different values of 7 under step-size= 0.3t =972,
number of clients K = 10, , dimension d = 2, Connection matrix C;; = 1/3I{]j —i| < 1}.
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F.5 Effect of connection matrix

In the following, we provide experimental results on how the Berry-Esseen errors depend on the
network topology (p), where p is the second largest eigen value of the connection graph C. As the
network topology becomes less connected (p 1 1), the GA error scales as (1 — p'/7)~1/2. On the
other hand, when p = 0, the network is densest as C = K 111}, and the algorithm essentially
becomes a centralized one.

p n =100 | n =200 | n =300
0.1 | 0.094 0.084 0.089
0.2 | 0.106 0.107 0.104
0.3 | 0.121 0.126 0.124
0.4 | 0.136 0.143 0.138
0.5 | 0.149 0.164 0.154
0.6 | 0.165 0.192 0.175
0.7 | 0.184 0.217 0.203
0.8 | 0.203 0.245 0.250
0.9 | 0.212 0.275 0.294
Table 3: Comparison of Berry-Esseen error across different values of p under step-size= 0.3
number of clients K = 10, , dimension d = 2, synchronization parameter 7 = 10. For each p,
C=plg+(1-pK 11k,

—0.75
t s

F.6 Performance of the time-uniform Gaussian approximations

This section devotes itself to numerical studies to validate the efficacy of the Gaussian approximations
Aggr-GAand Client-GA, discussed in Section 3. Consider the quantities

t

t t
Up = max | Y (Y —05)|, UpeE* = max | > Y|, and US#* = max | V5|,
s=1 s=1

1<t<n 1<t<n
s=1

where YSG1 and YSG2 are defined as in Theorem 3.1. Moreover, we also consider the Brownian motion
approximation by functional central limit theorem as another competitor, and as such, consider

t
nyl_CLT = max ‘ZZSL Zla" '7Z7l Z.Ld. N(O’Z)’

1<t<n
- s=1

where ¥ is as in Section 2.2.1. In order to compare the distributions of U488 %, [y¢tient-GA apq
UZ-CLT to that of U,,, we resort to Q-Q plots. Fix N = 500, 7 = 20, and let K € {10,25,50}.
For each triplet of of (N, K, v), we simulate ng, = 500 parallel independent local SGD chains
with step-sizes 1; = 0.7¢t~%-85, and observations from the FRand-eff model in order to empirically
simulate U,,. Concurrently, we also simulate ng,, independent observations from the distributions of
U488 0h Ctient-6A apd [J£-CLT by running the corresponding chains in parallel. The QQ-plots are
shown in Figure 3.

The sub-optimality of the functional CLT as a time-uniform Gaussian approximation to {Y;} is
empirically evident from the QQ-plots. Both our proposals Aggr-GA and Client-GA uniformly
dominate the approximation via Brownian motion across different settings. Moreover, as K increases
from left panel to the right, Aggr-GA out-performs Client-GA. This in line with Proposition 1 (i)
and (ii) underpinning the sharper approximation rate for Aggr-GA. However, we must recall that
Client-GA requires local covariance estimation for each client, thus protecting the privacy of the
federated setting.
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Figure 4: Plot of JC against n and K for v = 5, and Settings 1(left), and 2(right).

F.7 Ablation Studies

In the following, we further investigate the affect of heterogeneity and synchronization for the time-
uniform Gaussian approximations. In particular, we carry out two ablation studies for the parameters
7 and v in the FRand-eff formulation. In the first experiment, we fix N = 500, K = 15,d =
2,C;; = 1/3I{|j —i| < 1} and v = 1, and vary 7 = 5,50, 100. For each particular setting, we
report the following quantities:

|q17a(Un) B Q1704(U»£_CLT)| |QIfa(Un) - q17a(U£ggr—GA)|

Q-ciT = Mmax Quger-ca = max and,
ae(0,1) G1-a(Un) e ae(0,1) q1-a(Un) ’
_ Client-GA . .
Qclient-ca = MaXae(0,1) |q1"’(U”;l_q; ’U‘J‘SJ )l The following table summarizes the results.

T Qs-cLt QAggr—GA (Qc1ient-ca
5 1.495 0.214 0.327

10 | 2.009 0.44 0.53

15 | 2.476 0.663 0.883

Clearly, as the number of local steps 7 increase, the efficacy of each Gaussian approximation
worsens; however, the two Gaussian approximations proposed, Aggr-Ga and Client-GA consistently
outperforms a functional-CLT based approach, mirroring our results from Section 4.3. Moreover,
Aggr-GA consistently provides the sharpest approximation, vindicating the theory outlined in Section

Moreover, we also fix N = 500, K = 15, 7 = 20, and vary the heterogeneity parameter v = 1, 5, 10.
The results are as follows.

o Qs-cLt QAggr-GA Qciient-ca
1 1.047 0.237 0.275
5 2.047 0.605 0.646
10 | 2.805 0.547 0.782

We again see the worsening performance of the Gaussian approximations with increasing heterogene-
ity.

G Experiments on attack instance detection via time-uniform approximations

G.1 Attack instance detection

To round off our discussion in Section 3.1, one can exploit the time-uniform approximation guarantees
of Theorems 3.1 and 3.2 to propose valid, Gaussian bootstrap-based algorithms for attack instance
detection. For convenience, we only state an algorithm based on Theorem 3.1; a corresponding
algorithm based on Theorem 3.2 can be likewise constructed.
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Algorithm 2 Time-uniform Gaussian bootstrap

Input: Initializations ®g = (6¢,...,0%) € R4X; Connection matrix C; Synchronization
parameter 7; Loss functions fi (-, £*), &8 ~ Py, k € [K], weights {wy } 5|, number of iterations n,
step-size schedules {n;}}_, Hessian A; number of bootstrap samples B; covariance matrix V.
* Let B, = {r,27,..., L7}, where L = |2]. Initialize { = 1. Stopping time To = 1,
estimated attack instance 59 = + inf.
While ¢ < n:
1. Store the local SGD iterates Y;, and calculate R = maxj<s<¢ s|§7S — }7}| and s; =
arg maxj<s<; s|Ys — Yy|.
2. ForB=1,...,B:
Draw Z,") ~ N(0,Vk), and do ;7" = (I =, A) Y, + 02" k172, ¥ 5 =
yG (0 _ ‘tGl’(b)|

s,1

0. Calculate RtG’(b) = maxi<s<t 5|

* (1_q < sample quantile({R?’(b)}).

Thresholding: If R; > G + cy/n:
To <+ t, So < STO' StOp.

Else t+ = 1.

Output: ToI{Ty < n}, sy, .

We remark that Algorithm 2 is directly motivated from (3.3); it not only detects the attack instance,
but detects it as soon as possible in a sequential manner. We provide some numerical experiments
validating this algorithm in Section G.2.

G.2 Numerical experiments on attack instance detection

For a corresponding numerical validation, we consider the Frand-eff model in Section F, and
consider an attack at time point ¢, = T'/2 for Ky = K /2 many clients, where their corresponding
parameters ), change to 6,; = Br + p. We take T' = 500, K = 10, 7 = 20 and for each setting,
the above algorithm is run for B = 500 bootstrap samples. The empirical power of the described
algorithm is reported below, based on 500 Monte-carlo simulations.

10 Probability of detection | Attack instance (mean, 95% CI) | Stopping time Tp (mean, 95% CI)
0 (No attack) | 0.046 (False positive) - -

0.5 0.172 201.233, (58.75,290.875) 400.67, (141.25, 496.875)

1 0.966 265.203, (144.05, 309) 412.49, (345.05, 482)

1.5 1 255.772, (155.9, 310.525) 389.61, (292.475, 470.525)

2 1 249.672, (118.85, 286.575) 356.32, (311.475, 397.525)

2.5 1 247.098, (113.8, 281) 343.39, (294.95, 379.525)

3 1 249.572, (94.275, 276) 334.57, (282.95, 367)

Table 4: Simulation results of attack detection.

Clearly, the higher the severity of the attack (u being large), the more probable it is to be detected,
and the quicker it gets detected. Moreover, the estimated attack time also stabilizes around the correct
attack instance. Finally, we note that the algorithm can be modified to perform the sequential test
only at the synchronization steps, instead of testing for all ¢.

G.2.1 Experiments based on MNIST dataset

As a further application of Algorithm 2, we work on a federated learning (FL) setup with K = 5
clients collaboratively training a linear classifier on MNIST data. Let each image be x; € R?8%28,
To get rid of high-dimensionality, a PCA transform P : R?8%2% _ R? with d = 3 is fitted on
the full training set z; = P(x;) € R3. At time point ¢, each client k € [K] sequentially receives
€F = (yF, 2F)’s where yF are corresponding digit labels. Following the notation of the paper, the loss
function of client & is the cross-entropy loss:

FeW,b:€8) = —ylog (i) — (1 — yf) log(1 — f), 4 = o(Wzf +b),
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where o is the sigmoid/logit function, and W € R1°%3 and b € R!°, so the parameter vector
6 = Vec([W : b]) € R? with d = 40. The weight parameters for the aggregated objective function
are w, = K~ ' k € [K], and the step-size is 7; = 0.3¢t~°-75 in conjunction with our empirical
exercises. The synchronization parameter is 7 = 5, and we use the connection matrix from the
simulation: C;; = 1/3I{|j — i| < 1}. Finally, we run the local SGD iterates for n = 200 iterations.

For a randomly selected set of Ky = 3 clients, a label-flipping attack (the label of image of digits
1, 2,4 are switched to 7, 5, 8, and vice-versa) is injected at ¢ = 50, and Algorithm 2 is employed to
detect this attack. The matrices A and Vi are inputs to this algorithm, and are therefore estimated by
a pre-trainining/warm-start transient phase. The results are summarized in the following table.

Probability of detection | Attack instance 3o (mean, 95% CI) | Stopping time T (mean, 95% CI)
No attack 0.06 - —
Label flipping attack | 0.90 58.49, (31.7, 96.25) 95.67, (89.1, 98.9)

Table 5: Simulation results for label-flipping attack detection.

We note that the empirically validity under level 0.05 is approximately maintained, and the algorithm
also achieves high detection power under the label-flipping attack. We remark that the detection can
be made earlier by tuning the constant c in the thresholding step appropriately by eg. cross-validation,
but overall this experiment shows the applicability of such Gaussian-bootstrap based algorithm
beyond theoretical rates, in practical scenarios.
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