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Abstract

We propose a method for accurately detecting bioacoustic sound events that is1

robust to overlapping events, a common issue in domains such as ethology, ecology2

and conservation. While standard methods employ a frame-based, multi-label ap-3

proach, we introduce an onset-based detection method which we name Voxaboxen.4

For each time window, Voxaboxen predicts whether it contains the start of a5

vocalization and how long the vocalization is. It also does the same in reverse,6

predicting whether each window contains the end of a vocalization, and how long7

ago it started, and fuses the two sets of bounding boxes with a graph-matching8

algorithm. We also release a new dataset of temporally-strong labels of zebra9

finch vocalizations designed to have high overlap. Experiments on eight datasets,10

including our new dataset, show Voxaboxen outperforms natural baselines and11

existing methods, and is robust to vocalization overlap.12

1 Introduction13

Detecting animal sounds is the foundation of bioacoustics research. In practice, these sounds often14

overlap, but identifying each individual acoustic unit is necessary for a diversity of tasks, including15

species recognition and population estimation, which can be critical for ecology and conversation16

(1). When multiple individuals from a single species co-occur, the sounds they produce can overlap17

with each other, often with important functional consequences, e.g. in bats (2), zebra finches (3),18

frogs (4), and elephants (5). To understand these communication systems, large-scale identification19

of individual vocalizations, including accurate classification of overlapping sounds, is crucial.20

Motivated by this, we desire a sound event detection (SED) method that can predict the onset time,21

offset time, and class label (e.g., species label) for overlapping sound events. Commonly, SED22

methods adopt a frame-based approach: for each time frame, for each class, predicting whether a23

sound of that class occurs in that frame (6; 7; 8; 9), and merging consecutive frames with the same24

class into a single event. This does not accommodate overlaps from the same class. To address this25

limitation, we propose a method we name Voxaboxen, For each frame, Voxaboxen makes a binary26

prediction as to whether it contains an event onset, plus a regression prediction for how long that27

event will last, and a class prediction (e.g. species label). This design choice means the duration of28

one predicted event can extend past the onset of a second event, thus allowing the model to predict29

overlapping vocalizations without them being merged.30

To investigate how well Voxaboxen deals with overlapping vocalizations, we introduce a new dataset31

of recordings of eight female zebra finches (ZFs) spontaneously interacting in a laboratory environ-32

ment, annotated with onset and offset of each vocalization, and featuring a high degree of overlap.33

We find that Voxaboxen consistently outperforms alternatives, even in the presence of a high degree34

of overlap, on our new dataset as well as seven previously-published bioacoustics datasets. Taken35

together, our results demonstrate the general effectiveness of Voxaboxen for bioacoustic SED, includ-36
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ing for situations with overlapping vocalizations. To democratize putting boxes around vocalizations,37

we open source the code for our model and new dataset. To summarize, the contributions of this paper38

are as follows: (1) introducing Voxaboxen, and SED model leveraging pretrained audio encoders,39

which can predict overlapping vocalizations; (2) releasing a new dataset, Overlapping Zebra Finch40

(OZF), specifically focused on overlapping vocalizations; (3) experimental evaluation on a diverse set41

of eight datasets, showing SotA performance for Voxaboxen.42

2 Related Work43

In bioacoustics applications, SED has typically been framed as a multi-label classification problem (1),44

with temporal resolution ranging from tens of milliseconds (10; 8), to multiple seconds (11; 12).45

Recent post-processing techniques decouple event durations and detections (9; 13); but still use46

frame-based predictions and cannot handle within-class overlaps. Other approaches include matrix47

factorization algorithms (14) or probabilistic models (15). Visual object detection methods such as48

Faster-RCNN (16) can accommodate overlapping objects, and have occasionally been applied to49

bioacoustic SED (17). CornerNet (18) is an object detection method that, similar to Voxaboxen,50

matches predicted boundaries into a single event, but differs in that it matches boxes based on feature51

similarity, which can be inaccurate for animal vocalizations, where highly stereotyped events mean52

that different events can share very similar features. Our approach accounts for this by matching53

based on intersection over union (IoU) instead.54

Given an audio recording with a mixture of sound sources, source separation is the task of predicting55

the audio of the pre-mixture sounds. Prior work in bioacoustics (19) has demonstrated the effective-56

ness of source separation for improving accuracy in downstream classification tasks. In our context,57

a source separation model could theoretically separate vocalizations from multiple individuals into58

different audio tracks, thus reducing the complexity of the audio passed to a downstream detection59

model. We investigate this approach as an alternative to Voxaboxen. A related task is speaker diariza-60

tion, which segments multi-speaker recordings and assigns each segment to a speaker. Approaches61

typically assume a maximum number of speakers (e.g., two or four), and assume that speakers can be62

re-identified by their vocal characteristics across multiple segments (20). In contrast, we assume no63

maximum number of speakers, and do not expect to re-identify individuals within a recording.64

3 Method65

3.1 Bounding Box Regression66

Our method, which is architecture-agnostic, uses a frame-based audio encoder ϕ : RT → RT ′×F67

to produce a sequence of latent vectors. Here T is the original number of samples, T ′ is the final68

number of frames, and F is the feature dimension. A final linear layer h : RF → R2+C makes69

three types of predictions, for each time frame: a prediction of the probability that an event starts in70

that frame, a prediction of the duration of the event (should it start in that frame), and a prediction71

of a class label (logits across C classes). Using gradient descent, we minimize the loss function72

L = Ldet + λLreg + ρLcls, λ, ρ ≥ 0, which includes a detection term Ldet, a regression term Lreg ,73

and a classification term Lcls. The detection term is inspired by the penalty-reduced focal loss in (18):74

Ldet = − 1

T

T∑
t=1

{
(1− p̂t)

α log p̂t pt = 1
(1− pt)

β p̂αt log(1− p̂t) pt < 1.
(1)

Here, T is the duration in frames of the audio clip, and α, β are hyperparameters. In (1), the model’s75

predicted detection probability at time t is p̂t, and the target pt is obtained by smoothing each76

event onset with a Gaussian kernel and taking the maximum value at each frame, across all events77

(following (18)):78

pt = max
x∈Events

exp

(
− (t−Onset(x))2

Dur(x)2/s

)
. (2)

In (2), Events is the set of events in an audio clip, and for x ∈ Events, Onset(x) and Dur(x) denote79

the onset time and duration of x, and s is a hyperparameter. The regression term Lreg is L1 loss,80

applied only to frames in {Onset(x) | x ∈ Events}, i.e. frames where an event begins. Similarly, the81

classification term Lcls is a categorical cross-entropy loss, again applied only when an event begins.82
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At inference time, we apply a peak-finding algorithm to the time-series of detection probabilities.83

Detection peaks above a threshold become boxes, with duration and class prediction determined84

by the value of the regression and classification predictions at the peak. The detection threshold is85

swept (for computing metrics), or fixed as a hyperparameter; see Section 5. Finally, we apply soft86

non-maximal suppression (21) to remove duplicate boxes.87

3.2 Bidirectional Predictions88

One drawback of using these predicted boxes directly is the difficulty for the model in making89

accurate regression predictions. In preliminary experiments, we observed that both onset and duration90

predictions can be slightly inaccurate, meaning that the model sometimes correctly detects an event91

but the edges of the bounding box are slightly off where they should be. To reduce error in bounding92

box edges, we make a second set of backward predictions which are the mirror image of the first93

(forward) set. The backward predictions are a binary prediction for each frame as to whether it94

contains an offset, plus a regression for how long the event lasted. We then compute an optimal way to95

fuse the forward and backward predictions into a single set of predictions, by casting the problem as a96

maximal bipartite graph matching problem. The bipartite graph has all boxes as vertices. Forward and97

backward boxes are linked by an edge if their IoU exceeds a threshold. The Hopcroft-Karp-Karzonov98

algorithm (22) computes the maximal matching sub-graph, and edge-linked box pairs are fused. The99

onset of the fused box is defined to be the midpoint of the onset of the forward box, with the offset100

minus duration of the backward box (and similarly for the offset of the fused box).101

4 Overlapping Zebra Finch Dataset (OZF)102

We recorded 65 minutes (divided into 60-second files) of 8 adult (> 1 year) female ZFs housed in a103

large group cage in a sound attenuating chamber (TRA Acoustics, Ontario, Canada). We continuously104

recorded using Audacity (3.3.3) through two omnidirectional microphones (Countryman, Menlo105

Park, CA) positioned above and to the side of the cage. Food and water were provided ad libitum106

and all procedures were approved by the McGill University Animal Care and Use Committee in107

accordance with Canadian Council on Animal Care guidelines. Female ZFs make short, discrete108

vocalizations of about 100ms, consisting of a flat or downward sweeping harmonic stack, with most109

energy located between 0.5 and 8 kHz. The recordings were divided among three annotators, who110

marked the onset and offset time of each vocalization using Raven Pro (Cornell Lab of Ornithology,111

v.1.6.5). Annotators covered 25 minutes each. One 5 minute section was annotated by all three,112

where the mean pairwise inter-annotator F1@0.5IoU of 93.5, and 78.1 on the subset that overlaps.113

Out of a total of 8504 vocalizations in the dataset, 1449 (17.04%) overlap with at least one other.114

The total number of overlaps is slightly higher at 1463, as some can overlap more than one other.115

The number of vocalizations per 60 s file ranges from 19 to 245, with between 0 and 73 overlapping.116

The duration of silence per 60 s file ranges from 35.5 to 58.1 seconds. We observe a roughly linear117

relationship between the two. The duration of each vocalization ranges from 3 ms to 350 ms and118

is strongly peaked around the mean of 109 ms. It is possible to show that, assuming independent119

vocalizations from each bird that can be modeled with a Poisson distribution, the expected number of120

pairwise overlaps is d(n − 1)(1 − 1/B − 1/n), where d is the ratio of total call durations to time121

window size, n is the number of vocalizations and B is the number of birds (details provided at122

project github). In our case, B = 8, n ≈ 120 and d ≈ 0.1. Plugging in the values for n and d from123

each 60s file, the average ratio of overlap to number of vocalizations should be 20.46%, significantly124

above the 17.04% we observe. This is consistent with prior work showing evidence for turn-taking in125

female ZFs (23).126

5 Experimental Evaluation127

Implementation Details We first extract features from the raw audio using a backbone encoder, and128

then make the predictions described in Section 3 from the extracted features. The encoder converts129

input audio (mono, 16 kHz) to a frame-based representation, which is a sequence of latent vectors130

produced at 50 Hz (window size 10s, hop size 5s). For the main experiments, we use BEATs (24)131

as a backbone encoder. BEATs is an encoder-only transformer, with 12 layers, hidden size 768132

and 8 attention heads, pretrained on Audioset (25). In Section 5.2, we explore different choices of133
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backbone. The detection, regression and classification predictions are then each made using a linear134

layer. The loss function hyperparameters were fixed at α = 2, β = 4, and s = 6 following (18).135

During training and inference, audio is divided into 10-second windows, with 5-second step size136

between windows. Training lasts for 50 epochs, with the encoder frozen for the first 3 epochs. We137

use Adam with ams-grad, β1 = 0.9, β2 = 0.999, and a cosine annealing scheduler. For all models,138

we select a learning rate from {1e-4, 3e-5, 1e-5}, based on mean average precision @0.5IoU on the139

val set. We apply soft non-maximal suppression (21) with σ = 0.5.140

Datasets In addition to our newly released OZF dataset, we evaluated Voxaboxen using seven141

existing datasets (Table ??), selected for their taxonomic diversity: amphibians (AnuraSet), insects142

(Katydid), birds (BirdVox-10h, Hawaiian Birds, Powdermill), and mammals (Humpback, Meerkat).143

The preprocessing steps we performed on these datasets is described at the project github. For Katy,144

BV10 and OZF, the events of interest were brief and, for Katy and BV10, often above the 8kHz145

Nyquist frequency assumed by several of the models we evaluated. For all models, we use a half-time146

version of BV10 and OZF, and a sixth-time version of Katy. This effectively increases the output147

frame rate to 100 Hz for BV10 and OZF, and 300 Hz for Katy. Initial experiments indicated that148

using these slowed-down versions dramatically improved performance.149

Evaluation As a metric, we first match predicted events to true events as in (26), only counting150

matches that exceed a certain IoU threshold. Then, we compute mean average precision (mAP) using151

1001 equally-sized intervals. We report results for an IoU threshold of 0.5.152

Comparison Models We compare the performance of Voxaboxen to several frame-based methods.153

Three of these consist of a linear layer on top of a encoder-only transformer, initialized with154

pre-trained weights. The encoders are Frame-ATST (7) (25 Hz output frame rate, pretrained on155

AudioSet), BEATs (24) (50 Hz, pretrained on AudioSet) and BirdAVES (27)1 (50 Hz, pre-trained156

on animal sound datasets). Outputs are median filtered, with kernel size (ks) 1, 3, 7, or 11, selected157

based on mean average precision @0.5IoU on the val set.158

As an additional frame-based method, we compare to a convolutional-recurrent neural network159

(CRNN) (6; 10; 8). Model inputs are log-mel spectrograms (256 mel bands), and the model consists160

of a 2d conv layer (ks=7, hidden size 64), mean-pooling in the frequency dimension (ks=2), two 2d161

residual blocks (ks=3), mean pooling in both directions (ks=2), and finally a bi-LSTM, with hidden162

size 1024. The weights are randomly initialized. Finally, we compare to two existing computer vision163

object detection models, Faster-RCNN (16) (X-101 model checkpoint pretrained on MS COCO)2164

and SEDT (28), an encoder-decoder transformer, adapted to detect 1d events from a spectrogram3.165

5.1 Main Results166

Metric Method AnSet BV10 HawB HbW Katy MT Pow OZF

mAP@0.5IoU

CRNN 9.89 35.59 22.72 21.03 17.24 82.97 35.45 71.80
Faster-RCNN 8.06 55.49 7.39 21.66 25.93 84.22 14.08 90.20
SEDT 0.18 3.79 2.79 3.95 2.30 18.58 2.71 2.26
Frame-ATST 14.87 40.62 32.19 33.62 17.88 87.58 45.42 73.48
BEATs 15.71 48.01 35.37 37.13 20.12 86.08 50.32 77.94
BirdAVES 14.21 42.09 32.67 26.54 19.11 86.11 43.52 78.33
Voxaboxen 27.08 77.32 53.87 59.92 36.04 90.96 56.77 97.92

Table 1: Mean average precision scores at 0.5 IoU. Best results in bold. With one exception,
Voxaboxen outperforms existing methods, sometimes by far, such as on BV10, HawB, and OZF.

As shown in Table 1, Voxaboxen outperforms other methods in almost all cases, and in is far ahead167

of all other models in several cases, e.g. 10+ points on mAP@0.5 on BV10, HawB, HbW, and Katy.168

The diversity of animal sounds in the datasets especially highlights the general effectiveness of our169

method. Faster-RCNN generally performs well on OZF and MT; however, it struggles with datasets170

with more than one class (AnSet, HawB, and Pow), as well as HbW. Of the frame-level SED models,171

Frame-ATST, BEATs and BirdAVES, BEATs is generally the strongest, which is consistent with our172

findings for the backbone choice in Voxaboxen (see Table 2). SEDT is poor. Pretrained on datasets173

mostly of ambient city noises, it transfers badly to animal vocalizations.174

1https://github.com/earthspecies/aves
2https://github.com/facebookresearch/detectron2
3https://github.com/Anaesthesiaye/sound_event_detection_transformer
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Metric Method AnSet BV10 HawB HbW Katy MT Pow OZF

mAP@0.5IoU
Voxaboxen 27.08 77.32 53.87 59.92 36.04 90.96 56.77 97.92
with BirdAVES encoder 22.86 46.33 49.22 48.04 26.59 88.78 50.21 96.36
no fwd-bck matching 25.04 75.97 52.10 56.99 34.97 89.39 50.02 95.77

Table 2: Ablation studies on the backbone encoder and the forward-backward matching method. The
main model uses the BEATs encoder. Best results in bold. Both ablation settings give a moderate,
consistent drop in performance, showing the superiority of the BEATs encoder over BirdAVES, and
the effectiveness of the Voxaboxen forward-backward matching method.

5.2 Ablation Studies175

Table 2 shows the effect of changing the encoder backbone of Voxaboxen, and of removing the176

forward-backward matching procedure. We found that using BirdAVES as a backbone for Voxaboxen177

reduced performance compared with the version of that used the BEATs encoder. This was surprising178

considering BirdAVES was designed specifically for animal sounds; however differences in pre-179

training data volume and training regimes may explain the performance difference. Removing180

forward-backward matching (i.e. only using forward predictions) also consistently lowers the mAP181

scores. Mostly the difference is 1-2 points but larger for some datasets, e.g. HbW and Pow.182

Data Availability183

Data used in this study is available at https://zenodo.org/records/15507508. The code used184

in this study is available at https://github.com/earthspecies/voxaboxen.185
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