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Abstract
We show that learning-rate schedules for large
model training behave surprisingly similar to a
performance bound from non-smooth convex op-
timization theory. We provide a bound for the
constant schedule with linear cooldown; in par-
ticular, the practical benefit of cooldown is re-
flected in the bound due to the absence of loga-
rithmic terms. Further, we show that this surpris-
ingly close match between optimization theory
and practice can be exploited for learning-rate
tuning: we achieve noticeable improvements for
training 124M and 210M Llama-type models by
(i) extending the schedule for continued training
with optimal learning-rate, and (ii) transferring
the optimal learning-rate across schedules.

1. Introduction
Large-scale machine learning requires a fine-tuned training
recipe. In particular, the choice of appropriate learning-rate
schedules is a crucial step for classical optimization meth-
ods. This usually decomposes into the choice of a schedule,
determining the shape of learning rates over time, and the
tuning of a multiplicative base learning-rate, determining
the magnitude of the step sizes.

Over the years, the cosine schedule (Loshchilov & Hut-
ter, 2017) has emerged among the most commonly used
schedules in large (language) model training (Brown et al.,
2020; Touvron et al., 2023). The standard practice is to set
the frequency of the cosine to half of the total number of
training steps (Hoffmann et al., 2022); as a consequence,
the entire schedule depends on the length of training, which
makes it unsuitable for continued training. Recently, it has
been shown that the performance of cosine can be matched
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Figure 1. Strikingly similar: Validation loss for a 210M Llama
model trained with AdamW (left) and the theoretical suboptimality
bound (6) from convex optimization (right). Both plots show wsd
and cosine schedule with different training lengths T , and with
base learning-rate of cosine being twice as large as for wsd.

by an arguably much simpler schedule, that combines a con-
stant part with a cooldown period in the end (Hu et al., 2024;
Hägele et al., 2024). This alternative schedule is established
under the name wsd (warmup-stable-decay). One distin-
guishing feature of wsd is the drastic decrease of the loss
shortly after initiating the cooldown.

However, the recent advancements in learning-rate schedul-
ing have emerged almost exclusively from empirical rather
than from theoretical considerations (Loshchilov & Hutter,
2017; Goyal et al., 2017; Hoffmann et al., 2022; Hägele
et al., 2024). We do not yet have a fundamental understand-
ing that could explain the features of the above-mentioned
schedules and why they perform better or worse at a given
task, restraining the tuning procedure to a trial-and-error
approach.

Summary and contributions. In this paper, we show that
several empirical findings on scheduling can be reproduced
with a suboptimality bound for SGD on convex problems that
was introduced by Defazio et al. (2023). Among others, this
theory allows to reproduce (i) the matching performance of
cosine and wsd; (ii) the necessity and optimal length of
the cooldown period in the end of training (see Section 4).

In a second step, we take the reverse direction and show
how the theoretical bound can be exploited in practice (see
Section 5): for continued training of a 124M and 210M
Llama-style model, using the theoretically optimal schedule
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notably improves performance compared to continuing with
the same learning rate; it also allows to transfer the optimal
learning-rate across schedules (Figs. 10 and 12). This leads
us to the perhaps surprising conclusion that the empirical
behavior of learning-rate schedules in (non-convex) deep
learning can be described precisely with a theoretical bound
from non-smooth stochastic convex optimization.

A particular focus of this paper is put on the wsd schedule:
we derive a convergence result for this schedule (without
warmup) in the non-smooth stochastic convex setting, see
Section 3.2. Most importantly, the cooldown period of wsd
leads to vanishing log-terms in the bound, which provides an
explanation of the benefit of cooldown observed in practice.
Second, we show that the sudden drop during cooldown can
be observed in upper and lower bounds of the suboptimality,
as well as for a non-smooth convex toy problem. Code
for all experiments is available at https://github.com/
fabian-sp/lr-scheduling.

Setup. We consider the training problem

min
x∈Rd

f(x), f(x) := Es[f(x, s)]. (1)

In the above, x ∈ Rd are the learnable parameters of a
machine learning model, and f is a loss function. The ex-
pectation is taken over the distribution of a random variable
s that maps to the space or set S (typically the training set).
We assume that f(·, s) has a suitable subdifferential for ev-
ery s ∈ S (for example, see Rockafellar (1970); Clarke
(1983); Bolte & Pauwels (2021)). We denote elements of
the subdifferential as g ∈ ∂f(x, s).1

We study the iterates of SGD with a learning-rate schedule,
given by

xt+1 = xt − γηtgt, gt ∈ ∂f(xt, st), t ∈ N. (2)

Here, γ > 0 is called the base learning-rate and ηt > 0 is
called the schedule. While it might seem redundant to sepa-
rate γ from (ηt), this reflects the standard practice in deep
learning libraries such as Pytorch. Most importantly, for
different schedules (constant, cosine, wsd,. . . ), the optimal
value of γ is in general different.

We remark that the most commonly used optimizer for train-
ing in practice is Adam(W) (Kingma & Ba, 2015; Loshchilov
& Hutter, 2019), and all empirical results we present or refer
to in this paper are obtained with Adam(W). However, the
theoretical results apply to SGD; we address this limitation
in detail in Section 6.

Cosine and wsd schedules. We now formally introduce
the two running examples cosine and wsd. Without

1In case the reader is uncomfortable with the notion of subdif-
ferentials, the entire article can be read with gt being the gradient
∇f(xt, st) instead.

warmup, the wsd schedule is constant up to iteration T0 ≤ T ,
then decays linearly to zero. Formally, we have

ηt =

{
1 1 ≤ t < T0,

1− t−T0

T+1−T0
T0 ≤ t ≤ T + 1.

(3)

The cosine schedule is given by ηt = 1
2 (1 + cos( t−1

T π))
for 1 ≤ t ≤ T + 1. Note that for both schedules we have
ηT+1 = 0 (we choose T + 1 in order to ensure that ηt > 0
for t ≤ T ). It is also common to decay the cosine to a
factor of 0.1 of the peak learning-rate instead of 0.

Notation and naming convention. We will use wsd in
the paper as it is the most established abbreviation in the
literature; however, similar to Zhai et al. (2022); Hägele
et al. (2024), we will refer to the phase where the schedule
decays to zero as cooldown instead of decay, in order to
avoid confusion with other terminology (e.g., weight decay).
Unless explicitly stated otherwise, ∥ · ∥ and ⟨·, ·⟩ denote the
standard Euclidean norm and its scalar product.

2. Related Work
Learning-rate schedules. The cosine schedule
(Loshchilov & Hutter, 2017) can be considered the de-facto
default in large-scale deep learning. Convergence results
for SGD with cosine schedule have been shown by Li
et al. (2021). Recently, the wsd schedule (short for
warmup-stable-decay, also called trapezoidal schedule)
has been proposed as an alternative (Zhai et al., 2022; Hu
et al., 2024; Hägele et al., 2024). Hägele et al. (2024) show
that wsd matches the performance of cosine on LLM
pretraining, while largely reducing the compute needed
for scaling-law experiments, as the constant part of the
schedule can be reused.

Last-iterate convergence. We will see that it is crucial
to use a bound for the last-iterate in order to closely match
empirical loss curves. This is in contrast to many stan-
dard convergence results that prove an upper bound on the
quantity mint=1,...,T E[f(xt) − f(x⋆)]. Due to convexity
and Jensen’s inequality, the same bound usually holds for
E[f(x̄T ) − f(x⋆)], where x̄T is some (weighted) average
over {x1, . . . , xT }. Last-iterate results, that is, bounds on
E[f(xT ) − f(x⋆)], are less standard: convergence of SGD
has been proven for constant step sizes (Zhang, 2004), and
for decreasing step sizes in bounded domains (Shamir &
Zhang, 2013). Other results are restricted to a specific choice
of schedule (Jain et al., 2021; Zamani & Glineur, 2023). The
backbone of this article will be a result from Defazio et al.
(2023), which proves a last-iterate bound for general sched-
ules; compared to previous work (Orabona, 2020) it has the
advantage that the bound remains meaningful if the last step
size ηT is very small.
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Understanding cooldown. For the wsd schedule, one can
consistently observe a sudden drop in train/validation loss
after the start of the cooldown phase (Hägele et al., 2024).
Hu et al. (2024) find that the curvature of the loss increases
during cooldown; Hägele et al. (2024) expand this and con-
clude that “the cooldown phase is a smooth transition to
a basin in the loss landscape”. More recently, Wen et al.
(2025) hypothesize that the sudden drop is caused by a river-
valley loss landscape, that arises from “heterogeneity in the
stochasticity of different tokens”. In this work, we will offer
an additional (and potentially much simpler) model: the
drop of the loss can be observed in upper and lower bounds
of the suboptimality, based on first-order convex optimiza-
tion theory. In particular, this phenomenon happens for a
toy instance of ℓ∞-norm regression.

3. Convergence Results
Let us assume convexity of the objective and recall the
definition of the iterates.

(A1) For each s ∈ S the function f(·, s) : Rd → R is
convex, that is, for all x, y ∈ Rd and g ∈ ∂f(x, s)

f(y, s)− f(x, s) ≥ ⟨g, y − x⟩. (4)

(A2) Let γ > 0 and ηt > 0. For t ∈ N, consider the iterates

xt+1 = xt − γηtgt, gt ∈ ∂f(xt, st). (5)

Let x⋆ ∈ Rd be an arbitrary point of interest, for example
the (local) minimum of f that is closest to x1. We do not
make any other assumption on x⋆ for now.
Theorem 3.1 (cf. Thm. 10 from Defazio et al. (2023)). Let
(xt) be given by (A2), with ηt > 0 for t = 1, . . . , T and
γ > 0. Let x⋆ ∈ Rd and define D := ∥x1 − x⋆∥ and
η̄T :=

∑T
t=1 ηt. Under (A1), for any T ∈ N it holds

E[f(xT )− f(x⋆)] ≤
1

2γη̄T

[
D2 + γ2

T∑

t=1

η2tE∥gt∥2
]

+
γ

2

T−1∑

k=1

ηk∑T
t=k+1 ηt

( 1
∑T
t=k ηt

T∑

t=k

η2tE∥gt∥2
)
.

(6)

The above result is essentially the same as (Defazio et al.,
2023, Thm. 10); the only difference is that we explicitly
separate γ and (ηt) which will be convenient subsequently.
We refer to Appendix E for a proof.

Our next goal is to compute the base learning-rate γ, given
a schedule ηt, that minimizes the bound in (6). To do so, we
assume a bound on the expected gradient norms:

(A3) Assume that there exists (Gt)t≤T > 0 such that
E∥gt∥2 ≤ G2

t for all t ≤ T .

Remark 3.2. In general, the choice of γ will affect the
iterates (xt) and therefore the gradient norm bounds (Gt).
Thus, the following Corollary can be applied only if we
apply the same bound Gt independent of γ. This is the case
for the standard assumption of f(·, s) being Lipschitz with
constant G > 0; in that case, choose Gt = G for all t ∈ N.

Let η1:T := (η1, . . . , ηT ), and G1:T := (G1, . . . , GT ). For
convenience, we define the quantities

T1(η1:T , D, T ) :=
1

2
∑T
t=1 ηt

D2,

T2(η1:T , G1:T , T ) :=
1

2
∑T
t=1 ηt

( T∑

t=1

η2tG
2
t

)

+
1

2

T−1∑

k=1

ηk∑T
t=k+1 ηt

( 1
∑T
t=k ηt

T∑

t=k

η2tG
2
t

)
.

(7)

Corollary 3.3. In the setting of Theorem 3.1, under (A3),
for any T ∈ N it holds E[f(xT )− f(x⋆)] ≤ ΩT with

ΩT :=
T1(η1:T , D, T )

γ
+ γT2(η1:T , G1:T , T ). (8)

For a given (Gt), D and T , minimizing the right-hand
side of (8) with respect to γ > 0 gives the solution

γ⋆ =
√

T1(η1:T ,D,T )
T2(η1:T ,G1:T ,T ) . Plugging γ⋆ back into (8), we have

E[f(xT )−f(x⋆)] ≤ 2
√

T1(η1:T , D, T )T2(η1:T , G1:T , T ).

Next, we plug in the cosine and wsd schedule into The-
orem 3.1. Applying2 Corollary 3.3 with T → t, we get
E[f(xt)− f(x⋆)] ≤ Ωt for t ∈ [T ] with

Ωt :=
T1(η1:t, D, t)

γ
+ γT2(η1:t, G1:t, t). (9)

3.1. Comparison of cosine and wsd

For a training horizon T ∈ N, we define both schedules
(ηt)1≤t≤T+1 such that they reach ηT+1 = 0. For a formal
definition of wsd and cosine see (3) and thereafter. For
each different training horizon T , and for both schedulers,
we pick the optimal base learning-rate γ⋆ given by Corol-
lary 3.3 and plot the bound Ωt in Fig. 2 (with Gt = D = 1
for all t ∈ N). We plot a sweep of γ in Fig. 3a.

Perhaps surprisingly, the shape of the theoretical bound Ωt
(for the convex case) matches closely the empirical loss
curves of (the non-convex problem of) language model pre-
training in Hägele et al. (2024); see Fig. 1 for a side-by-side
comparison. This is especially visible in the sudden drop of
the loss for the wsd schedule during cooldown. However, us-
ing the last-iterate result is crucial for this: we demonstrate

2For Corollary 3.3 we require ηt > 0 for t = 1, . . . , T , which
is why we construct the schedule such that ηT+1 = 0 instead of
ηT = 0.
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Figure 2. Schedule (left) and theoretical bound (right) for cosine
and wsd, and various T , with base learning-rate γ⋆.
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Figure 3. Optimal base learning-rate decays with inverse square-
root of training horizon T (right). For cosine, it is roughly twice
as large as for wsd (as 0.92/0.47 ≈ 2). The dashed curve in the
right-hand side plot is obtained with a least-squares fit.

this with an ablation study that uses a standard bound on the
minimum suboptimality instead; there, the theoretical bound
does not resemble empirical loss curves (cf. Appendix A).

Takeaway: The last-iterate bound in Corollary 3.3
matches the shape of the loss curves in Hägele et al.
(2024). In particular, the sudden drop for wsd during
cooldown can be observed.

Takeaway: The optimal base learning-rate from Corol-
lary 3.3 scales 1/

√
T with the training horizon, and is

roughly twice as large for cosine as for wsd (Fig. 3b).
This matches empirical observations (Fig. 4 in Shen
et al. (2024) and Fig. 3 in Hägele et al. (2024)).

3.2. Bound for wsd Schedule

We now derive the bound in Corollary 3.3 for (ηt) being the
wsd schedule. To the best of our knowledge, this schedule
has not been analyzed theoretically before. For this section,
assume that Gt = G > 0 for all t ∈ N. A useful notation
will be the harmonic number Ht, defined asHt :=

∑t
k=1

1
k

for t ∈ N, and H0 := 0. We recall that Ht behaves like
ln(t) in the limit. As baseline, we first compute the bound
for the constant schedule.

Constant schedule. If ηt = 1 for all t ∈ N, it is easy
to compute T1(η1:T , D, T ) = D2

2T , T2(η1:T , G1:T , T ) =

G2

2 [1 +HT−1]. Therefore, Corollary 3.3 yields

E[f(xT )− f(x⋆)] ≤
DG√
T

√
1 +HT−1.

The wsd schedule. We will now compute a suboptimality
bound for the wsd schedule (without warmup). We will
show that if higher-order terms are ignored, the improve-
ment of wsd over a constant schedule is essentially due to
the absence of the logarithmic term HT−1. In Theorem 3.4,
we surpress some terms due to space constraints. The full
version is given in Theorem G.1.

Theorem 3.4. Assume that (A3) holds with Gt = G for
some G > 0 for all t ∈ N. Let γ = γ⋆ from Corollary 3.3.
Then, for the wsd schedule (3) with 1 ≤ T0 < T we get

E[f(xT )− f(x⋆)] ≤ DG
√

4
T+T0

[
Λ1 + Λ2 − Λ3 + o(1)

]

where Λ1 := 2
3 + T+2T0

3(T+T0)
, Λ2 := HT+T0−2 −HT−T0+1,

Λ3 := (T−T0)(T0−1)
3(T−T0+2)(T+T0)

and o(1) summarizes terms that
go to zero as T → +∞.

Assume that the cooldown length is proportional to T ,
that is, T0 = βT for β ∈ (0, 1). For large T , we
have Λ3 ≈ (1−β)βT 2

3(1−β)(1+β)T 2 = β
3(1+β) . Using Lemma D.3,

we can estimate H(1+β)T−2 ≤ 1 + ln((1 + β)T ) and
H(1−β)T+1 ≥ ln((1−β)T ). This yields Λ2 ≤ 1+ln( 1+β1−β ).
Altogether,

E[f(xT )− f(x⋆)] ≾
DG√
T

√
4

1+β

[
5
3 + Λ4 + ln( 1+β1−β )

]
,

where Λ4 := 1+2β
3(1+β) − β

3(1+β) . In total, the term in the
square-root does not contain logarithmic terms in T . This
is the main difference to the constant schedule (where in the
square-root we have 1 +HT−1 ≈ 1 + ln(T )). See Fig. 20
for a visualization. We defer additional remarks and the
proof of Theorem 3.4 to Appendix G.

Takeaway: The wsd schedule improves over the con-
stant schedule by a logarithmic term. This improve-
ment in the bound happens during the cooldown pe-
riod (cf. Figs. 2 and 20).

4. Theoretical Simulations
In the following, we simulate the bound from Theorem 3.1
in order to analyze its dependence on the cooldown length
for wsd, and on the gradient norm magnitude. Additional ex-
periments (e.g., on the cosine cycle length, and a compari-
son of classical schedules) and supplementary information
are deferred to Appendix B. Unless explicitly mentioned,
we set Gt = 1 for all t ∈ N and D = 1 for the entire
simulation. We do not use warmup for neither schedule.
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Figure 4. (Left) Optimal base learning-rate increases with
cooldown fraction. (Right) For fixed γ, the optimal cooldown
fraction can be smaller than 1. The analogous curves for real ex-
periments with similar parabola shapes are in Fig. 21.
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Figure 5. Schedule (left) and theoretical convergence (right) for
varying cooldown fraction. With optimal base learning-rate γ⋆,
starting the cooldown at T0 = 1 is optimal. Fig. 21 shows the
analogous plot for real experiments with the same behavior.

4.1. Cooldown Length

Previously, we have set T0 = 0.8 · T for wsd. In Figs. 4
and 5, we vary the cooldown fraction, defined as T−T0

T .
Specifically, we vary from T0 = T to T0 = 1 (constant
schedule to linear-decay schedule similar to Defazio et al.
(2023, Corollary 2)).

Takeaway: The simulation suggests that if the
base learning-rate γ is fully tuned, then the optimal
cooldown fraction is 1 (linear decay). For fixed γ, the
optimal cooldown fraction can be smaller than one.

The first observation is in line with empirical observations
from Defazio et al. (2023) that compares many different
schedules across several machine learning tasks, and find
that the linear-decay schedule performs best on average.
Further, it is known that the linear-decay schedule matches
the exact lower-bound convergence bound for the (stochas-
tic) convex, Lipschitz case (Defazio et al., 2023; Zamani
& Glineur, 2023); see Appendix G for detailed comments.
The second observation matches the finding of Hägele et al.
(2024): in Appendix B.6, Fig. 21 we show the analogous
figure on real training data (also see Fig. 5 in Hägele et al.
(2024)). For small base learning-rate γ, we obtain the same
parabola shape; however, for large enough γ, the parabola
turns into a monotonically decreasing curve.
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Figure 6. Assumed gradient shape (left) and theoretical convereg-
nce (right). Only with α = 0 (constant Gt), the sudden drop for
wsd is clearly visible.

4.2. Gradient Norm

We now analyze how the bound of the expected gradient
norms G1:T influences the shape of Ωt. In this section only,
we assume that Gt = tα, α ∈ {0,−0.5,−1}. We sweep
the base learning-rate γ by computing the minimal ΩT from
(9) for the above choice of G1:T = (G1, . . . , GT ). We set
T = 400, and the cooldown fraction to 0.2 for wsd. Fig. 6
shows that the sudden drop in loss for wsd is only visible if
Gt does not go to zero as t→ ∞.

Takeaway: The sudden drop during cooldown is most
pronounced if the gradient norms do not go to zero.

Interestingly, if the gradient norms go to zero, the wsd sched-
ule also obtains a significantly better bound than cosine.
So far we have observed that non-vanishing gradient norms
lead to the characteristic drop in the upper bound Ωt. Next,
we show that the same phenomenon can be observed for
(i) a suboptimality lower bound and (ii) for the loss of the
iterates of SGD on a simple non-smooth convex problem.

4.3. Lower Bounds and Convexity

In all previous sections we analyzed an upper bound Ωt
of E[f(xt) − f(x⋆)]. How tight is this upper bound? To
answer this, we compute lower bounds of E[f(xt)− f(x⋆)]
using the PEP framework: for a given function class and
algorithm, a worst-case example can be constructed by solv-
ing a semidefinite program (Drori & Teboulle, 2014; Taylor
et al., 2017a;b; Goujaud et al., 2024). Additional details are
provided in Appendix B.4.

Takeaway: The sudden drop during cooldown appears
as well for the PEP lower bound (Fig. 7). The worst-
case suboptimality value at T = 60 is very similar for
cosine and wsd.

In Section 4.2, we have shown that non-vanishing gradient
norms are characteristic for the sudden drop (of the upper
bound Ωt) during cooldown of wsd. We observe the same
behavior for the actual loss when running gradient descent
with the wsd schedule for the 2-dimensional, convex, non-
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smooth problem minx∈R2 ∥Ax − b∥∞. The experimental
details and plots are deferred to Appendix B.1.

Takeaway: The sudden drop of the loss for wsd is not
specific to model architecture or even to non-convexity.
It can be observed when minimizing a simple non-
smooth, convex objective function (Fig. 17).

5. Applications
So far, we have shown that the bound from Theorem 3.1
matches very closely empirical loss curves. However, the
bound in Theorem 3.1 contains quantities that are unknown
in practice, such as the gradient norm bounds Gt and D.
Thus, the question arises how to convert the theoretical
result into practical applications. The following two scenar-
ios demonstrate that using the optimal schedule and base
learning-rate predicted from theory improves pretraining of
a 124/210M Llama-style transformer (Vaswani et al., 2017;
Touvron et al., 2023).

5.1. Schedule Construction for Continued Training

The first application is to construct learning-rate schedules
for longer horizons: for example, assume we have trained a
model for T1 steps, but later want to continue training up to
T2 > T1 steps. The main benefit of the wsd schedule is that
the training steps up to the cooldown phase can be reused,
thus reducing the amount of additional compute required
for continual training (Hägele et al., 2024). This is not true
neither for the linear-decay nor for the cosine schedule, as
the value of the schedule in each step depends on the total
number of steps.

Assume we have tuned the base learning-rate γ⋆ of wsd for
the short run T1. We have seen in Fig. 3b that γ⋆ decreases
with T ; thus, continuing training at γ⋆ until T2 would use a
suboptimal learning rate. We present two solutions:

(B1) We have seen that γ⋆ increases with the cooldown frac-
tion c (Section 4.1). We can increase the cooldown
fraction c1 for the long training run to T2, to compen-
sate for the decrease in γ⋆ due to T1 → T2.
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100

Ωt (upper bound)

PEP lower bound

(a) wsd with 20% cooldown

10 20 30 40 50 60
Iteration t
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(b) cosine

Figure 7. PEP lower bound matches the upper bound Ωt in shape.
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Figure 8. (Left) Transferring the wsd schedule from horizon T1 =
4000 to T2 ∈ [1.5T1, 4T1]. (Right) Not adapting the cooldown
length leads to significant suboptimality. Dashed horizontal lines
mark bound for the linear-decay schedule with tuned γ⋆.

(B2) Alternatively, we can keep the same cooldown fraction,
but decrease the learning-rate in the steps from T1 to
T2: assume a piecewise constant schedule with ηt = 1
for t up to the start of cooldown of the short run, and
ηt = ρ for t up to the start of cooldown of the long
run. How do we need to set ρ, such that γ⋆ remains the
optimal base-learning rate for this schedule?

Simulation. We simulate both options in Figs. 8 and 9.
Here, we set T1 = 4000 and T2 ranging from 1.5T1 to 4T1.
We construct the extended schedule by sweeping c1 for (B1)
and ρ for (B2), and picking the value where the optimal base
learning-rate according to Corollary 3.3 is closest to γ⋆. The
cooldown phase of the short run is set to 20%. Specifically,
our analysis suggests to decrease the schedule by ρ = 0.525
for T2 = 2T1 and by ρ = 0.375 for T2 = 4T1 (see Fig. 22,
left). We verified that changing the values of G, D, or T1
do not affect the result (plots not shown); the values might
be different for other cooldown fractions than 20%.

For (B2) (Fig. 9), we conclude that by decreasing the sched-
ule by the correct factor ρ, we can reuse the entire constant
part of the short run, while obtaining a bound Ωt close to the
bound for a tuned linear-decay schedule. Importantly, keep-
ing the same base learning-rate for the entire long run would
result in a significantly worse bound Ωt. For (B1) (Fig. 8),
the required increase in cooldown fraction is large, and
hence for long extensions, only small parts of training can
be reused. When doubling the training length (T2 = 2T1),
the adapted cooldown fraction is roughly c1 = 0.6. As an
alternative, one could use the 1/sqrt schedule, defined by
ηt := 1/

√
t, combined with cooldown (Zhai et al., 2022).

Fig. 23 shows that for 1/sqrt the cooldown fraction can
roughly stay the same, which however comes at the cost of
a larger gap to linear-decay. From a theoretical and prac-
tical perspective, we conclude that the approach (B2) is
preferable, as it allows to reuse the entire short run with no
drawbacks in terms of the bound, and – in a similar fashion
as before – allows iteratively continuing from the newly
obtained checkpoints of a constant learning-rate phase.
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Experiments. Based on the above, we extend the train-
ing of a 124M and 210M Llama-style transformer (Tou-
vron et al., 2023) on the SlimPajama dataset (Soboleva
et al., 2023). For details on model, dataset and training
procedure see Appendix B.5. We set T1 = 50k and T2 ∈
{100k, 200k}; a sweep over 50k steps gives γ⋆50k ≈ 0.001.
As a baseline, we use a wsd schedule that continues with the
same γ over the extended training length. For the adapted
schedule from (B2), we decrease the learning-rate after 40k
steps linearly over 1000 steps (e.g., from 10−3 to 5.25·10−4)
as a precautionary measure; however, we did not observe
that a decrease in-one-go results in significantly different
performance. We use a cooldown of 20% for all runs.

Considering the results in Fig. 10, we conclude that the
schedule adaptation suggested by theory leads to a slight but
noticeable improvement in validation loss for both extended
horizons. The improvement is more pronounced for the
larger 210M model. Moreover, we observe a sudden drop in
loss after decreasing the schedule at 40k steps, analogous to
what the theoretical bound predicts, albeit the loss decrease
thereafter is slower than expected (cf. Fig. 9). We also
test adapting the cooldown length as described in (B1):
for a total length of 100k steps, if cooldown is initialized
immediately after 40k steps (cooldown 60%), we observe
even larger improvements as previously (see Fig. 24).

From Figs. 10 and 24, we see that the improvement in loss
of the adapted wsd schedule over a naive continuation is in
the range of 0.01. This raises the natural question of the rele-
vance of such an improvement. To answer this, we estimate
the slope of our loss curves3: we find that for T2 = 100k,
a decrease of 0.01 takes roughly 6k steps in the constant
learning-rate phase; for T2 = 200k, it takes roughly 14.5k
steps. This translates to 0.6B and 1.5B tokens, respectively.
Notably, to match the adapted wsd schedule, this would re-
quire a substantial amount of 6% and 7.25% longer training.
Another way to reason about the significance of the loss
improvement is through the use of scaling laws, which leads
to very similar estimates (see Appendix B.5).

5.2. Learning-Rate Transfer Across Schedules

One insight from Corollary 3.3 is that if Gt = G, then
the dependence of γ⋆ on G and D is multiplicative. This
implies that if we know γ⋆ for a given practical problem,
any multiplicative transfer can be realized. For example,
assume we know the optimal base learning-rate for the wsd
schedule with cooldown fraction c ∈ [0, 1], and let us denote
the tuned value as γ⋆(c). As we have seen, the linear-decay
schedule (c = 1) attains the optimal bound; thus, to obtain a

3We do linear regression on the loss values of the baseline
run between [64 000, 84 000] for the 100k run, and between
[144 000, 164 000] for the 200k run. This accounts proportion-
ally for the cooldown.
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Figure 9. Transfering the learning-rate schedule from horizon
T1 = 4000 to T2 ∈ [1.5T1, 4T1] (see also Fig. 22, left). De-
creasing the learning rate (green) after the short run (at iteration
3200) leads to significant better bound Ωt as keeping it constant
(grey). Dashed horizontal lines (blue) mark bounds for linear-
decay schedule with tuned γ⋆.
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Figure 10. Transferring the learning-rate schedule from horizon
T1 = 50 000 to T2 ∈ [2T1, 4T1]. Decreasing the base learning-
rate (green) after 40k steps leads to small improvements in vali-
dation loss compared to keeping it the same (grey). We discuss
the significance of the difference in loss values of (around 0.01) in
Section 5.1 and Appendix B.5. See Fig. 22 for schedules.

better model, we might want to retrain with the linear-decay
schedule.4 However, we do not yet know γ⋆(1). Can we
compute γ⋆(1) from γ⋆(c) based on the theoretical bound?

Simulation. In Fig. 11 we show the quantity ln(γ
⋆(1)
γ⋆(c) )

for c ∈ (0, 1). We simulate both the linear cooldown (3),
and the 1-sqrt cooldown which has the form ηt = 1 −√

t−T0

T+1−T0
(Hägele et al., 2024). Across several orders of T ,

the results are consistent; for example, knowing γ⋆ for 20 %
of linear cooldown, we can compute γ⋆(1) ≈ e0.7γ⋆(0.2).
For Fig. 11, we set G = D = 1; the resulting curve looks
the same if we vary D or G (plots not shown).

Experiments. We now analyze the quantity ln(γ
⋆(1)
γ⋆(c) )

with real data (training a 124M Llama-style model for 50k
steps), with linear cooldown. We estimate γ⋆(c) from a
grid of base learning-rates γ and cooldown fractions c (see
Fig. 12b and Appendix B.5 for details on this step). We plot

4For example, assume that γ⋆(c) has been made public on
Github or we obtained it from a sweep that used the wsd schedule
due to practical constraints.
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(left) and 1-sqrt cooldown (right). Dashed lines are fitted poly-
nomial of degree 6.
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Figure 12. (Left) Re-analysis of learning-rate transfer (Fig. 11) for
124M model. γc denotes the best performing base learning-rate for
cooldown fraction c, estimated from a sweep (right). We observe
that the learning-rate transfer (black line) almost perfectly matches
the predictions by theory (e.g., γ(0.994) ≈ e0.7γ⋆(0.2)). Note
that the maximal cooldown fraction is 0.994 due to warmup and
corresponds to a full linear schedule.

ln(γ
⋆(1)
γ⋆(c) ) in Fig. 12a; it matches almost perfectly with the

curve predicted from theory in Fig. 11. This implies that
knowing the optimal base learning-rate for 20% cooldown,
one can immediately transfer the learning-rate to linear-
decay (100% cooldown), without any additional sweeps;
for the setup we consider, the linear-decay run obtains a
final validation loss of 2.9535 vs. the best run with 20%
cooldown obtaining a final loss of 2.9660.

6. Limitations
We have shown that the empirical performance of vari-
ous learning-rate schedules for large model training re-
flects closely the theoretical suboptimality for non-smooth
stochastic convex optimization. We want to stress that we
can not expect the bound from Theorem 3.1 to match train-
ing curves perfectly: first, it is an upper bound of the loss
for convex problems only, and in practice many other fac-
tors (e.g., randomness, architecture choices, data mixture)
and training techniques (e.g., loss function, weight decay)
will impact convergence and stability of training (Wortsman
et al., 2024).

The perhaps most glaring limitation of our work is that it

is based on a theoretical result for SGD, while most of the
empirical evidence we use is obtained with Adam(W). More
generally, the result in Theorem 3.1 can not explain any
performance differences that stem from the optimization
algorithm. However, we believe that this gap can be closed
in future work for several reasons: (i) by showing similar
theoretical results for the methods used in practice; as a
first step, we provide a proof for mirror descent (an entire
family of methods) in Appendix F. It has been shown that
for diagonal networks, the iterates of SGD are equivalent
to mirror descent on a convex problem formulation (Even
et al., 2023). (ii) Several recent variants of SGD close the
gap to Adam on transformer problems (Kunstner et al., 2023;
Xu et al., 2024). (iii) It has been shown that most of the
parameters of language models can be equally well trained
with SGD (Zhao et al., 2025).

The second obvious limitation of Theorem 3.1 is the con-
vexity assumption, while modern deep learning problems
are non-convex. At this point we have no explanation for
why the convex theory is still closely matching (some) real-
world observations. However, it has been shown that the
landscape of neural network optimization problems might
be reasonably close to being convex (Hardt et al., 2018; Liu
et al., 2023; Islamov et al., 2024). The sudden performance
increase during cooldown is not restricted to language mod-
eling and has also been reported for image problems, e.g.,
training ResNets with SGD (Sandler et al., 2023) or ViTs
(Zhai et al., 2022). We verify this through additional experi-
ments for SGD on Imagenet in Appendix C, which further
contains experiments on OpenWebText2.

Finally, the empirical quantity we compare to the theoretical
bound is the test loss. This is limited to situations where
the generalization gap between training and test loss is neg-
ligible; that being said, the current practice of single-pass
training for large models falls within this category (Aitchi-
son, 2024; Xiao, 2024).

7. Conclusion
In this paper, we show that learning-rate schedules in prac-
tice behave surprisingly similar to what convex optimization
theory predicts. This spans across the necessity and optimal
length of the cooldown period at the end of training as well
as the optimal learning-rate transfer. Notably, our experi-
ments suggest that the theoretical bounds can be used as
testbed for schedule design before training: we have shown
that theoretically inspired schedules achieve notable im-
provements in practical scenarios. More broadly, our results
suggest that one key characteristic underlying the observed
behavior is gradient norms that do not go to zero; in practice,
this could be due to non-smoothness (of the objective) or
due to the problem-inherent gradient noise. We leave it as
future work to explain this phenomenon.
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Appendix
The supplementary material is organized as follows:

• Appendix A: ablation on bounds on the minimal suboptimality bounds.

• Appendix B: supplementary information on our experiments.

• Appendix C: additional experiments for training language and vision models

• Appendix D: technical lemmas

• Appendices E and G: missing proofs of our theoretical results

• Appendix F: additional analysis for mirror descent

A. Ablation: Min-Suboptimality Bounds
Standard convergence results for the SGD method (2) make statements on the suboptimality of an average iterate, or of
the best objective value (in expectation) found up to iteration T . We state one of the standard results for the non-smooth
(stochastic) convex setting below (Zinkevich, 2003):
Theorem A.1. Assume that each f(·, s) is convex. Let (xt) be the iterates given by (A2), with ηt > 0 and γ > 0. Let
x⋆ ∈ Rd and define D := ∥x1 − x⋆∥. Under (A3), we have

min
t=1,...,T

E[f(xt)− f(x⋆)] ≤
1

2γ
∑T
t=1 ηt

[
D2 + γ2

T∑

t=1

η2tG
2
t

]
. (10)

The right-hand side of the above is minimized by γ⋆ = D√∑T
t=1G

2
tη

2
t

. Plugging in γ⋆ yields

min
t=1,...,T

E[f(xt)− f(x⋆)] ≤
D
√∑T

t=1G
2
tη

2
t

∑T
t=1 ηt

.

We now repeat the theoretical simulations, but, instead of Ωt from (9), using

Ωt =
1

2γ
∑t
s=1 ηs

[
D2 + γ2

t∑

s=1

η2sG
2
s

]
(11)

A.1. Ablation of Section 3.1
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Figure 13. Same as Fig. 2, but with Ωt from (11)

The bound on the best-so-far bound has a very different shape of the last-iterate bound. This shows that standard bounds
such as in Theorem A.1 do not capture the real-world convergence observed in Hägele et al. (2024).
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Figure 14. Same as Fig. 3, but with Ωt from (11)

A.2. Ablation of Section 4.1
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Figure 15. Same as Fig. 4, but with Ωt from (11)
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Figure 16. Same as Fig. 5, but with Ωt from (11)
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B. Experiments: Supplementary Material
B.1. Non-smooth Convex Example

Here, we provide details for the non-smooth convex toy example of minx∈Rd ∥Ax− b∥∞ mentioned in Section 4.3. We set
d = 2 and pick A ∈ R20×d uniformly at random from [−1, 1]. We generate an oracle x⋆ ∈ Rd and set b = Ax⋆. We then
run gradient descent (GD) for T = 400 iterations with the wsd schedule (cooldown fraction 0.2 and γ = 0.02). As baseline,
we plot the constant schedule with γ = 0.02 and a cosine schedule with γ = 0.04. We pick zero as starting point, except
for the constant schedule, where we pick (10−3, 10−3) to obtain a visually distinguishable path.

The objective function and iterate paths are shown in Fig. 17.
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Figure 17. (Left) Sudden drop of the loss for wsd schedule for a convex, non-smooth problem. (Right) Iterate path for the three schedules.
For wsd, the cooldown period is indicated with the dashed line. Star marks solution.

B.2. Schedule Comparison

We compare the upper bound Ωt from (9) for various schedules:

• wsd with cooldown fraction 0.2,

• cosine,

• constant schedule,

• linear-decay schedule, that is, wsd with cooldown fraction of 1,

• 1/sqrt schedule, where ηt = 1/
√
t,

• 1-sqrt schedule, where ηt = 1−
√

t−1
T .

We assume D = 1, Gt = 1 and set T = 400. For each schedule we sweep the base learning-rate γ and plot the bound Ωt
for γ = γ⋆ obtained from Corollary 3.3.

B.3. Cosine Cycle Length

For the cosine schedule, an important hyperparameter is its cycle length, that is, the amount of training where the schedule
first reaches zero. Originally, it was proposed in Loshchilov & Hutter (2017) to use multiple warm restarts (a cycle length
less than one). Later, Hoffmann et al. (2022) show empirically that the best performance in language modeling tasks is
obtained by setting the cycle length to one (the half-cosine matches exactly the training duration).
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Figure 18. Comparison of various learning-rate schedules. Convergence is plotted with the optimal base learning-rate γ⋆ (chosen
individually for each schedule).

To the best of our knowledge, this recommendation is based mostly on empirical insights. Using the bound obtained in
Theorem 3.1, our analysis shows that a cycle length of one obtains the lowest bound ΩT . Thus, the theoretical bound is in
accordance to the empirical conclusion from Hoffmann et al. (2022).

Note that Hoffmann et al. (2022) choose the base learning-rate γ equally for all cycle lengths. To match the setting of
their experiment, we pick γ⋆ for a cycle length of one, and use this for all other cycle lengths as well. Picking γ⋆ for each
cycle length individually yields qualitatively the same result (the optimal cycle length being one), but with slightly less
pronounced differences (plots not shown). In contrast to previous simulations, the final value of the schedule is chosen as
0.1 of the peak learning-rate (instead of zero), again in order to match the setting of Hoffmann et al. (2022).
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Figure 19. Comparison of cycle lengths for the cosine schedule. Compare to Figure A1 in Hoffmann et al. (2022).

B.4. Details on Lower Bound Computation

We provide additional details for the simulation in Section 4.3. We compute the lower bounds with the PEPit package
(Goujaud et al., 2024). For our purpose, we use the class of convex G-Lipschitz functions and gradient descent (GD) with the
step sizes γ · ηt. In PEPit, we use the MOSEK solver. As the size of the semidefinite program grows with T , we choose a
rather small T = 60, and compute the lower bound of E[f(xt)− f(x⋆)] for all t+ 1 that are multiple of 5. Note that the
specific worst-case function f constructed by PEPit can be different for each t (as it maximizes the suboptimality exactly at
iteration t). We set γ to γ⋆ minimizing the upper bound Ωt (cf. Corollary 3.3). We set G = D = 1.
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B.5. Details on Experiments in Fig. 1a and Section 5

Training details. The loss curves in Fig. 1a are an exact reproduction of the curves in (Hägele et al., 2024, Fig. 3); they
are obtained from training a 210M Llama-style transformer (Touvron et al., 2023). The base learning-rate of cosine is
0.001, and for wsd it is 0.0005.

All of the following applies to the training runs used in the experiments in Section 5: we use exactly the same model
architecture as in Hägele et al. (2024), which is a Llama-style transformer with 12 (24) layers and 12 attention heads for
the 124M (210M) model. The dataset used for training is SlimPajama (Soboleva et al., 2023). Specifically, for runs with
50 000 steps (5B tokens), we use the SlimPajama-6B subset available on Hugging Face (link below). For the extension
runs with 100 000 and 200 000 steps (approximately 10B and 20B tokens), we randomly sample 550M documents (roughly
5% of full corpus) from the full SlimPajama-627B to arrive at a corpus of 30B tokens.

We train for 50 000 steps, where the first 300 steps are reserved for linear warmup. We use AdamW (Loshchilov & Hutter,
2019) with a weight decay of 0.1. For all further details we refer to Hägele et al. (2024, App. A.1). Note that all training
curves show the validation loss computed over a subset of 32 batches, while the final validation loss is computed over
approx. 6 000 batches; hence, the final value of the loss curve might not be identical to the final loss computed over the full
validation set. One single run over 50 000 steps takes roughly 2 hours on two Nvidia H100 GPUs.

The training runs can be reproduced with the following repositories:

Training code from Hägele et al. (2024): https://github.com/epfml/schedules-and-scaling/
Dataset: https://huggingface.co/datasets/DKYoon/SlimPajama-6B

Fitting procedure. We execute training runs on a grid of base learning-rates γ ∈ {0.0005, 0.001, 0.002, 0.003} and
cooldown fractions c ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.994}. Note that the largest cooldown fraction is slightly smaller than
1 as the remaining 0.6% percent of steps constitute warmup. The final validation set loss (after 50k steps) for all runs is
displayed in Fig. 12b (every dot marks one single training run).

We then fit, for each cooldown fraction c separately, a function of the form hc(γ) =
Ac

γ +Bcγ + Cc, where Ac, Bc, Cc are
fittable parameters. The resulting function is plotted as solid line in Fig. 12b. The functional form of hc(γ) is inspired by
the bound (8).

We then approximate the optimal base learning-rate γ⋆(c) by computing the minimizer of hc(γ). The result of this step is
plotted in red in Fig. 12a.

Assessing loss differences through scaling laws. In this section, we estimate with scaling laws how much more parameters
or training data/steps would be needed to make up a loss difference of 0.01 (see end of Section 5.1 for context). The
Chinchilla law (Hoffmann et al., 2022) states that the loss L(N,D) for a model with parameters N after training for D
tokens can be estimated with

L(N,D) = E +
A

Nα
+

B

Dβ
, (12)

where E,A,B, α, β are usually fitted from data. More concretely, assume we have trained a model of size N1 for D1 tokens.
To arrive at an improvement of δ with a new combination of the number of parameters and tokens to (N2, D2), we obtain

δ = L(N1, D1)− L(N2, D2) = A

(
1

Nα
1

− 1

Nα
2

)
+B

(
1

Dβ
1

− 1

Dβ
2

)

Consequently, we can consider two cases:

• Case 1: Fix N1 = N2. That is, we fix a parameter size and look for the number of tokens by which we need to extend
the training to improve the loss by δ. Solving the above equation then gives

D2 =

(
1

Dβ
1

− δ

B

)− 1
β

.
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• Case 2: Fix D1 = D2. This is the case where we estimate the size that would achieve the desired loss improvement for
the same training data. Similarly, this results in

N2 =

(
1

Nα
1

− δ

A

)− 1
α

.

In the settings of our experiments we have N1 ∈ {124M, 210M} and D1 ∈ {10.24B, 20.48B}5. Plugging in the constants
by Besiroglu et al. (2024)6 and using δ = 0.01, yields7

• Case 1: Fix N1 = N2. In this case, the scaling law results in D2 ∈ {10.88B, 22.16B} for D1 ∈ {10.24B, 20.48B},
respectively. This means that we would need to train the models for 640M or 1.68B more tokens to match the adapted
schedule.

• Case 2: Fix D1 = D2. In this case, we obtain N2 ∈ {129.0M, 220.1M} for N1 ∈ {124M, 210M}. In other words,
increasing the number of parameters by 5M or 10M would approximately result in the same loss after fixing the amount
of tokens.

For both cases, the estimates from the scaling law match our general intuition and would require either noticeably training
longer by 6− 8% or growing the model by 4− 5%, in line with the argument at the end of Section 5.1. Also note that the
(relative) additional cost implied by the Chinchilla law to obtain 0.01 loss improvement grows with the (extended) training
length D1.

B.6. Miscellaneous Plots
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Figure 20. (Left) The benefit of cooldown is reflected in the absence of logarithmic terms. Dark grey marks the bound of the constant
schedule. (Right) Plotting the individual terms of the bound Ωt = T1/γ + γT2 with γ = γ⋆ for the wsd schedule. The sudden drop of
the bound comes from the term γT2.

5Batch size 50, two accumulation steps, two GPUs, sequence length 512, 100/200k steps.
6A = 482.01, B = 2085.43, E = 1.8172, α = 0.3478, β = 0.3658.
7Note that the Chinchilla scaling laws were obtained in a different setup. In particular, we do not have access to the exact same

dataset and tokenizer, which makes the scaling law not directly transferrable. However, our experiments are comparable in the general
dataset composition (webcrawl data extended with other sources) and training task (decoder-only language models). Moreover, with the
difference in vocabulary size (32k vs. 50k), we can scale the loss with the rough approximation of ln(32 · 103)/ ln(50 · 103) ≈ 0.959 to
align the cross-entropy losses. This does not substantially change the results of this analysis.
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Figure 21. (Left) Analogous to Fig. 5 (right) with real training curves. We remove cooldown fraction 0.6 as its loss curve shows a spike
and recovers only late. (Right) Analogous of Fig. 4 (right) with real training data that shows a parabola shape for fixed learning-rates.
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Figure 24. Experiment with adapted cooldown length for 124M model (left) and 210M (right). See Section 5.1, (B1) for details.
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C. Additional Experiments
C.1. Additional Experiments on Imagenet

In order to corroborate our findings on additional data domains and architectures, we conduct additional experiments on
training ResNet50 (He et al., 2016) on Imagenet. We train all models with SGD with heavy-ball momentum.

Training is done using the timm library (Wightman, 2019). All runs are using weight decay of 0.0001, momentum 0.9,
batch size 4× 256, and standard data augmentation techniques.8

Figs. 25 and 26 confirm our previous findings on this additional training task. Note that the Imagenet training is in a
different regime as we are not training with a single pass. Hence, we expect the validation set metrics to be confounded by
generalization effects beyond training loss only.
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Figure 25. The theoretical bound (left) for a range of base learning rates γ (and setting D = G = 1) qualitatively matches the empirical
(validation) loss curves for training ResNet50 on Imagenet with SGD (middle). (We display a running average over five epoch in
thick to smoothen the plot, and the original data in thin.) (Right) We again find for the optimal base learning rate that it holds
γ⋆(cosine) ≈ 2γ⋆(wsd), as is predicted by the theory.
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Figure 26. Training ResNet50 on Imagenet with SGD: Plotting the three best base learning rates γ for both cosine and wsd schedule, as
well as linear-decay schedule with learning rate transfer following Section 5.2. Sudden drop of training loss (middle) and increase of
validation set accuracy (right) is clearly visible for wsd schedule. Linear-decay with zero-shot transfer of γ⋆ (multiplier exp(0.7) ≈ 2)
improves over wsd, which confirms the findings of Section 5.2. For validation set metrics, we display a running average over five epoch in
thick to smoothen the plot, and the original data in thin. Note that the final train loss of wsd appears slightly higher as we display the
epoch-wise average of mini-batch losses; due to the steep descent of the loss at the end of training this slightly distorts the plot.

C.2. Additional Experiments on OpenWebText2

We also train language models on a different dataset, namely OpenWebText2. Across three different model sizes we find
(again) that the performance of wsd (with 20% cooldown) matches the one of cosine when using a base learning rate

8In timm we set the configuration hflip= 0.5, vflip= 0, crop-pct= 1.0.
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half as big (see Fig. 27). For wsd, the sudden drop in the loss is clearly visible across all model sizes and training lengths.
Training details are identical to the OpenWebText2 experiments of Hägele et al. (2024).
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Figure 27. Training three different model sizes on OpenWebText2. We observe the same characteristic drop of the loss for wsd, as well as
matching performance of wsd and cosine. In each run the base learning rate of cosine is twice as large as for wsd.

C.3. Computing the Bound-minimizing Schedule

In this section, we showcase how the schedule that minimizes the bound ΩT in Theorem 3.1 can be computed. However, we
stress that this has more of a purpose of illustration than practical applicability: in general, the gradient norms will depend
on the schedule, and thus create an interdependence of the schedule and gradient norms (see also Defazio et al. (2023)).

However, we will show that – with constant gradient norm bounds (Gt = 1 for all t ∈ N) – computing the schedule that
minimizes ΩT converges to the linear-decay schedule. Consider ΩT (η1:T ), the right-hand side in Theorem E.2, as a function
of the schedule η1:T = (η1, . . . , ηT ). We are interested in computing

argmin
η1:T

ΩT (η1:T ) subject to η1, . . . , ηT > 0.

As we can not compute the above analytically, we resort to using projected gradient descent (with momentum) in order
to approximate the solution. We implement ΩT (η1:T ) in Pytorch which allows us to use automatic differentiation. As
starting point, we use a constant schedule ηt = 1 for all t = 1, . . . , T . Fig. 28 (left) shows the value of the bound ΩT
over the optimization trajectory. We observe convergence of the optimized schedule to a linear-decay schedule (Fig. 28,
right). Note that the shape of the schedule as well as its scale are optimized simultaneously; we plot the optimal bound for a
linear-decay schedule and see that its value matches the bound at convergence. Though we did not observe any instabilities
in the optimization procedure, at this point we can not verify whether the final point is a global minimum.
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Figure 28. Optimizing the bound ΩT with respect to the schedule η1, . . . , ηT . (Left) Convergence of the value of the bound, matching the
bound of a linear-decay schedule. (Right) Optimization trajectory from constant schedule (yellow) to linear-decay (purple).
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D. Auxiliary Lemmas
Lemma D.1 (Lemma 5 from Defazio et al. (2023)). Let (qt) be any sequence, and let (wt) be a positive sequence. Then,
for any T ∈ N it holds

qT =
1

∑T
t=1 wt

T∑

t=1

wtqt +

T−1∑

k=1

wk∑T
t=k+1 wt

( 1
∑T
t=k wt

T∑

t=k

wt(qt − qk)
)
.

Lemma D.2. Let l, T ∈ N and l ≤ T . It holds

T+1−l∑

s=1

s = 1
2 (T + 2− l)(T + 1− l),

T+1−l∑

s=1

s2 = 1
6 (2T + 3− 2l)(T + 2− l)(T + 1− l).

Proof. We refer to WolframAlpha: [link to first result], [link to second result].

Lemma D.3. Let t ∈ N. It holds

ln(t) ≤ ln(t+ 1) ≤
∫ t

0

1

s+ 1
ds ≤

t∑

s=1

1

s
= Ht ≤ 1 + ln(t).

E. Missing Proofs
The following lemma will be the basic inequality for subsequently proving Theorem E.2; it is a standard result in the online
learning and convex optimization literature (Zinkevich, 2003).
Lemma E.1. Let 1 ≤ k ≤ T and let u ∈ Rd be measurable with respect to xk. It holds

T∑

t=k

ηtE[f(xt)− f(u)] ≤ 1

2
E∥xk − u∥2 + 1

2

T∑

t=k

η2tE∥gt∥2. (13)

Proof. From the update rule (2) and property (4) we obtain

∥xt+1 − u∥2 = ∥xt − u∥2 − 2ηt⟨gt, xt − u⟩+ η2t ∥gt∥2

≤ ∥xt − u∥2 − 2ηt
[
f(xt, st)− f(u, st)

]
+ η2t ∥gt∥2.

Apply conditional expectation (conditioned on t) to obtain

E∥xt+1 − u∥2 ≤ ∥xt − u∥2 − 2ηt
[
f(xt)− f(u)

]
+ η2tE∥gt∥2.

Apply total expectation (with respect to t = 1, . . . , T ) and rearrange to obtain

ηtE[f(xt)− f(u)] ≤ 1
2E∥xt − u∥2 − 1

2E∥xt+1 − u∥2 + η2t
2
E∥gt∥2.

Sum from t = k, . . . , T to obtain the final result:

T∑

t=k

ηtE[f(xt)− f(u)] ≤ 1

2
E∥xk − u∥2 + 1

2

T∑

t=k

η2tE∥gt∥2.

Theorem E.2 (Thm. 10 from Defazio et al. (2023)). Let the iterates (xt) be given by (2) with ηt > 0 for t = 1, . . . , T . Let
x⋆ ∈ Rd and D := ∥x1 − x⋆∥. Then, it holds

E[f(xT )− f(x⋆)] ≤
D2

2
∑T
t=1 ηt

+

∑T
t=1 η

2
tE∥gt∥2

2
∑T
t=1 ηt

+
1

2

T−1∑

k=1

ηk∑T
t=k+1 ηt

( 1
∑T
t=k ηt

T∑

t=k

η2tE∥gt∥2
)
.
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Remark E.3.

(i) Note that the result of Theorem E.2 is an anytime result, in the sense that we can evaluate the right-hand side at any T
without the knowledge of ηt for t > T .

(ii) A technical artifact of Theorem E.2 is that xT does not depend on ηT by definition, however ηT appears in the
bound on the right-hand side. This is standard in the analysis of subgradient methods: in the proof, we bound
−E∥xT+1 − x⋆∥2 ≤ 0. If one carries through this term to the end, then we obtain multiple terms in the bound that
depend on ηT .

Theorem 3.1 follows from applying Theorem E.2 with η̂t := γηt. We finally prove Theorem E.2.

Proof. First, apply Lemma E.1 with u→ x⋆ and k → 1 to obtain

T∑

t=1

ηtE[f(xt)− f(x⋆)] ≤
1

2
D2 +

1

2

T∑

t=1

η2tE∥gt∥2. (14)

Define qt := E[f(xt)− f(x⋆)]. Dividing by
∑T
t=1 ηt gives

1
∑T
t=1 ηt

T∑

t=1

ηtqt ≤
D2

2
∑T
t=1 ηt

+

∑T
t=1 η

2
tE∥gt∥2

2
∑T
t=1 ηt

. (15)

In order to apply Lemma D.1 with wt → ηt we need to bound the term

T∑

t=k

ηt(qt − qk) =

T∑

t=k

ηtE[f(xt)− f(xk)]. (16)

Thus, apply Lemma E.1 with u→ xk to obtain

1
∑T
t=k ηt

T∑

t=k

ηt[qt − qk] ≤
1

2
∑T
t=k ηt

T∑

t=k

η2tE∥gt∥2.

Now, combine Lemma D.1 with (15) and (16) to get

E[f(xT )− f(x⋆)] = qT ≤ D2

2
∑T
t=1 ηt

+

∑T
t=1 η

2
tE∥gt∥2

2
∑T
t=1 ηt

+
1

2

T−1∑

k=1

ηk∑T
t=k+1 ηt

( 1
∑T
t=k ηt

T∑

t=k

η2tE∥gt∥2
)
.
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F. Mirror Descent Analysis
In this section, we extend the bound from Theorem E.2 to the stochastic mirror-descent method.

Notation. In this section only, we denote with ∥ · ∥ an arbitrary norm (in contrast to the rest of the paper, where it denotes
the standard Euclidean norm), and let ∥ · ∥∗ denote its dual norm, defined by ∥x∥∗ := supz∈Rd:∥z∥≤1⟨x, z⟩.

Let ψ : Rd → R be a continuously differentiable function that is µ-strongly convex with respect to ∥ · ∥. Define the Bregman
divergence as

Bψ(x, y) := ψ(x)− ψ(y)− ⟨x− y,∇ψ(y)⟩.

It follows Bψ(x, y) ≥ µ
2 ∥x − y∥2 from strong convexity of ψ. Further, we will need the following three-point-identity

(Beck & Teboulle, 2003, Lem. 4.1): for any x, y, z ∈ Rd it holds

Bψ(z, x) +Bψ(x, y)−Bψ(z, y) = ⟨∇ψ(y)−∇ψ(x), z − x⟩. (17)

Now, the iterates of (stochastic) mirror descent are given by: for ηt > 0 and gt ∈ ∂f(xt, st), compute

xt+1 = argmin
y∈Rd

ηt⟨gt, y − xt⟩+Bψ(y, xt). (18)

We will now prove a mirror descent version of Theorem E.2 (in fact, Theorem E.2 is a special case with Bψ(x, y) =
1
2∥x− y∥2). To do so, we first follow standard steps in mirror-descent analysis (Beck & Teboulle, 2003) to obtain the basic
inequality in Lemma F.1. In contrast to the classical mirror-descent analysis, we use this to prove a last-iterate bound in
Theorem F.2.

Lemma F.1. Let the iterates (xt) be generated by (18). Let 1 ≤ k ≤ T and let u ∈ Rd be measurable with respect to xk. It
holds

T∑

t=k

ηtE[f(xt)− f(u)] ≤ E[Bψ(u, xk)] +
1

2µ

T∑

t=k

η2tE∥gt∥2∗. (19)

Proof. For fixed y, we have ∇xBψ(x, y) = ∇ψ(x)−∇ψ(y). Thus, optimality conditions of (18) are

0 = ηtgt +∇ψ(xt+1)−∇ψ(xt). (20)

Then, we have

ηt[f(xt, st)− f(u, st)] ≤ ηt⟨xt − u, gt⟩
= ⟨u− xt+1,∇ψ(xt)−∇ψ(xt+1)− ηtgt⟩

:=s1

+ ⟨u− xt+1,∇ψ(xt+1)−∇ψ(xt)⟩
:=s2

+

⟨xt − xt+1, ηtgt⟩
:=s3

.

From (20), we have s1 = 0. From (17), we have s2 = Bψ(u, xt)−Bψ(u, xt+1)−Bψ(xt+1, xt). From the (generalized)
Cauchy-Schwarz inequality combined with Young’s inequality, we have

s3 ≤ µ

2
∥xt+1 − xt∥2 +

η2t
2µ

∥gt∥2∗.

Using that −Bψ(xt+1, xt) ≤ −µ
2 ∥xt+1 − xt∥2, we obtain

ηt[f(xt, st)− f(u, st)] ≤ Bψ(u, xt)−Bψ(u, xt+1) +
η2t
2µ

∥gt∥2∗.
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Taking conditional expectation, we have E[f(xt, st)− f(u, st)] = f(xt)− f(u). Finally, rearrange, take total expectation
and sum from t = k, . . . , T . Using that Bψ(u, xT+1) ≥ 0, we obtain

T∑

t=k

ηtE[f(xt)− f(u)] ≤ E[Bψ(u, xk)] +
1

2µ

T∑

t=k

η2tE∥gt∥2∗.

Now, repeating the proof of Theorem E.2, but applying Lemma F.1 instead of Lemma E.1, we obtain the following bound.

Theorem F.2. Let the iterates (xt) be given by stochastic mirror descent (18) with ηt > 0 for t = 1, . . . , T . Let x⋆ ∈ Rd.
Then, it holds

E[f(xT )− f(x⋆)] =
E[Bψ(x⋆, x1)]∑T

t=1 ηt
+

∑T
t=1 η

2
tE∥gt∥2∗

2µ
∑T
t=1 ηt

+
1

2µ

T−1∑

k=1

ηk∑T
t=k+1 ηt

( 1
∑T
t=k ηt

T∑

t=k

η2tE∥gt∥2∗
)
.
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G. Analysis of wsd schedule
We first state Theorem 3.4 in its full version.

Theorem G.1. Let 1 ≤ T0 < T . Assume that ηt = 1 for t < T0 and ηt = 1− t−T0

T+1−T0
for T ≥ t ≥ T0. Further, assume

that (A3) holds with Gt = G for some G > 0 for all t ∈ N. Then, for γ = γ⋆ from Corollary 3.3, we have

E[f(xT )− f(x⋆)] ≤

DG

√√√√ 4

T + T0

[
2
3 + T+2T0

3(T+T0)
+HT+T0−2 −HT−T0+1 − (T−T0)(T0−1)

3(T−T0+2)(T+T0)
+ 1

(T−T0)2
+

HT−T0−1

T−T0+1

]
.

Note that for large T , we have HT−T0−1 = O(ln(T − T0 − 1)) = o(T − T0 + 1). Thus, the last two terms can be
summarized with o(1) as T → ∞.

In this section, we give further interpretation the bound in Theorem G.1 in comparison to the constant and linear-decay
schedules.

In Section 3.2, we derived that for large T and T0 = βT , the bound for wsd is approximately

E[f(xT )− f(x⋆)] ≾
DG√
T

·
√

4

1 + β

[
2
3 + 1+2β

3(1+β) −
β

3(1+β) +H(1+β)T−2 −H(1−β)T+1

]
.

To obtain concrete numbers, plugging in β = 0.8 (that is, 20% cooldown) for wsd, and obtain

E[f(xT )− f(x⋆)] ≾
DG√
T

·
√
0.9 + 2.2(H1.8T−2 −H0.2T+1).

For example, if T = 105, then 2.2(H1.8T−2 −H0.2T+1) ≈ 4.39. In comparison, we have:

• constant schedule: the bound is DG√
T
·
√
1 +HT−1.

• linear-decay schedule: the same bound from Corollary 3.3 results in (2 + HT−1−2/3
T+1 )DG√

T
(Defazio et al., 2023, Thm.

13). However, with a different (but less general) proof technique one can show the tighter bound DG√
T

(Defazio et al.,
2023, Cor. 2), which is actually worst-case optimal for convex, Lipschitz problems (Zamani & Glineur, 2023).

Again for T = 105, we have HT−1 ≈ 12.09 and (2 + HT−1−2/3
T+1 ) ≈ 2.0001. In conclusion, for this specific T the constant

of the bound is roughly twice for wsd compared to linear-decay, and 1/3 compare to a constant schedule.

Finally, we prove Theorem G.1.

Proof of Theorem G.1. From Corollary 3.3, we have

E[f(xT )− f(x⋆)] ≤ 2
√

T1(η1:T , D, T )T2(η1:T , G1:T , T ).

Thus, the rest of the proof will compute an upper bound of the right-hand side. First, for 1 ≤ l ≤ T , we compute

l ≥ T0 :

T∑

t=l

ηt =
1

T+1−T0

T∑

t=l

(T + 1− t) = 1
T+1−T0

T+1−l∑

s=1

s =
(T + 2− l)(T + 1− l)

2(T + 1− T0)
.

Here we made the change of variable T + 1− t→ s and used Lemma D.2. Similarly, we get

l < T0 :

T∑

t=l

ηt =

T0−1∑

t=l

ηt +

T∑

t=T0

ηt = T0 − l +

T∑

t=T0

ηt = T0 − l +
(T + 2− T0)(T + 1− T0)

2(T + 1− T0)

= 1
2 [T + 2 + T0 − 2l].
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Note that this expression is still correct if we would plug in l = T0. Next, we compute the sum of squares. We start again
with

l ≥ T0 :

T∑

t=l

η2t =
1

(T + 1− T0)2

T+1−l∑

s=1

s2 =
(2T + 3− 2l)(T + 2− l)(T + 1− l)

6(T + 1− T0)2
.

And similarly

l < T0 :

T∑

t=l

η2t =

T0−1∑

t=l

η2t +

T∑

t=T0

η2t = T0 − l +
(2T + 3− 2T0)(T + 2− T0)(T + 1− T0)

6(T + 1− T0)2

= T0 − l +
(2T + 3− 2T0)(T + 2− T0)

6(T + 1− T0)

= T0 − l − 2T + 5− 2T0
6

+
1

6(T + 1− T0)

= 1
6

[
2T + 4T0 + 5− 6l +

1

(T + 1− T0)

]
.

Here, we used that

(2T + 3− 2T0)(T + 2− T0) = (2T + 5− 2T0)(T + 2− T0)− 2(T + 2− T0)

= (2T + 5− 2T0)(T + 1− T0) + (2T + 5− 2T0)− 2(T + 2− T0)

= (2T + 5− 2T0)(T + 1− T0) + 1.

Again, the expression we obtain for l < T0 is correct if we would plug in l = T0. Now we can try to compute the bound.
We start with the easy ones: as Gt = G > 0 for all t ∈ N, we obtain

T1(η1:T , D, T ) =
1

2
∑T
t=1 ηt

D2 =
D2

T + T0
,

1

2
∑T
t=1 ηt

( T∑

t=1

η2tG
2
t

)
=
G2

2

1
6 [2T + 4T0 + 5− 6] + 1

6(T+1−T0)

1
2 (T + T0)

=
G2

6(T + T0)

[
2T + 4T0 − 1 + 1

T+1−T0

]
≤ G2(T + 2T0)

3(T + T0)
.

(21)

The last inequality is due to T0 < T and thus 1 > 1
T+1−T0

. Next, for k = 1, . . . , T − 1, we need to compute

ηk∑T
t=k+1 ηt

( 1
∑T
t=k ηt

T∑

t=k

η2tG
2
t

)
.

Again, as Gt = G > 0 for all t ∈ N, we omit G for now, and start with the case k ≥ T0:

ηk∑T
t=k+1 ηt

( 1
∑T
t=k ηt

T∑

t=k

η2t

)
=

T+1−k
T+1−T0

· (2T+3−2k)(T+2−k)(T+1−k)
6(T+1−T0)2

(T+2−k)(T+1−k)2(T−k)
4(T+1−T0)2

=
2(2T + 3− 2k)

3(T + 1− T0)(T − k)
.

Now, if k < T0:

ηk∑T
t=k+1 ηt

( 1
∑T
t=k ηt

T∑

t=k

η2t

)
=

1 · 1
6

[
2T + 4T0 + 5− 6k + 1

(T+1−T0)

]

1
4 [T + T0 − 2k][T + 2 + T0 − 2k]

=
2
[
2T + 4T0 + 5− 6k + 1

(T+1−T0)

]

3[T + T0 − 2k][T + 2 + T0 − 2k]
.
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Now, compute

T−1∑

k=1

ηk∑T
t=k+1 ηt

( 1
∑T
t=k ηt

T∑

t=k

η2t

)
=

2

3

[
T0−1∑

k=1

[
2T + 4T0 + 5− 6k + 1

(T+1−T0)

]

[T + T0 − 2k][T + 2 + T0 − 2k]

:=Ω1

+

T−1∑

k=T0

(2T + 3− 2k)

(T + 1− T0)(T − k)

:=Ω2

]
=: (∗).

Then, it holds [link to proof]

Ω2 =

T−1∑

k=T0

(2T + 3− 2k)

(T + 1− T0)(T − k)
=

2T − 2T0 +
3

T−T0
+ 3HT−T0−1

T − T0 + 1
.

To simplify this term a bit, we estimate

2

3
Ω2 ≤ 4

3
+

2

(T − T0)2
+

2HT−T0−1

T − T0 + 1
.

For Ω1, we can bound the nominator by

2T + 4T0 + 5− 6k + 1
T+1−T0

= 3(T + 2 + T0 − 2k)− (T − T0 + 1) + 1
T+1−T0

≤ 3(T + 2 + T0 − 2k)− (T − T0),

where for the second term we bound 1
T+1−T0

≤ 1 due to T0 ≤ T . It holds [link to proof]

T0−1∑

k=1

1

[T + T0 − 2k][T + 2 + T0 − 2k]
=

T0 − 1

(T − T0 + 2)(T + T0)
.

Therefore, defining Ω3 := (T−T0)(T0−1)
(T−T0+2)(T+T0)

we get

Ω1 ≤
( T0−1∑

k=1

3

T + T0 − 2k

)
− Ω3 = 3(HT+T0−2 −HT−T0+1)− Ω3,

where we used T ≥ T0. Altogether, we have

(∗) = 2

3
(Ω1 +Ω2) ≤ 2(HT+T0−2 −HT−T0+1)−

2

3
Ω3 +

4

3
+

2

(T − T0)2
+

2HT−T0−1

T − T0 + 1
.

Multiplying this term with G2

2 , we can plug the result in (21) to finally derive the bound

2
√
T1(η1:T , D, T )T2(η1:T , G1:T , T ) ≤

2DG

√√√√ 1
T+T0

[
T+2T0

3(T+T0)
+HT+T0−2 −HT−T0+1 − (T−T0)(T0−1)

3(T−T0+2)(T+T0)
+ 2

3 + 1
(T−T0)2

+
HT−T0−1

T−T0+1

]
.
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