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Abstract

In recent years, Bi-Level Optimization (BLO) techniques have received extensive
attentions from both learning and vision communities. A variety of BLO models in
complex and practical tasks are of non-convex follower structure in nature (a.k.a.,
without Lower-Level Convexity, LLC for short). However, this challenging class
of BLOs is lack of developments on both efficient solution strategies and solid the-
oretical guarantees. In this work, we propose a new algorithmic framework, named
Initialization Auxiliary and Pessimistic Trajectory Truncated Gradient Method
(IAPTT-GM), to partially address the above issues. In particular, by introducing
an auxiliary as initialization to guide the optimization dynamics and designing a
pessimistic trajectory truncation operation, we construct a reliable approximate
version of the original BLO in the absence of LLC hypothesis. Our theoretical in-
vestigations establish the convergence of solutions returned by IAPTT-GM towards
those of the original BLO without LLC. As an additional bonus, we also theoreti-
cally justify the quality of our IAPTT-GM embedded with Nesterov’s accelerated
dynamics under LLC. The experimental results confirm both the convergence of
our algorithm without LLC, and the theoretical findings under LLC.

1 Introduction

Bi-Level Optimization (BLO) has been widely used to formulate problems in the field of deep
learning [1, 2], especially for hyperparameter optimization [3, 4, 5], meta learning [6, 7, 8, 9], neural
architecture search [10, 11, 12], adversarial learning [13], and reinforcement learning [14], etc. BLO
aims to tackle nested optimization structures appearing in applications, which has emerged as a
prevailing optimization technique for modern machine learning tasks with underlying hierarchy. In
the last decade, a large number of BLO methods have been proposed to address different machine
learning tasks. In fact, Gradient Methods (GMs), which can effectively handle BLO problems of
large scale, thus gain popularity. According to different types of strategies for gradient calculations,
existing GMs can be divided into two categories, i.e., the explicit approaches which aim to replace
the Lower-Level (LL) problem with dynamic iterations and implicit schemes that apply the implicit
function theorem to formulate the first-order optimality condition of the LL problem.

Explicit Gradient Methods for BLOs. In this type, solving the LL problem is regarded as the
evolution path of the dynamic system starting from a given initial point of the LL variable. The
gradient of the Upper-Level (UL) variable can be directly calculated by automatic differentiation
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based on the trajectory of LL variable. This class of methods can be further divided into three types,
namely, recurrence-based EG (e.g., [3, 15, 6, 16, 10]), initialization-based EG (e.g., [17, 18]) and
proxy-based EG methods (e.g., [19, 20, 21, 22]), differing from each other in the way of accessing
the gradient of constructed dynamic trajectory. While most of this type of works assume the LLC and
Lower-Level Singleton (LLS) to simplify their optimization process and theoretical analysis, cases
where the LLS assumption does not hold have been tackled in the recent work [23, 24]. In particular,
to eliminate the LLS assumption which is too restrctive to be satisfied in real-world complex tasks,
[23] first considers incorporating UL objective information into the dynamic iterations, but the more
general cases where LLC does not hold remain unsolved. On the other hand, while most of the
mentioned works focus on the asymptotic convergence, the progress on nonasymptotic convergence
analysis has been recently witnessed see, e.g., [25, 26, 27].

Implicit Gradient Methods for BLOs. This type, also known as implicit differentiation [28, 7, 29],
replaces the LL problem with its first-order optimality condition and uses the implicit function theorem
to calculate the gradient of the UL problem by solving a linear system. This method decouples the
calculation of UL gradient from the dynamic system of LL, resulting in a significant speed increase
when the dynamic system iterates many times. However, because of the burden originated from
computing a Hessian matrix and its inverse, IG methods are usually computationally expensive when
linear systems are ill-conditioned. To alleviate this computational issue, there are mainly two kinds
of techniques, i.e., IG based on Linear System (LS) [28, 7] and Neumann Series (NS) [29]. On the
theoretical side, IG methods rely on the strong convexity of LL problems heavily, which is even more
restrictive than the LLC and LLS together.

Initialization Optimization for Learning. In deep learning, the selection of initialization scheme
has a great influence on the training speed and performance [30]. As the most representative work
in recent years, Model-Agnostic Meta-Learning (MAML) [31] applies the same initialization to all
tasks, and is optimized by a loss function common to the task that evaluates the effect of the initial
value, resulting in an initialization that achieves good generalization performance with only a few
gradient steps on new tasks. Due to its simple form this method has been widely studied and applied
[32, 33, 34, 35]. [36] noticed that not all network parameters are suitable for the same initialization,
and therefore proposed a strategy to apply co-initialization only on a part of parameters. In theory,
[37, 38, 39] give comprehensive study on the convergence and convergence rate of MAML and some
MAML-type approaches based on the meta objective function. However, the convergence theory
of these existing results are given based on the loss function for evaluating initial values, and the
convergence analysis of such type of methods from the perspective of each task is still lacked.

Value-Function Approach. The value function based methods have also emerged as a promising
branch to solve BLO problems [40]. Under the special case where the LL is jointly convex with
respect to both the UL and LL variables, the BLO problem can be equivalently reformulated into
a difference-of-convex program [41], which is numerically solvable. Typically, by reformulating
the BLO into an Inner Single Bi-level (ISB) optimization problem with value-function approach, a
gradient-based interior-point method name BVFIM [42] is proposed to solve the BLO tasks, which
effectively avoids the expensive Hessian-vector and Jacobian-vector products. Generally speaking,
the value-function does not admit an explicit form, and is always nonsmooth, non-convex and with
jumps.

1.1 Our Motivations and Contributions

As mentioned above, some theoretical progresses have long been witnessed in diversified learning
areas, but for most existing BLO methods, extra restrictive assumptions (e.g., LLS, LLC and LL
strong convexity) have to be enforced. Their algorithm design and associated theoretical analysis
actually are only valid for optimization with a simplified problem structure. Unfortunately, it has
been well recognized that LL non-convexity frequently appears in a variety of applications, e.g.,
sparse `q regularization (0 < q < 1) for avoiding over-fitting, and learning parameters of coupled
multi-layer neural networks, etc. Therefore, in challenging real-world scenarios, we are usually
required to consider BLO problems where these assumptions (e.g., LLS, LLC and even LL strong
convexity) are naturally violated. These fundamental theoretical issues motivate us to propose a
series of new techniques to address BLO with non-convex LL problems, which have been frequently
appeared in various learning applications.
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In particular, by introducing an Initialization Auxiliary (IA) to the LL optimization dynamics and
operating a Pessimistic Trajectory Truncation (PTT) strategy during the UL approximation, we
construct a Gradient-based Method (GM), named IAPTT-GM, to address BLO in challenging
optimization scenarios (i.e., with non-convex follower tasks). We analyze the convergence behaviors
of IAPTT-GM on BLOs without LLC and also investigate theoretical properties of the accelerated
version of our algorithm on BLOs under LLC. Extensive experiments verify our theoretical results
and demonstrate the effectiveness of IAPTT-GM on different learning applications. The main
contributions of our IAPTT-GM are summarized as follows:

• We propose IA and PTT, two new mechanisms to efficiently handle complex BLOs where
the follower is facing with a non-convex task (i.e., without LLS and even LLC). IA actually
paves the way for jointly optimizing both the UL variables and the dynamical initialization,
while PTT adaptively reduces the complexity of backward recurrent propagation.

• To our best knowledge, we establish the first strict convergence guarantee for gradient-
based method on BLOs with non-convex follower tasks. We also justify the quality of our
IAPTT-GM embedded with Nesterov’s accelerated dynamics under LLC.

• We conduct a series of experiments to verify our theoretical findings and evaluate IAPTT-GM
on various challenging BLOs, in which the follower tasks are either with non-convex loss
functions (e.g., few-shot learning) or coupled network structures (e.g., data hyper-cleaning).

2 The Proposed Algorithmic Framework

In this work, we consider the BLO problem in the form:

min
x∈X ,y

F (x,y), s.t. y ∈ S(x), (1)

where x ∈ Rn,y ∈ Rm are UL and LL variables respectively, and S(x) denotes the set of solutions
of the LL problem, i.e.,

S(x) := arg min
y∈Y

f(x,y), (2)

where f is differentiable w.r.t. y. To ensure the BLO model in Eq. (1) is well-defined, we assume that
S(x) is nonempty for all x ∈ X . Observe further that the above BLO is structurally different from
those in existing literature in the sense that no convexity assumption is required in the LL problem.

In the following, we describe the proposed IAPTT-GM to solve the class of BLOs defined in Eq. (1).
The mechanism of a classical dynamics-embedded gradient method, approximates the LL solution
via a dynamical system drawn from optimization iterations. Choosing gradient descent as the
optimization dynamics for example, the approximation yK(x) is accessed by operations repeatedly
performed by K − 1 steps parameterized by UL variable x

yk+1(x) = yk(x)− s∇yf(x,yk(x)), k = 0, · · · ,K − 1, (3)

where s is a step size, and y0 is a fixed initial value.

2.1 Initialization Auxiliary

Embedding the dynamical iterations into the UL problem returns the approximate version
F (x,yK(x)). As long as ∇yf(x,yK(x)) uniformly converges to zero w.r.t. UL variable x varying
in X , we call this a good approximation. To this end, usually restrictive LL strong convexity assump-
tions are imposed, thus the desired convergence of solutions of approximation problems towards
those of the original BLO follows. By drawing inspiration from the classic dynamics-embedded
gradient method which replaces the LL problem with certain optimization dynamics, hence resulting
in an approximation of the bi-level problem, we propose a new gradient scheme to solve BLO in
Eq. (1) without LLC restriction. Specifically, we let K be a prescribed positive integer and construct
the following approximation yK(x, z) of the LL solution drawn from projected gradient descent
iterations

y0(x, z) = z,

yk+1(x, z) = ProjY(yk(x, z)− αky∇yf(x,yk(x, z))), k = 0, · · · ,K − 1,
(4)
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where {αky} is a sequence of steps sizes. We next embed the dynamical iterations yk(x, z) into
max1≤k≤K {F (x,yk(x, z))}, which can be regarded as a pessimistic trajectory truncation of the UL
objective. The mechanism of the above scheme, in comparison, accesses the approximation parameter-
ized by UL variable x and LL initial point y0. Our motivation for the initialization auxiliary variable z
comes from convergence theory [42] of non-convex first-order optimization methods. In fact, when the
non-convex LL problem admits multiple solutions, the gradient descent steps with a “bad” initial point
y0 cannot return a desired point in the LL solution set, simultaneously optimizing the UL objective. To
overcome such a difficulty, instead of using a fixed initial value, we introduce an initialization auxiliary
variable z. Therefore, when it comes to solving the UL approximation problems, together with the UL
variable x, the auxiliary variable z is also updated and hence optimized. As a consequence, we may
search for the “best” initial value, starting from which the gradient descent steps approach a solution
to the BLO in Eq. (1), i.e., a point in the LL solution set, simultaneously minimizing the UL objective.

Algorithm 1 The Proposed IAPTT-GM

1: Initialize x0 and z0.
2: for t = 0→ T − 1 do
3: y0 = zt.
4: for k = 0→ K − 1 do
5: % LL Updating with xt and zt

6: yk+1 = ProjY(yk − αky∇yf(xt,yk)).
7: end for
8: % Pessimistic Trajectory Truncation
9: k̄ = arg maxk{F (x,yk)}Kk=1.

10: % UL Updating with yk̄(x, z)
11: xt+1 = ProjX (xt − αx∇xF (xt,yk̄)).
12: % Initialization Updating with yk̄(x, z)
13: zt+1 = ProjY(zt − αz∇zF (xt,yk̄)).
14: end for

2.2 Pessimistic Trajectory Truncation

This is a striking feature of our algorithm that
significantly differs from existing methods and
leads to some new convergence results with-
out LLC. The motivation for the design of
pessimistic trajectory truncation comes again
from convergence theory of non-convex first-
order optimization methods. It is understood
that when LL is non-convex, Rα(x,yK(x, z))
may not uniformly converge w.r.t. x and z,
whereRα(x,y) is the proximal gradient resid-
ual mapping defined as Rα(x,y) := y −
ProjY (y − α∇yf(x,y)) 1, which can be used
as a measurement of the optimality of LL prob-
lem in Eq. (2). Thus a direct embedding of
yK(x, z) into UL objective F (x,y) may not
necessarily provide an appropriate approxima-
tion. Fortunately, it is also understood that, for
each x ∈ X , z ∈ Y and K > 0, there exists at
least a K̃ such that along the selection yK̃(x, z),Rα(x,yK̃(x, z)) uniformly converges to zero w.r.t.
x and z, as K tending infinity.

However, in general, it is too ambitious to expect an explicit identification of the exact selection
yK̃(x, z). Alternatively, we consider a pessimistic strategy, minimizing the worst case of all selec-
tions of {yk(x, z)}, i.e., max1≤k≤K {F (x,yk(x, z))}. By doing so, we successfully reach a good
approximation. In addition to the theoretical convergence, we also benefit from this pessimistic
strategy in a numerical sense. The pessimistic max operation always results in a favorable trajectory
truncation smaller than K. Consequently, this technique offers inexpensive computational cost for
computing the hyper-gradient through back propagation, as shown in the numerical experiments.

To conclude this section, we state the complete IAPTT-GM in Algorithm 1. Note that K and T
represent the numbers of inner and outer iterations, respectively.

3 Theoretical Investigations

With the purpose of studying the convergence of dynamics-embedded gradient method for BLO
without LLC, we involve two signature features in our algorithmic design, i.e., initialization auxiliary
and pessimistic trajectory truncated. This section is devoted to the convergence analysis of our
proposed algorithm with and without LLC assumption. Please notice that all the proofs of our
theoretical results are stated in the Supplemental Material.

1Rα(x,y) reduces to α∇yf(x,y) when Y is taken as Rm.
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3.1 Convergence Analysis of IAPTT-GM for BLO with Non-convex Followers

In this part, we conduct the convergence analysis of the IAPTT-GM for solving BLO in Eq. (1)
without LLC. Before presenting our main convergence results, we introduce some notations related to
BLO. With introduced function ϕ(x) := infy∈S(x) F (x,y), the BLO in Eq. (1) can be rewritten as

min
x∈X

ϕ(x). (5)

With given K ≥ 1 and defining ϕK(x, z) := maxk {F (x,yk(x, z))} with {yk(x, z)} defined in
Eq. (4), our proposed IAPTT-GM generates sequence {(xt, zt)} for solving following approximation
problem to BLO in Eq. (5),

min
x∈X ,z∈Y

ϕK(x, z). (6)

This section is mainly devoted to the convergence of solutions of approximation problems in Eq. (6)
towards those of the original BLO in Eq. (5).

Assumption 3.1 We make following standing assumptions throughout this section.

(1) F, f : Rn × Rm → R are continuous functions.

(2) ∇f is continuous and ∇yf is Lf Lipschitz continuous with respect to y for any x ∈ X .

(3) X and Y are convex compact sets.

(4) S(x) is nonempty for any x ∈ X .

(5) For any (x̄, ȳ) minimizing F (x,y) over constraints x ∈ X ,y ∈ Y and y ∈ Ŝ(x), it holds
that ȳ ∈ S(x).

Note that Ŝ(x) denotes the set of LL stationary points, i.e., Ŝ(x) = {y ∈ Y|0 = ∇yf(x,y) +

NY(y)}. It should be noticed that y ∈ Ŝ(x) if and only ifRα(x,y) = 0. Assumption 3.1 is standard
in bi-level optimziation related literature, which will be shown to be satisfied for the numerical
example given in Section 4.1.

As discussed in the preceding section, for each x ∈ X , z ∈ Y and K > 0, there exists at least a K̃
such that along the selection yK̃(x, z), Rα(x,yK̃(x, z)) uniformly converges to zero w.r.t. x and
z, as K tending infinity. We next specifically show the existence of such index K̃. To this end, K̃
can be chosen by optimizing ‖Rα(x,yk(x, z))‖ among the indices k = 0, 1, ...,K. In particular, as
stated in the following lemma, ‖Rα(x,yK̃(x, z))‖ uniformly decreases with a 1√

K
rate on X × Y

as K increases.

Lemma 3.1 Let {yk(x, z)} be the sequence defined in Eq. (4) with αky ∈ [αy, αy] ⊂ (0, 2
Lf

), there
exists Cf > 0 such that

min
0≤k≤K

‖Rαy
(x,yk(x, z))‖ ≤ Cf√

K + 1
, ∀x ∈ X , z ∈ Y. (7)

As shown in the Appendix, the proof of Lemma 3.1 for the existence cannot offer us an explicit
identification of the exact selection of K̃. Alternatively, we construct the approximation by a
pessimistic trajectory truncation strategy, minimizing the worst case of all selections of {yk(x, z)},
i.e., ϕK(x, z). By further solving the approximated problems minϕK(x, z), we shall provide a
lower bound estimation for the optimal value of the BLO problem in Eq. (5).

Lemma 3.2 Let (xK , zK) ∈ argmin
x∈X ,z∈Y

ϕK(x, z), then

ϕK(xK , zK) ≤ inf
y∈Ŝ(x)

F (x,y), ∀x ∈ X . (8)

Upon together with the uniform convergence result in Lemma 3.1, the gap between the lower bound
provided by minϕK(x, z) and the true optimal value of the BLO problem in Eq. (5) eventually
vanishes. To fill in this gap and present the main convergence result of our proposed IAPTT-GM,
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we need the continuity of Rα(x,y). Indeed, it follows from [43, Theorem 6.42] that ProjY is
continuous. Combined with the assumed continuity of∇yf(x,y), we get the desired continuity of
Rα(x,y) immediately.

Theorem 3.1 Let {yk(x, z)} be the sequence generated by Eq. (4) with αky ∈ [αy, αy] ⊂ (0, 2
Lf

),
and (xK , zK) ∈ argmin

x∈X ,z∈Y
ϕK(x, z), then we have:

(1) Any limit point x̄ of the sequence {xK} is the solution to BLO in Eq. (1), that is x̄ ∈
argmin
x∈X

ϕ(x).

(2) inf
x∈X ,z∈Y

ϕK(x, z)→ inf
x∈X

ϕ(x) as K →∞.

In the above theorem, we justify the global solutions convergence of the approximated problems.
We next derive a convergence characterization regarding the local minimums of the approximated
problems. In particular, the next theorem shows that any limit point of the local minimums of
approximated problems is in some sense a local minimum of the bilevel problem in Eq. (1).

Theorem 3.2 Let {yk(x, z)} be the sequence generated by Eq. (4) with αky ∈ [αy, αy] ⊂ (0, 2
Lf

),
and (xK , zK) be a local minimum of ϕK(x, z) with uniform neighborhood modulus δ > 0, i.e.,

ϕK(xK , zK) ≤ ϕK(x, z), ∀(x, z) ∈ Bδ(xK , zK) ∩ X × Y.
Then we have that for any limit point (x̄, z̄) of the sequence {(xK , zK)}, there exists a limit point ȳ
of the sequence {yK(xK , zK)} such that ȳ ∈ Ŝ(x̄) and (x̄, ȳ) satisfies that there exists δ̃ > 0 such
that

F (x̄, ȳ) ≤ F (x, z), ∀(x, z) ∈ Bδ̃(x̄, z̄) ∩ {x ∈ X , z ∈ Y | z ∈ Ŝ(x)}.

3.2 Theoretical Findings of IA-GM (A) for BLO with LLC

A byproduct of our study, which has its own interest, is that thanks to the involved initialization
auxiliary, our theory can improve those existing results for classical gradient methods with accelerated
gradient descent dynamical iterations under LLC. Nesterov’s acceleration technique [44] has been
used widely for solving convex optimization problem and it greatly improves the convergence rate of
gradient descent. To illustrate our result, we will take the Nesterov’s acceleration proximal gradient
method [45] as the embedded optimization dynamics in classical gradient method for example.

Thanks to the LLC setting, Rα(x,yK(x, z)) may uniformly converge to zero w.r.t. UL variable
x and auxiliary variable z, thus the pessimistic trajectory truncation operation can be removed.
Subsequently, we slightly simplify our algorithm that k̄ is simply taken as K, thus the approximation
objective admits a succinct form, i.e., F (x,yK(x, z)).

In summary, by constructing yk(x, z) through following Nesterov’s acceleration dynamics,

y0(x, z) = z, t0 = 1, tk+1 =
1 +

√
1 + t2k

2
, k = 0, · · · ,K − 1,

uk+1(x, z) = yk+1(x, z) +

(
tk − 1

tk+1

)
(yk+1(x, z)− yk(x, z)), k = 0, · · · ,K − 1,

yk+1(x, z) = ProjY
(
uk(x, z)− α∇yf(x,uk(x, z))

)
, k = 0, · · · ,K − 1,

(9)

where α > 0 is the step size, we propose an accelerated Gradient-based Method with Initialization
Auxiliary, named IA-GM(A), via minimizing the approximation objective function,

min
x∈X ,z∈Y

φK(x, z) := F (x,yK(x, z)).

The detailed description of the proposed IA-GM(A) is stated in the Supplemental Material.

We suppose Assumption 3.1(1)-(4) are satisfied throughout this subsection. The convergence result
of our proposed IA-GM(A) with LLC assumption is given as below.

Theorem 3.3 Assume that the generated sequence {yk(x, z)} satisfies that yk(x, z) ∈ Y , and
yk(x, z) = z for any z ∈ S(x), x ∈ X , and either
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(a) for any ε > 0, there exists k(ε) > 0 such that whenever K > k(ε),
sup

x∈X ,z∈Y
{f (x,yK(x, z))− f∗(x)} ≤ ε

whenever K > k(ε), or

(b) there exists α > 0, for any ε > 0, there exists k(ε) > 0 such that,
sup

x∈X ,z∈Y
‖Rα (x,yK(x, z))‖ ≤ ε.

Let (xK , zK) ∈ argmin
x∈X ,z∈Y

φK(x, z) := F (x,yK(x, z)), then we have

(1) any limit point x̄ of the sequence {xK} satisfies that x̄ ∈ argmin
x∈X

ϕ(x), i.e., x̄ is the solution

to BLO (1).

(2) inf
x∈X ,z∈Y

φK(x, z)→ inf
x∈X

ϕ(x) as K →∞.

Next, we show that the Nesterov’s acceleration dynamics satisfy all the assumptions required in the
above convergence theorem.

Theorem 3.4 Let {yk(x, z)} be the sequence generated by Nesterov’s acceleration dynamics in
Eq. (9) with α = 1

Lf
. Then {yk(x, z)} satisfies all the assumptions required by Theorem 3.3.

Remark 3.1 Our convergence result Theorem 3.3 is not only for yk generated by Nesterov’s ac-
celeration dynamics. It is a general convergence result that is applicable for the case where yk is
generated by other dynamics. And the assumptions required in Theorem 3.3 is weak enough to be
satisfied by the dynamics introduced by many first-order methods on convex LL problem in Eq. 2.

4 Experimental Results

In this section, we first verify the theoretical convergence results on non-convex numerical problems
compared with existing EG methods and IG methods. Then we test the performance of IAPTT-GM
and demonstrate its generalizability to real-world BLO problems with non-convex followers, which
are caused by non-convex regularization and neural network structures. In addition, we further
validate the performance of the accelerated version (i.e., IA-GM (A)) under LLC with numerical
examples and data hyper-cleaning tasks 2.

4.1 Numerical Verification

To verify the convergence property under assumptions provided in Section 3, we consider the
following non-convex BLO problem:

min
x∈X ,y∈R

x+ xy, s.t. y ∈ argmin
y∈Y

− sin(xy), (10)

where X = [1, 10] and Y = [−2, 2]. Given any x ∈ X , it satisfies argminy∈Y − sin(xy) =
{(2kπ + π/2) /x | k ∈ Z} ∩ Y and miny∈Y − sin(xy) = −1. The unique solution is (x∗, y∗) =
(11π/4,−2). It should be noted that the LL problem of Eq. (10) has multiple global minima, which
can significantly show the advantage of initialization auxiliary technique. It can be easily verified
that the above toy example satisfies Assumption 3.1.

In Figure 1, we separately compared IAPTT-GM with EG methods such as RHG [3], BDA [23], IG
methods such as LS [28], NS [7] and IA-GM. From Figure 1.(a) to Figure 1.(b), we can observe
that different initialization points only slightly affect the convergence speed of IAPTT-GM. With
initialization points distant from (x∗, y∗), IAPTT-GM can still achieve optimal solution of UL
variables and optimal objective value, while other methods fail to converge to the true solution. In
Figure 1.(g) and Figure 1.( h), we compare the performances of IAPTT-GM with IA-GM, which
has no convergence guarantee without LLC assumption. As shown, IA-GM fails to converge to the
true solution eventually, which validates the necessity of PTT technique and the effectiveness of
IAPTT-GM.

2The code is available at http://github.com/vis-opt-group/IAPTT-GM.
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Figure 1: Illustrating the convergence behavior of ‖F − F ∗‖/‖F ∗‖ and ‖x − x∗‖/‖x∗‖ as the
training proceeds. FIAPTT−GM and FIA−GM denote the UL objectives of IAPTT-GM and IA-GM,
respectively. Three representative initialization points for UL and LL variables are (x0, y0) = (1, 2),
(x0, y0) = (5, 1), (x0, y0) = (7,−1).
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Figure 2: Illustrating average steps for PTT
technique and average running speed of the
numerical example. Note that we conduct
the experiments using more LL iterations
so as to reduce the measurement error.

Runtime and Memory Analysis. In Figure 2, we re-
port the average steps k̄ of IAPTT-GM for PTT and the
iterative speed as the UL iteration increases. In com-
parison with IA-GM, which uses default K for the LL
optimization loop, the changing k̄ for IAPTT-GM leads
to less iterations for the backward recurrent propagation
and thus faster iterative updates during optimization.
Although IA introduces additional variables and iter-
ations, the PTT technique can choose a small k̄, thus
shortens the back-propagation trajectory for computing
the UL gradient (see Figure 2). As can be seen in Ta-
ble 1, the memory required by our IAPTT-GM is less
than NS, LS, and BDA and the same as that for RHG.
As for the runtime, IAPTT-GM is a bit slower than
RHG and NS, and faster than BDA. But please notice
that the performance and the theoretical properties of
IAPTT-GM are better than these existing approaches.

Table 1: Memory and runtime of existing methods for solving the above BLO problem. We conduct
the experiments using the same parameter settings in Section C of the supplementary materials.

Metrics LS NS RHG BDA IAPTT-GM
Memory (GB) 10.426 10.387 10.153 10.154 10.153
Runtime (Sec) 5.120 10.815 9.990 16.800 10.835

4.2 BLO with Non-convex Followers in Different Application Scenarios

To cover various real-world BLO application scenarios, we consider two categories of non-convex
LL problems caused by non-convex regularization term and neural network architectures, which
refer to few-shot classification and data hyper-cleaning tasks, respectively. Please note that the set
constraint Y is only used to guarantee the completeness of our theoretical analysis in Section 3. In
application scenarios, we can just consider the constraint as an extra large set, so that all the variables
are automatically in this feasible set. In this way, it is natural to ignore the projection operation in
practical computations.
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4.2.1 Few-Shot Classification: Non-convex LL Objective

In few-shot learning, to be more specific, N-way M-shot classification tasks [46], provided with M
samples from each class, we train models to take advantage of prior data from similar tasks to quickly
classify unseen instances from these N classes. Following the experimental protocol [47], the model
parameters are separated into two parts: the hyper representation module (parameterized by x) shared
by all the tasks and the last classifier (parameterized by yj) for j-th task. Define the meta training
dataset as D = {Dj}, where Dj = Djtr

⋃
Djval corresponds to the j-th task.

The cross-entropy loss function is widely used for UL and LL objectives. Referring to Section 3,
IAPTT-GM covers the convergence results with non-convex LL model, thus allowing flexible design
of the LL objective function. For instance, while non-convex regularization terms, e.g., `q regulariza-
tion with 0 < q < 1, have shown effectiveness to help the LL model converge and avoid over-fitting,
existing methods can only guarantee the convergence when q ≥ 1, thus almost provide no support for
non-convex objectives. We consider the LL subproblem with non-convex loss functions by adding `q
regularization 3. Then the UL and LL subproblems can be written as

F
(
x,
{
yj
})

=
∑
j

`
(
x,yj ;Djval

)
, f

(
x,
{
yj
})

=
∑
j

`
(
x,yj ;Djtr

)
+ ‖yj‖q. (11)

Table 2: Mean test accuracy of 5-way classification on tieredImageNet and miniImageNet, and the ±
represents 95% confidence intervals over tasks.

Methods Backbone
MiniImagenet TieredImagenet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
Proto Net ConvNet-4 49.42± 1.84 68.20± 0.66 53.31± 0.89 72.69± 0.74

Relation Net ConvNet-4 50.44± 0.82 65.32± 0.70 54.48± 0.93 65.32± 0.70

MAML ConvNet-4 48.70± 0.75 63.11± 0.11 49.06± 0.50 67.48± 0.47

RHG ConvNet-4 48.89± 0.81 63.02± 0.70 49.63± 0.67 66.14± 0.57

T-RHG ConvNet-4 47.67± 0.82 63.70± 0.76 50.79± 0.69 67.39± 0.60

BDA ConvNet-4 49.08± 0.82 62.17± 0.70 51.56± 0.68 68.21± 0.58

MAML ResNet-12 51.03± 0.50 68.26± 0.47 58.58± 0.49 71.24± 0.43

RHG ResNet-12 50.54± 0.85 64.53± 0.68 58.19± 0.76 75.20± 0.60

IAPTT-GM ResNet-12 56.69± 0.66 70.21± 0.55 60.71± 0.77 75.85± 0.59

Detailed information about the datasets and network architectures can be found in the supplementary
materials. We report results of IAPTT-GM and various mainstream methods, e.g., Prototypical
Network [48], Relation Net [49] and T-RHG [16] on miniImageNet [47] and tieredImageNet [50]
datasets with two different backbones [6, 51] in Table 2. As it is shown, our proposed method
outperforms state-of-the-art methods on both 5-way 1-shot and 5-way 5-shot tasks.

4.2.2 Data Hyper-Cleaning: Non-convex LL Architecture Structure

Data hyper-cleaning [3] aims to cleanup the corrupted data with noise label. According to [16], the
dataset is randomly split to three disjoint subsets: Dtr for training, Dval for validation and Dtest for
testing, then a fixed proportion of the training samples in Dtr is randomly corrupted.

Following the classical experimental protocol [3], we choose cross-entroy as the loss function `, and
the UL and LL subproblem take the form of

F (x,y) =
∑

(ui,vi)∈Dval

` (y(x);ui,vi) , f(x,y) =
∑

(ui,vi)∈Dtr

[σ(x)]i` (y;ui,vi) , (12)

where (ui,vi) denotes the data pair and σ(x) represents the element-wise sigmoid function on x. We
define the hyperparameter x as a vector being trained to label the noisy data, of which the dimension
equals to the number of training samples. The LL variables parameterized by y contain the weights
and bias of fully connected layers.

3Here, we use the smoothing regularization term defined as ‖w‖q = (‖w‖2 + ‖ε‖2)q/2, where 0 < q < 1.
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Table 3: Reporting results of existing methods for
solving data hyper-cleaning tasks. Acc. and F1
score denote the test accuracy and the harmonic
mean of the precision and recall, respectively.

Method
MNIST FashionMNIST

Acc. F1 score Acc. F1 score
LS 89.19 85.96 83.15 85.13

NS 87.54 89.58 81.37 87.28

RHG 87.90 89.36 81.91 87.12

T-RHG 88.57 89.77 81.85 86.76

BDA 87.15 90.38 79.97 88.24

IAPTT-GM 90.88 91.57 83.67 90.37

Note that existing methods consider convex a
single fully connected layer as the LL model,
while more complex neural network structure is
not applicable. Under our assumption without
LLC, we employ two fully connected layers as
the LL network architecture.

In Table 3, we compare IAPTT-GM with IG
methods (e.g., LS, NS) and EG methods (e.g.,
RHG, T-RHG [16]). As it is shown, IAPTT-GM
achieves better test performance of both accu-
racy and F1 score on two datasets, including
MNIST [46] and FashionMNIST [52]. Our theo-
retical results also show that the performance im-
provement comes from PTT and IA techniques
to overcome non-convex LL subproblems.

4.3 Evaluations of IA-GM (A) for BLOs under LLC

In addition to non-convex BLO problems, we also raise concerns about the acceleration strategy of
our method with LLC condition. We first consider the following BLO with LLC condition [23]:

min
x∈X
‖x− y2‖4 + ‖y1 − e‖4, s.t. (y1,y2) ∈ arg min

y1∈Rn,y2∈Rn

1

2
‖y1‖2 − x>y1, (13)

where n = 50, X = [−100, 100] × · · · [−100, 100] ⊂ Rn, and e represents the vector whose
elements are all equal to 1. The optimal solution for this problem is x∗ = e,y∗1 = e,y∗2 = e.

As shown in Section 3.2, our method IA-GM (A) incorporates Nesterov’s acceleration strategy for
solving Eq. (2). Note that with LLC assumption, IA-GM maintains the convergence property.
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Figure 3: The left two subfigures report the curves of ‖y−y∗‖ and ‖x−x∗‖ for IA-GM and IA-GM
(A). The figures on the right illustrate the results of mean UL loss and accuracy on the convex data
hyper-cleaning problems.

As illustrated in the first two figures in Figure 3, IA-GM (A) shows significant improvement of
convergence speed on UL and LL variables, which verifies the convergence results of Theorem 3.4
under LLC. We further study the convex data hyper-cleaning problem, which simply implements
single fully connected layer as the network structure. From the right half of Figure 3, we can easily
find that IA-GM (A) also performs better than IA-GM on real-world applications.

5 Conclusion

This paper presents a generic first-order algorithmic framework named IAPTT-GM to solve BLO
problems with non-convex follower. We introduce two features, initialization auxiliary and pessimistic
trajectory truncation operation to guarantee the convergence without the LLC hypothesis and achieves
better performance on various applications. Meanwhile, we also validate the performance and speed
improvement for BLO with LLC condition.
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