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ABSTRACT

It is known that deep neural networks (DNNs) are vulnerable to imperceptible
adversarial attacks, and this fact raises concerns about their safety and reliabil-
ity in real-world applications. In this paper, we aim to boost the robustness of
a DNN against white-box adversarial attacks by defining three new information
quantities—robust conditional mutual information (CMI), robust separation, and
robust normalized CMI (NCMI)—which can serve as robust performance met-
rics for the DNN. We then utilize these concepts to introduce a novel training
method that constrains the robust CMI and increases the robust separation si-
multaneously. Our experimental results demonstrate that our method consistently
enhances model robustness against C&W and AutoAttack on CIFAR and Tiny-
ImageNet datasets with and without additional synthetic data. Specifically, it
is shown that our approach improves the robust accuracy of a DNN by up to
2.66% on CIFAR datasets and 3.49% on Tiny-ImageNet in the case of PGD at-
tack and 1.70% on CIFAR datasets and 1.63% on Tiny-ImageNet in the case of
AutoAttack, in comparison with the state-of-the-art training methods in the lit-
erature. Our implementation is publicly available at https://github.com/
ICLR2025-Robust-NCMI/ICLR2025-Robust-NCMI.

1 INTRODUCTION

Despite the remarkable success of deep neural networks (DNNs) in computer vision (Krizhevsky
et al.,[2012; [He et al., [2016a) and natural language processing (Vaswani et al., [2017; Devlin et al.,
2019), DNNs are found to be vulnerable to adversarial attacks (Szegedy et al., 2013}; |Goodfellow
et al.,|2015). These attacks generate adversarial sample instances by adding slight perturbations, im-
perceptible to human eyes, to the original benign sample instances to deceive the underlying DNN.
This raises concern to apply deep learning (DL) models to safety-critical domains like autonomous
driving and medical diagnosis (Kurakin et al.,|2018}; |Finlayson et al., 2019).

A simple, yet effective method to train robust DNNs against adversarial attacks is adversarial training
(AT) (Goodfellow et al., 2015; [Madry et al., [2018). In AT, the model is trained not on benign
sample instances, but on adversarial ones. This process is formulated as a min-max optimization
problem: the inner maximization focuses on generating adversarial sample instances, while the outer
minimization aims to reduce the adversarial loss associated with these attacked sample instances.

Following [Madry et al.| (2018)), a significant body of work has focused on improving model robust-
ness, primarily through four approaches: (i) modifying or adding additional regularization terms to
the loss function (Zhang et al.,|2019; Wang et al., [2019; |[Wu et al., [2020), (ii) altering model archi-
tecture (Xie et al.|[2019), (iii) applying data augmentation techniques (Rebutfi et al.| [2021)), and (iv)
utilizing strategies like early stopping and weight averaging (Rice et al.,[2020; |Gowal et al., [2020).
Even with these enhancements of AT, however, the underlying vulnerability of DNNs against adver-
sarial attacks remains unresolved: data sample instances which are near the decision boundary of
DNN:g, are in general more susceptible to perturbation and likely to cause misclassification (Zhang
et al.,[2021).

Now regard a classification DNN as a mathematical mapping from raw data x € R? to a probability
distribution f () over the set of class labels, predicting an output label § with probability f(z)[J] in
response to input x. To mitigate the issue above, we are inspired by the work|Yang et al.| (2023) and
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will analyze in this paper the robustness of a DNN z — f(x) by examining its information geometry
properties in the output probability distribution space. Specifically, for each sample instance x, let
2’ denote its adversarial instance, and refer to f(x’) as an adversarial output probability distribution
for z. In the output probability distribution space, the set of adversarial distributions f (') for all
sample instances = with the same ground truth label y forms a cluster, which is referred to as an ad-
versarial cluster corresponding to y hereafter. Following|Yang et al.|(2023)), the concentration of this
adversarial cluster can be measured by the conditional mutual information (CMI) I(X’; Y’ Y =vy),

where X' is an adversarial sample corresponding to the benign sample X, Y is the random label

predicted by the DNN in response to the input X’ with probability f(X')[Y’], and Y is the ground
truth label of X. Here X, Y, X/, and Y are all random variables. Averaging over all labels y with
respect to the distribution Py (y) of Y, the CMI I(X’; Y’|Y’) then measures the average concentra-
tion across all adversarial clusters from a given attack method. If for each label y, the centroid of
the adversarial cluster corresponding to y is close to the one hot probability vector corresponding to
y, then the smaller I(X'; Y'|Y) is, the less likelihood the attack method has to succeed.

In the above, both I(X';Y’|Y = y) and I(X’;Y’|Y)) depend on the underlying attack method
which generates an adversarial instance z’ for each (x,y). Since there are many attack methods
available and it is unknown which one would be used to attack a learned DNN, we need to go one
step further, consider the worst case scenario, and define the robust CMI of the DNN z — f(z) as

I(e) = max I(X"; Y'|Y)

where the maximization is taken over all attack methods satisfying ||z’ — z||, < e. In the same
spirit, we further extend the concepts of separation and normalized CMI in|Yang et al.|(2023)) to the
adversarial case, and define robust separation I'(¢) and robust normalized CMI (NCMI) I (¢). Par-
ticularly, I'(e) is the minimum of the inter-class separation between and among adversarial clusters

over all attack methods satisfying ||z’ — x|, < e, and I(e) is the maximum of the ratio between

(X Y’ |Y) and the inter-class separation of adversarial clusters over all attack methods satisfying
/
2" — 2], <e

From the perspective of information theory (or information geometry), the robustness of the DNN
x — f(x) can also be gauged by its robust CMI, robust separation, and robust NCMI. To enhance
adversarial robustness, a DNN can then be trained by minimizing its robust CMI while maximizing
its robust separation, which is equivalent roughly to minimizing its robust NCMI. After we optimize
on such information quantities, the adversarial output probability distributions from the same class
would be more concentrated, while those from different classes would be further separated. Hence,
less output data points will be near the decision boundaries and considered susceptible to adversarial
attacks (see Appendix [G.I]for comparison between our method and baseline).

In summary, our contributions are listed as follows:

* We extend the concepts of CMI, separation, and normalized CMI in [Yang et al.| (2023)
to the adversarial case, and introduce three new information quantities, robust CMI I (e),
robust separation I'(¢), and robust NCMI I(e), to gain insights of the intrinsic mapping
structure of DNNs in the context of adversarial robustness.

* A new adversarial training framework is presented, in which the robust NCMI can be min-
imized jointly along with existing training objective functions in AT.

* An alternating learning algorithm is developed to alternatively optimize the weight param-
eters 6 of the DNN model, and the centroids of adversarial clusters.

» We conduct extensive experiments on CIFAR-{10, 100} (Krizhevsky et al.,[2009) and Tiny-
ImageNet (Le & Yang] 2015) datasets. Our results demonstrate that our proposed learning
method indeed boosts adversarial robustness when combined with existing adversarial de-
fense objective functions, both with and without synthetic data.

2 RELATED WORK

After [Szegedy et al| (2013) showed that DNNs, even though achieving high accuracy on benign
data, are vulnerable to imperceptible perturbations, the development of adversarial attacks gained
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Figure 1: Diagram of generating an adversarial sample instance, where Y is the random label
predicted by the DNN in response to the adversarial instance.

attention. (Goodfellow et al.| (2015)) introduced the Fast Gradient Sign Method (FGSM) for crafting
adversarial examples with a single gradient step. Later research added randomization and multi-
step attack to generate perturbed samples in AT (Tramer et al., [2018; Kurakin et al., [2018)). The
success rate of an attack is further improved with projected gradient descent (PGD) by Madry et al.
(2018)), which iteratively perturbs each benign sample within a bounded neighborhood using a min-
max optimization framework to find the corresponding worst-case adversarial example. More recent
work even produced stronger attack by crafting perturbed samples in an adaptive and parametric-free
manner but came with a drawback of higher computational cost (Croce & Hein, [2020). In general,
an adversarial sample 2’ is crafted as following:

¥ = G(z,y) =z +argmax L(z + §,y), (1)

6], <e

where G(z, y) represents the attack function to generate adversarial example x’ given benign input
x and its corresponding ground truth label y, J is the perturbation to be added to x to generate
adversarial sample z’, || - ||p indicates the L,-norm of a vector, € denotes the maximum perturbation
allowed to generate an adversarial sample, and L(-,-) stands for the objective function, which is
typically cross entropy (CE) loss in previous works.

As an AT defense mechanism, vanilla AT (Madry et al. |2018) showed great success by training a
DNN with samples perturbed by PGD attack. Subsequent studies utilized its robust optimization
to generate adversarial samples and employed the min-max framework to minimize error rates,
while also refining loss formulations to train DNNs for enhanced robustness (Kannan et al., 2018;
Zhang et al., 2019; Wang et al.l 2019; |Wu et al., 2020). Other approaches focused on improving
adversarial performance by studying the margin between each adversarial sample and the decision
boundaries (Ding et al. [2020; Rade & Moosavi-Dezfooli, 2022} Xu et al., 2023b) or by assigning
greater weights to vulnerable examples near such boundaries (Liu et al., 2021} |[Zhang et al., [2021])).
Despite all above methods achieved good robust performance, they considered each attacked data
point individually, and overlooked to view adversarial samples with the same label as a cluster.

In our approach, we argue that robustness can be further enhanced by constraining adversarial exam-
ples from a cluster perspective, ensuring that the worst-case perturbed samples within a class remain
as close to the centroid of their corresponding adversarial cluster as possible. Furthermore, since
previous research demonstrated that additional labelled or unlabelled data (Schmidt et al., |2018;
Carmon et al. 2019; [Uesato et al., [2019) as well as synthetic data created by generative models
(Gowal et al} 2021 [Rebuffi et al., [2021; |Sehwag et al., [2022; [Wang et al., |2023) can largely boost
robust performance, we evaluate our method on datasets both with and without synthetic data, and
present our methodology and results in the following sections.

3  NEW INFORMATION QUANTITIES FOR ROBUST PERFORMANCE OF DNNS

In this section, we extend the concepts of CMI, separation, and normalized CMI in |Yang et al.
(2023)) to the adversarial case, and introduce three new information quantities, robust CMI I(¢),

robust separation I'(¢), and robust NCMI I (¢), to gauge the robust performance of DNNs. We begin
with notation to be used throughout the paper.

3.1 NOTATION

For a positive integer K, let [K] = {1, ..., K} denote a set of integers starting from 1 to K. Assume
there are C class labels, with [C] indicating the set of all such labels. Let P([C]) denote the set of
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all probability distributions over [C]. We also use si] to represent the i-th entry of a probability
distribution s. Given any two probability distributions s1, so € P([C]), we define CE of s; and s9
as:

c
H(sy,$2) = Z—sl[i] In s9[i] (2)
i=1
and the Kullback-Leibler (KL) divergence between s and ss as:
1[4]
D(s1]s2) Zklm : (3)

Z

For any random vector (X,Y’), we use Px y (z,y) or P(x,y) to denote its joint distribution, and
Px (x) and Py (y) (or simply P(z) and P(y)) to denote the marginal distributions of X and Y,
respectively. The conditional distribution of Y given X = x is written as Py x (=), and that of
X given Y = y is denoted by Px|y(-|y). Additionally, denote E[-] as expectation, and Ex[-] as
expectation with respect to random variable X. To clarify, we use the term ‘budget €’ to represent
the maximum perturbation allowed to generate an adversarial instance z’ within the L,-norm ball
centered at the benign sample instance 2 with a radius of e. Furthermore, we use G(z, y) to represent
an attack function which crafts, for each (z, y), an adversarial instance ' satisfying ||z’ — z||, < e.

3.2 ROBUST ERROR RATE

Given a DNN z — f(x), one metric used to measure its robust performance is its robust error rate.
Let (X, Y") be a random sample the distribution of which governs either a training dataset or a testing
dataset, where Y is the ground truth label of X. Receiving the benign sample X, the DNN outputs

a predicted random label Y with probability f(X)[Y] given X. The benign error rate of the DNN
for (X,Y) is equal to

E=Pir(Y #£Y). @)
With reference to Figurel once X is attacked and replaced by an adversarial sample X', the DNN
outputs a predicted random label Y with probability f(X’)[Y”] given X’. The corresponding ad-
versarial error rate of the DNN for (X,Y") is equal to

& =Pr(Y' £Y). (5)

Since we need to consider all possible attack functions G satisfying ||z’ — x|, < €, define the robust
error rate of the DNN as follows

&(e)= max Pr(Y'#£Y). (6)

Gille =zl <e

Then we have the following theorem.

Theorem 1 For any DNN z — f(x), any (X,Y), and any € > 0,

&le) < |, max _ Exo[H(Pyyx(1X), (X))
7
=Y ) | e (-] v
(z,y) ' ’e

Theorem [1] will be proved in Appendix [A] As Theorem|[I|suggests, to minimize & (¢), one can train a
DNN model by minimizing the upper bound in equation [/} which is exactly what vanilla AT (Madry
et al.Ll 2018) and MART (Wang et al., 2019) do essentially.

3.3 EXTENSION OF CMI, SEPARATION, AND NCMI TO THE ADVERSARIAL CASE

When benign sample instances x are fed into the DNN, the set of output distributions f(z) for all be-
nign instances x with the same ground truth label y forms a benign cluster in P([C]) corresponding
to y. As shown in|Yang et al.|(2023), the centroid of this benign cluster is

sy =Py (Y =y) = ZPXIY zly)f(z) = Ex)y [f(X)]Y =y]; 8)



Under review as a conference paper at ICLR 2025

and the concentration of this benign cluster is measured by the CMI I (X; Y\Y =1y)

< ; Py iy (Y = ilz,y)
2 Py (¥ = ke ) n Y'X;’Y‘Y(ﬂy) ©)

(XYY =y) = ZPX|Y(33\Q)

=Exy l(Zf (X()H> Y=y (10)
Py y (ily)
=Expy [D(f(X)llsy) [ Y =y]. an
Averaging over all labels ¥, the CMI I(X; Y|Y")
I(X;YY)= Y Py( I(X;Y|Y =y) =Exy [D(f(X)]sy)] (12)
y€[C]

then measures the average concentration across all benign clusters.

In|Yang et al.|(2023), the separation between and among all benign clusters is defined as
I =E [Iiy vy H(f(X), f(V))] (13)

where (U, V') is another pair of random variables independent of (X, Y"), and having the same joint
distribution as that of (X,Y"), and Iy .y} denotes the indicator function of the event {Y # V'}.
The NCMI for benign clusters is then defined as

I(X;Y]Y)

I(X;Y)Y) = -

(14)
When P(z,y) is unknown and approximated by the empirical distribution of a dataset D =

{(xj,v;)}}_;, the above information quantities are computed according to their respective sample
means:

sy=1>= > fla (15)
v D jED j
I(X;Y]Y =) > D(f(x;)llsy) (16)
ID | &3,
I(X;Y]Y) = ZD (z)]154,) (17)
r= ﬁZZI{y_j;ﬁyk}H(f(mj),f(wk)), (18)
j=1k=1

where D, = {j |1 < j <n,y; =y} and |D,| denotes the cardinality of D,,.

With reference to Figure [T] again, when benign sample instances  are attacked and replaced by
respective adversarial sample instances ' = G(z,y), we have adversarial clusters in P([C]), one
per label y. The above information quantities can be carried over to characterize the information

geometry properties of these adversarial clusters. Simply replacing (X,Y,U) by (X', Y’,U’) in
equation[T1]to equation[T4] where

X' =G(X,Y)and U’ = G(U, V), (19)

we get the corresponding adversarial counterparts:

I(X5Y')Y =y) =Exqy [D(F(X)sy) 1Y =y] =Exy [D (F(GX,Y)]s}) | Y =]

(20)
I(X";Y')Y) =Exy [D(f(X)|s4)] = Exy [D (f(G(X,Y))]|s})] 1)
" =E Iy H(f(X'), fF(U)] =E Iy H(F(G(X,Y)), fF(GU,V)))] (22)
Hx V) = w 23)
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where

sy = Ppy (Y =y) = Expy [f(GX, Y)Y =1y]. 24)

y =

Note that given the attack function G, since PA,‘XY(SA/’ = ilz,y) = PY’\X’Y(Y/ = ilz,y) =
f(2")[d], it follows that

I(X;Y')Y =y) = I[(X;Y']Y =y)and [(X; YY) = [(X"; Y'|Y).

Hereafter, we will use 7(X;Y”|Y) and I(X’;Y'|Y) interchangeably. Again, when P(z,y) is un-
known, all quantities in equation [20] to equation [24] can be computed according to their respective
sample means over a dataset D = {(x;,y;)}7_;. In other words, equation to equation remain

valid if (sy,X,f/,F,xj,xk) is replaced by (s}, X', Y’,F’,x;,x;), where 7, = G(x;,y;).

Given a DNN, let G be the attack function given .
by AutoAttack (Croce & Heinl, [2020). We have e 5056
trained PreAct-ResNet-18 (He et al.l [2016b), ’
using various AT methods including the stan-
dard CE method without adversarial instances
(denoted as ‘CE’), on CIFAR-10, and then
evaluated the robust accuracy of these learned
DNNG s against AutoAttack. Fig.[2]illustrates the _
robust accuracy of these learned DNNs against R AT TRADES  MART AP
AutoAttack vs their adversarial NCMI corre-
sponding to G. It is clear from Fig.[2]that across
these different learned DNNSs, the robust accu-
racy tends to be inversely proportional to the
corresponding adversarial NCMI, which is con-
sistent with the observation made by Yang et al.
(2023) in the benign case.

Robust Acc

Figure 2: Robust accuracy of different learned
models against AutoAttack vs the corresponding
adversarial NCMI on CIFAR-10, where blue and
orange bars represent robust accuracy (left axis)
and adversarial NCMI (right axis), respectively,
with corresponding specific values shown on top
of each bar.

3.4 ROBUST CMI, SEPARATION, & NCMI

Note that all adversarial information quantities in equation 20| to equation [24] depend on the under-
lying attack function G. Since given a DNN, there are many attack functions available and it is
unknown which one would be used to attack the DNN, we need to consider the worst case. To this
end, we have the following definition with reference to Figure[T]

Definition 1 Given a DNN © — fo(x) with its weight parameters 0, define its robust CMI, separa-
tion, and NCMI over a random sample (X,Y") respectively as follows:

I(X,Y,0,¢) = L I(X;Y'|Y) (25)
F(X>Y’956> = min E [I{Y?éV}H(fG(G(Xv Y))’fH(G(Uv V)))] (26)

Gillei—zllp<e
max I ¥'[Y) .
Gille'=alp<e B Iy 2vy H(fo(G(X,Y)), fo(G(U,V)))]

I(X,Y,0,¢) = (27)
Whenever (X,Y,0) is clear from the context, simply write I(X,Y,0,¢), T'(X,Y,0,¢), and
I(X,Y,0,€) as I(€), T'(¢), and I(€), respectively.

Given (X,Y,6), T'(€) can be computed via the standard gradient decent method through backprop-
agation. By introducing a dummy conditional “backward channel” g(x|i,y) from Y’ to X given Y,
I(€) and I(€) can be computed via an alternating method, as implied by the following theorem.

Theorem 2 For any i,y € [C), let q(-|i, y) denote a dummy conditional distribution in the space of
X, which is assumed to be discrete for simplicity. Then I(¢) and I(€) can be computed by solving
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the following double maximization problems, respectively:

I(e) = {q(m)m”r,_ﬂ‘p<€ZPa:y Lzlfe :cy)['}lnq@cuyy)—lan(xy)] (28)

T,y

= max)} xzy P(z,y) [

{a(zliy

2t~y <ezf" [ng(li,y) - lnPXw(xly)} (29)

A S P(a.y) | S, fo(Gla,y))li) ng(eli,y) — In Py (aly)|

I(e) = = 30
(6) = (B P2 o E [Iiyvy H(fo(G(X,Y)), fo(G(U,V)))] G0

where given G, the outer maximization above is achieved when

Pxjy (x]y) fo(«")[i]
Py (ily)

q(zli,y) = 31

Theorem [2] will be proved in Appendix [B] Given {¢(z|i,y)}, the inner maximization in equation
to equation [30] can now be computed via the standard gradient decent method through backpropa-

gation. Thus we can compute I(¢) and I (e) iteratively by alternatively optimizing {¢(z|i,y)} given
G, and G given {q(x|i,y)}. Illustrative examples will be given in Appendix [B|as well.

4 1 (¢) CONSTRAINED ADVERSARIAL TRAINING

Given a DNN architecture, in order to enhance adversarial robustness, it follows from the above
discussions that a desirable learning algorithm should generate 6 so that both I(X,Y,0,¢) and a

conventional AT loss are small. Let £(X, X, Y’) denote a conventional AT loss such as one of

those in TRADES (Zhang et al., 2019) and MART (Wang et al., 2019), where X = Gi1(X,Y)isa
perturbed sample instance given by the attack function (1 in the conventional AT loss. Then instead
of training the DNN by solving

minE max L(X,X,Y)], 32
0 [Glil\fﬁ—fllpﬁe ( ) G2

one tries to solve the following optimization problem

min{E[ max £(X,X,Y)]+)\f(X7Y,97e)} (33)

0 Gr:||E—z|| p<e

which, due to equation 27}equation [21] & equation[22] is equivalent to

min {E[ max L(X,X,Y)]+ max {a IXLY')Y)-8- F/] } 34

6 GrillE—z|p<e e Gil|la’ —z| p<e

:min{E[ max  L(X,X,Y)]+ max [aE[D(fg(G(X,Y))Hs’Y)]

0 Gi:||&—z||p<e T G|z’ —z| p<e
— BE[L(y 20y H(fo(GX,Y)), fo(GU, VD) } (35)
= mein max max {]E[E(X, G1(X,Y), V)] + aE[D(fo(G(X,Y))|s%)]
— BE[y 20y H(fo(G(X,Y), fo( G, V) | (36)

where in the above, the first maximization is over all G satisfying || — z||, < €, and the second
maximization is over all G satisfying ||z' — z||, < e.

Due to the dependency of s/ s, on the entire adversarial cluster corresponding to y, the second term of
the objective function in equatlon@]m not amenable to parallel computation via GPU. To overcome
this difficulty, we follow Yang et al.[(2023))) and introduce a dummy adversarial centroid distribution
Q;, for each label y. Then we have the following result, which is proved Appendix
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Theorem 3 Forany e > 0,

min {E[ max  L(X,X,Y)]+ max {a I(XBYY) - 8- F’] }

6 Gi:l|E—z|p<e G|z’ —z|[p<e

<min min o {BIL(X, G (X, Y), V)] + aB[D(fy(G(X,Y)) | Q)]

— BE[py 2vy H(fo(G(X,Y)), fo( G, V)] | &)
where given (0,G1, G), the minimization over {Q..} .c[c| is achieved when

Qy = s, =Ex)y [fo(GX, Y)Y =y]. (38)

Given (0,{Q".}cc[c], G1,G), the objective function on the right side of equation [37|is now sample
additive, and becomes

T5(0,{Q}eeicn, G, G) = Z £z, G0, ),y) + ‘—;caa{c);}cem,m (39)

when P(z,y) is unknown and approximated by the empirical distribution of a mini-batch B, where

£5(0,{Qu}eeicn, @) = Y [aD(fo(Gl2,))1Q))

(z,y)EB
_ Z, Z Toyzoy H (fe(G(a?,y)),fg(G(u,v)))] (40)
(u,v)EB

In/ (€) constrained AT, we solve the optimization problem on the right side of equation or

min min ma Js(0 ccic1, G1, G 41
i (G, B T8 Qe O ) @

when P(z,y) is unknown and approximated by the empirical distribution of a mini-batch B.

Given (0,{Q".}cc[c]). the optimal G in equationcan be found by computing, for each (z,y) €
B, a perturbed instance Z individually. However, the optimal G* in equation 41 has to be found
by computing all adversarial instances «’ for all (z,y) € B simultaneously all at once due to the
interconnection in the adversarial separation I''. Once G’ and G* are determined, 6 and {Q".}cc[c]
can be optimized alternatingly: (1) fix {Q..} .c[c] and then perform back-propagation to update ¢; (2)
fix the optimized 6 and then update {Q".}.c|c) according to equation 38} but in a weighted manner.
The pseudo -code of this alternating learning algorithm is presented in ppend1x D] as Algorithm I]
where it is assumed that there are a sufficient number of instances in each adversarial cluster within
a mini-batch. When this assumption is not valid, we can update {Q".}.c[c at the end of each epoch
using adversarial instances for the entire training set. This relaxed alternating learning algorithm is
shown in Appendix [E]

5 EXPERIMENTAL RESULTS

To validate the efficacy of our proposed I (€) constrained AT, we integrated it with several adversarial
loss functions, including vanilla AT (Madry et al.l 2018), TRADES (Zhang et al., [2019), MART
(Wang et al., [2019), and AWP (Wu et al., 2020), and considered the standard version of such AT
methods as baselines. We conducted extensive experimentsﬂ on CIFAR-10, 100 (Krizhevsky et al.,
2009)), Tiny-ImageNet (Le & Yang, |2015), and CIFAR-10, 100 augmented with 1 million synthetic
images. Our results show that incorporating our method improves the performance of these loss
functions on both original and synthetic-augmented datasets.

"Experiments on CIFAR-100 without synthetic data and Tiny-ImageNet followed the algorithm in Ap-
pendix [E] due to the small number of samples from each class per mini-batch, which may cause inaccurate
centroid estimation using Alg. E} All other experiments in this section follow Alg. E}
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In all of our experiments, training adversarial samples were generated using PGD with an L,-norm
budget of e = 8/255, a step size of 2/255, and optimized over 10 steps. To evaluate robustness, we
applied multiple white-box attacks, including PGD-40 (Madry et al., 2018)), C&W attack (Carlini &
Wagner, [2017) under L..-norm (both with 40 steps), and AutoAttack (Croce & Hein, |2020), to the
model checkpoint with the highest validation accuracy. We used default hyper-parameter settings
for all baseline AT methods and selected the hyper-parameters « and 3 for our I (€) constrained AT
from the set of {1 x 1072,...,1 x 10°,2,5}.

5.1 RESULTS ON TINY-IMAGENET

To demonstrate the effectiveness of our method,  Table 1: Experimental results on Tiny-ImageNet.

we combined I (€) constrained AT with vanilla ~Model Method | Clean PGD C&W., AA
AT and TRADES on the Tiny-ImageNet dataset TgADES :Z-;-;’ ggéﬁ ig';‘z i;'ig
. . +0urs . o B .
using PreAct-ResNet-{18, 34} architectures.  PR-18 —ir o908 2315 2079 1878
Models were trained for 100 epochs with a +Ours 4843 2629 2141  19.72
mini-batch size of 256, Ly regularization (5 X TRADES | 49.17 2469 2059 19.86
10~%), and a cosine annealing learning rate  pg.34 _TOUIs 48.56 2509 2094 2037
heduling (max 0.1). Weight averaging (WA) Vanilla AT | 50.13 - 2419 2216 20.00
sC g 1). g gmng +Ours 50.99 27.68 23.87 2169

(Izmailov et al.,2018])) was applied with a decay
factor of 7 = 0.995, as adopting WA can smooth the loss landscape, thereby reducing robust gen-
eralization gap and leading to enhanced performance (Gowal et al., [2020; |Chen et al., 2021)). In our
approach, the baseline adversarial loss function was used until the 5" epoch to maintain stability,
and the objective function in equation 41| was applied afterwards, since adversarial clusters are not
well-formed in the early stage of training. In Table[I] we reported the accuracy on benign samples,
robust accruacy against PGD, C&W and AutoAttack, and denoted such metrics as ‘Clean’, ‘PGD’,
‘C&W,’ and ‘AA’, respectively. As shown, our method exhibits enhanced robustness comparing
with those without constraining on I (€), and the robust accuracy gap across all attacks increases as
the model size grows. In addition, we observed that the gain of robust accuracy against PGD attack
is more than 3% when incorporating our approach with vanilla AT for both models, and reaches a
maximum gain of 1.63% against AutoAttack.

5.2 RESULTS ON CIFAR

In our experiments on the original CIFAR datasets without synthetic data, we used PreAct-ResNet
and Wide ResNet (WRN) (Zagoruyko & Komodakis, 2016) with ReL.U activation, both common
architectures in AT. Models were trained for 200 epochs with a mini-batch size of 128 and a multi-
step decay learning rate schedule, starting at 0.1 and reduced by a factor of 0.1 at the 100" and 150"
epoch. We used stochastic gradient descent (SGD) with momentum of 0.9, Lo regularization factor
of 5 x 1074, and a WA factor 7 = 0.999. The adversarial centroids Q- were updated per mini-batch
using WA with a factor 7g = 0.999.

For experiments with additional data, we used 1 million labeled synthetic images from |Wang et al.
(2023), and replaced ReLLU with Swish activation (Ramachandran et al.,[2017) for better smoothness
(Xie et al.L[2020; /Gowal et al., [ 2020). Models were trained for 400 epochs with WA (7 = 0.995) and
centroids were updated with a WA factor 7o = 0.99. We applied cosine annealing for the learning
rate scheduling, with a maximum value of 0.2. The original-to-synthetic data ratio was set to 3:7,
and mini-batch size is set to 512. Other settings are identical to those of the original CIFAR datasets.

We demonstrate our experimental results on original CIFAR-{10, 100} in Table where employing
our method alongside existing adversarial loss functions consistently outperforms training solely
with those loss functions without constraining on I (€) across all methods when evaluated under
AutoAttack. In most settings, our method slightly sacrifices benign accuracy for better robustness,
while we observed that both benign and robust accuracy against AutoAttack increase for most mod-
els trained by vanilla AT and TRADES with constraining on I (e) comparing with its counterparts
without it. We also present the loss curves and a 2-dimensional probability simplex indicating the
output distributions with different constraining levels on robust NCMI in Appendix [G]

Moreover, we reported experimental results over CIFAR datasets with additional 1 million syn-
thetic data in Table I as well. Similar to those trained solely on original datasets, / (€) constrained
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Table 2: Experimental results on CIFAR-{10, 100} datasets, both with and without synthetic data,
are averaged over 3 runs. ‘Clean’ refers to accuracy on benign samples, ‘C&W .’ indicates robust
accuracy against C&W attack using PGD-40 under L,,-norm, and *AA’ represents robust accu-
racy against AutoAttack. *+Ours’ indicates the use of our I (¢) constrained AT. Results for original
datasets are listed under ‘No Synthetic Data’, while those with additional synthetic data are under
1M Synthetic Data’. WRN-34-10 was used only for original datasets (in red cells), and WRN-28-
10 only for datasets with synthetic data (in blue cells). Better results are in bold.

No Synthetic Data 1M Synthetic Data

Dataset Model  Method Clean  PGD C&W., AA | Clean PGD C&W. AA
Vanilla AT 7935 5251 5076  48.70 | 90.08 57.65 5724 5401
+Ours 8143 53.04 5223 4947 | 8988 6031 5930  56.61
TRADES 8221 5381 5125 5005 | 8848 6116 5887  58.13
PreActRNg _FOurs 8226 5412 5165 5070 | 87.90 6151 59.80  58.52
MART 7981 54.60 5063 4873 | 8699 5846 5468  52.86
+Ours 7940 5441 5125  49.61 | 87.82 5754 5605  53.92
TRADES-AWP | 81.52 5440 51.63 5056 | 8760 60.77 5820  57.54
CIFAR.10 +Ours 8173 5464 5215 5107 | 8773 6118  59.07 5825
Vanilla AT 8506 5623 5600 5358 | 92.69 6347 6406 6147
+Ours 8558 5725 5620 5422 | 9205 6556 6426 6171
TRADES 8554 5719 5626 5503 | 90.26 6495 6394 6273
WRN _*ours 8524 57.56 56.60 5527 | 9075 6545 6477 6327
“MART | 8415 57.64 5540 5355 | 9191 6471 6326 6121
+Ours 8399 5720 5592 5377 | 91.84 6374 63.56 6175
“TRADES-AWP | 85.14 5802 5666 5535 | 9044 6556 6393  63.17
+Ours 8467 5825 5681  55.60 | 90.37 66.15 64.53 6341

Vanilla AT 5246 2008 2676 2490 | 6695 3223 3232  29.76

+Ours 5413 3150 2759 2570 | 6593 3351 3345 3088

TRADES 5548 2855 2557 2436 | 6383 3608 3284 3192

PreAcLRNg _FOurs 5795 2992 2600 2476 | 6373 3632 3308 3245
MART 5210 3034 2648 2500 | 6244 3510 31.62 2987
+Ours 5146 3070 2671 2542 | 62.62 3606 3333  31.24

TRADES-AWP | 56.66 2947 2593 2505 | 6371 3588 3225  31.59

CIFAR-100 +Ours 5581 3027 2646 2554 | 64.23 3677 3295  31.99
Vanilla AT 59.13 3288 3097 2867 | 71.26 3531 3631 3376
+Ours 6020 3324 3144 2915 | 71.08 3662 3747  34.96
TRADES 5952 3109 2918 2794 | 67.52 3856 3634 3536
WRN _*ours 6125 3322 2965 2843 | 6751 3922 3691 3579
“MART | 5746 3328 2957 2809 | 68.84 3880 37.07 3485
+Ours 5707 3341 3028 2869 | 6875 3928 37.93  35.54
“TRADES-AWP | 60.69 3240 2942 2851 | 6725 39.03 3618 3539
+Ours 5983 3272 2993 2898 | 67.93 3959 3679  35.64

AT demonstrates prominence in terms of robust accuracy comparing with corresponding baseline
methods. This indicates that our approach can further boost robustness with the help of synthetic
data. Notably, the averaged improvement of robust accuracy against AutoAttack with synthetic data
is 0.71%, which is higher than that of models trained without synthetic data (0.52%). This may
due to that additional data help the models estimate the centroid of each adversarial cluster more
precisely, enforcing I (€) to be constrained more effectively and leading to better improvements in
robust performance.

5.3 RESULTS ON ATTACK WITH VARIOUS PERTURBATION BUDGETS

As aby-product, we found that models trained with our method exhibit enhanced robust performance
across different perturbation budget levels in comparison with baseline methods with a maximum
accuracy gain of 3.48% (detail shown in Appendix [F). This indicates employing our method can
generally improve robustness independent of perturbation budget.

6 CONCLUSION

In this paper, we have introduced three new information quantities—robust CMI, separation and
NCMI—to gauge the robust performance of DNNs. Based on these robust performance metrics, we
have developed a new generic adversarial training framework and alternating learning algorithms
to jointly minimize robust NCMI and the conventional adversarial training objective functions. Ex-
tensive experimental results show that our method consistently improves model robustness against
various white-box attacks when combined with existing adversarial loss functions, demonstrating
the ‘plug-and-play’ nature and effectiveness of our method in the field of AT.

10
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A PROOF OF THEOREMI]

With reference to Fig. |1} it follows that Y — X' — Y’ forms a Markov chain in the indicated order.
Replacing (X, Y) in Theorem 1 of |Yang et al.| (2023) by (X', Y”), we have

¢ =Pr(Y' #Y) <Ex/ [H (Pyx (-|X"), f(X"))]
C
=Ex: |- Y Py (ilX') - In (X}

=Ex/y [-In f(X")[Y]]
— Exy [~ In f(G(X, V) [V]) @)
Thus,
&)=, max Pr(Y' #Y)
< B O Y)Y]

= gy e QZP 2,y) (—In f(G(z,9))ly))

Gl |, <e

=Y Pla,y)  max (=Inf(G(z,y))y])
= ZP(m,y) L’:Ixr’naﬁ Se—ln F@)y]|- 43)

This completes the proof of Theorem T}

B PROOF OF THEOREM

For simplicity, we drop the subscript € from fy(-), and assume that the space of X is discrete. With
reference to Figure[T] note that

Pyjxoy (V' =ila,y) = f(G(z,y))]]. (44)

In view of equation we introduce a dummy conditional “backward channel” {q(z|i,y)} and
derive a new expression for I(X;Y’|Y") as follows:

C .
V1Y) = X Pl Zny(:vly)Zf(G(x,y))[i]lnW @3)
= v (ily)
< Py (zly) - F(G(z,))[i]
_ZP Z vy (ily) Z = Pz;ly(ﬂy) :

Py (x | ) - F(G(x,y))i]

PX|Y (z]y) y/\Y( ily)

_ Py (aly) (Gl | afalion)
— zy: ;P "y (ily) {q(x‘z7y)}z Py 1) 1 Prry (2l1)
(46)

-In

q(zli,y)
= max PJ: —_— (47)
{a(aliy)} 4= Y Zf wa(wa)

where equation[43]is due to equation @ equation 6| follows from the cross entropy inequality, and
the maximization in equation46]and equation [#7]is achieved when
) Pxy (zly) - f(G(z,y))i]
q(zliy) = :

- 48
Pyory (i) @
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Figure 3: Robust accuracy of different learned models against PGD, C&W and AutoAttack vs the
corresponding robust NCMI on CIFAR-10, where robust accuracy against PGD, C&W, and Au-
toAttack are presented as blue, orange and green bars (left axis), respectively. Red bars represent
corresponding robust NCMI value (right axis) of each learned model. Specific value of each evalu-
ation metric is shown on top of each bar.

Now plugging equation 7] into equation 23] we have:

I(e) = max max E P g -Inq(xli In P T
(€) Gz’ —allp<e{a(zliy)} (@, [ us atwli,y) = X1y ( |y):|

= max E P(x, (z Inq(x|i In P x
{alelizn)} < (z,9) lG ”w —WH <e E F(G(x, )] - Ing(zli,y) — x|y ( |y)]

= max P(x,

{a(zliy)} wzy (=.9) [

This completes the proof of equation 29} Plugging equation[#7]into equation 27} we have:
max 3 P(z,y) [S0, fo(Gla,y) i) ng(oli,y) — n Pxjy (aly)|

f(e) _ max {a(z|i,y)} Y
G2’ —z||p<e [I{Y;zéV}H(f@(G(X’ Y)), fo(G(U, V)))]
5 Play) [ folGlasy) i a(alisy) = In Py (sly)|
" {alalin)} Gilar ~allp<e E [Iiy2vy H(fo(G(X,Y)), fo(G(U, V)]

where equation |50 is due to the fact that the denominator therein does not depend on {q(x|i,y)}.
This completes the proof of equation [30]and hence Theorem 2]

<€Zf |- Ing(z|i,y) — lnPX|y(w|y)] (49)

" H$ —$Hp

(50)

In order to evaluate the robust NCMI [ (€) of a given trained DNN, one should follow equationto
compute the corresponding value over validation data. Since we formulate equation [50|as a double
maximization, we can find the optimum of I (€) through an alternating algorithm. In this alternating
algorithm, we do the following steps for 5 iterations until we see convergence on the value of I (e):
(1) we firstly fix {¢(x|¢,y)} and solve the optimization of attack function G over all validation data
simultaneously due to the inter-dependency among samples when computing the denominator in
equation (2) we fix the attack function G to compute each ¢(z|i, y) following equation
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We then reported the corresponding I (€) values of different conventional AT methods in Fig. [3|in
comparison with the robust accuracy against multiple white-box attacks. Indeed, the relationship
between robust accuracy and robust NCMI I (¢) are generally the same as that between robust ac-
curacy and adversarial NCMI shown in Fig. |2} where a high robust accuracy matches to a low I (€).

This indicates that robust NCMI | (€) can also be considered as an evaluation metric that reflects the
robustness other than the intrinsic mapping structure of a DNN.

C PROOF OF THEOREM[3]

Go back to equation We introduce a dummy adversarial centroid distribution Q; for each label
y and derive a new expression for E[D(fg(G(X,Y"))| s} )] as follows:

E[D(fo(G(X.Y))llsy)] = > P(y) Y Pxpy (2ly) D(fo(G(x,y))]s),)

= PW|( X Px @ly) DU (Gl p)IIQ))) - D5, 1@

G
=3 P)min{ 3= Pxy () Do (G, v)]1@)) } (52)
= i 3P Y Py (@) DG )@,
= min E[D(fo(G(X.Y))|Q})] (53

cScelC]

where equationis due to the nonnegativity of the KL divergence D(sy ||, ), and the minimization
in the above is achieved when

Q, = sy, Yy € [C]. (54)

Now plugging equation [53]into equation [36] yields

min {E[G .”rﬁnaxu B L(X,X,Y)]+ max [a.I(X/;}A//Y)—ﬁ.I‘/}}

0 Gl =all,<e

~ i s s {E[ax, GV V) 4 pin EID((GXY))]Q4 )
—B-E Iy 21 H(fo(G(X,Y)), fo(G(U,V)))] }

= min max {Qgicrel[c] {E[L(X,G1(X,Y),Y)] + o E[D(fo(G(X,Y))[|Qy )]

=B E [Liy vy H(fo(G(X.Y), fo(G(U, V)] }

< m(}ﬂ{@girel[c] max {E[L(X, G1(X,Y), V)] + o E[D(fs(G(X, Y)llQy)]

This completes the proof of Theorem 3]
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D

ALTERNATING LEARNING ALGORITHM

Algorithm 1 ] (¢) Constrained Adversarial Training

Input: DNN f with model parameter 6, hyper-parameters « and 3, dataset D:(X’, ))), number of
epochs 7', number of classes C, adversarial loss function £, perturbation budget ¢, EMA factor 7

1:

9:
10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:

foriec[l,...,C]do
Initialize adversarial centroids: Q) < ﬁ > jep, fo(z))

2
3: end for
4:
5.
6
7

forec[1,...,7]do
for each mini-batch B do
[Update DNN parameter 6]:
Determine the optimized G7 by computing a perturbed instance & for each sample in-

stance (x,y) € B via PGD attack with 10 steps.
8:

Determine the optimized G* by computing all adversarial instances ' for all sample
instances (z,y) € B simultaneously all at once in the same manner as PGD attack with 10 steps,
where the objective function to be maximized in the attack process is L5(0,{Q..} cc[c), G)-

x; < G*(xj,y;) forall (z;,y;) € B
loss < J5(0,{Q%}ccicy, G, G)
Update 6 w.r.t. loss.
[Update adversarial centroids]:
foric[l,...,C]do
Use adversarial instances z”; in line 9 to craft B} < {(z},y;)|(z;,y;) € B,y; = i}
Continue if |B;| = 0
Qi+ 1Q;+(1- T)ﬁ Z(w;,yj)ezs; fo(z})
end for
end for
end for
return DNN fy
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E RELAXED ALTERNATING LEARNING ALGORITHM

Algorithm 2 Relaxed Alternating Algorithm for I (¢) Constrained Adversarial Training

Input: DNN f with model parameter 6, hyper-parameters « and (3, dataset D:(X’, ))), number of
epochs 7', number of classes C, adversarial loss function £, perturbation budget ¢

I: foree[1,...,7] do

2: [Update DNN parameter 6]:

3: for each mini-batch B C train set Dy do

4: Determine the optimized GG} by computing a perturbed instance & for each sample in-
stance (x,y) € B via PGD attack with 10 steps.

5: if e > 1 then

6: Determine the optimized G* by computing all adversarial instances x’ for all sample

instances (x,y) € B simultaneously all at once in the same manner as PGD attack with 10 steps,
where the objective function to be maximized in the attack process is L5 (0, {Q.}cc[c), G) in

equation 40

7: zl; « G*(xj,y;) forall (z;,y;) € B
8: loss jB(aa {QIC}CE[C]7 T?G*)
9: else
10: loss ﬁ Z(%.,yj)eg L(xj,Gi(x5,95),Y5)
11: end if
12: Update 6 w.r.t. loss
13: end for
14: if e = 1 then
15: Initialize adversarial centroids: Q) < ﬁ > jep, fo(zj) fori e [1,....C]
16: end if
17: [Update adversarial centroids]:
18: Initialize Q;)dummy to zero vectors for i € [1,...,C]|
19: for each mini-batch By C train set Dy, With |[Bg| =4 - |B| do
20: Determine the optimized G* by computing all adversarial instances x’Q for all sam-

ple instances (xq,yq) € Bg simultancously all at once in the same manner as PGD at-
tack with 10 steps, where the objective function to be maximized in the attack process is

L, (0,{Q%}ceic), G) in equation

21: v o« G*(25,0,Y5.¢) forall (z;,9,v,q) € Bo

22: Construct the set Bb consisting of all pairs (:c;-_’Q, y;,0) generated in line 21
. ’ ) /

23: for (I/j,Q’ Y5,Q) € By (/lo /

24 QyijJiummy A Yj,Q.dummy + f9 (:Cj,Q)

25: end for

26: end for

27: Normalize each Q] j,,,,,,,,,, t0 @ probability distribution for i € [1,...,C]

280 Qi Qf gummy fori €[1,....C]

29: end for

30: return DNN fy

In our relaxed alternating learning algorithm, we update the dummy centroid distributions ng of
all adversarial clusters once per epoch rather than once per mini-batch. The pseudo-code of this
algorithm is shown in Algorithm 2] In the case where there are not enough adversarial instances in
each mini-batch to estimate the centroid of each adversarial cluster, this delivers a good compro-
mise between time complexity and robust accuracy. Our experiments on the original CIFAR-100
and Tiny-ImageNet datasets were conducted using Algorithm [2| with the respective robust accuracy
results reported in Table 2] and [ In comparison with vanilla AT, TRADES, and MART, Algo-
rithm [T] and Algorithm [2] require roughly 60% and 120% more training time in our setup, whereas
TRADES-AWP requires roughly 30% more training time.

Note that in the above algorithm, when we iterate through the training set one more time to update all
adversarial centroids at the end of each epoch, we increase size of each mini-batch |Bg| to 4 times
as that when we update DNN parameter 6. This adjustment is mostly in consideration of providing
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a better estimation on the average cross entropy between sample pairs with different class labels
(second term in equation [40), as compute this value over a larger mini-batch can approximate this
value more precisely. Ideally, one should compute this value over the entire training set in one pass.
Due to the limit of computational resource, when we update adversarial centroids, we only increase
the mini-batch size up to 4 times (batch size of 512) as that in conventional training (batch size of
128).
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F ROBUSTNESS AGAINST VARIOUS PERTURBATION BUDGETS
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Figure 4: Robust accuracy against PGD attack with various perturbation budgets e on CIFAR-10
when the underlying DNN model is PreAct-ResNet-18 and baseline method is vanilla AT.
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Figure 5: Robust accuracy against PGD attack with various perturbation budgets ¢ on CIFAR-10
when the underlying DNN model is PreAct-ResNet-18 and baseline method is TRADES.

Other than showing that our approach outperformed the selected baseline methods on robust accu-
racy with a fixed perturbation budget ¢ = 8/255, we additionally evaluated our trained DNN against
PGD attack (Madry et al., 2018) with various perturbation budgets ¢, and compared with the DNN
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Figure 6: Robust accuracy against C& W o, attack with various perturbation budgets e on CIFAR-10
when the underlying DNN model is PreAct-ResNet-18 and baseline method is MART.

trained by baseline method. In Fig. ] we chose multiple perturbation budgets, either greater or less
than the standard one, to attack the DNN trained by vanilla AT (trained by TRADES and MART
in Fig. [5| and @ respectively) with and without constraining on I (¢) when the underlying model
architecture is PreAct-ResNet-18 and the dataset is CIFAR-10. We found that the model trained
with our method consistently exhibits better robustness against different perturbation budgets com-
paring with the baseline counterparts. For vanilla AT, the maximum robust accuracy gain is 3.48%
when ¢ = 2/255, and the minimum gain is 0.21% when ¢ = 16/255. When the baseline method
is TRADES, the maximum robust accuracy gain is 0.84% when e = 2/255, and minimum gain of
0.15% when ¢ = 16/255. In the case of MART, the maximum robust accuracy gain is 1.08% when
€ = 12/255, and the minimum is 0.57% when ¢ = 16/255. The results in this section indicate our
method are generally more robust than standard AT methods under various perturbation budgets.

21



Under review as a conference paper at ICLR 2025

1134 -

e G VISUALIZATION OF /(€) CONSTRAINED AT AND HYPER-PARAMETER

1136 SETTINGS

1137

1138 a=0,8=0 a=1,8=0

1139 it onion! it oo

1140 ot vttt
o class 2 sample o class 2 sample

1141 % class 2 centroid % class 2 centroid

1142 o

1143 i

1144 SRR

1145 sd, A% i

1146

1147

1148 a=2,=0 a=5,8=0

1149 o class 0 sample o class 0 sample
J  class 0 centroid +  class 0 centroid

1150 o class 1 sample o class 1 sample
% class 1 centroid % class 1 centroid

1151 T e o e

1152

1153

L)

1154

1155 o

1156

1157

1158

1159

1160  Figure 7: Visualization of the output probability simplex on the CIFAR-10 validation set, with
1161 varying constraining levels on adversarial CMI («) and a fixed constraining level on adversarial
1162 separation (3 = 0).

1163

1164 a=1,8=0 a=1,8=1

1165 ) it

1166 ittt i

1167 T s i

1168

1169

1170

1171 i

1172

1173

1174

1175 a=1,B=2 R a=1,B8=5 R

1176 b pig it ping

1177 X e ol
% class 2 centroid S class 2 centroid

1178

1179

1180

1181

1182

1183

1184

1185

1186 Figure 8: Visualization of the output probability simplex on the CIFAR-10 validation set, with
11g7  varying constraining levels on adversarial separation (/3) and a fixed constraining level on adversarial
CMI (o = 1).

22



Under review as a conference paper at ICLR 2025

—— Baseline —— Baseline
050 \'«""“‘V'"\"“/’va Ours 0.4 Ours
0 "% //\/J‘ S 034
< g
43 0.40 =
3 O
el a 0.2
[¢]
o 035 [
[
5
0304 << 0.1
0.254— : : : : : : : : 0.0 41— ! ! ! ! ! ! ! !
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
#Epoch #Epoch
(a) Robust Accuracy (b) Adversarial NCMI

Figure 9: Evaluation metric curves of PreAct-ResNet-18 on CIFAR-10 validation set during training.
All metrics are computed over validation data after C& W, attack with 40 steps. ‘Baseline’ stands
for training with vanilla AT (Madry et al.,2018), and ‘Ours’ represent vanilla AT with robust NCMI
regularization.

G.1 SIMPLEX VISUALIZATION

In this subsection, we visualize the effect of our adversarial CMI and adversarial separation under
different constraining levels when the underlying DNN architecture is PreAct-ResNet-18 (He et al.,
2016b). We first randomly picked 3 classes from the CIFAR-10 validation set, then focused on
a subset of validation samples with these labels perturbed by C&W, attack (Carlini & Wagner,
2017) in 40 steps. Each sample from this subset is fed into the DNN, and only the three logits
corresponding to the selected 3 labels are retained. These logits are subsequently converted into a
3-dimensional probability vector using the softmax operation. After the steps mentioned above, we
further projected all obtained 3-dimensional probability vectors from the samples in the constructed
validation subset into a 2-dimensional simplex to visualize the concentration and separation effect
of our trained robust DNNs in Fig.[7]and [§]

We compare the effect of varing constraining levels on adversarial CMI and separation, utilizing
vanilla AT (Madry et all, 2018) as the base adversarial loss function, in Fig.[7]and [8] respectively.
With different constraining levels on adversarial CMI, one can observe that a larger value of « en-
force each adversarial cluster more compact around its centroid, while different clusters are closer
to each other at the same time. We suggest that this creates a trade-off, as a stronger constraining
level on intra-class concentration (adversarial CMI) might weaken the regularization effect on robust
accuracy. This also justifies the necessity of constraining on adversarial separation, which further
separates perturbed samples with different labels apart. As shown in Fig. [8] a stronger constrain-
ing level on adversarial separation (larger 3) enlarge the margins between each pair of adversarial
clusters, and further push them to the corresponding corner point with a negligible affect on concen-
tration within each adversarial cluster.

In general, since our method enforces data points from the same class to be more concentrated
around the centroid of corresponding cluster and different clusters to be more separated from each
other, the overlapping areas in the simplex among different classes presented above are smaller than
that of the baseline method (top-left subplots of Fig.[/| with title ‘a = 0, 8 = 0’), especially when
o = 1 and 3 is set to 2 or 5 (bottom row of Fig. As such, there are less data points near
the decision boundaries and susceptible against adversarial attacks under our proposed framework
comparing with baseline, thereby enhances the robustness of a model.

G.2 TRAINING CURVES OF f(e) CONSTRAINED AT

In Fig. 9] we present the evolution curves of robust accuracy and adversarial NCMI of PreAct-
ResNet-18 on CIFAR-10 validation data perturbed by C&W ., attack in 40 steps, using loss function
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of vanilla AT with and without constraining on I (¢). In Fig. @ robust accuracy of vanilla AT with
and without our regularization is almost the same before the first learning rate decay at the 100%
epoch. After that, the robust accuracy of our method is always better than that of baseline. Moreover,
the gap between the two curves increases towards the end of the training phase, indicating that our
approach also suffers less from robust overfitting. The curves for adversarial NCMI are displayed in
Fig. Ob] where the adversarial NCMI of our approach shows a significant gap from the first epoch
and remains consistently lower than the baseline. This demonstrates that our method exhibits better
intra-class concentration and inter-class separation for perturbed samples. One may notice that in
Fig.[9b] both curves show an upward trend near the end of training phase. We argue that this is due
to robust overfitting, as robust accuracy on validation set of both curves continue to drop after the
last learning rate decay at the 150" epoch.

G.3 HYPER-PARAMETER SETTINGS

Table 3: Hyper-parameter settings of [ (€) constrained AT on CIFAR-{10, 100} datasets. Each
parenthesis represent the hyper-parameter value of o and /3 in our approach, respectively.

No Synthetic Data 1M Synthetic Data
Dataset Method PreAct-RNIS | WRN-34-10 | PreAct-RNTS | WRN-28-10
Vanilla AT ) ) 2.0.0) 2.0
] TRADES 001,01) | (0.01,0.1) 0.1.2) 0.1,2)
CIFAR-10 MART (0.01.2) 0.1, 1) ©.1. 1) ©.1. 1)
TRADES-AWP | (0.1, 1) ©.1.1) 0.1.2) ©.1. 1)
Vanilla AT 2.5) 2.5) 0.1.2) 0.1.2)
TRADES (1. 2) (1.2) 0.01.5) 0.01,2)
CIFAR-100 MART 0.1.2) (0.1,0.01) 0.1,5) 0.1,2)
TRADES-AWP |  (0.01, 5) 0.01.5) 0.1.2) ©.1.1)

Table 4: Hyper-parameter settings of I (¢) constrained AT on Tiny-ImageNet datasets. Each paren-
thesis represent the hyper-parameter value of « and /3 in our approach, respectively.

Model
Method 5ot RNTS | PreAct-RN34
Vanilla AT | (L. 0.0) @.0.0)
TRADES |  (0.01.2) 0.01.2)

In this subsection, we reported the hyper-parameter settings of our approach, which is the values of
« and 3 in our objective function in equation[39] Table[3]and[]provide the specific values of « and 3
used in our experiments on the CIFAR and Tiny-ImageNet datasets, respectively. As one can see, for
the same AT method on same dataset, the hyper-parameter settings of our approach are generally the
same between different models, while those between methods and datasets are somehow different.
We attribute this to the variation in underlying data distributions across datasets and the differences
in the DNN’s intrinsic mapping structures between methods, which result in different optimal hyper-
parameter settings for the same model architecture on each method and dataset.
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H ABLATION STUDY

In this section, we conducted ablation study on original CIFAR-10 dataset to verify the effectiveness
of each individual term in equation @} We selected PreAct-ResNet-18 (He et al., 2016b)) as the
underlying DNN model and vanilla AT (Madry et al.,[2018)) as the baseline method. We present our
experimental results in Table 5]

Table 5: Experimental results of ablation study on original CIFAR-10 dataset. Best results are
highlighted in bold.

Hyper-Param Clean PGD C&W., AA
a =0, 8 =0 (Baseline) | 79.35 52.51 50.76  48.70
a=0.001,6=0 8225 5256 5093  48.73
a=001,8=0 8195 5227 5086  48.79
a=01,8=0 82.63 52.65 50.79  48.82
a=1,0=0 8132 5283 5199 49.39
a=2,68=0 80.37 52.61 51.51  49.01
a=5=0 79.96 5278  50.94  48.99
a=0,5=0.001 7949 52.60 50.79  48.72
a=0,8=0.01 7943 52,79  50.80 48.74
a=0,0=0.1 81.72 5254 5138  48.79
a=0,=1 80.93 5276  52.12  49.34
a=0,0=2 80.72 5259 5218  49.35
a=0,8=5 79.72  52.61 5194  49.30
a =1, =2 (Best) 81.43 53.04 5223 4947

As shown in the table above, we found that solely enabling each term in equation 40| can enhance
the robustness of a DNN model in comparison with the baseline method. In addition, when enabling
both terms by selecting the corresponding hyper-parameter values of « and S with the highest ac-
curacy against AutoAttack (Croce & Hein, |2020) can further improve the robust performance. This
demonstrates the efficacy of both proposed metrics in our work.

I ADDITIONAL EXPERIMENTAL RESULTS

1.1 RESULTS AGAINST L9-NORM ATTACK

Table 6: Experimental results of our trained models against Lo-norm attacks on original CIFAR-10
dataset.

Method PreAct-RN18 WRN-34-10
PGD-L; C&W-L; | PGD-L; C&W-L,

Vanilla AT 62.22 60.19 63.61 63.07
+Ours 63.85 62.13 65.27 63.23
TRADES 63.03 61.47 63.48 62.45
+Ours 63.53 61.97 63.93 62.79
MART 63.75 60.29 64.93 62.49
+Ours 63.60 61.06 64.73 63.09
TRADES-AWP 63.23 61.19 64.56 62.92
+Ours 63.76 61.45 64.81 63.51

In this subsection, we evaluate our DNNs, which trained with adversarially perturbed data in
L,.-norm on original CIFAR-10 dataset, against data attacked in Lo-norm. We selected PGD-Lo
(Madry et all [2018) and C&W-Ls (Carlini & Wagner, |2017) as our evaluation attack methods,
where both attacks are crafted in 20 iterations and have a budget ¢ = 128/255 with a step size of
15/255. We present our experimental results in Table @, where the robust accuracy of our approach
outperforms corresponding baseline methods in most cases. The results indicate that the models
trained with our method exhibit superiority against Lo-norm attack even though such models are not
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explicitly trained with data perturbed in Lo-norm, and we believe the improvement against Lo-norm
attacks could be even more substantial if the models are trained with data perturbed in Lo-norm.

1.2 COMPARISON OF ROBUST PERFORMANCE BETWEEN BEST AND LAST CHECKPOINTS

Table 7: Experimental results of best and last checkpoints trained with baseline methods and our
approach on original CIFAR-10 dataset. Better results are highlighted in bold.

Best Last
Model  Method Clean PGD C&W. AA | Clean PGD C&W. AA
Vanilla AT 7035 5251 5076 4870 | 7889 4318 4408 4153
+Ours 8143 5304 5223 4947 | 80.66 46.63 4732  43.98
TRADES 8221 5381 5125 5005 | 8157 5047 4926 4740
PreAcLRN]g 0TS 8226 5412 5165 5070 | 8220 5077 49.67  48.19
MART 7981 54.60 5063 4873 | 79.58 4726 4578 4271
+0urs 7940 5441 5125 49.61 | 7922 47.52 4604  43.66
TRADES-AWP | 8152 5440 51.63 5056 | 8122 53.14 5097 4971
+Ours 8173 5464 5215 5107 | 81.40 5371 5156  50.64
Vanilla AT 8506 5623 5600 5358 | 84.05 4693 4773 4538
+Ours 8558 5725 5620 5422 | 8448 4716 4820  46.15
TRADES 8554 5719 5626 5503 | 8544 4898 5006  47.82
WRN.34.10 _Ours 8524 57.56 5660 5527 | 8508 49.14 5021  48.22
MART 8415 57.64 5540 5355 | 83.63 4806 4771 4504
+Ours 8399 5720 5592 5377 | 8358 4805 47.90 4546
TRADES-AWP | 8514 5802 56.66 5535 | 8417 5052 51.06 4894
+0urs 8467 5825 5681 55.60 | 8405 50.84 5123 4934

In this subsection, we report the clean and robust accuracy of the best and last checkpoints for models
trained with the selected baseline methods and combining with our approach on original CIFAR-10
dataset in Table [/} We found that the robust performances of models trained with our method are
better than the baseline counterparts. Furthermore, the robust accuracy gap between best and last
checkpoints trained by our approach is less significant than that of corresponding baseline methods
for most pairs of comparisons, which demonstrates that models trained with our method are less
likely to suffer from overfitting than baseline methods.

1.3 RESULTS AGAINST BLACK-BOX ATTACK

Table 8: Experimental results of PreAct-ResNet-18 against Square attack on original CIFAR-10
dataset.

Method Clean Acc. Robust Acc.
Vanilla AT 79.35 55.00
+Ours 83.43 56.87
TRADES 82.21 56.27
+Ours 82.26 57.01
MART 79.81 54.84
+Ours 79.40 55.71
TRADES-AWP 81.52 56.03
+Ours 81.73 56.71

In this subsection, we evaluated the performance of models trained with baseline methods and our
approach against black-box attack. We selected Square attack (Andriushchenko et al., [2020) as the
evaluation attack method, and present the results of PreAct-ResNet-18 (He et al.l 2016b) against
this attack on original CIFAR-10 dataset in Table [§] where the black-box robust accuracy of our
approach consistently outperform that of corresponding baseline methods.

1.4 COMPARISON WITH OTHER METHODS UTILIZING MUTUAL INFORMATION

In this subsection, we present our results of our method comparing with other approaches which im-
prove adversarial robustness using mutual information like HBaR (Wang et al.,|2021) and IB-RAR

26



Under review as a conference paper at ICLR 2025

(Xu et al |2023a). In order to make a fair comparison with such methods, we run all experiments
of the above approaches and ours under the experimental setting described in Section [5] on orig-
inal CIFAR-10 dataset where the DNN architecture is ResNetl18 (He et al.l 2016a). We combine
HBaR, IB-RAR and our method with vanilla AT (Madry et al [2018) and TRADES (Zhang et al.,
2019), and report the results of best checkpoints in Table[9} where our method is more robust against
AutoAttack (Croce & Hein, |2020) than other approaches.

Table 9: Experimental results of methods utilizing mutual information to improve adversarial ro-

bustness on original CIFAR-10 dataset with DNN architecture of ResNet18.
Method Clean PGD C&W, AA
Vanilla AT | 83.65 51.64  50.66  48.10
+HBaR 83.96 5249 50.70  48.55
+IB-RAR | 83.71 5253  50.73  48.63
+Ours 83.04 52.80 51.06 48.79
TRADES 8336 5193 5040  49.00
+HBaR 83.39 5249 51.09 49.30
+IB-RAR | 83.44 5258 50.67  49.56
+Ours 8275 5287 51.05  50.09
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J  VARIANCE OF EXPERIMENTAL RESULTS

Table 10: Experimental results and variances on CIFAR-{10, 100} datasets, both with and without
synthetic data, are averaged over 3 runs. ‘Clean’ refers to accuracy on benign samples, and *AA’
represents robust accuracy against AutoAttack. ’+Ours’ indicates the use of our I (¢) constrained
AT. Results for original datasets are listed under ‘No Synthetic Data’, while those with additional
synthetic data are under 1M Synthetic Data’. WRN-34-10 was used only for original datasets (in
red cells), and WRN-28-10 only for datasets with synthetic data (in blue cells). Better results are in
bold.

No Synthetic Data 1M Synthetic Data
Dataset Model Method Clean AA Clean AA
Vanilla AT 79.35+0.12 4870+ 0.17 | 90.08 £ 0.16 54.91 +£0.12
+Ours 8143 +0.15 49.47 +0.20 | 89.88 +£0.19 56.61 + 0.08
TRADES 8221 +0.09 50.05+0.13 | 88.48+£0.06 58.13 +0.06
PreAct-RN18 +Ours 82.26 + 0.05 50.70 + 0.15 | 87.90 +£0.05 58.52 + 0.08
MART 79.81 £ 0.13 4873 £0.11 | 8699 £0.05 52.86 +0.03
+Ours 79.40 +0.18  49.61 +0.10 | 87.82 +0.04 53.92 + 0.03
TRADES-AWP | 81.52 £0.09 50.56 £0.06 | 87.69 £0.05 57.54 £0.10
CIFAR-10 +qus 81.73 £ 0.06 51.07 = 0.06 | 87.73 +0.09 58.25 + 0.07
Vanilla AT 85.06 £ 0.05 53.58 £0.10 | 92.69 +0.07 61.47 +0.08
+Ours 85.58 + 0.06 54.22 +0.13 | 92.05+0.08 61.71 + 0.07
TRADES 85.54 +0.10 55.03 £0.08 | 90.26 +0.03 62.73 £+ 0.03
WRN +Ours 8524 £ 0.05 55.27 £0.05 | 90.75 £ 0.10 63.27 + 0.07
MART 84.15+0.11 5355+£0.03 | 91.91 £0.04 61.21 +0.04
+Ours 83.99 £0.13 53.77 £0.08 | 91.84 £0.03 61.75 + 0.05
TRADES-AWP | 85.14 +0.07 55.35+0.04 | 90.44 +0.06 63.17 £+ 0.08
+Ours 84.67 £0.09 55.60 £0.06 | 90.37 £0.11 63.41 + 0.03
Vanilla AT 5246 +0.11 2490 +0.12 | 66.95+0.16 29.76 +0.10
+Ours 54.13 +0.20 2570 £ 0.12 | 6593 +£0.08 30.88 + 0.11
TRADES 5548 £0.08 2436+0.13 | 63.83£0.08 31.92+0.09
PreAct-RN18 +Ours 5795+ 0.13 2476 £ 0.09 | 63.73 £0.11 32.45+0.10
MART 5210 £ 0.15 25.00 £0.11 | 62.44 £0.14 29.87 £ 0.06
+Ours 5146 +£0.13 2542 +0.11 | 62.62 +0.04 31.24 + 0.05
TRADES-AWP | 56.66 = 0.07 25.05+0.08 | 63.71 £0.05 31.59 +0.06
CIFAR-100 +0L!rs 55.81 £0.10 25.54 +0.05 | 64.23 +0.05 31.99 + 0.09
Vanilla AT 59.13 +0.08 28.67 +0.08 | 71.26 + 0.04 33.76 + 0.05
+Ours 60.20 + 0.04 29.15+0.10 | 71.08 +0.03 34.96 + 0.11
TRADES 59.52 £0.10 27.944+0.09 | 67.52+0.08 35.36 + 0.04
WRN +Ours 61.25 +0.17 2843 +£0.11 | 6751 £0.11 35.79 + 0.06
MART 57.46 +0.05 28.09 +£0.05 | 68.84 +0.12 34.85 + 0.05
+Ours 57.07 £ 0.06 28.69 +0.07 | 68.75 +£0.08 35.54 + 0.09
TRADES-AWP | 60.69 +0.12 28.51 £0.08 | 67.25£0.09 35.39+0.10
+Ours 59.83 £0.08 2898 +£0.07 | 67.93 +£0.15 35.64 + 0.04
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K CONSTRAINING NCMI OVER BENIGN SAMPLES ALSO BOOSTS
ROBUSTNESS

Table 11: Experimental results of constraining NCMI on benign samples (denoted as ‘+Clean
NCMTI’) with TRADES on CIFAR-{10, 100} datasets, with and without synthetic data, in com-

parison with TRADES and I (€) constrained AT (denoted as ‘+Robust NCMI’), are averaged over

3 runs. WRN-34-10 was only used for original datasets (cells marked in red), and WRN-28-10 for
datasets with synthetic data (cells marked in blue). Best result of each group are marked in bold.

No Synthetic Data 1M Synthetic Data

Dataset Model  Method Clean PGD CW.. AA | Clean PGD CW.. AA
TRADES 8221 5381 51.25 50.05 | 8848 61.16 5887 58.13
PreAct-RN18  +Robust NCMI | 82.26 54.12 51.65 50.70 | 87.90 61.51 59.80 58.52
CIFAR-10 +Clean NCMI 81.98 5494 52.03 5099 | 88.25 61.37 5940 58.42
TRADES 85.54 57.19 5626 55.03 90.26 6495 63.94 62.73
WRN +Robust NCMI | 85.24 57.56 56.60 55.27 90.75 6545 64.77 63.27
+Clean NCMI 8539 57.87 5645 5522 90.78 6527 6448 63.19
TRADES 55.48 2855 2557 2436 | 63.83 36.08 32.834 3192
PreAct-RN18 +Robust NCMI | 57.95 2992 26.00 24.76 | 63.73 3632 33.08 3245
CIFAR-100 +Clean NCMI 5593 29.17 26.02 24.64 | 64.69 36.16 32.85 32.04
TRADES 59.52  31.09 29.18 2794 67.52 3856 36.34 35.36
WRN +Robust NCMI | 61.25 33.22 29.65 2843 67.51 3922 3691 35.79
+Clean NCMI 59.78 31.50 29.52 2832 67.74 39.23 3721 3599

In|Yang et al.|(2023)), the authors mentioned that in benign image classification task, training a DNN
with constraining NCMI on benign samples leads to improved robustness compared to training with
only CE loss. Their experimental results indicate that models trained with CMIC-DL framework are
more robust against FGSM (Goodfellow et al., |2015) and PGD attacks (Madry et al., 2018) under
various levels of perturbation budgets than standard DNNs trained with CE loss in MNIST dataset
(LeCun et al.| [1998). In our experiments, we also observed that constraining NCMI on benign
samples alongside TRADES (Zhang et al.,[2019) enhances DNNs’ robustness on CIFAR-{10, 100}
datasets, both with and without additional synthetic data. We mostly followed the experimental
setting of |Yang et al.| (2023), where we additionally sample 8 instances per class (64 in original
CIFAR-10) in each mini-batch and use such sampled instances to update centroid of each benign
cluster per mini-batch with a WA factor 79 = 0.999 in original CIFAR-100. In experiments on
CIFAR datasets with an additional 1 million synthetic images, we increased the sample size for
centroid updates in each mini-batch by a factor of 4, aligning with the batch size, which was 4 times
compared to the original CIFAR datasets. We also adjusted the WA factor 7¢ to 0.99.

Indicated in Table [T1] constraining NCMI over benign samples also enhances adversarial robust-
ness of a DNN in comparison with models trained with standard TRADES as objective function.
To interpret the effectiveness of constraining NCMI over benign samples, we argue that the output
probability distributions of a DNN become more compact within each benign sample cluster and
better separated among different clusters comparing with the counterpart trained without constrain-
ing on benign NCMI. This approach makes it harder for adversarial attacks to create perturbations
that would shift a sample into a cluster with a different label in output probability space, thereby im-
proving robust performance. However, we found that constraining NCMI on benign samples cannot
outperform directly constraining I (€) in terms of robust accuracy in most cases. We attribute this
phenomenon as constraining I (¢) takes direct effect on adversarial output probability distribution
space rather than benign one, which enhances the robust performance even more.
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