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ABSTRACT

It is known that deep neural networks (DNNs) are vulnerable to imperceptible
adversarial attacks, and this fact raises concerns about their safety and reliabil-
ity in real-world applications. In this paper, we aim to boost the robustness of
a DNN against white-box adversarial attacks by defining three new information
quantities—robust conditional mutual information (CMI), robust separation, and
robust normalized CMI (NCMI)—which can serve as robust performance met-
rics for the DNN. We then utilize these concepts to introduce a novel training
method that constrains the robust CMI and increases the robust separation si-
multaneously. Our experimental results demonstrate that our method consistently
enhances model robustness against C&W and AutoAttack on CIFAR and Tiny-
ImageNet datasets with and without additional synthetic data. Specifically, it
is shown that our approach improves the robust accuracy of a DNN by up to
2.66% on CIFAR datasets and 3.49% on Tiny-ImageNet in the case of PGD at-
tack and 1.70% on CIFAR datasets and 1.63% on Tiny-ImageNet in the case of
AutoAttack, in comparison with the state-of-the-art training methods in the lit-
erature. Our implementation is publicly available at https://github.com/
ICLR2025-Robust-NCMI/ICLR2025-Robust-NCMI.

1 INTRODUCTION

Despite the remarkable success of deep neural networks (DNNs) in computer vision (Krizhevsky
et al., 2012; He et al., 2016a) and natural language processing (Vaswani et al., 2017; Devlin et al.,
2019), DNNs are found to be vulnerable to adversarial attacks (Szegedy et al., 2013; Goodfellow
et al., 2015). These attacks generate adversarial sample instances by adding slight perturbations, im-
perceptible to human eyes, to the original benign sample instances to deceive the underlying DNN.
This raises concern to apply deep learning (DL) models to safety-critical domains like autonomous
driving and medical diagnosis (Kurakin et al., 2018; Finlayson et al., 2019).

A simple, yet effective method to train robust DNNs against adversarial attacks is adversarial training
(AT) (Goodfellow et al., 2015; Madry et al., 2018). In AT, the model is trained not on benign
sample instances, but on adversarial ones. This process is formulated as a min-max optimization
problem: the inner maximization focuses on generating adversarial sample instances, while the outer
minimization aims to reduce the adversarial loss associated with these attacked sample instances.

Following Madry et al. (2018), a significant body of work has focused on improving model robust-
ness, primarily through four approaches: (i) modifying or adding additional regularization terms to
the loss function (Zhang et al., 2019; Wang et al., 2019; Wu et al., 2020), (ii) altering model archi-
tecture (Xie et al., 2019), (iii) applying data augmentation techniques (Rebuffi et al., 2021), and (iv)
utilizing strategies like early stopping and weight averaging (Rice et al., 2020; Gowal et al., 2020).
Even with these enhancements of AT, however, the underlying vulnerability of DNNs against adver-
sarial attacks remains unresolved: data sample instances which are near the decision boundary of
DNNs, are in general more susceptible to perturbation and likely to cause misclassification (Zhang
et al., 2021).

Now regard a classification DNN as a mathematical mapping from raw data x ∈ Rd to a probability
distribution f(x) over the set of class labels, predicting an output label ŷ with probability f(x)[ŷ] in
response to input x. To mitigate the issue above, we are inspired by the work Yang et al. (2023) and
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will analyze in this paper the robustness of a DNN x→ f(x) by examining its information geometry
properties in the output probability distribution space. Specifically, for each sample instance x, let
x′ denote its adversarial instance, and refer to f(x′) as an adversarial output probability distribution
for x. In the output probability distribution space, the set of adversarial distributions f(x′) for all
sample instances x with the same ground truth label y forms a cluster, which is referred to as an ad-
versarial cluster corresponding to y hereafter. Following Yang et al. (2023), the concentration of this
adversarial cluster can be measured by the conditional mutual information (CMI) I(X ′; Ŷ ′|Y = y),
where X ′ is an adversarial sample corresponding to the benign sample X , Ŷ ′ is the random label
predicted by the DNN in response to the input X ′ with probability f(X ′)[Ŷ ′], and Y is the ground
truth label of X . Here X , Y , X ′, and Ŷ ′ are all random variables. Averaging over all labels y with
respect to the distribution PY (y) of Y , the CMI I(X ′; Ŷ ′|Y ) then measures the average concentra-
tion across all adversarial clusters from a given attack method. If for each label y, the centroid of
the adversarial cluster corresponding to y is close to the one hot probability vector corresponding to
y, then the smaller I(X ′; Ŷ ′|Y ) is, the less likelihood the attack method has to succeed.

In the above, both I(X ′; Ŷ ′|Y = y) and I(X ′; Ŷ ′|Y ) depend on the underlying attack method
which generates an adversarial instance x′ for each (x, y). Since there are many attack methods
available and it is unknown which one would be used to attack a learned DNN, we need to go one
step further, consider the worst case scenario, and define the robust CMI of the DNN x→ f(x) as

I(ϵ) = max
X′

I(X ′; Ŷ ′|Y )

where the maximization is taken over all attack methods satisfying ∥x′ − x∥p ≤ ϵ. In the same
spirit, we further extend the concepts of separation and normalized CMI in Yang et al. (2023) to the
adversarial case, and define robust separation Γ(ϵ) and robust normalized CMI (NCMI) Î(ϵ). Par-
ticularly, Γ(ϵ) is the minimum of the inter-class separation between and among adversarial clusters
over all attack methods satisfying ∥x′ − x∥p ≤ ϵ, and Î(ϵ) is the maximum of the ratio between
I(X ′; Ŷ ′|Y ) and the inter-class separation of adversarial clusters over all attack methods satisfying
∥x′ − x∥p ≤ ϵ.

From the perspective of information theory (or information geometry), the robustness of the DNN
x → f(x) can also be gauged by its robust CMI, robust separation, and robust NCMI. To enhance
adversarial robustness, a DNN can then be trained by minimizing its robust CMI while maximizing
its robust separation, which is equivalent roughly to minimizing its robust NCMI. After we optimize
on such information quantities, the adversarial output probability distributions from the same class
would be more concentrated, while those from different classes would be further separated. Hence,
less output data points will be near the decision boundaries and considered susceptible to adversarial
attacks (see Appendix G.1 for comparison between our method and baseline).

In summary, our contributions are listed as follows:

• We extend the concepts of CMI, separation, and normalized CMI in Yang et al. (2023)
to the adversarial case, and introduce three new information quantities, robust CMI I(ϵ),
robust separation Γ(ϵ), and robust NCMI Î(ϵ), to gain insights of the intrinsic mapping
structure of DNNs in the context of adversarial robustness.

• A new adversarial training framework is presented, in which the robust NCMI can be min-
imized jointly along with existing training objective functions in AT.

• An alternating learning algorithm is developed to alternatively optimize the weight param-
eters θ of the DNN model, and the centroids of adversarial clusters.

• We conduct extensive experiments on CIFAR-{10, 100} (Krizhevsky et al., 2009) and Tiny-
ImageNet (Le & Yang, 2015) datasets. Our results demonstrate that our proposed learning
method indeed boosts adversarial robustness when combined with existing adversarial de-
fense objective functions, both with and without synthetic data.

2 RELATED WORK

After Szegedy et al. (2013) showed that DNNs, even though achieving high accuracy on benign
data, are vulnerable to imperceptible perturbations, the development of adversarial attacks gained
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Attack Function 
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X' = G(X, Y)
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Figure 1: Diagram of generating an adversarial sample instance, where Ŷ ′ is the random label
predicted by the DNN in response to the adversarial instance.

attention. Goodfellow et al. (2015) introduced the Fast Gradient Sign Method (FGSM) for crafting
adversarial examples with a single gradient step. Later research added randomization and multi-
step attack to generate perturbed samples in AT (Tramèr et al., 2018; Kurakin et al., 2018). The
success rate of an attack is further improved with projected gradient descent (PGD) by Madry et al.
(2018), which iteratively perturbs each benign sample within a bounded neighborhood using a min-
max optimization framework to find the corresponding worst-case adversarial example. More recent
work even produced stronger attack by crafting perturbed samples in an adaptive and parametric-free
manner but came with a drawback of higher computational cost (Croce & Hein, 2020). In general,
an adversarial sample x′ is crafted as following:

x′ = G(x, y) = x+ argmax
∥δ∥p≤ϵ

L(x+ δ, y), (1)

where G(x, y) represents the attack function to generate adversarial example x′ given benign input
x and its corresponding ground truth label y, δ is the perturbation to be added to x to generate
adversarial sample x′, ∥ · ∥p indicates the Lp-norm of a vector, ϵ denotes the maximum perturbation
allowed to generate an adversarial sample, and L(·, ·) stands for the objective function, which is
typically cross entropy (CE) loss in previous works.

As an AT defense mechanism, vanilla AT (Madry et al., 2018) showed great success by training a
DNN with samples perturbed by PGD attack. Subsequent studies utilized its robust optimization
to generate adversarial samples and employed the min-max framework to minimize error rates,
while also refining loss formulations to train DNNs for enhanced robustness (Kannan et al., 2018;
Zhang et al., 2019; Wang et al., 2019; Wu et al., 2020). Other approaches focused on improving
adversarial performance by studying the margin between each adversarial sample and the decision
boundaries (Ding et al., 2020; Rade & Moosavi-Dezfooli, 2022; Xu et al., 2023b) or by assigning
greater weights to vulnerable examples near such boundaries (Liu et al., 2021; Zhang et al., 2021).
Despite all above methods achieved good robust performance, they considered each attacked data
point individually, and overlooked to view adversarial samples with the same label as a cluster.

In our approach, we argue that robustness can be further enhanced by constraining adversarial exam-
ples from a cluster perspective, ensuring that the worst-case perturbed samples within a class remain
as close to the centroid of their corresponding adversarial cluster as possible. Furthermore, since
previous research demonstrated that additional labelled or unlabelled data (Schmidt et al., 2018;
Carmon et al., 2019; Uesato et al., 2019) as well as synthetic data created by generative models
(Gowal et al., 2021; Rebuffi et al., 2021; Sehwag et al., 2022; Wang et al., 2023) can largely boost
robust performance, we evaluate our method on datasets both with and without synthetic data, and
present our methodology and results in the following sections.

3 NEW INFORMATION QUANTITIES FOR ROBUST PERFORMANCE OF DNNS

In this section, we extend the concepts of CMI, separation, and normalized CMI in Yang et al.
(2023) to the adversarial case, and introduce three new information quantities, robust CMI I(ϵ),
robust separation Γ(ϵ), and robust NCMI Î(ϵ), to gauge the robust performance of DNNs. We begin
with notation to be used throughout the paper.

3.1 NOTATION

For a positive integer K, let [K] = {1, . . . ,K} denote a set of integers starting from 1 to K. Assume
there are C class labels, with [C] indicating the set of all such labels. Let P([C]) denote the set of
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all probability distributions over [C]. We also use s[i] to represent the i-th entry of a probability
distribution s. Given any two probability distributions s1, s2 ∈ P([C]), we define CE of s1 and s2
as:

H(s1, s2) =

C∑
i=1

−s1[i] ln s2[i] (2)

and the Kullback-Leibler (KL) divergence between s1 and s2 as:

D(s1∥s2) =
C∑
i=1

s1[i] ln
s1[i]

s2[i]
. (3)

For any random vector (X,Y ), we use PX,Y (x, y) or P (x, y) to denote its joint distribution, and
PX(x) and PY (y) (or simply P (x) and P (y)) to denote the marginal distributions of X and Y ,
respectively. The conditional distribution of Y given X = x is written as PY |X(·|x), and that of
X given Y = y is denoted by PX|Y (·|y). Additionally, denote E[·] as expectation, and EX [·] as
expectation with respect to random variable X . To clarify, we use the term ‘budget ϵ’ to represent
the maximum perturbation allowed to generate an adversarial instance x′ within the Lp-norm ball
centered at the benign sample instance x with a radius of ϵ. Furthermore, we use G(x, y) to represent
an attack function which crafts, for each (x, y), an adversarial instance x′ satisfying ∥x′ − x∥p ≤ ϵ.

3.2 ROBUST ERROR RATE

Given a DNN x→ f(x), one metric used to measure its robust performance is its robust error rate.
Let (X,Y ) be a random sample the distribution of which governs either a training dataset or a testing
dataset, where Y is the ground truth label of X . Receiving the benign sample X , the DNN outputs
a predicted random label Ŷ with probability f(X)[Ŷ ] given X . The benign error rate of the DNN
for (X,Y ) is equal to

ξ = Pr(Ŷ ̸= Y ). (4)
With reference to Figure 1, once X is attacked and replaced by an adversarial sample X ′, the DNN
outputs a predicted random label Ŷ ′ with probability f(X ′)[Ŷ ′] given X ′. The corresponding ad-
versarial error rate of the DNN for (X,Y ) is equal to

ξ′ = Pr(Ŷ ′ ̸= Y ). (5)

Since we need to consider all possible attack functions G satisfying ∥x′−x∥p ≤ ϵ, define the robust
error rate of the DNN as follows

ξr(ϵ) = max
G:∥x′−x∥p≤ϵ

Pr(Ŷ ′ ̸= Y ). (6)

Then we have the following theorem.

Theorem 1 For any DNN x→ f(x), any (X,Y ), and any ϵ ≥ 0,

ξr(ϵ) ≤ max
G:∥x′−x∥p≤ϵ

EX′ [H(PY |X′(·|X ′), f(X ′))]

=
∑
(x,y)

P (x, y)

[
max

x′:∥x′−x∥p≤ϵ
{− ln f(x′)[y]}

]
.

(7)

Theorem 1 will be proved in Appendix A. As Theorem 1 suggests, to minimize ξr(ϵ), one can train a
DNN model by minimizing the upper bound in equation 7, which is exactly what vanilla AT (Madry
et al., 2018) and MART (Wang et al., 2019) do essentially.

3.3 EXTENSION OF CMI, SEPARATION, AND NCMI TO THE ADVERSARIAL CASE

When benign sample instances x are fed into the DNN, the set of output distributions f(x) for all be-
nign instances x with the same ground truth label y forms a benign cluster in P([C]) corresponding
to y. As shown in Yang et al. (2023), the centroid of this benign cluster is

sy = PŶ |Y (·|Y = y) =
∑
x

PX|Y (x|y)f(x) = EX|Y [f(X)|Y = y] ; (8)

4
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and the concentration of this benign cluster is measured by the CMI I(X; Ŷ |Y = y)

I(X; Ŷ |Y = y) =
∑
x

PX|Y (x|y)

[
C∑
i=1

PŶ |XY (Ŷ = i|x, y) ln
PŶ |XY (Ŷ = i|x, y)

PŶ |Y (i|y)

]
(9)

= EX|Y

[(
C∑
i=1

f(X)[i] ln
f(X)[i]

PŶ |Y (i|y)

)
| Y = y

]
(10)

= EX|Y [D (f(X)∥sy) | Y = y] . (11)

Averaging over all labels y, the CMI I(X; Ŷ |Y )

I(X; Ŷ |Y ) =
∑
y∈[C]

PY (y) · I(X; Ŷ |Y = y) = EXY [D (f(X)∥sY )] (12)

then measures the average concentration across all benign clusters.

In Yang et al. (2023), the separation between and among all benign clusters is defined as

Γ = E
[
I{Y ̸=V }H(f(X), f(U))

]
(13)

where (U, V ) is another pair of random variables independent of (X,Y ), and having the same joint
distribution as that of (X,Y ), and I{Y ̸=V } denotes the indicator function of the event {Y ̸= V }.
The NCMI for benign clusters is then defined as

Î(X; Ŷ |Y ) =
I(X; Ŷ |Y )

Γ
. (14)

When P (x, y) is unknown and approximated by the empirical distribution of a dataset D =
{(xj , yj)}nj=1, the above information quantities are computed according to their respective sample
means:

sy =
1

|Dy|
∑
j∈Dy

f(xj) (15)

I(X; Ŷ |Y = y) =
1

|Dy|
∑
j∈Dy

D (f(xj)∥sy) (16)

I(X; Ŷ |Y ) =
1

n

n∑
j=1

D
(
f(xj)∥syj

)
(17)

Γ =
1

n2

n∑
j=1

n∑
k=1

I{yj ̸=yk}H(f(xj), f(xk)), (18)

where Dy = {j |1 ≤ j ≤ n, yj = y} and |Dy| denotes the cardinality of Dy .

With reference to Figure 1 again, when benign sample instances x are attacked and replaced by
respective adversarial sample instances x′ = G(x, y), we have adversarial clusters in P([C]), one
per label y. The above information quantities can be carried over to characterize the information
geometry properties of these adversarial clusters. Simply replacing (X, Ŷ , U) by (X ′, Ŷ ′, U ′) in
equation 11 to equation 14, where

X ′ = G(X,Y ) and U ′ = G(U, V ), (19)

we get the corresponding adversarial counterparts:

I(X ′; Ŷ ′|Y = y) = EX′|Y
[
D
(
f(X ′)∥s′y

)
| Y = y

]
= EX|Y

[
D
(
f(G(X,Y ))∥s′y

)
| Y = y

]
(20)

I(X ′; Ŷ ′|Y ) = EX′Y [D (f(X ′)∥s′Y )] = EXY [D (f(G(X,Y ))∥s′Y )] (21)

Γ′ = E
[
I{Y ̸=V }H(f(X ′), f(U ′))

]
= E

[
I{Y ̸=V }H(f(G(X,Y )), f(G(U, V )))

]
(22)

Î(X ′; Ŷ ′|Y ) =
I(X ′; Ŷ ′|Y )

Γ′ , (23)

5
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where

s′y = PŶ ′|Y (·|Y = y) = EX|Y [f(G(X,Y ))|Y = y] . (24)

Note that given the attack function G, since PŶ ′|XY (Ŷ
′ = i|x, y) = PŶ ′|X′Y (Ŷ

′ = i|x′, y) =

f(x′)[i], it follows that

I(X; Ŷ ′|Y = y) = I(X ′; Ŷ ′|Y = y) and I(X; Ŷ ′|Y ) = I(X ′; Ŷ ′|Y ).

Hereafter, we will use I(X; Ŷ ′|Y ) and I(X ′; Ŷ ′|Y ) interchangeably. Again, when P (x, y) is un-
known, all quantities in equation 20 to equation 24 can be computed according to their respective
sample means over a dataset D = {(xj , yj)}nj=1. In other words, equation 15 to equation 18 remain
valid if (sy, X, Ŷ ,Γ, xj , xk) is replaced by (s′y, X

′, Ŷ ′,Γ′, x′
j , x

′
k), where x′

j = G(xj , yj).
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Figure 2: Robust accuracy of different learned
models against AutoAttack vs the corresponding
adversarial NCMI on CIFAR-10, where blue and
orange bars represent robust accuracy (left axis)
and adversarial NCMI (right axis), respectively,
with corresponding specific values shown on top
of each bar.

Given a DNN, let G be the attack function given
by AutoAttack (Croce & Hein, 2020). We have
trained PreAct-ResNet-18 (He et al., 2016b),
using various AT methods including the stan-
dard CE method without adversarial instances
(denoted as ‘CE’), on CIFAR-10, and then
evaluated the robust accuracy of these learned
DNNs against AutoAttack. Fig. 2 illustrates the
robust accuracy of these learned DNNs against
AutoAttack vs their adversarial NCMI corre-
sponding to G. It is clear from Fig. 2 that across
these different learned DNNs, the robust accu-
racy tends to be inversely proportional to the
corresponding adversarial NCMI, which is con-
sistent with the observation made by Yang et al.
(2023) in the benign case.

3.4 ROBUST CMI, SEPARATION, & NCMI

Note that all adversarial information quantities in equation 20 to equation 24 depend on the under-
lying attack function G. Since given a DNN, there are many attack functions available and it is
unknown which one would be used to attack the DNN, we need to consider the worst case. To this
end, we have the following definition with reference to Figure 1.

Definition 1 Given a DNN x→ fθ(x) with its weight parameters θ, define its robust CMI, separa-
tion, and NCMI over a random sample (X,Y ) respectively as follows:

I(X,Y, θ, ϵ) = max
G:∥x′−x∥p≤ϵ

I(X; Ŷ ′|Y ) (25)

Γ(X,Y, θ, ϵ) = min
G:∥x′−x∥p≤ϵ

E
[
I{Y ̸=V }H(fθ(G(X,Y )), fθ(G(U, V )))

]
(26)

Î(X,Y, θ, ϵ) = max
G:∥x′−x∥p≤ϵ

I(X; Ŷ ′|Y )

E
[
I{Y ̸=V }H(fθ(G(X,Y )), fθ(G(U, V )))

] . (27)

Whenever (X,Y, θ) is clear from the context, simply write I(X,Y, θ, ϵ), Γ(X,Y, θ, ϵ), and
Î(X,Y, θ, ϵ) as I(ϵ), Γ(ϵ), and Î(ϵ), respectively.

Given (X,Y, θ), Γ(ϵ) can be computed via the standard gradient decent method through backprop-
agation. By introducing a dummy conditional “backward channel” q(x|i, y) from Ŷ ′ to X given Y ,
I(ϵ) and Î(ϵ) can be computed via an alternating method, as implied by the following theorem.

Theorem 2 For any i, y ∈ [C], let q(·|i, y) denote a dummy conditional distribution in the space of
X , which is assumed to be discrete for simplicity. Then I(ϵ) and Î(ϵ) can be computed by solving

6
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the following double maximization problems, respectively:

I(ϵ) = max
{q(x|i,y)}

max
G:∥x′−x∥p≤ϵ

∑
x,y

P (x, y)

[
C∑
i=1

fθ(G(x, y))[i] ln q(x|i, y)− lnPX|Y (x|y)

]
(28)

= max
{q(x|i,y)}

∑
x,y

P (x, y)

[
max

x′:∥x′−x∥p≤ϵ

C∑
i=1

fθ(x
′)[i] ln q(x|i, y)− lnPX|Y (x|y)

]
(29)

Î(ϵ) = max
{q(x|i,y)}

max
G:∥x′−x∥p≤ϵ

∑
x,y

P (x, y)
[∑C

i=1 fθ(G(x, y))[i] ln q(x|i, y)− lnPX|Y (x|y)
]

E
[
I{Y ̸=V }H(fθ(G(X,Y )), fθ(G(U, V )))

] (30)

where given G, the outer maximization above is achieved when

q(x|i, y) =
PX|Y (x|y)fθ(x′)[i]

PŶ ′|Y (i|y)
. (31)

Theorem 2 will be proved in Appendix B. Given {q(x|i, y)}, the inner maximization in equation 28
to equation 30 can now be computed via the standard gradient decent method through backpropa-
gation. Thus we can compute I(ϵ) and Î(ϵ) iteratively by alternatively optimizing {q(x|i, y)} given
G, and G given {q(x|i, y)}. Illustrative examples will be given in Appendix B as well.

4 Î(ϵ) CONSTRAINED ADVERSARIAL TRAINING

Given a DNN architecture, in order to enhance adversarial robustness, it follows from the above
discussions that a desirable learning algorithm should generate θ so that both Î(X,Y, θ, ϵ) and a
conventional AT loss are small. Let L(X, X̂, Y ) denote a conventional AT loss such as one of
those in TRADES (Zhang et al., 2019) and MART (Wang et al., 2019), where X̂ = G1(X,Y ) is a
perturbed sample instance given by the attack function G1 in the conventional AT loss. Then instead
of training the DNN by solving

min
θ

E[ max
G1:∥x̂−x∥p≤ϵ

L(X, X̂, Y )], (32)

one tries to solve the following optimization problem

min
θ

{
E[ max

G1:∥x̂−x∥p≤ϵ
L(X, X̂, Y )] + λÎ(X,Y, θ, ϵ)

}
(33)

which, due to equation 27,equation 21, & equation 22, is equivalent to

min
θ

{
E[ max

G1:∥x̂−x∥p≤ϵ
L(X, X̂, Y )] + max

G:∥x′−x∥p≤ϵ

[
α · I(X ′; Ŷ ′|Y )− β · Γ′

]}
(34)

= min
θ

{
E[ max

G1:∥x̂−x∥p≤ϵ
L(X, X̂, Y )] + max

G:∥x′−x∥p≤ϵ

[
αE[D(fθ(G(X,Y ))∥s′Y )]

− βE[I{Y ̸=V }H(fθ(G(X,Y )), fθ(G(U, V )))]
]}

(35)

= min
θ

max
G1

max
G

{
E[L(X,G1(X,Y ), Y )] + αE[D(fθ(G(X,Y ))∥s′Y )]

− βE[I{Y ̸=V }H(fθ(G(X,Y )), fθ(G(U, V )))]
}

(36)

where in the above, the first maximization is over all G1 satisfying ∥x̂ − x∥p ≤ ϵ, and the second
maximization is over all G satisfying ∥x′ − x∥p ≤ ϵ.

Due to the dependency of s′y on the entire adversarial cluster corresponding to y, the second term of
the objective function in equation 36 is not amenable to parallel computation via GPU. To overcome
this difficulty, we follow Yang et al. (2023)) and introduce a dummy adversarial centroid distribution
Q′

y for each label y. Then we have the following result, which is proved Appendix C.
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Theorem 3 For any ϵ ≥ 0,

min
θ

{
E[ max

G1:∥x̂−x∥p≤ϵ
L(X, X̂, Y )] + max

G:∥x′−x∥p≤ϵ

[
α · I(X ′; Ŷ ′|Y )− β · Γ′

]}
≤ min

θ
min

{Q′
c}c∈[C]

max
G1,G

{
E[L(X,G1(X,Y ), Y )] + αE[D(fθ(G(X,Y ))∥Q′

Y )]

− βE[I{Y ̸=V }H(fθ(G(X,Y )), fθ(G(U, V )))]
}

(37)

where given (θ,G1, G), the minimization over {Q′
c}c∈[C] is achieved when

Q′
y = s′y = EX|Y [fθ(G(X,Y ))|Y = y] . (38)

Given (θ, {Q′
c}c∈[C], G1, G), the objective function on the right side of equation 37 is now sample

additive, and becomes

JB(θ, {Q′
c}c∈[C], G1, G) =

 1

|B|
∑

(x,y)∈B

L (x,G1(x, y), y) +
1

|B|
LB(θ, {Q′

c}c∈[C], G)

 (39)

when P (x, y) is unknown and approximated by the empirical distribution of a mini-batch B, where

LB(θ, {Q′
c}c∈[C], G) =

∑
(x,y)∈B

[
αD(fθ(G(x, y))∥Q′

y)

− β

|B|
∑

(u,v)∈B

I{y ̸=v}H (fθ(G(x, y)), fθ(G(u, v)))
]
. (40)

In Î(ϵ) constrained AT, we solve the optimization problem on the right side of equation 37 or

min
θ

min
{Q′

c}c∈[C]

max
G1,G

JB(θ, {Q′
c}c∈[C], G1, G) (41)

when P (x, y) is unknown and approximated by the empirical distribution of a mini-batch B.

Given (θ, {Q′
c}c∈[C]), the optimal G∗

1 in equation 41 can be found by computing, for each (x, y) ∈
B, a perturbed instance x̂ individually. However, the optimal G∗ in equation 41 has to be found
by computing all adversarial instances x′ for all (x, y) ∈ B simultaneously all at once due to the
interconnection in the adversarial separation Γ′. Once G∗

1 and G∗ are determined, θ and {Q′
c}c∈[C]

can be optimized alternatingly: (1) fix {Q′
c}c∈[C] and then perform back-propagation to update θ; (2)

fix the optimized θ and then update {Q′
c}c∈[C] according to equation 38, but in a weighted manner.

The pseudo-code of this alternating learning algorithm is presented in Appendix D as Algorithm 1,
where it is assumed that there are a sufficient number of instances in each adversarial cluster within
a mini-batch. When this assumption is not valid, we can update {Q′

c}c∈[C] at the end of each epoch
using adversarial instances for the entire training set. This relaxed alternating learning algorithm is
shown in Appendix E.

5 EXPERIMENTAL RESULTS

To validate the efficacy of our proposed Î(ϵ) constrained AT, we integrated it with several adversarial
loss functions, including vanilla AT (Madry et al., 2018), TRADES (Zhang et al., 2019), MART
(Wang et al., 2019), and AWP (Wu et al., 2020), and considered the standard version of such AT
methods as baselines. We conducted extensive experiments1 on CIFAR-10, 100 (Krizhevsky et al.,
2009), Tiny-ImageNet (Le & Yang, 2015), and CIFAR-10, 100 augmented with 1 million synthetic
images. Our results show that incorporating our method improves the performance of these loss
functions on both original and synthetic-augmented datasets.

1Experiments on CIFAR-100 without synthetic data and Tiny-ImageNet followed the algorithm in Ap-
pendix E due to the small number of samples from each class per mini-batch, which may cause inaccurate
centroid estimation using Alg. 1. All other experiments in this section follow Alg. 1.
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In all of our experiments, training adversarial samples were generated using PGD with an L∞-norm
budget of ϵ = 8/255, a step size of 2/255, and optimized over 10 steps. To evaluate robustness, we
applied multiple white-box attacks, including PGD-40 (Madry et al., 2018), C&W attack (Carlini &
Wagner, 2017) under L∞-norm (both with 40 steps), and AutoAttack (Croce & Hein, 2020), to the
model checkpoint with the highest validation accuracy. We used default hyper-parameter settings
for all baseline AT methods and selected the hyper-parameters α and β for our Î(ϵ) constrained AT
from the set of {1× 10−3, . . . , 1× 100, 2, 5}.

5.1 RESULTS ON TINY-IMAGENET

Table 1: Experimental results on Tiny-ImageNet.
Model Method Clean PGD C&W∞ AA

PR-18

TRADES 47.13 23.12 18.47 17.59
+Ours 46.95 23.30 18.91 18.10
Vanilla AT 49.08 23.15 20.79 18.78
+Ours 48.43 26.29 21.41 19.72

PR-34

TRADES 49.17 24.69 20.59 19.86
+Ours 48.56 25.09 20.94 20.37
Vanilla AT 50.13 24.19 22.16 20.06
+Ours 50.99 27.68 23.87 21.69

To demonstrate the effectiveness of our method,
we combined Î(ϵ) constrained AT with vanilla
AT and TRADES on the Tiny-ImageNet dataset
using PreAct-ResNet-{18, 34} architectures.
Models were trained for 100 epochs with a
mini-batch size of 256, L2 regularization (5 ×
10−4), and a cosine annealing learning rate
scheduling (max 0.1). Weight averaging (WA)
(Izmailov et al., 2018) was applied with a decay
factor of τ = 0.995, as adopting WA can smooth the loss landscape, thereby reducing robust gen-
eralization gap and leading to enhanced performance (Gowal et al., 2020; Chen et al., 2021). In our
approach, the baseline adversarial loss function was used until the 5th epoch to maintain stability,
and the objective function in equation 41 was applied afterwards, since adversarial clusters are not
well-formed in the early stage of training. In Table 1, we reported the accuracy on benign samples,
robust accruacy against PGD, C&W and AutoAttack, and denoted such metrics as ‘Clean’, ‘PGD’,
‘C&W∞’ and ‘AA’, respectively. As shown, our method exhibits enhanced robustness comparing
with those without constraining on Î(ϵ), and the robust accuracy gap across all attacks increases as
the model size grows. In addition, we observed that the gain of robust accuracy against PGD attack
is more than 3% when incorporating our approach with vanilla AT for both models, and reaches a
maximum gain of 1.63% against AutoAttack.

5.2 RESULTS ON CIFAR

In our experiments on the original CIFAR datasets without synthetic data, we used PreAct-ResNet
and Wide ResNet (WRN) (Zagoruyko & Komodakis, 2016) with ReLU activation, both common
architectures in AT. Models were trained for 200 epochs with a mini-batch size of 128 and a multi-
step decay learning rate schedule, starting at 0.1 and reduced by a factor of 0.1 at the 100th and 150th

epoch. We used stochastic gradient descent (SGD) with momentum of 0.9, L2 regularization factor
of 5×10−4, and a WA factor τ = 0.999. The adversarial centroids Q′

Y were updated per mini-batch
using WA with a factor τQ = 0.999.

For experiments with additional data, we used 1 million labeled synthetic images from Wang et al.
(2023), and replaced ReLU with Swish activation (Ramachandran et al., 2017) for better smoothness
(Xie et al., 2020; Gowal et al., 2020). Models were trained for 400 epochs with WA (τ = 0.995) and
centroids were updated with a WA factor τQ = 0.99. We applied cosine annealing for the learning
rate scheduling, with a maximum value of 0.2. The original-to-synthetic data ratio was set to 3:7,
and mini-batch size is set to 512. Other settings are identical to those of the original CIFAR datasets.

We demonstrate our experimental results on original CIFAR-{10, 100} in Table 2, where employing
our method alongside existing adversarial loss functions consistently outperforms training solely
with those loss functions without constraining on Î(ϵ) across all methods when evaluated under
AutoAttack. In most settings, our method slightly sacrifices benign accuracy for better robustness,
while we observed that both benign and robust accuracy against AutoAttack increase for most mod-
els trained by vanilla AT and TRADES with constraining on Î(ϵ) comparing with its counterparts
without it. We also present the loss curves and a 2-dimensional probability simplex indicating the
output distributions with different constraining levels on robust NCMI in Appendix G.

Moreover, we reported experimental results over CIFAR datasets with additional 1 million syn-
thetic data in Table 2 as well. Similar to those trained solely on original datasets, Î(ϵ) constrained
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Table 2: Experimental results on CIFAR-{10, 100} datasets, both with and without synthetic data,
are averaged over 3 runs. ‘Clean’ refers to accuracy on benign samples, ‘C&W∞’ indicates robust
accuracy against C&W attack using PGD-40 under L∞-norm, and ’AA’ represents robust accu-
racy against AutoAttack. ’+Ours’ indicates the use of our Î(ϵ) constrained AT. Results for original
datasets are listed under ‘No Synthetic Data’, while those with additional synthetic data are under
’1M Synthetic Data’. WRN-34-10 was used only for original datasets (in red cells), and WRN-28-
10 only for datasets with synthetic data (in blue cells). Better results are in bold.

Dataset Model Method No Synthetic Data 1M Synthetic Data
Clean PGD C&W∞ AA Clean PGD C&W∞ AA

CIFAR-10

PreAct-RN18

Vanilla AT 79.35 52.51 50.76 48.70 90.08 57.65 57.24 54.91
+Ours 81.43 53.04 52.23 49.47 89.88 60.31 59.30 56.61
TRADES 82.21 53.81 51.25 50.05 88.48 61.16 58.87 58.13
+Ours 82.26 54.12 51.65 50.70 87.90 61.51 59.80 58.52
MART 79.81 54.60 50.63 48.73 86.99 58.46 54.68 52.86
+Ours 79.40 54.41 51.25 49.61 87.82 57.54 56.05 53.92
TRADES-AWP 81.52 54.40 51.63 50.56 87.69 60.77 58.20 57.54
+Ours 81.73 54.64 52.15 51.07 87.73 61.18 59.07 58.25

WRN

Vanilla AT 85.06 56.23 56.00 53.58 92.69 63.47 64.06 61.47
+Ours 85.58 57.25 56.20 54.22 92.05 65.56 64.26 61.71
TRADES 85.54 57.19 56.26 55.03 90.26 64.95 63.94 62.73
+Ours 85.24 57.56 56.60 55.27 90.75 65.45 64.77 63.27
MART 84.15 57.64 55.40 53.55 91.91 64.71 63.26 61.21
+Ours 83.99 57.20 55.92 53.77 91.84 63.74 63.56 61.75
TRADES-AWP 85.14 58.02 56.66 55.35 90.44 65.56 63.93 63.17
+Ours 84.67 58.25 56.81 55.60 90.37 66.15 64.53 63.41

CIFAR-100

PreAct-RN18

Vanilla AT 52.46 29.08 26.76 24.90 66.95 32.23 32.32 29.76
+Ours 54.13 31.50 27.59 25.70 65.93 33.51 33.45 30.88
TRADES 55.48 28.55 25.57 24.36 63.83 36.08 32.84 31.92
+Ours 57.95 29.92 26.00 24.76 63.73 36.32 33.08 32.45
MART 52.10 30.34 26.48 25.00 62.44 35.10 31.62 29.87
+Ours 51.46 30.70 26.71 25.42 62.62 36.06 33.33 31.24
TRADES-AWP 56.66 29.47 25.93 25.05 63.71 35.88 32.25 31.59
+Ours 55.81 30.27 26.46 25.54 64.23 36.77 32.95 31.99

WRN

Vanilla AT 59.13 32.88 30.97 28.67 71.26 35.31 36.31 33.76
+Ours 60.20 33.24 31.44 29.15 71.08 36.62 37.47 34.96
TRADES 59.52 31.09 29.18 27.94 67.52 38.56 36.34 35.36
+Ours 61.25 33.22 29.65 28.43 67.51 39.22 36.91 35.79
MART 57.46 33.28 29.57 28.09 68.84 38.80 37.07 34.85
+Ours 57.07 33.41 30.28 28.69 68.75 39.28 37.93 35.54
TRADES-AWP 60.69 32.40 29.42 28.51 67.25 39.03 36.18 35.39
+Ours 59.83 32.72 29.93 28.98 67.93 39.59 36.79 35.64

AT demonstrates prominence in terms of robust accuracy comparing with corresponding baseline
methods. This indicates that our approach can further boost robustness with the help of synthetic
data. Notably, the averaged improvement of robust accuracy against AutoAttack with synthetic data
is 0.71%, which is higher than that of models trained without synthetic data (0.52%). This may
due to that additional data help the models estimate the centroid of each adversarial cluster more
precisely, enforcing Î(ϵ) to be constrained more effectively and leading to better improvements in
robust performance.

5.3 RESULTS ON ATTACK WITH VARIOUS PERTURBATION BUDGETS

As a by-product, we found that models trained with our method exhibit enhanced robust performance
across different perturbation budget levels in comparison with baseline methods with a maximum
accuracy gain of 3.48% (detail shown in Appendix F). This indicates employing our method can
generally improve robustness independent of perturbation budget.

6 CONCLUSION

In this paper, we have introduced three new information quantities—robust CMI, separation and
NCMI—to gauge the robust performance of DNNs. Based on these robust performance metrics, we
have developed a new generic adversarial training framework and alternating learning algorithms
to jointly minimize robust NCMI and the conventional adversarial training objective functions. Ex-
tensive experimental results show that our method consistently improves model robustness against
various white-box attacks when combined with existing adversarial loss functions, demonstrating
the ‘plug-and-play’ nature and effectiveness of our method in the field of AT.
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A PROOF OF THEOREM 1

With reference to Fig. 1, it follows that Y → X ′ → Ŷ ′ forms a Markov chain in the indicated order.
Replacing (X, Ŷ ) in Theorem 1 of Yang et al. (2023) by (X ′, Ŷ ′), we have

ξ′ =Pr(Ŷ ′ ̸= Y ) ≤ EX′
[
H
(
PY |X′(·|X ′), f(X ′)

)]
= EX′

[
−

C∑
i=1

PY |X′(i|X ′) · ln f(X ′)[i]

]
= EX′Y [− ln f(X ′)[Y ]]

= EXY [− ln f(G(X,Y ))[Y ]]. (42)

Thus,

ξr(ϵ) = max
G:∥x′−x∥p≤ϵ

Pr(Ŷ ′ ̸= Y )

≤ max
G:∥x′−x∥p≤ϵ

EXY [− ln f(G(X,Y ))[Y ]]

= max
G:∥x′−x∥p≤ϵ

∑
x,y

P (x, y) (− ln f(G(x, y))[y])

=
∑
x,y

P (x, y) max
G:∥x′−x∥p≤ϵ

(− ln f(G(x, y))[y])

=
∑
x,y

P (x, y)

[
max

x′:∥x′−x∥p≤ϵ
− ln f(x′)[y]

]
. (43)

This completes the proof of Theorem 1.

B PROOF OF THEOREM 2

For simplicity, we drop the subscript θ from fθ(·), and assume that the space of X is discrete. With
reference to Figure 1, note that

PŶ ′|XY (Ŷ
′ = i|x, y) = f(G(x, y))[i]. (44)

In view of equation 44, we introduce a dummy conditional “backward channel” {q(x|i, y)} and
derive a new expression for I(X; Ŷ ′|Y ) as follows:

I(X; Ŷ ′|Y ) =
∑
y

P (y)
∑
x

PX|Y (x|y)
C∑
i=1

f(G(x, y))[i] ln
f(G(x, y))[i]

PŶ ′|Y (i|y)
(45)

=
∑
y

P (y)

C∑
i=1

PŶ ′|Y (i|y)
∑
x

PX|Y (x|y) · f(G(x, y))[i]

PŶ ′|Y (i|y)

· ln
PX|Y (x|y) · f(G(x, y))[i]

PX|Y (x|y)PŶ ′|Y (i|y)

=
∑
y

P (y)

C∑
i=1

PŶ ′|Y (i|y) max
{q(x|i,y)}

∑
x

PX|Y (x|y) · f(G(x, y))[i]

PŶ ′|Y (i|y)
· ln q(x|i, y)

PX|Y (x|y)
(46)

= max
{q(x|i,y)}

∑
x,y

P (x, y)

C∑
i=1

f(G(x, y))[i] · ln q(x|i, y)
PX|Y (x|y)

(47)

where equation 45 is due to equation 44, equation 46 follows from the cross entropy inequality, and
the maximization in equation 46 and equation 47 is achieved when

q(x|i, y) =
PX|Y (x|y) · f(G(x, y))[i]

PŶ ′|Y (i|y)
. (48)
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Figure 3: Robust accuracy of different learned models against PGD, C&W and AutoAttack vs the
corresponding robust NCMI on CIFAR-10, where robust accuracy against PGD, C&W, and Au-
toAttack are presented as blue, orange and green bars (left axis), respectively. Red bars represent
corresponding robust NCMI value (right axis) of each learned model. Specific value of each evalu-
ation metric is shown on top of each bar.

Now plugging equation 47 into equation 25, we have:

I(ϵ) = max
G:∥x′−x∥p≤ϵ

max
{q(x|i,y)}

∑
x,y

P (x, y)
[ C∑

i=1

f(G(x, y))[i] · ln q(x|i, y)− lnPX|Y (x|y)
]

= max
{q(x|i,y)}

∑
x,y

P (x, y)

[
max

G:∥x′−x∥p≤ϵ

C∑
i=1

f(G(x, y))[i] · ln q(x|i, y)− lnPX|Y (x|y)

]

= max
{q(x|i,y)}

∑
x,y

P (x, y)

[
max

x′:∥x′−x∥p≤ϵ

C∑
i=1

f(x′)[i] · ln q(x|i, y)− lnPX|Y (x|y)

]
(49)

This completes the proof of equation 29. Plugging equation 47 into equation 27, we have:

Î(ϵ) = max
G:∥x′−x∥p≤ϵ

max
{q(x|i,y)}

∑
x,y

P (x, y)
[∑C

i=1 fθ(G(x, y))[i] ln q(x|i, y)− lnPX|Y (x|y)
]

E
[
I{Y ̸=V }H(fθ(G(X,Y )), fθ(G(U, V )))

]
= max

{q(x|i,y)}
max

G:∥x′−x∥p≤ϵ

∑
x,y

P (x, y)
[∑C

i=1 fθ(G(x, y))[i] ln q(x|i, y)− lnPX|Y (x|y)
]

E
[
I{Y ̸=V }H(fθ(G(X,Y )), fθ(G(U, V )))

] (50)

where equation 50 is due to the fact that the denominator therein does not depend on {q(x|i, y)}.
This completes the proof of equation 30 and hence Theorem 2.

In order to evaluate the robust NCMI Î(ϵ) of a given trained DNN, one should follow equation 50 to
compute the corresponding value over validation data. Since we formulate equation 50 as a double
maximization, we can find the optimum of Î(ϵ) through an alternating algorithm. In this alternating
algorithm, we do the following steps for 5 iterations until we see convergence on the value of Î(ϵ):
(1) we firstly fix {q(x|i, y)} and solve the optimization of attack function G over all validation data
simultaneously due to the inter-dependency among samples when computing the denominator in
equation 50; (2) we fix the attack function G to compute each q(x|i, y) following equation 48.
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We then reported the corresponding Î(ϵ) values of different conventional AT methods in Fig. 3 in
comparison with the robust accuracy against multiple white-box attacks. Indeed, the relationship
between robust accuracy and robust NCMI Î(ϵ) are generally the same as that between robust ac-
curacy and adversarial NCMI shown in Fig. 2, where a high robust accuracy matches to a low Î(ϵ).
This indicates that robust NCMI Î(ϵ) can also be considered as an evaluation metric that reflects the
robustness other than the intrinsic mapping structure of a DNN.

C PROOF OF THEOREM 3

Go back to equation 36. We introduce a dummy adversarial centroid distribution Q′
y for each label

y and derive a new expression for E[D(fθ(G(X,Y ))∥s′Y )] as follows:

E[D(fθ(G(X,Y ))∥s′Y )] =
∑
y

P (y)
∑
x

PX|Y (x|y)D(fθ(G(x, y))∥s′y)

=
∑
y

P (y)
[(∑

x

PX|Y (x|y)D(fθ(G(x, y))∥Q′
y)
)
−D(s′y∥Q′

y)
]
(51)

=
∑
y

P (y)min
Q′

y

{∑
x

PX|Y (x|y)D(fθ(G(x, y))∥Q′
y)
}

(52)

= min
{Q′

c}c∈[C]

∑
y

P (y)
∑
x

PX|Y (x|y)D(fθ(G(x, y))∥Q′
y)

= min
{Q′

c}c∈[C]

E[D(fθ(G(X,Y ))∥Q′
Y )] (53)

where equation 52 is due to the nonnegativity of the KL divergence D(s′y∥Q′
y), and the minimization

in the above is achieved when

Q′
y = s′y,∀y ∈ [C]. (54)

Now plugging equation 53 into equation 36 yields

min
θ

{
E[ max

G1:∥x̂−x∥p≤ϵ
L(X, X̂, Y )] + max

G:∥x′−x∥p≤ϵ

[
α · I(X ′; Ŷ ′|Y )− β · Γ′

]}
= min

θ
max
G1

max
G

{
E[L(X,G1(X,Y ), Y )] + α · min

{Q′
c}c∈[C]

E[D(fθ(G(X,Y ))∥Q′
Y )]

−β · E
[
I{Y ̸=V }H(fθ(G(X,Y )), fθ(G(U, V )))

]}
= min

θ
max
G1,G

min
{Q′

c}c∈[C]

{E[L(X,G1(X,Y ), Y )] + α · E[D(fθ(G(X,Y ))∥Q′
Y )]

−β · E
[
I{Y ̸=V }H(fθ(G(X,Y )), fθ(G(U, V )))

]}
≤ min

θ
min

{Q′
c}c∈[C]

max
G1,G

{E[L(X,G1(X,Y ), Y )] + α · E[D(fθ(G(X,Y ))∥Q′
Y )]

−β · E
[
I{Y ̸=V }H(fθ(G(X,Y )), fθ(G(U, V )))

]}
. (55)

This completes the proof of Theorem 3.
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D ALTERNATING LEARNING ALGORITHM

Algorithm 1 Î(ϵ) Constrained Adversarial Training
Input: DNN f with model parameter θ, hyper-parameters α and β, dataset D:(X ,Y), number of
epochs T , number of classes C, adversarial loss function L, perturbation budget ϵ, EMA factor τ

1: for i ∈ [1, . . . , C] do
2: Initialize adversarial centroids: Q′

i ← 1
|Di|

∑
j∈Di

fθ(xj)

3: end for
4: for e ∈ [1, . . . , T ] do
5: for each mini-batch B do
6: [Update DNN parameter θ]:
7: Determine the optimized G∗

1 by computing a perturbed instance x̂ for each sample in-
stance (x, y) ∈ B via PGD attack with 10 steps.

8: Determine the optimized G∗ by computing all adversarial instances x′ for all sample
instances (x, y) ∈ B simultaneously all at once in the same manner as PGD attack with 10 steps,
where the objective function to be maximized in the attack process is LB(θ, {Q′

c}c∈[C], G).
9: x′

j ← G∗(xj , yj) for all (xj , yj) ∈ B
10: loss← JB(θ, {Q′

c}c∈[C], G
∗
1, G

∗)
11: Update θ w.r.t. loss.
12: [Update adversarial centroids]:
13: for i ∈ [1, . . . , C] do
14: Use adversarial instances x′

j in line 9 to craft B′i ← {(x′
j , yj)|(xj , yj) ∈ B, yj = i}

15: Continue if |B′i| = 0
16: Q′

i ← τQ′
i + (1− τ) 1

|B′
i|
∑

(x′
j ,yj)∈B′

i
fθ(x

′
j)

17: end for
18: end for
19: end for
20: return DNN fθ

17
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E RELAXED ALTERNATING LEARNING ALGORITHM

Algorithm 2 Relaxed Alternating Algorithm for Î(ϵ) Constrained Adversarial Training
Input: DNN f with model parameter θ, hyper-parameters α and β, dataset D:(X ,Y), number of
epochs T , number of classes C, adversarial loss function L, perturbation budget ϵ

1: for e ∈ [1, . . . , T ] do
2: [Update DNN parameter θ]:
3: for each mini-batch B ⊂ train set Dtrain do
4: Determine the optimized G∗

1 by computing a perturbed instance x̂ for each sample in-
stance (x, y) ∈ B via PGD attack with 10 steps.

5: if e > 1 then
6: Determine the optimized G∗ by computing all adversarial instances x′ for all sample

instances (x, y) ∈ B simultaneously all at once in the same manner as PGD attack with 10 steps,
where the objective function to be maximized in the attack process is LB(θ, {Q′

c}c∈[C], G) in
equation 40.

7: x′
j ← G∗(xj , yj) for all (xj , yj) ∈ B

8: loss← JB(θ, {Q′
c}c∈[C], G

∗
1, G

∗)
9: else

10: loss← 1
|B|
∑

(xj ,yj)∈B L(xj , G
∗
1(xj , yj), yj)

11: end if
12: Update θ w.r.t. loss
13: end for
14: if e = 1 then
15: Initialize adversarial centroids: Q′

i ← 1
|Di|

∑
j∈Di

fθ(xj) for i ∈ [1, . . . , C]

16: end if
17: [Update adversarial centroids]:
18: Initialize Q′

i,dummy to zero vectors for i ∈ [1, . . . , C]

19: for each mini-batch BQ ⊂ train set Dtrain with |BQ| = 4 · |B| do
20: Determine the optimized G∗ by computing all adversarial instances x′

Q for all sam-
ple instances (xQ, yQ) ∈ BQ simultaneously all at once in the same manner as PGD at-
tack with 10 steps, where the objective function to be maximized in the attack process is
LBQ

(θ, {Q′
c}c∈[C], G) in equation 40.

21: x′
j,Q ← G∗(xj,Q, yj,Q) for all (xj,Q, yj,Q) ∈ BQ

22: Construct the set B′Q consisting of all pairs (x′
j,Q, yj,Q) generated in line 21

23: for (x′
j,Q, yj,Q) ∈ B′Q do

24: Q′
yj,Q,dummy ← Q′

yj,Q,dummy + fθ(x
′
j,Q)

25: end for
26: end for
27: Normalize each Q′

i,dummy to a probability distribution for i ∈ [1, . . . , C]

28: Q′
i ← Q′

i,dummy for i ∈ [1, . . . , C]
29: end for
30: return DNN fθ

In our relaxed alternating learning algorithm, we update the dummy centroid distributions Q′
y of

all adversarial clusters once per epoch rather than once per mini-batch. The pseudo-code of this
algorithm is shown in Algorithm 2. In the case where there are not enough adversarial instances in
each mini-batch to estimate the centroid of each adversarial cluster, this delivers a good compro-
mise between time complexity and robust accuracy. Our experiments on the original CIFAR-100
and Tiny-ImageNet datasets were conducted using Algorithm 2 with the respective robust accuracy
results reported in Table 2 and 1. In comparison with vanilla AT, TRADES, and MART, Algo-
rithm 1 and Algorithm 2 require roughly 60% and 120% more training time in our setup, whereas
TRADES-AWP requires roughly 30% more training time.

Note that in the above algorithm, when we iterate through the training set one more time to update all
adversarial centroids at the end of each epoch, we increase size of each mini-batch |BQ| to 4 times
as that when we update DNN parameter θ. This adjustment is mostly in consideration of providing

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

a better estimation on the average cross entropy between sample pairs with different class labels
(second term in equation 40), as compute this value over a larger mini-batch can approximate this
value more precisely. Ideally, one should compute this value over the entire training set in one pass.
Due to the limit of computational resource, when we update adversarial centroids, we only increase
the mini-batch size up to 4 times (batch size of 512) as that in conventional training (batch size of
128).
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F ROBUSTNESS AGAINST VARIOUS PERTURBATION BUDGETS
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Figure 4: Robust accuracy against PGD attack with various perturbation budgets ϵ on CIFAR-10
when the underlying DNN model is PreAct-ResNet-18 and baseline method is vanilla AT.

.
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Figure 5: Robust accuracy against PGD attack with various perturbation budgets ϵ on CIFAR-10
when the underlying DNN model is PreAct-ResNet-18 and baseline method is TRADES.

.

Other than showing that our approach outperformed the selected baseline methods on robust accu-
racy with a fixed perturbation budget ϵ = 8/255, we additionally evaluated our trained DNN against
PGD attack (Madry et al., 2018) with various perturbation budgets ϵ, and compared with the DNN
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Figure 6: Robust accuracy against C&W∞ attack with various perturbation budgets ϵ on CIFAR-10
when the underlying DNN model is PreAct-ResNet-18 and baseline method is MART.

.

trained by baseline method. In Fig. 4, we chose multiple perturbation budgets, either greater or less
than the standard one, to attack the DNN trained by vanilla AT (trained by TRADES and MART
in Fig. 5 and 6, respectively) with and without constraining on Î(ϵ) when the underlying model
architecture is PreAct-ResNet-18 and the dataset is CIFAR-10. We found that the model trained
with our method consistently exhibits better robustness against different perturbation budgets com-
paring with the baseline counterparts. For vanilla AT, the maximum robust accuracy gain is 3.48%
when ϵ = 2/255, and the minimum gain is 0.21% when ϵ = 16/255. When the baseline method
is TRADES, the maximum robust accuracy gain is 0.84% when ϵ = 2/255, and minimum gain of
0.15% when ϵ = 16/255. In the case of MART, the maximum robust accuracy gain is 1.08% when
ϵ = 12/255, and the minimum is 0.57% when ϵ = 16/255. The results in this section indicate our
method are generally more robust than standard AT methods under various perturbation budgets.
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G VISUALIZATION OF Î(ϵ) CONSTRAINED AT AND HYPER-PARAMETER
SETTINGS

Figure 7: Visualization of the output probability simplex on the CIFAR-10 validation set, with
varying constraining levels on adversarial CMI (α) and a fixed constraining level on adversarial
separation (β = 0).

Figure 8: Visualization of the output probability simplex on the CIFAR-10 validation set, with
varying constraining levels on adversarial separation (β) and a fixed constraining level on adversarial
CMI (α = 1).
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(a) Robust Accuracy
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(b) Adversarial NCMI

Figure 9: Evaluation metric curves of PreAct-ResNet-18 on CIFAR-10 validation set during training.
All metrics are computed over validation data after C&W∞ attack with 40 steps. ‘Baseline’ stands
for training with vanilla AT (Madry et al., 2018), and ‘Ours’ represent vanilla AT with robust NCMI
regularization.

G.1 SIMPLEX VISUALIZATION

In this subsection, we visualize the effect of our adversarial CMI and adversarial separation under
different constraining levels when the underlying DNN architecture is PreAct-ResNet-18 (He et al.,
2016b). We first randomly picked 3 classes from the CIFAR-10 validation set, then focused on
a subset of validation samples with these labels perturbed by C&W∞ attack (Carlini & Wagner,
2017) in 40 steps. Each sample from this subset is fed into the DNN, and only the three logits
corresponding to the selected 3 labels are retained. These logits are subsequently converted into a
3-dimensional probability vector using the softmax operation. After the steps mentioned above, we
further projected all obtained 3-dimensional probability vectors from the samples in the constructed
validation subset into a 2-dimensional simplex to visualize the concentration and separation effect
of our trained robust DNNs in Fig. 7 and 8.

We compare the effect of varing constraining levels on adversarial CMI and separation, utilizing
vanilla AT (Madry et al., 2018) as the base adversarial loss function, in Fig. 7 and 8, respectively.
With different constraining levels on adversarial CMI, one can observe that a larger value of α en-
force each adversarial cluster more compact around its centroid, while different clusters are closer
to each other at the same time. We suggest that this creates a trade-off, as a stronger constraining
level on intra-class concentration (adversarial CMI) might weaken the regularization effect on robust
accuracy. This also justifies the necessity of constraining on adversarial separation, which further
separates perturbed samples with different labels apart. As shown in Fig. 8, a stronger constrain-
ing level on adversarial separation (larger β) enlarge the margins between each pair of adversarial
clusters, and further push them to the corresponding corner point with a negligible affect on concen-
tration within each adversarial cluster.

In general, since our method enforces data points from the same class to be more concentrated
around the centroid of corresponding cluster and different clusters to be more separated from each
other, the overlapping areas in the simplex among different classes presented above are smaller than
that of the baseline method (top-left subplots of Fig. 7 with title ‘α = 0, β = 0’), especially when
α = 1 and β is set to 2 or 5 (bottom row of Fig. 8). As such, there are less data points near
the decision boundaries and susceptible against adversarial attacks under our proposed framework
comparing with baseline, thereby enhances the robustness of a model.

G.2 TRAINING CURVES OF Î(ϵ) CONSTRAINED AT

In Fig. 9, we present the evolution curves of robust accuracy and adversarial NCMI of PreAct-
ResNet-18 on CIFAR-10 validation data perturbed by C&W∞ attack in 40 steps, using loss function
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of vanilla AT with and without constraining on Î(ϵ). In Fig. 9a, robust accuracy of vanilla AT with
and without our regularization is almost the same before the first learning rate decay at the 100th

epoch. After that, the robust accuracy of our method is always better than that of baseline. Moreover,
the gap between the two curves increases towards the end of the training phase, indicating that our
approach also suffers less from robust overfitting. The curves for adversarial NCMI are displayed in
Fig. 9b, where the adversarial NCMI of our approach shows a significant gap from the first epoch
and remains consistently lower than the baseline. This demonstrates that our method exhibits better
intra-class concentration and inter-class separation for perturbed samples. One may notice that in
Fig. 9b, both curves show an upward trend near the end of training phase. We argue that this is due
to robust overfitting, as robust accuracy on validation set of both curves continue to drop after the
last learning rate decay at the 150th epoch.

G.3 HYPER-PARAMETER SETTINGS

Table 3: Hyper-parameter settings of Î(ϵ) constrained AT on CIFAR-{10, 100} datasets. Each
parenthesis represent the hyper-parameter value of α and β in our approach, respectively.

Dataset Method No Synthetic Data 1M Synthetic Data
PreAct-RN18 WRN-34-10 PreAct-RN18 WRN-28-10

CIFAR-10

Vanilla AT (1, 2) (1, 2) (2, 0.1) (2, 1)
TRADES (0.01, 0.1) (0.01, 0.1) (0.1, 2) (0.1, 2)

MART (0.01, 2) (0.1, 1) (0.1, 1) (0.1, 1)
TRADES-AWP (0.1, 1) (0.1, 1) (0.1, 2) (0.1, 1)

CIFAR-100

Vanilla AT (2, 5) (2, 5) (0.1, 2) (0.1, 2)
TRADES (1, 2) (1, 2) (0.01, 5) (0.01, 2)

MART (0.1, 2) (0.1, 0.01) (0.1, 5) (0.1, 2)
TRADES-AWP (0.01, 5) (0.01, 5) (0.1, 2) (0.1, 1)

Table 4: Hyper-parameter settings of Î(ϵ) constrained AT on Tiny-ImageNet datasets. Each paren-
thesis represent the hyper-parameter value of α and β in our approach, respectively.

Method Model
PreAct-RN18 PreAct-RN34

Vanilla AT (1, 0.1) (1, 0.1)
TRADES (0.01, 2) (0.01, 2)

In this subsection, we reported the hyper-parameter settings of our approach, which is the values of
α and β in our objective function in equation 39. Table 3 and 4 provide the specific values of α and β
used in our experiments on the CIFAR and Tiny-ImageNet datasets, respectively. As one can see, for
the same AT method on same dataset, the hyper-parameter settings of our approach are generally the
same between different models, while those between methods and datasets are somehow different.
We attribute this to the variation in underlying data distributions across datasets and the differences
in the DNN’s intrinsic mapping structures between methods, which result in different optimal hyper-
parameter settings for the same model architecture on each method and dataset.
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H ABLATION STUDY

In this section, we conducted ablation study on original CIFAR-10 dataset to verify the effectiveness
of each individual term in equation 40. We selected PreAct-ResNet-18 (He et al., 2016b) as the
underlying DNN model and vanilla AT (Madry et al., 2018) as the baseline method. We present our
experimental results in Table 5.

Table 5: Experimental results of ablation study on original CIFAR-10 dataset. Best results are
highlighted in bold.

Hyper-Param Clean PGD C&W∞ AA
α = 0, β = 0 (Baseline) 79.35 52.51 50.76 48.70

α = 0.001, β = 0 82.25 52.56 50.93 48.73
α = 0.01, β = 0 81.95 52.27 50.86 48.79
α = 0.1, β = 0 82.63 52.65 50.79 48.82
α = 1, β = 0 81.32 52.83 51.99 49.39
α = 2, β = 0 80.37 52.61 51.51 49.01
α = 5, β = 0 79.96 52.78 50.94 48.99

α = 0, β = 0.001 79.49 52.60 50.79 48.72
α = 0, β = 0.01 79.43 52.79 50.80 48.74
α = 0, β = 0.1 81.72 52.54 51.38 48.79
α = 0, β = 1 80.93 52.76 52.12 49.34
α = 0, β = 2 80.72 52.59 52.18 49.35
α = 0, β = 5 79.72 52.61 51.94 49.30

α = 1, β = 2 (Best) 81.43 53.04 52.23 49.47

As shown in the table above, we found that solely enabling each term in equation 40 can enhance
the robustness of a DNN model in comparison with the baseline method. In addition, when enabling
both terms by selecting the corresponding hyper-parameter values of α and β with the highest ac-
curacy against AutoAttack (Croce & Hein, 2020) can further improve the robust performance. This
demonstrates the efficacy of both proposed metrics in our work.

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 RESULTS AGAINST L2-NORM ATTACK

Table 6: Experimental results of our trained models against L2-norm attacks on original CIFAR-10
dataset.

Method PreAct-RN18 WRN-34-10
PGD-L2 C&W-L2 PGD-L2 C&W-L2

Vanilla AT 62.22 60.19 63.61 63.07
+Ours 63.85 62.13 65.27 63.23
TRADES 63.03 61.47 63.48 62.45
+Ours 63.53 61.97 63.93 62.79
MART 63.75 60.29 64.93 62.49
+Ours 63.60 61.06 64.73 63.09
TRADES-AWP 63.23 61.19 64.56 62.92
+Ours 63.76 61.45 64.81 63.51

In this subsection, we evaluate our DNNs, which trained with adversarially perturbed data in
L∞-norm on original CIFAR-10 dataset, against data attacked in L2-norm. We selected PGD-L2

(Madry et al., 2018) and C&W-L2 (Carlini & Wagner, 2017) as our evaluation attack methods,
where both attacks are crafted in 20 iterations and have a budget ϵ = 128/255 with a step size of
15/255. We present our experimental results in Table 6, where the robust accuracy of our approach
outperforms corresponding baseline methods in most cases. The results indicate that the models
trained with our method exhibit superiority against L2-norm attack even though such models are not
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explicitly trained with data perturbed in L2-norm, and we believe the improvement against L2-norm
attacks could be even more substantial if the models are trained with data perturbed in L2-norm.

I.2 COMPARISON OF ROBUST PERFORMANCE BETWEEN BEST AND LAST CHECKPOINTS

Table 7: Experimental results of best and last checkpoints trained with baseline methods and our
approach on original CIFAR-10 dataset. Better results are highlighted in bold.

Model Method Best Last
Clean PGD C&W∞ AA Clean PGD C&W∞ AA

PreAct-RN18

Vanilla AT 79.35 52.51 50.76 48.70 78.89 43.18 44.08 41.53
+Ours 81.43 53.04 52.23 49.47 80.66 46.63 47.32 43.98
TRADES 82.21 53.81 51.25 50.05 81.57 50.47 49.26 47.40
+Ours 82.26 54.12 51.65 50.70 82.20 50.77 49.67 48.19
MART 79.81 54.60 50.63 48.73 79.58 47.26 45.78 42.71
+Ours 79.40 54.41 51.25 49.61 79.22 47.52 46.04 43.66
TRADES-AWP 81.52 54.40 51.63 50.56 81.22 53.14 50.97 49.71
+Ours 81.73 54.64 52.15 51.07 81.40 53.71 51.56 50.64

WRN-34-10

Vanilla AT 85.06 56.23 56.00 53.58 84.05 46.93 47.73 45.38
+Ours 85.58 57.25 56.20 54.22 84.48 47.16 48.20 46.15
TRADES 85.54 57.19 56.26 55.03 85.44 48.98 50.06 47.82
+Ours 85.24 57.56 56.60 55.27 85.08 49.14 50.21 48.22
MART 84.15 57.64 55.40 53.55 83.63 48.06 47.71 45.04
+Ours 83.99 57.20 55.92 53.77 83.58 48.05 47.90 45.46
TRADES-AWP 85.14 58.02 56.66 55.35 84.17 50.52 51.06 48.94
+Ours 84.67 58.25 56.81 55.60 84.05 50.84 51.23 49.34

In this subsection, we report the clean and robust accuracy of the best and last checkpoints for models
trained with the selected baseline methods and combining with our approach on original CIFAR-10
dataset in Table 7. We found that the robust performances of models trained with our method are
better than the baseline counterparts. Furthermore, the robust accuracy gap between best and last
checkpoints trained by our approach is less significant than that of corresponding baseline methods
for most pairs of comparisons, which demonstrates that models trained with our method are less
likely to suffer from overfitting than baseline methods.

I.3 RESULTS AGAINST BLACK-BOX ATTACK

Table 8: Experimental results of PreAct-ResNet-18 against Square attack on original CIFAR-10
dataset.

Method Clean Acc. Robust Acc.
Vanilla AT 79.35 55.00
+Ours 83.43 56.87
TRADES 82.21 56.27
+Ours 82.26 57.01
MART 79.81 54.84
+Ours 79.40 55.71
TRADES-AWP 81.52 56.03
+Ours 81.73 56.71

In this subsection, we evaluated the performance of models trained with baseline methods and our
approach against black-box attack. We selected Square attack (Andriushchenko et al., 2020) as the
evaluation attack method, and present the results of PreAct-ResNet-18 (He et al., 2016b) against
this attack on original CIFAR-10 dataset in Table 8, where the black-box robust accuracy of our
approach consistently outperform that of corresponding baseline methods.

I.4 COMPARISON WITH OTHER METHODS UTILIZING MUTUAL INFORMATION

In this subsection, we present our results of our method comparing with other approaches which im-
prove adversarial robustness using mutual information like HBaR (Wang et al., 2021) and IB-RAR
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(Xu et al., 2023a). In order to make a fair comparison with such methods, we run all experiments
of the above approaches and ours under the experimental setting described in Section 5 on orig-
inal CIFAR-10 dataset where the DNN architecture is ResNet18 (He et al., 2016a). We combine
HBaR, IB-RAR and our method with vanilla AT (Madry et al., 2018) and TRADES (Zhang et al.,
2019), and report the results of best checkpoints in Table 9, where our method is more robust against
AutoAttack (Croce & Hein, 2020) than other approaches.

Table 9: Experimental results of methods utilizing mutual information to improve adversarial ro-
bustness on original CIFAR-10 dataset with DNN architecture of ResNet18.

Method Clean PGD C&W∞ AA
Vanilla AT 83.65 51.64 50.66 48.10
+HBaR 83.96 52.49 50.70 48.55
+IB-RAR 83.71 52.53 50.73 48.63
+Ours 83.04 52.80 51.06 48.79
TRADES 83.36 51.93 50.40 49.00
+HBaR 83.39 52.49 51.09 49.30
+IB-RAR 83.44 52.58 50.67 49.56
+Ours 82.75 52.87 51.05 50.09
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J VARIANCE OF EXPERIMENTAL RESULTS

Table 10: Experimental results and variances on CIFAR-{10, 100} datasets, both with and without
synthetic data, are averaged over 3 runs. ‘Clean’ refers to accuracy on benign samples, and ’AA’
represents robust accuracy against AutoAttack. ’+Ours’ indicates the use of our Î(ϵ) constrained
AT. Results for original datasets are listed under ‘No Synthetic Data’, while those with additional
synthetic data are under ’1M Synthetic Data’. WRN-34-10 was used only for original datasets (in
red cells), and WRN-28-10 only for datasets with synthetic data (in blue cells). Better results are in
bold.

Dataset Model Method No Synthetic Data 1M Synthetic Data
Clean AA Clean AA

CIFAR-10

PreAct-RN18

Vanilla AT 79.35 ± 0.12 48.70 ± 0.17 90.08 ± 0.16 54.91 ± 0.12
+Ours 81.43 ± 0.15 49.47 ± 0.20 89.88 ± 0.19 56.61 ± 0.08
TRADES 82.21 ± 0.09 50.05 ± 0.13 88.48 ± 0.06 58.13 ± 0.06
+Ours 82.26 ± 0.05 50.70 ± 0.15 87.90 ± 0.05 58.52 ± 0.08
MART 79.81 ± 0.13 48.73 ± 0.11 86.99 ± 0.05 52.86 ± 0.03
+Ours 79.40 ± 0.18 49.61 ± 0.10 87.82 ± 0.04 53.92 ± 0.03
TRADES-AWP 81.52 ± 0.09 50.56 ± 0.06 87.69 ± 0.05 57.54 ± 0.10
+Ours 81.73 ± 0.06 51.07 ± 0.06 87.73 ± 0.09 58.25 ± 0.07

WRN

Vanilla AT 85.06 ± 0.05 53.58 ± 0.10 92.69 ± 0.07 61.47 ± 0.08
+Ours 85.58 ± 0.06 54.22 ± 0.13 92.05 ± 0.08 61.71 ± 0.07
TRADES 85.54 ± 0.10 55.03 ± 0.08 90.26 ± 0.03 62.73 ± 0.03
+Ours 85.24 ± 0.05 55.27 ± 0.05 90.75 ± 0.10 63.27 ± 0.07
MART 84.15 ± 0.11 53.55 ± 0.03 91.91 ± 0.04 61.21 ± 0.04
+Ours 83.99 ± 0.13 53.77 ± 0.08 91.84 ± 0.03 61.75 ± 0.05
TRADES-AWP 85.14 ± 0.07 55.35 ± 0.04 90.44 ± 0.06 63.17 ± 0.08
+Ours 84.67 ± 0.09 55.60 ± 0.06 90.37 ± 0.11 63.41 ± 0.03

CIFAR-100

PreAct-RN18

Vanilla AT 52.46 ± 0.11 24.90 ± 0.12 66.95 ± 0.16 29.76 ± 0.10
+Ours 54.13 ± 0.20 25.70 ± 0.12 65.93 ± 0.08 30.88 ± 0.11
TRADES 55.48 ± 0.08 24.36 ± 0.13 63.83 ± 0.08 31.92 ± 0.09
+Ours 57.95 ± 0.13 24.76 ± 0.09 63.73 ± 0.11 32.45 ± 0.10
MART 52.10 ± 0.15 25.00 ± 0.11 62.44 ± 0.14 29.87 ± 0.06
+Ours 51.46 ± 0.13 25.42 ± 0.11 62.62 ± 0.04 31.24 ± 0.05
TRADES-AWP 56.66 ± 0.07 25.05 ± 0.08 63.71 ± 0.05 31.59 ± 0.06
+Ours 55.81 ± 0.10 25.54 ± 0.05 64.23 ± 0.05 31.99 ± 0.09

WRN

Vanilla AT 59.13 ± 0.08 28.67 ± 0.08 71.26 ± 0.04 33.76 ± 0.05
+Ours 60.20 ± 0.04 29.15 ± 0.10 71.08 ± 0.03 34.96 ± 0.11
TRADES 59.52 ± 0.10 27.94 ± 0.09 67.52 ± 0.08 35.36 ± 0.04
+Ours 61.25 ± 0.17 28.43 ± 0.11 67.51 ± 0.11 35.79 ± 0.06
MART 57.46 ± 0.05 28.09 ± 0.05 68.84 ± 0.12 34.85 ± 0.05
+Ours 57.07 ± 0.06 28.69 ± 0.07 68.75 ± 0.08 35.54 ± 0.09
TRADES-AWP 60.69 ± 0.12 28.51 ± 0.08 67.25 ± 0.09 35.39 ± 0.10
+Ours 59.83 ± 0.08 28.98 ± 0.07 67.93 ± 0.15 35.64 ± 0.04
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K CONSTRAINING NCMI OVER BENIGN SAMPLES ALSO BOOSTS
ROBUSTNESS

Table 11: Experimental results of constraining NCMI on benign samples (denoted as ‘+Clean
NCMI’) with TRADES on CIFAR-{10, 100} datasets, with and without synthetic data, in com-
parison with TRADES and Î(ϵ) constrained AT (denoted as ‘+Robust NCMI’), are averaged over
3 runs. WRN-34-10 was only used for original datasets (cells marked in red), and WRN-28-10 for
datasets with synthetic data (cells marked in blue). Best result of each group are marked in bold.

Dataset Model Method No Synthetic Data 1M Synthetic Data
Clean PGD CW∞ AA Clean PGD CW∞ AA

CIFAR-10

PreAct-RN18
TRADES 82.21 53.81 51.25 50.05 88.48 61.16 58.87 58.13
+Robust NCMI 82.26 54.12 51.65 50.70 87.90 61.51 59.80 58.52
+Clean NCMI 81.98 54.94 52.03 50.99 88.25 61.37 59.40 58.42

WRN
TRADES 85.54 57.19 56.26 55.03 90.26 64.95 63.94 62.73
+Robust NCMI 85.24 57.56 56.60 55.27 90.75 65.45 64.77 63.27
+Clean NCMI 85.39 57.87 56.45 55.22 90.78 65.27 64.48 63.19

CIFAR-100

PreAct-RN18
TRADES 55.48 28.55 25.57 24.36 63.83 36.08 32.84 31.92
+Robust NCMI 57.95 29.92 26.00 24.76 63.73 36.32 33.08 32.45
+Clean NCMI 55.93 29.17 26.02 24.64 64.69 36.16 32.85 32.04

WRN
TRADES 59.52 31.09 29.18 27.94 67.52 38.56 36.34 35.36
+Robust NCMI 61.25 33.22 29.65 28.43 67.51 39.22 36.91 35.79
+Clean NCMI 59.78 31.50 29.52 28.32 67.74 39.23 37.21 35.99

In Yang et al. (2023), the authors mentioned that in benign image classification task, training a DNN
with constraining NCMI on benign samples leads to improved robustness compared to training with
only CE loss. Their experimental results indicate that models trained with CMIC-DL framework are
more robust against FGSM (Goodfellow et al., 2015) and PGD attacks (Madry et al., 2018) under
various levels of perturbation budgets than standard DNNs trained with CE loss in MNIST dataset
(LeCun et al., 1998). In our experiments, we also observed that constraining NCMI on benign
samples alongside TRADES (Zhang et al., 2019) enhances DNNs’ robustness on CIFAR-{10, 100}
datasets, both with and without additional synthetic data. We mostly followed the experimental
setting of Yang et al. (2023), where we additionally sample 8 instances per class (64 in original
CIFAR-10) in each mini-batch and use such sampled instances to update centroid of each benign
cluster per mini-batch with a WA factor τQ = 0.999 in original CIFAR-100. In experiments on
CIFAR datasets with an additional 1 million synthetic images, we increased the sample size for
centroid updates in each mini-batch by a factor of 4, aligning with the batch size, which was 4 times
compared to the original CIFAR datasets. We also adjusted the WA factor τQ to 0.99.

Indicated in Table 11, constraining NCMI over benign samples also enhances adversarial robust-
ness of a DNN in comparison with models trained with standard TRADES as objective function.
To interpret the effectiveness of constraining NCMI over benign samples, we argue that the output
probability distributions of a DNN become more compact within each benign sample cluster and
better separated among different clusters comparing with the counterpart trained without constrain-
ing on benign NCMI. This approach makes it harder for adversarial attacks to create perturbations
that would shift a sample into a cluster with a different label in output probability space, thereby im-
proving robust performance. However, we found that constraining NCMI on benign samples cannot
outperform directly constraining Î(ϵ) in terms of robust accuracy in most cases. We attribute this
phenomenon as constraining Î(ϵ) takes direct effect on adversarial output probability distribution
space rather than benign one, which enhances the robust performance even more.
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