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Abstract: Recent work in sim2real has successfully enabled robots to act in
physical environments by training in simulation with a diverse “population” of
environments (i.e. domain randomization). In this work, we focus on enabling
generalization in assistive tasks: tasks in which the robot is acting to assist a user (e.g.
helping someone with motor impairments with bathing or with scratching an itch).
Such tasks are particularly interesting relative to prior sim2real successes because
the environment now contains a human who is also acting. This complicates
the problem because the diversity of human users (instead of merely physical
environment parameters) is more di�cult to capture in a population, thus increasing
the likelihood of encountering out-of-distribution (OOD) human policies at test
time. We advocate that generalization to such OOD policies benefits from (1)
learning a good latent representation for human policies that test-time humans
can accurately be mapped to, and (2) making that representation adaptable with
test-time interaction data, instead of relying on it to perfectly capture the space of
human policies based on the simulated population only. We study how to best learn
such a representation by evaluating on purposefully constructed OOD test policies.
We find that sim2real methods that encode environment (or population) parameters
and work well in tasks that robots do in isolation, do not work well in assistance.
In assistance, it seems crucial to train the representation based on the history of
interaction directly, because that is what the robot will have access to at test time.
Further, training these representations to then predict human actions not only gives
them better structure, but also enables them to be fine-tuned at test-time, when the
robot observes the partner act. https://adaptive-caregiver.github.io.
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1 Introduction

Our ultimate goal is to enable robots to assist people with day to day tasks. In the context of patients
with motor impairments, this might mean assistance with scratching an itch, bathing, or dressing
[1, 2, 3]. These are tasks in which doing reinforcement learning from scratch in the real world is not
feasible, and so sim2real transfer is an appealing avenue of research. Sim2real methods for physical
robot tasks in isolation typically work by constructing a diverse "population" of environments and
training policies that can work with any member of the population (e.g. a range of parameters of a
physics simulator or a range of lighting and textures) [4, 5, 6, 7, 8, 9, 10, 11].

Similarly, population-based (self-play) training has proven successful in zero-sum games against
humans [12, 13, 14]. But unlike tasks the robot does in isolation, assistance requires coordinating
with a human who is also acting. And unlike competitive settings, assuming the human to be optimal
when they are not, can result in dramatically poor performance [15]. Thus, in sim2real for assistance,
we have to design a population of potential users and strategies to train with, akin to the physical
environment parameters in typical sim2real tasks, rather than the standard population-based training
approaches used in competitive settings. But designing a population that is diverse and useful
enough to enable generalization to test-time humans, each with their own preferences, strategies, and
capabilities, remains very challenging, making it likely that test-time partners might lie outside of the
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Figure 1: The framework for jointly learning the Personalized Latent Embedding Space and the robot policy.
During training time, we train all components end-to-end to optimize for action prediction (orange) and the robot
policy (green). At test time, we can further optimize for this objective to perform test-time adaptation (red). The
resulting latent space captures the underlying structure of the preferences and strategies of the training humans.

distribution the population was drawn from. Therefore, sim2real methods for assistance will need to
be ready to generalize to out-of-distribution partner policies.

In this work, we identify two principles as key to enabling better generalization. First is that we
benefit from learning a latent space of partners that distills their policies down to a structure that is
useful for the robot’s policy and that makes it easy to identify partners at test time. Second is that
we need to be prepared for this space to not perfectly capture the space of real human policies, and
design it so that it is adaptable with real test-time interaction data.

We thus propose a framework that learns a latent space directly from history of interaction by
predicting the partner’s actions. Our framework allows a robot to capture the relevant information
about the human partner that the robot can actually identify when starting to interact, and also enables
test-time adaptation of the latent space itself when observing the partner’s actions. When evaluated
with partner policies we purposefully design to be out-of-distribution, we find that our approach leads
to better generalization than prior methods which either do not learn a latent space at all [16], do not
learn a latent space directly based on interaction history [7], or train a latent space based on other
observables, like states or rewards [17, 18]. Our contributions are four-fold:

1. We introduce an assistive problem setting where the focus is explicitly on generalization to
out-of-distribution partner policies.

2. We introduce a framework for training policies for this problem setting, Prediction-based Assistive
Latent eMbedding (PALM). This enables us to study di�erent methods for learning latent
representations on how well they enable generalization.

3. We identify that the design choice of training a latent space by predicting partner actions directly
from history outperforms (1) state-of-the-art sim2real approaches used in non-assistive tasks
that are based on embedding environment parameters [7] as well as (2) human-robot interaction
approaches that train representations by predicting observed states or rewards [17, 18].

4. We propose to adapt the learned latent space at test time, upon observing the partner’s actions, and
show it leads to generalization performance gains.

2 The Assistive Personalization Problem

In this section, we introduce the personalization problem in an assistive context. In particular, our
goal is to learn a robot policy c' that can assist a novel human partner in zero-shot fashion, or with a
small amount of test-time data.

Two-player Dec-POMDP. An assistive task can be modeled as a two-agent, finite horizon decen-
tralized partially-observable Markov decision process (Dec-POMDP) and is defined by a tuple
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h(,U, �', �� ,T ,⌦',⌦� ,$,'i. Here ( is the state space and �', �� are the human’s and the
robot’s action spaces, respectively. The human and the robot share a real-valued reward function
' : (⇥ �' ⇥ �� ! R; however, we assume that the reward function is not necessarily observed by
the robot, i.e. its parameters (e.g. the location of the human has an itch) are in the hidden part of
the state. T : (⇥ �' ⇥ �� ⇥ (! [0,1] is the transition function, which outputs the probability of
the next state given the current state and all agents’ actions. ⌦' and ⌦� are the sets of observations
for the robot and human, respectively, and $ : (⇥ �' ⇥ �� !⌦' ⇥⌦� represents the observation
probabilities. We denote the horizon of the MDP by ) .

Target User. We target users with partial motor functions — a common impairment for individuals
with partial arm functions. This is an impairment that can occur in some people with cervical SCI,
ALS, MS, and some neurodegenerative diseases — leading to the need for robotic assistance. We
model the extent of the impairment as the privileged information in the Dec-POMDP. The robot does
not know this a-priori and thus needs to adapt to individual users’ capabilities.

The Robotic Caregiving Setup. We define the observation space for the robot and the human
following [3]: the robot observes its own joint angles, and the human’s joint positions in the world
coordinate and contact forces; the human observes their joint angles (proprioception) and the end-
e�ector position of the robot. When training with simulated humans, the robot gets a reward signal
(which depends on privileged information), and has to use that signal to learn to implicitly identify
enough about the human to be useful; at test time, the robot does not observe reward signal and must
use what it has learned at training time to identify the human’s privileged information and be helpful.

Distributions of Humans. Let function c� : ⌦⇤
� ⇥ �� ! [0,1] be the human policy that maps from

local histories of observations o�C = (>�1 , . . . ,>
�
C ) over ⌦� to actions. We define two distributions

of human policies c� 2 Dtrain,Dtest. In the assistive itch scratching, Dtrain can be a set of humans
with di�erent itch positions on their arms, which lead to their di�erent movements. We refer to
them as in-distribution humans. Dtest contains out-of-distribution humans whose itch position di�er
from those in the Dtrain. At training time, the robot has access to Dtrain. Thus, it has ground-truth
knowledge about the training human’s privileged information, such as each human’s itch position. At
test time, we evaluate the robot policy by sampling humans c� ⇠ Dtest and directly pairing them with
the robot policy. We evaluate the zero-shot and few-shot adaptation performance of the robot policy.

Objective. The main problem we study is how to leverage the training distribution to learn a robot
policy c' : ⌦⇤

' ! �' such that we achieve the best performance on test humans. Concretely, we
define the performance of the robot and human as

� (c',c� ) = E
"
)’
C=0

'(BC ,c' (o'C ),c� (o�C ))
#
, (1)

Only given access to Dtrain, our objective is to find the robot policy c' = argmaxc � (c,c� ),c� ⇠Dtest.

3 Learning Personalized Embeddings for Assistance with PALM

In this section, we present Prediction-based Assistive Latent eMbedding (PALM). We introduce the
general framework of using a latent space to perform personalization in an assistive context. We then
highlight the advantage of action prediction in contrast to prior works. Finally, we describe how we
can optimize PALM at test time to work with out-of-distribution humans.

3.1 Learning an Assistive Latent Space

Given a training distribution of humans Dtrain 1, we would like to learn a robot policy that can adapt
to assist new users. To achieve that, a robot must learn to solve the task while e�ciently inferring the
hidden component that di�ers across humans. One natural way to do so is to learn a latent space that
succinctly captures what di�ers across humans in a way that a�ects the robot’s policy. When deployed
on a test human, the robot infers this latent embedding and uses it to generate personalized assistance.

We denote the latent space as IC ⇠ E\ (I;g1:C ), where E\ encodes the trajectory g so far and outputs
latent vector IC . The robot uses this latent space to compute its actions 0'C = c' (>'C , IC ). We train

1we describe how we generate this distribution in Sec. 4.1
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the base policy c' and the latent space encoder E\ jointly as they are interdependent [19] — better
robot policy leads to di�erent trajectories across humans, which in turn leads to distinguishing I.
See Appendix D on training details. Ideally, we would like I to capture su�cient information to
di�erentiate the humans, similar to performing a “dimensionality reduction” on human policies
c� . We hereby introduce di�erent objectives for learning such latent space, and how our method —
learning by action prediction — makes a good fit for the assistive personalization problem.

3.2 How to Construct the Latent Space

Prior work and limitations LILI [17] and RILI [18] learn a latent embedding of the humans by
predicting the next observations and rewards. While they have been shown to work in predicting and
influencing human behaviours, both methods assume access to the reward function at test time, which
we do not have access to in the assistive setting — we don’t know a-priori the preference and needs
of a new user. RMA [7] enables fast robot adaptation by learning a latent space of environment
parameters, such as friction, payload, terrain type, etc. While it works for a single robot, it is unclear in
human-robot settings, how we can encode human motions and preferences as environment parameters.

Learning by action prediction. Given history gC�# :C =
�
(>'C�# ,0�C�# ), . . . (>'C , ·)

�
of # robot

observation and human action2 pairs, as outlined in Fig. 1, we embed this trajectory to a low-
dimensional manifold and use it to predict 0�C . The intuition is that if we are able to predict the next
action by this human, we extract the su�cient information about the human’s policy c� . The latent
vector I is representative of the trajectory so far and indicative of the person’s future actions. We do
this by training a decoder Dq parameterized by q to predict the next action from the encoder’s output
I ⇠ E\ (I;g1:C ).

Lpred = min
\ ,q

| |Dq (I)� 0�C+1 | |2 + 2KL · ! (E\ (I;g1:C ) | |N (I)) (2)

The encoder E is a recurrent neural network parameterized by \. Here the second term is a
regularization term motivated by Variational Autoencoder [20, 21], that enforces the latent space to
follow a normal prior distribution. This encourages nearby terms in the latent space to encode similar
semantic meanings. In the context of assistive tasks, this helps us better cluster similar humans closer
in the latent space, and we show a didactic example in Sec. 4.3.

3.3 Latent Space Adaptation at Test Time

At test time, as we work with a new user, we would like our encoding of the new user to match the true
latent information, I⇤ of that user. In other words, we would like to minimize | |E(g)� I⇤ | |2. Because
we do not know about the new users a-priori, we can only optimize for this objective via proxy, which
we refer to as test time adaptation.

Since the PALM latent space is based on action prediction, we can adapt it to a new user by further
optimizing the latent space. Note that because Eq. (2) requires only observation-action data, we
do not need any additional label to perform test time adaptation. More formally, we collect a small
dataset of test-time interaction trajectories, g, and perform a few gradient steps to optimize both the
encoder and decoder for Eq. (2): (\,q) ! (\,q)� Xr(\ ,q)Lpred (E\ ,Dq ,g).
The idea of test-time optimization has been shown to improve perceptual robustness for grasping in
sim2real research [22]. We follow a similar pipeline, where we can improve the latent encoding by
collecting unsupervised action data from test users. Here the main di�erence is instead of perceptual
di�erences, our goal is to reduce the domain gap on test users.

4 Experiments

In this section, we evaluate our method PALM (Prediction-based Assistive Latent eMbedding) in
collaborative human-robot environments of varying tasks and varying populations of human models.
In particular, we focus on the out-of-distribution generalization by constructing di�erent forms of
out-of-distribution populations. We focus on empirically investigating the benefits of learning a latent
space, the e�ect of di�erent kinds of prediction on learning a useful latent space, the properties of
learned latent spaces, and the gains from test-time adaptation to humans.

2We do not assume access to the person’s sensorimotor action (e.g. joint torques). We define human action
as change in the person’s Cartesian pose, which can be tracked externally.
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4.1 Environments

Figure 2: The assistive reacher environment. Left: the
robot’s goal is to move the human agent towards the
hidden target. Right: the hidden goal’s position can be
inferred 90 degrees from the humans force output.

Here we introduce two environments where we
study assistive personalization. In both envi-
ronments, the robot has to infer some hidden
information from the human in order to success-
fully solve the task. Note that these are examples
meant for demonstrating the e�ectiveness of the
algorithm, and we do not claim to solve the full
robotic caregiving problem.

Assistive Reacher (Fig. 2) is 2D collaborative
environment where a two-link robot arm assists
a point human agent to get to the target posi-
tion. This target is located at (3 cosUH,3 sinUH),
where 3 is a fixed value, and UH 2 [�c,c] is
known to the human, but not the robot. The human agent is initialized randomly in the 2D plane
with random hidden parameters UH 2 [�c,c], :H 2 [0.5,1.5]. The robot can only identify the
target position by physical interactions — once the robot initiates contact, the human applies a
force :H · (cosUH + c

2 , sinUH + c
2 ). Only by recognizing the human in terms of UH, :H can the robot

compensate the force, and successfully move the human to the hidden target. Each episode has 40
timesteps.

The Scope of Generalization. We define Dtrain as 36 samples uniformly sampled from UH 2
[�c, c2 ], :H 2 [0.5,1.5] and Dtest as 12 samples uniformly sampled from UH 2 [ c2 ,c], :H 2 [0.5,1.5].
Assistive Itch Scratching (Fig. 1) is adapted from assistive gym [3]. It consists of a human and a
wheelchair-mounted 7-dof Jaco robot arm. The human has limited mobility — they can only move
the 10 joints on the right arm and upper chest, and needs the robot’s assistance to scratch the itch. An
itch spot is randomly generated on the human’s right arm. The robot does not directly observe the itch
spot, and relies on interaction with the human to infer its location. Each episode has 100 timesteps.

We use co-optimization to create Dtrain and Dtest for Assistive Itch Scratching. A benefit of the
co-optimization framework is that it naturally induces reward-seeking behaviour from the human
and the robot, which simulates assistance scenarios. For instance, to generate more inactive human
policies, we can introduce a weighting term in the reward function for human action penalties
'p = 2p · | |cH (BC ) | |2 where 2p is a constant controlling the penalty. The overall objective becomes

max
cH ,cR

E
⇥’
C

'

�
BC ,cH (BC ),cR (BC )

� ⇤
+ 2p · | |cH (BC ) | |2 (3)

Figure 3: Definition of
Dtrain and Dtest.

The Scope of Generalization. We are motivated by real world applica-
tions where users tend to have di�erent levels of mobility limitations, or
itch locations in di�erent body parts. To generate a synthetic population
to capture such diversity in itch scratching task, we explore di�erent
co-optimization settings (1) we assign di�erent human action penalty to
be 2p = 3,3.5,4, where larger penalties lead to the human agent exerting
less e�ort. (2) We simulate di�erent itch positions on the human’s arm
and train co-optimized human and robot policies conditioned on them.
This leads to qualitatively di�erent strategies for the human and the robot.
Note that this serves first step to understanding how di�erent methods
generalize, since we never expect to be able to capture the diversity in
humans perfectly. For training, we use Proximal Policy Optimization (PPO) to optimize human and
robot policies in an interleaving fashion. Note that we also keep the co-optimized robot policy and use
it to obtain expert actions for assistive policy training (see Sec. 3.1 and supplement for full details).

To construct Dtrain and Dtest, we divide the two arms’ areas into four equal portions, as shown in Fig.
3, and generate human policies conditioned on itch positions in these areas. Dtrain consists of three
of the four portions and Dtest consists of the remaining one. We then construct three distribution
sets in increasing order of di�culties. In the first distribution D1, we confine itch positions from a
line-shaped region. In D2, we sample from all the arm areas. Note that D1 and D2 are constructed
by setting action penalty 2p = 3. In D3, we combine humans of 2p = 3,3.5,4, each trained with two
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di�erent random seeds. This adds the extra complexity of human activity levels. We simulate 12
in-distribution humans from each of the three training portions under each action penalty.

4.2 Baselines

We compare with baselines that do not learn an explicit latent space as well as existing methods for
adaptation via learning latent embeddings.

MLP and RNN. We follow [16] that trains sequential models to enable adaptation to simulated
humans. We explore using a recurrent neural network or a feed-forward network on concatenated
state-action histories. The models directly output robot action, and there is no latent space modeling.

Figure 4: Latent space of PALM in the assis-
tive reacher environment when we can sam-
ple humans UH 2 [�c (red),c (blue)] con-
tinuously.

ID-based Human Embeddings. In contrast to learning
latent space from history, another class of method studies
encodes human-designed environment parameters [7, 19,
23]. We focus specifically on RMA [7], a two-phased
method that first learns to encode task-ID (phase I) and then
trains a recurrent network to regress to the embeddings from
observation history (phase II). For training a quadruped
robot, RMA encodes the physical parameters (friction,
payload, etc) of the environment. The first stage trains
a policy with ground-truth information, and the second
phase performs environment identification. While RMA is
shown to be e�ective for learning policy for in-distribution
environments, it is unclear how well it generalizes to out-of-
distribution environments. Furthermore, in assistive tasks,
it is unclear how to construct the "ground-truth ID" for
phase I that quantifies the user characteristics. We study
RMA-Param and RMA-Onehot, where we assign each
training human a one-hot vector. For RMA-Param, we use
a three-dimensional vector that includes the G, H position of the itch position and the arm index. When
there are multiple human activity levels as mentioned in Sec. 4.1, we introduce a fourth dimension
with an integer to indicate the action penalty 2p.

LILI and RILI. We consider two other methods of the PALM framework: LILI [17] and RILI [18].
As mentioned in Sec. 3.1, LILI jointly predicts future observation and reward, and RILI predicts
reward. Given that reward is only available at training time, we cannot perform test time optimization
for LILI and RILI.

Ablations of PALM. Our method has several components: we use a recurrent neural network to
encode interaction history, and use its output to minimize prediction loss Lpred and policy loss Lpol.
We also use the KL term in Eq. (2) to regularize the human embeddings. To test the e�ectiveness
of our method, we separate di�erent parts and create a set of baselines. We hereby describe them
in detail: (1) No Lpred: the model shares the same encoder and policy network architecture, yet we
don’t optimize for Lpred. By removing the prediction loss in Fig. 1, the latent space is not explicitly
trained to contain human information. (2) No 2KL: no regularization in the latent space. (3) Frozen
embedding: instead of jointly training embeddings and the policy network, we first train the encoder
on expert data, freeze it, and then train robot policy. We include an ablation study of our main
experiments in the appendix.

4.3 Didactic Experiment in Assistive Reacher Environment

Can PALM learn a meaningful distribution from the interaction? Unlike other ID-based methods
like RMA, PALM does not have access to the human parameters at training time. We study whether
PALM can learn a meaningful latent space without explicitly knowing this information. We sample
training humans from UH 2 [�c,c] continuously. We train PALM with di�erent amount of prior
regularization, 2 ! from Eq. (2). We train using a recurrent window of length 4 and a batch size of
512 episodes. Additional training details can be found in the supplementary material.

We average test results using 100 episodes and visualize the results in Fig. 4.3. Given that humans are
parameterized by UH, � , the ideal embedding space looks like a ring with a small blob in the center.
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Figure 5: Top left: evaluation of PALM and baselines on in-distribution (green) and out-of-distribution (pink)
humans. Right and bottom: visualization of the latent embeddings of di�erent methods. OOD humans are
highlighted in red crosses. Best viewed electronically.

The ring corresponds to the 2D projection of UH and the blob denotes the initial part of interaction
before contact, which is indistinguishable. We find that while PALM never observes the underlying
parameter UH, it can learn a latent space that characterizes UH. Interestingly, varying the amount
of regularization qualitatively a�ects the shape of the latent space. Setting the VAE regularization
2KL = 0.1 recovers a latent space that most resembles to the ideal latent space.

4.4 Assistive Reacher Main Experiment

Experiment Setting. We use the finite Dtrain described in Sec. 4.1 and train all baselines for 200
epochs with 512 batch size. We then evaluate the trained policies on Dtest. We normalize the resulting
reward with respect to oracle reward.

Results. We average test results using 100 episodes. On in-distribution humans, we find that
all methods successfully follow the right policy that assists the human to reach their goal. This
shows that they all successfully predict the human latent information explicitly or implicitly. On
out-of-distribution humans, the methods are no longer guaranteed to predict the correct embedding.
PALM with action prediction significantly outperforms other methods. With test-time adaptation,
PALM further improves.

Visualizing the latent space. We qualitatively study generalization by visualizing the latent space as
well as the mapped embeddings of both in-distribution and out-of-distribution humans (in red crosses)
in Fig. 5. Interestingly, only PALM with action prediction can infer the “ring” structure. RMA, RNN,
LILI and RILI fail to do so. We hypothesize that because hand-crafted human IDs do not convey
the information about human policy, RMA warped the IDs in arbitrary what that are harmful for
generalization. The same happens with RILI and LILI. We hypothesize this is due to the inherent
ambiguity in reward prediction: a low reward does not necessarily recover the human policy structure.

The visualization also o�ers some insight into why having 2KL regularization is helpful for generaliza-
tion. Compare the latent space of PALM 2KL = 0 and PALM 2KL = 0.1, the latter induces a smoother
distribution where test humans are better fitting in the “missing arc” of the “ring". Further more, we
see that with test time optimization, the PALM latent space embeds the OOD human better, by filling
in more of the arc.

4.5 Assistive Itch Scratch Main Experiment

Results. We follow a similar procedure as the reach environment to train itch scratching policy, and
train for 240 epochs with 192 trajectories for batch size. As shown in Fig. 6, we observe PALM
with action prediction has better generalization performance than other baselines. We see that in the
simplified distribution D1, RILI and MLP have the best generalization performance among baselines,
yet as the complexity of the training human distribution increases, they deteriorate. Detailed results
of the ablation study are included in the appendix.
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Figure 6: In assistive itch scratching, we sample humans by di�erent itch positions and activity levels (varying
action penalty 2p). We visualize the in- and out-of-distribution humans on the two-link arm figures. We also
visualize the embedding space of PALM and RMA, where we color-code the embeddings of in-distribution
humans. Here we leave the embeddings of other baselines to supplementary material.

Figure 7: To better under extrapolations to OOD
human, which have new itch locations highlighted
in red on the left, we visualize the embeddings of
both the IND (colored) and OOD (red) humans on
the right.

Visualizing the Latent Space To further investigate
why PALM generalize better to OOD human than
RMA baselines, We visualize the latent space of the
"straight-line" distribution. As we see in Fig. 7,
PALM can capture the structure in human training
distribution as two clusters, and also correctly embed
the OOD humans distribution as a part of the upper
arm distribution. RMA-based methods, on the
other hand, can discover the structure of training
humans. Yet qualitatively, they fail the correctly
embed the OOD humans in proximity to the upper
arm distribution.

4.6 Limitations and Failure Cases

Although PALM achieves good average-case performance, it works best with humans sampled near
the training distribution. If we pair the robot with an adversarial human, PALM is likely to fail as it
lacks a fall-back safety policy.

The major limitation of PALM is the requirement of generating a human population. While we
provide one way to generate human populations based on weighted human-robot co-optimization, we
lack ways to systematically generate diverse and realistic human motions. One important direction for
future work is to incorporate real user data to create training populations. Improving the realism of
the training human population is likely a crucial step to supporting transfer to real partners.

One future direction is extending to settings with one patient and one human caregiver. While our
framework still applies, this leads to new challenges including (1) learning a joint or separate latent
space for human patient and caregiver, (2) modeling a population of human caregivers for training in
simulation, and (3) modeling communication between the human caregiver and patient.

5 Conclusion

Generalization is an important task for assistive robotics, and in this paper, we formulate a problem
setting that focuses on Out-Of-Distribution users. To that end, we contribute a framework PALM
for learning a robot policy that can quickly adapt to new partners at test time. PALM assumes a
distribution of training humans and constructs an embedding space for them by learning to predict
partner actions. We can further adapt this embedding at test time for new partners. Experiments show
that PALM outperforms state-of-the-art approaches. We are excited by the potential of using PALM
to enable robotic assistance in the future.
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