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ABSTRACT

Predicting retrosynthesis routes is a fundamental challenge in chemistry, involv-
ing the design of a sequence of chemical reactions to synthesize a target molecule
from commercially available starting materials. With a rapidly growing interest in
using large language models for planning, this work introduces an LLM-powered
framework for multi-step retrosynthesis. Our framework employs molecular-
similarity-based retrieval-augmented generation (RAG) to generate an initial ret-
rosynthesis route, which is then iteratively refined through expert feedback. The
use of molecular-similarity-based RAG improves reaction round-trip validity from
24.42% to 51.64% compared to GPT-4 with representative routes. With further
refinement, the validity increases to 89.81%, resulting in an overall route validity
of 79.5% with a perfect query success rate, comparable to traditional methods.
Our framework offers a flexible, customizable approach to retrosynthesis, and we
present a comprehensive analysis of the generated routes along with promising
future research directions in LLM-driven multi-step retrosynthesis.

1 INTRODUCTION

In recent years, large language models (LLMs) have demonstrated remarkable capabilities in plan-
ning tasks across various domains, including robotics, entertainment, and scientific problem-solving
(Hu et al.| [2024; [Prasad et al., [2024; [Sun et al.| 2023} Zhang & Lul [2024; |Tan et al.| [2024; |Zhou
et al.,|2023; Yu et al., 2024a; Shinn et al.,[2023; |Yao et al., 2023; [Lu et al., [2023; [Trinh et al.| |2024).
These approaches leverage LLMs with advanced architectures pretrained on vast datasets, employ
well-structured prompts and external expert tools, and integrate them into carefully designed sys-
tem pipelines to generate coherent plans and strategies. In many cases, LLMs have achieved results
comparable to, or even surpassing, traditional methods.

Finding a synthesis route for a given molecule is a pivotal challenge in chemistry with earliest efforts
traces back to the 1960s(Coreyl [1967). Existing approaches address this from a retrosynthesis per-
spective by framing the problem as a navigating task through an AND-OR tree rooted on the target
molecule node, as illustrated in Figure [AT] a process known as retrosynthesis planning, which will
be discussed in detail in later sections. Similar to planning in other domains, retrosynthesis requires
both high-level reasoning to guide the overall process and a deep understanding of chemistry to en-
sure that each step involves feasible actions. Given the demonstrated success of LLMs in various
fields, a compelling question arises: Can LLMs be effectively applied to discover retrosynthesis
pathways for molecules?

In this work, we introduce a novel methodology for retrosynthesis route generation, where the
entire route is generated and refined holistically, rather than being iteratively expanded step-by-
step as in traditional approaches. This approach leverages the inherent ability of LLMs to gen-
erate complex sequences, allowing for more flexibility and creativity in the initial prediction with
guidance from reference routes provided by the molecular-similarity-based RAG module. By in-
corporating RAG, our method guides LLMs to reference retrosynthesis routes from structurally
similar molecules, providing a more informed basis for initial predictions. This is particularly
important, as structurally similar molecules often exhibit analogous reactivity patterns, making
them valuable references. We propose an iterative refinement framework, ensuring that the gen-
erated route can be adjusted and optimized as a whole. The iterative refinement process is
driven by expert models, which offer targeted feedback to improve the accuracy and feasibility.
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and International Union of Pure and Applied Figure 1: An example of valid retrosynthesis route
Chemistry (IUPAC) names (Castro Nascimento generated by our framework.

& Pimentel, 2023), let alone more complex

challenges like retrosynthesis route generation.

Fine-tuning a pretrained LLM with parameters 6 on a domain-specific dataset Dgomain
{(z4,9:)}¥,, to obtain updated parameters 0* = argming & S | L£(6; z;,y;)—where L is the
loss function—can help address this issue, as demonstrated in (Fang et al., 2023 Zeng et al.| 2022;
Liu et al.| 2023c). However, this approach presents three significant challenges: (1) it is com-
putationally expensive, requiring substantial resources, (2) it is data-intensive, with a scarcity of
high-quality retrosynthesis route datasets in the community, and (3) it lacks flexibility and cannot
adapt to new knowledge without the integration of additional continual learning modules.

To overcome these limitations, an alternative approach is to leverage in-context learning (ICL). Op-
posed to the fine-tuning paradigm, ICL allows LLMs to adapt to specialized tasks by incorporating
relevant examples directly into the input prompt at inference time, i.e. yrcr = P(z,{x;,y;}|0).
where {x;,9;} C Dgomain- This approach offers a more flexible and efficient solution, without the
need for additional training or large volumes of annotated data. Ramos et al.[(2023)); Li et al.|(2023));
Edwards et al.| (2023) adapted this approach for chemistry-related tasks.

2.2 RETROSYNTHESIS PLANNING

A retrosynthesis route R, is a sequence of chemical reactions [r1, ra, . .., 7,] designed to synthesize
a target molecule ¢. Each reaction must involve chemically feasible molecules, denoted as M,
and all intermediate materials used in the synthesis, denoted as I, must be synthesizable from a
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set of commercially available building-block materials, denoted as B. Given the vast size of B
(23.1M molecules in eMoleculesP_-] as of 2019), forward reasoning from B to ¢ is inefficient. A
more commonly adopted methodology is planning-based, which begins with decomposing ¢ with
a predicted reaction r; to form Iy, where I is the set or reactants suggested by r;. At the ith
step, planning-based approaches select molecules m € I; to decompose with predicted single-step
retrosynthesis reaction r;, thereby expanding both the set of reactions R and the set of intermediates
I. This iterative process stops when all intermediates 7 € I are decomposed to molecules present in
B. This process is typically abstracted as navigating through an AND-OR tree, comprising selection,
expansion, and update phases, as illustrated in Figure[AT]

In the planning-based paradigm, explicit value functions fy : M — R, which map an intermediate
molecule to a score, are necessary to select the appropriate m € I for further decomposition.

2.3 RETHINKING MULTI-STEP RETROSYNTHESIS

Our vision is to generate complete retrosynthesis routes, R;, in a single pass, without relying on
the iterative selection-expansion phases typical of traditional methods. Although generated R; may
not represent the final route, it can be iteratively refined based on user preferences or expert knowl-
edge as holistically, with the assistance of LLMs. This process allows for flexible adjustments, as
modifications can be applied to a complete route rather than to partial sequences. In line with|Strieth-
Kalthoft et al.| (2024)’s vision of utilising both experts knowledge and data-intensive models, this
approach fosters a more dynamic, user-driven process while improving the reliability and quality of
the retrosynthesis route by enabling direct user feedback and simplifying optimization.

3 UTILIZING LLM FOR RETROSYNTHESIS ROUTE GENERATION

Pipeline Building on our vision of holistic retrosynthesis route generation, we propose a retrosyn-
thesis route generation framework that employs molecular-similarity-based RAG to generate an ini-
tial, possibly flawed retrosynthesis route R;,. This route is then iteratively refined using feedback
from expert models and local knowledge databases to form the final prediction R;. The overall
pipeline is illustrated in Figure 2] with pseudocode provided in Algorithm[I] Our approach com-
prises four key components: a molecular-fingerprint-based RAG module, an LLM-backed formatter
module, an expert-powered feedback module, and a local knowledge database module. These com-
ponents will be discussed in detail in the subsequent sections.

Molecular-similarity-based Retrieval-Augmented Generation Unlike RAG applications in the
natural language domain where the similarity metric is calculated on the embedding of texts, we
utilize the similarity of molecular fingerprints to find similar molecules and provide their synthe-
sis routes to the LLM for an initial generation.

Since directly restricting the
output format may lead to performance degradation as suggested by Tam et al.| (2024)), we provide
those reference routes as textual descriptions in the prompt as shown in Figure The textual de-
scription is generated using a rule-based method, highlighting route connectivity information. A
Chain-of-Thought(CoT)-like (Wei et al., [2023)) prompt with reference routes and specific instruc-
tions to generate textual descriptions of routes is fed into the LLM to guide the generation, the
prompt template is included in Table

LLM-backed Formatter LLM-backed formatter converts the textual description of a retrosynthe-
sis route into a format readable to human experts and compatible with expert models. Particularly,

"https://www.emolecules.com/products/building-blocks
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Figure 2: Pipeline for generating retrosynthesis routes using LLMs. The process begins with the user
inputting a target molecule (Step @). The system then queries a route database to retrieve similar
retrosynthesis routes (Step @), which guides the LLM in generating an initial prediction (Step ®).
The predicted retrosynthesis route is converted to JSON format with help from LLMs (Steps @ and
®). The JSON-formatted route is sent for expert model feedback (Step ®) to verify the validity of
the route, assessing various criteria such as route validity, reaction validity, and molecule availability.
If the route is fully valid, it is added to the route database (Step @(i)). In cases where the route is
partially valid, the pipeline queries new frontiers and back-prompts the LLM to refine the prediction
(Steps @(ii) and @(iii)). Steps @@ are repeated until a fully valid retrosynthesis route is generated
or a predefined budget is reached.

a [
_ N Fclccc2c (OCCc3cce (Ocdccc (C(F) (F)F)
\ /N N/ cn4)§§)nnc2
et - Fclccc2c (Cl)nencl2.
gt Q occClece (Oc2cec (C(F) (F)F) en2) cel,
OCCClccc (Oc2ccc (C(F) (F)F)cn2)ccl
/\/©/\©\/\ ””’\/Q/O” >>
FC(F)Fclccc(Cl)cl.
OCCCClccc (0)ccl
]
(a) Visualized example route. (b) Example route represented as a list of reaction
SMILES
The target molecule, Fclcccc2e(OCCe3ccc (Ocdccc (C(F) (F)F)cnd)ce3)nencl2,
can be synthesized by reacting the following precursor molecules:
Fcleccecc2e (Cl)nenel2 and OCCclecc (Oc2ccce (C(F) (F)F)en2)cel.
To synthesize Fclecce2e(Cl)nencl2, which is a precursor { molecule! s

reactant in the above reaction Fclccec2e (0CCc3cee (Ocdecc (€ (F)
(F)F) cn4) cc3) nencl2>>Felecee2e (C1) nencl2.0CCelecc (Oc2cce (C (F) Fclccee2c (OCCc3ccce (Ocdccce (C(F) (F)F)cend)ce3)nencl2',

F)F)cn2)ccl, since it is commercially available as a building 'children': [
block material, so no further synthesis is needed. {

'molecule': 'Fclcccc2c(Cl)ncnecl2',
To synthesize OCCclccc (Oc2ccc (C(F) (F)F)en2)ccl, which is a ‘children': []
precursor reactant in the above reaction ),
Feleccc2e (OCCe3ece (Ocdccc (C (F) {
(F)F)cnd)cc3)nencl2>>Felccee2ce (Cl) nencl2.0CCeleec (Oc2ecce (C (F) .
F)F)cn2)ccl, can be synthesized by reacting the following ‘molecule': 'OCCclece (Oc2ece (C(F) (F)F)cen2)ccl',
precursor molecules: FC(F) (F)clcec(Cl)ncl and OCCclece (0)ccl. ;Chlldfen” [
To synthesize FC(F) (F)clccc(Cl)ncl, which is a precursor 'molecule': 'FC(F) (F)clccc(Cl)ncl',
reactant in the above reaction OCCclccc (Oc2ccc (C(F) 'children': []
(F)F)cn2) ccl>>FC(F) (F)clcce (Cl)ncl.OCCclcec(0)cel, since it is Y,
commercially available as a building block material, so no (
further synthesis is needed. molecule': '0CCclece (0)cell,
To synthesize OCCclccc (0)ccl, which is a precursor reactant in "children’: []
the above reaction OCCclccc (Oc2ccc (C(F) (F)F)cn2)ccl>>FC(F) )
(F)clcee (Cl)nel.oCCelece (O) cel, since it is commercially ]
available as a building block material, so no further }
synthesis is needed. 1}
(c) Example route represented as textual descriptions. (d) Example route represented as a tree in JSON.

Figure 3: Different sequential representations of retrosynthesis routes

the route is formatted into a synthesis tree in JSON format as shown in Figure 3d} This formatter
is also in charge of completing or proofreading the generated route. For instance, the generated
description may contain a category of molecules instead of a specific molecule, the formatter is
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prompted to provide a concrete example with its knowledge. Moreover, the description may contain
ITUPAC names while expert models require the SMILES string, hence an external tool is provided to
the formatter to query PubChem for this naming conversion.

Feedback from Experts The synthesis tree is evaluated by a series of expert models for feedback,
ranging from molecule-wise to reaction-wise, and finally route-wise. Specifically, LLM-generated
routes are first analyzed for SMILES validity and node availability. This is done using RDKit and
cross-referencing with the molecule-level availability database. Any invalid SMILES or unavailable
leaf nodes are flagged in the feedback. Next, forward reaction prediction models are applied to
assess whether the proposed reactants can synthesize the target products. If the predicted reactions
are infeasible, reaction-level database and retrosynthesis prediction models are employed to gener-
ate suggestions for refining the LLM-generated routes. Route-wise feedback focuses on identifying
disconnected synthesis pathways or incorrect final products. For forward reaction prediction, we
utilize MolecularTransformer (Schwaller et al 2019), a template-free approach, and LocalTrans-
form (Chen & Jung| 2022)), a template-free approach. Retrosynthesis predictions are performed
using LocalRetro (Chen & Jung| [2021])), a template-based framework, and a one-step retrosynthesis
MLP model described in (Chen et al. [2020). Finally, a rule-based system integrates input from
local expert models to address various types of errors, as outlined in Table[A2] Note that those ex-
pert models, while performing well on individual datasets, often fail to cope with out-of-distribution
datasets as pointed out by (2024b). Hence, we also build a web-based interface to take
advice from human experts as illustrated in Figure [A3] While the framework has the capability to
incorporate feedback from human experts, this feature has not been tested in our experiments.

Local Knowledge Databases Following the feedback module, the local knowledge databases
are organized into three levels of granularity: molecule level, reaction level, and route level. The
molecule-level database contains 23 million commercially available molecules. The reaction-level
database is initialized with all retrosynthesis reactions from the training dataset and is expanded us-
ing the results from retrosynthesis prediction models. The route database starts with all routes and
sub-routes from the training dataset and is further expanded by incorporating LLM-generated routes
or sub-routes once they have passed all expert scrutinies. Sub-routes refer to the synthesis pathways
of intermediate products.

4 BENCHMARKING LLMS FOR RETROSYNTHESIS ROUTE GENERATION

4.1 EXPERIMENTAL SETUP

* Dataset We perform experiments on retro* dataset introduced by (Chen et al.|(2020) and evaluate
the performance of our framework on a slightly harder subset of its test set as shown in Table[AT]
Experiments on routes extracted from the Pistachio datasetEI are presented in

* Baseline We select Retro* (Chen et al.|2020) and EG-MCTS (Hong et al.}|2023) as our baselines.

We limit the number of expansions for baseline methods to 5 as only 5 suggested reactions are
given to LLMs and the iteration budget is set to 500 as in (Chen et all, 2020). We also fine-
tuned ChemDFM-V1.5-8B to generate retrosynthesis routes as the baseline of
fine-tuning approach, more details on the fine-tuning process can be found in Table[A]

* Metrics We employ a diverse set of both text-based and chemistry-based metrics to evaluate the
quality of the generated retrosynthesis routes, considering their similarity to reference routes as
well as their chemical feasibility, including: 1) Query Success Rate, the percentage of instances
where a route is successfully generated for a target molecule, regardless of quality; 2) ROUGE
(Recall-Oriented Understudy for Gisting Evaluation), introduced by (2004), measures the
overlap of textual elements between generated and reference outputs. Specifically, we report the
ROUGE-1 score between the string representation of the ground truth retrosynthesis tree and the
generated retrosynthesis tree, both formatted in JSON, as illustrated in Fig. @ 3) BLEU (Bilin-
gual Evaluation Understudy), proposed by |Papinent et al.|(2002), evaluates the precision of n-gram
overlaps between the generated and reference outputs. Similar to ROUGE, we calculate the BLEU
score using the string representations of the retrosynthesis trees. 4) Exact Match evaluates the per-
centage of instances where the generated retrosynthesis tree is identical to the reference tree. To

https://www.nextmovesoftware.com/pistachio.html
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ensure consistency, retrosynthesis trees are canonicalized by standardizing molecule SMILES and
sorting precursor molecules alphabetically. 5) Molecular Validity, the percentage of chemically
feasible molecules in the generated routes; 6)

7) Avg. Route Length, the average
number of reactions used in valid routes to synthesize target molecules. We extend the original
definition of round-trip (RT) validity from |Schwaller et al.| (2020), defining it as the ability to
synthesize the same products from the given reactants. We use an ensemble approach combining
database, template-free, and template-based models to evaluate RT accuracy.

* LLMs We conducted experiments using the following models: GPT-4-turbo, Claude-3.5-haiku,
and Deepseek-V2.5 ﬂ Deepseek-V2.5 is a representative of open-sourced LLM but we use its
API version. The pricing for these models varies significantly: GPT-4-turbo costs $10 per million
input tokens and $30 per million output tokens, Claude-3-Haiku is priced at $0.25 per million
input tokens and $1.25 per million output tokens, and Deepseek-V2.5 charges $0.14 per million
input tokens and $0.25 per million output tokens ﬂ

» Configuration We set the iteration budget to 5. In each iteration, local experts can provide up
to 5 valid single-step reactions for the LLMs to consider when no matching reaction is found in
the database. Unless otherwise specified, the same set of LLMs is used for both generation and
formatting tasks. In case of an unexpected error, the LLM is allowed up to 3 retry attempts.

4.2 MAIN RESULTS

Metric - - Average Length
Method Query Success Rate T  Rouge 1 Bleu? Exact Matcht Molecule Validity ¥ Route Validity 1 of Valid Route |

GPT-4-turbo 100.00% 0.7649  0.6742 14.50% 99.21% 79.50% 3.30
Claude-3-haiku 100.00% 0.7279  0.5493 15.00% 93.52% 62.50% 2.99
Deepseek-V2.5 100.00% 0.7399  0.4428 17.00% 86.76% 67.50% 2.75
Finetuned w RAG 100.00% 0.6692  0.6724 5.00% 98.48% 26.50% 1.81
Retro* 98.00% 0.7499  0.7825 30.50% 100.00% 83.00% 2.58

99.0% 0.7447  0.7554 27.50% 100.0% 82.50% 2.34
Ground truth 100.00% 1.0000  1.0000 100.00% 100.00% 100.00% 3.12

Table 1: Comparison of our proposed methods backed by different LLMs with the baseline.
Molecule validity for Retro* is measured based on their predicted routes, while in our proposed
framework, it is measured on the final predicted routes. The same applies to product similarity and
route round-trip validity. The average route length is reported only for round-trip valid routes.

We report the analysis on the route-level metrics of our proposed framework using different LLMs
against baseline and ground truth as shown in Table[I] We report several key findings as follows.

Our method is capable of generating round-trip valid retrosynthesis routes. In our proposed
framework, specifically, the one backed by GPT-4-turbo, achieves a route round-trip validity of
79.5%, which is comparable to the baseline Retro* method at 83.0%. Since our feedback and
suggestions primarily target round-trip validity, this demonstrates the effectiveness of our proposed
refinement scheme, which could be extended to other metrics with proper suggestions provided. Ad-
ditionally, the GPT-4-turbo-backed approach successfully identified several round-trip valid routes
that Retro* was unable to generate as shown in case analysis in Section [A.6]

Finetuned LLMs Understand Formatting but Struggle with Retrosynthesis Planning Nuance.
While finetuned LLMs achieve competitive Rouge and Bleu scores compared to our proposed GPT-
4-turbo-based approach (0.6692 vs. 0.7649 for Rouge and 0.6724 vs. 0.6742 for Bleu), they fail
to generate as many valid retrosynthesis routes. This suggests that while these models effectively
learn the structure and formatting of retrosynthesis trees during supervised fine-tuning, they lack
the deeper understanding required to capture the nuanced decision-making processes involved in

3We use gpt-4-turbo-2024-04-09, claude-3-haiku-20240307 and refer them as gpt-4-turbo and claude-3-
haiku for brevity.
*As of September 2024.
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retrosynthesis planning. Even chemistry-aware models, such as ChemDFM, demonstrate limited
ability to fully emulate these subtleties, emphasizing the added value of our approach.

Traditional planners still excel in identifying more reliable routes. While our framework shows
promising results in some metrics, traditional planners such as Retro* still hold a clear advantage in
terms of molecule validity and route efficiency. Retro* achieves 100% molecule validity, meaning
that every molecule in the generated routes is chemically valid, whereas GPT-4-turbo lags slightly
behind at 99.21%. Additionally, Retro* consistently produces shorter routes, with an average valid
route length of 2.58, compared to the longer average of 3.30 steps in GPT-4-turbo. This suggests
that traditional planners not only maintain better accuracy in generating valid molecules but also find
more concise and efficient retrosynthesis routes. It is worth noting that while our current framework
primarily focuses on route validity, introducing explicit feedback regarding route length could fur-
ther enhance the performance of our framework—a direction we reserve for future work. A detailed
analysis of the source of the performance differences will be presented in the following text.

4.3

RAG Quality Matters. We plot the reaction-level top-5 round-trip validity of each route generated
in the first iteration against two factors: the synthesis difficulty of the molecule, measured by its
SA score, and the quality of the retrieved examples, measured by the average molecular similarity
between the target molecule and the retrieved examples, as shown in Figure Fal Additionally, we
compute the correlation coefficient and p-value using the Spearman rank correlation test. The re-
sults indicate a weak but statistically significant positive correlation between the round-trip validity
of the generated routes and the quality of retrieval. However, no meaningful relationship is observed
between the round-trip validity and the synthesis difficulty during the first iteration. This suggests
that the performance of our proposed approach could be further enhanced by expanding the route
database with additional relevant examples for retrieval. We also conducted an ablation experiment

INSIGHTS FROM THE EXPERIMENTS
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(a) Reaction-level RT validity by molecule with re-
spect to retrieval quality and synthesis difficulty.

(b) No. of iterations it takes for LLMs to generate an
RT-valid route.

Figure 4: Details of LLM-generated RT valid retrosynthesis routes with respect to synthesis diffi-
culties or the number of iterations.

in which only representative routes were fed into GPT-4-turbo as reference routes to guide the gen-
eration process, and we report the performance in the initial guess, as shown in Table 2] Compared
to our current setting, where routes from structurally similar molecules are used as references, this
approach fails to capture the dynamics of chemical reactions and struggles to generate round-trip
valid reactions or routes (24.42% vs 51.64%). However, the molecule validity remains relatively
high (80.6% vs. 87.29%), suggesting that the LLM can understand the syntax of SMILES from
those example routes given.
A3
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Metric . . No. of
Method Rouge T Bleut Exact Match{ Molecule Validity T Route Validity 1 Valid Route

Representative-only ~ 0.5800  0.6051 0.00% 80.65% 24.42% 0
Similarity-based 0.6615  0.7048 8.00% 89.63% 51.64% 60

Table 2: Ablation study of solely using representative routes as references to the LLMs for initial
route generation.

LLMs “Cheat” but Iterative Refinement and Formatter Can Intervene. LLMs often “cheat”
during retrosynthesis route generation when faced with difficult-to-synthesize molecules or com-
plex chemical structures. They may improperly split a SMILES string into two halves, disre-
garding the chemical validity of the resulting fragments and the reaction itself. Additionally, they
might prematurely halt the process, falsely claiming that these challenging molecules are commer-
cially available to avoid further synthesis planning. As shown in Figure [5a| the LLM generates
‘COclccc(C(=0)OH)c(0O)c10’ in its response with an extra hydrogen atom, rendering it an invalid
SMILES. The LLM also falsely claims that the molecule ‘COclccc(C(=0)Cl)c(O)clO’ is com-
mercially available, despite it not being found in any database of purchasable molecules. Another
common issue is the erroneous placement of the product, either final or intermediate, back into the
reactants, indicative of a faulty or incomplete synthesis route as shown in Figure|Scl With the use of
feedback and a formatter, those ‘cheated’ responses can be corrected as demonstrated in Figure [5b|
and Figure[5d|

M Suggestions
\ \,/N O - O
B m M s not purchasable/
To synthesize ... COcleee(C(=0)Cl)e(O)clO is e LM |

commercially available.

‘ ) ‘ ‘ ‘
g

J ‘

(a) LLM produces molecule against SMILES gram- (b) With proper feedback, LLM may replace the re-
mar, claims commercial availability wrongly and  action containing invalid molecules with a round-trip

stops retrosynthesis prematurely. valid reaction.
User ‘
~ As a professional research
W assistant, ...(Formatter
! \ Prompt as in Table A4)

= LLM EEEEE————— LLM
... COclcc2e(cc10C(C)0)-
nle(Br)ne(C(=0)N(C)C(C)(C)C)c1CC2, can be ;
synthesized by reacting the following precursor Q| 1
molecules: 1. COclcc2e(cc10C(C)C)- F e~ f ——— — —
nle(Br)ne(C(=0)N(C)C(C)(C)C)c1CC2 2. AL i
COclec(OC(C)C)ee(OC)el ... 7 :

J i J

(c) LLM includes the product as a reactant in its pre-  (d) Duplicate products can be identified and removed
dicted retrosynthesis route. by the LLM-backed formatter.

Figure 5: LLMs ‘cheat’ in initial responses but are later corrected within our proposed framework.

Routes Are Indeed Refined During Iterative Refinement Process. The iterative refinement pro-
cess functions more than correcting the formats of LLM-generated routes and addressing errors, it
is also the key factor in ensuring the generation of round-trip valid routes. The distribution of the
number of iterations required for LLMs to produce a round-trip valid route is shown in Figure [4b]
Although LLMs can generate a round-trip valid route using RAG without refinement in some cases,
a significant number of valid routes are discovered only after several iterations of refinement. On
average, GPT-4-turbo requires 1.90 iterations to generate a round-trip valid route, compared to 1.92
for Claude-3-haiku and 1.55 for Deepseek-V2.5. At the reaction level, the iterative refinement pro-
cess significantly increases the reaction-level top-5 round-trip validity, as shown in Table |3] For
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routes generated with GPT-4-turbo, reaction-level round-trip validity improves from 51.64% in the
first iteration to 89.81% in the final iteration.

Balance Between Prior Chemical Knowledge and General Ability As shown in Figure b
Deepseek generates the highest number of round-trip valid routes in the first iteration, suggesting a
stronger capability in handling chemistry-specific tasks. However, the reaction validity of Deepseek-
generated routes declines as the process continues as shown in Table 3] Upon manual inspection of
the routes across iterations, it was found that the Deepseek-backed formatter may not properly con-
vert routes from textual descriptions to retrosynthesis trees in JSON format, revealing a limitation
in its general instruction following capabilities. Ablation experiments using the Deepseek-backed
generator and GPT-4-turbo-backed formatter are presented in Table[d With the GPT-4-turbo-backed
formatter, Deepseek shows significantly improved results. Molecule validity increases from 86.76%
to 93.45%, and reaction round-trip validity improves from 52.44% to 75.42%, resulting in a 5%
increase in overall route round-trip validity. This introduces another design consideration, balancing
capabilities between the chemistry domain and the general domain.

Method Deepseek-V2.5 with
Reac.lo‘n Retro*(5) GPT-4-turbo Claude-Haiku Deepseek-V2.5 GPT-4-turbo Formatter
RT Validity 1
Before Refinement 04349 51.64% 52.89% 63.67% 60.36%
After Refinement o 89.81% 67.18% 52.44% 75.42%

Table 3: Reaction-level top-5 RT validity before and after five rounds of refinements.

Metric Query  pouget Bleu} ExactMatcht Melecule  Route Lt BT iy of
Method Success Ratef ug u X Validity!  Validity? 10 dﬁmm Final Pre dic)t,ionT

Deepseek Generator
w Deepseek Formatter
Deepseek Generator
w GPT-4 Formatter

100.00% 0.7399  0.4428 17.00% 86.76% 67.50% 2.75 52.44%

100.00% 0.7541  0.6742 18.50% 93.45% 72.50% 2.85 75.42%

Table 4: The overall performance hinges on the performance of the formatter.

5 RELATED WORKS

5.1 RETROSYNTHESIS PLANNING

In the early days, from the proposal of retrosynthesis by in the 1960s to the first
decade of this century, chemists relied heavily on their expertise and rule-based methods to navigate
the complex space of chemical transformations. This approach, while effective for certain prob-
lems, was limited by the scope and scalability of human intuition and manually curated rules. The
landscape began to shift with the pioneering work of [Segler et al] 2018)), who introduced Monte
Carlo Tree Search (MCTS) augmented with neural networks. This method represented a significant
breakthrough, using machine learning to predict reaction outcomes and guide the search process,
marking one of the first instances where computational intelligence illuminated retrosynthetic plan-
ning. Building on this foundation, several advanced algorithms have since been developed to explore
the vast space of chemical transformations further. further improves the efficiency
and performance of MCTS by replacing rollouts with an experience-guided neural network. Retro*
and RetroPrimdWang et al] 2021)) employ a trained value function to steer the
expansion with A* algorithm (Hart et al] [1968]). [Schwaller et al] 2020) employs a hyper-graph
exploration strategy backed by forward reaction prediction models and synthesis difficulty scores.
Reinforcement learning-based methods, such as those proposed by [Yuan et al.| (2024); |Yu et al.
(2022); [Schreck et al] (2019), update the scoring function during self-play, allowing the model to
learn and improve its decision-making by simulating retrosynthetic pathways. updates the score
function during self-play. [Yu et al.|(2022)) applied a goal-driven actor-critic reinforcement-learning
agent to guide the expansion and [Yuan et al|(2024) utilized a critic model of route quality based
on yields. Aligned with previous efforts in route-aware retrosynthesis planning,
represented the current synthetic route as graphs to facilitate single-step retrosynthesis predictions.

Despite significant advancements in machine learning-based retrosynthesis planning, leading com-
mercial software like SYNTHIA™ (formerly Chematica (Grzybowski et al., 2018))) continues to
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integrate expert-encoded chemical rules with sophisticated algorithms. This approach underscores
the importance of combining human expertise with data-driven models to enhance the accuracy and
reliability of synthetic pathway predictions. As highlighted by [Strieth-Kalthoff et al.| (2024)), the
future of retrosynthesis planning lies in the tight cooperation between data-intensive models and
human expertise, ensuring that computational predictions are both feasible and scalable.

5.2 LLM FOR PLANNING

Recent advances in large language models (LLMs) have revolutionized the way complex planning
processes are approached on diverse tasks from internet browsing to robotics (Hu et al.| 2024 Prasad
et al.}2024;|Sun et al.,|2023;[Zhang & Lu}2024;|Tan et al., 2024;|Zhou et al., 2023; |Yu et al., 2024a;
Shinn et al., [2023; |Yao et al., 2023 [Lu et al.l [2023}; Trinh et al.| |[2024).

One diversion between LLMs and traditional planners is that LLMs may produce plans that include
impossible actions. To ground LLMs to the feasible action spaces, previous approaches provide
available actions in different granularity as external tools to agent-like planners (Prasad et al.||2024;
Hu et al., [2024) or as functions to code-style planner Sun et al.| (2023); Zhang & Lu|(2024). Some
approaches (Liu et al.| [2023a)) also use LLMs as a format converter to translate actual problem text
into sequences compatible with traditional planners and use them to solve the planning problem.

Another important designing factor in LLM planning is the utilization of feedback provided by
the underlying systems. Methods like Chain-of-thought (Wei et al.| |2023)), Least-to-most (Zhou
et al., [2023) generate plans in a single pass without taking any feedback. ReAct (Yao et al., [2023))
decouples one planning step into a dedicated reasoning stage and an acting stage, where observations
in previous steps are utilized in the reasoning stage of the current step. Adaplanner (Sun et al.| [2023)
further refines the entire plan with feedback on the execution results of the current plan from LLMs.

Albeit the rapid development of LLMs in the field of planning, [Kambhampati et al.| (2024) advo-
cated that LLMs themselves cannot perform planning due to the underlying n-gram-like generation
mechanism. Instead, Kambhampati et al.| (2024) suggested that LLMs can be utilized in the overall
planning process as auxiliary parts like format translators, summarizers whereas the soundness of the
entire planning pipeline is bounded by the experts (human beings or models) involved. Our method
aligns with this philosophy where the local experts back the soundness of generated retrosynthesis
routes, and also with the philosophy suggested by |Strieth-Kalthoff et al.|(2024).

6 CONCLUSION & FUTURE DIRECTIONS

In this work, we have introduced a new methodology for retrosynthesis route generation and pro-
posed a novel framework for leveraging LLMs with RAG and iterative refinement through expert
feedback. Our approach demonstrates the ability of LLMs to successfully generate retrosynthesis
routes with high query success rates and competitive route quality compared to traditional methods.
Notably, the iterative refinement process enhances the feasibility of generated routes, addressing the
challenges associated with round-trip validity and retrieval quality.

Despite promising results, challenges remain in balancing LLM generalization with domain-specific
chemical knowledge. Expanding the route database and enhancing feedback mechanisms could
improve performance and enable advanced expert systems with human-in-the-loop strategies. Our
experiments also indicate that instruction-based fine-tuning struggles to fully capture retrosynthesis
complexities, highlighting the need for improved tokenization or training objectives. Additionally,
the scalability of our approach is limited by latency of token generation. While we avoided sampling
for reproducibility, future work could explore sampling multiple routes in a single pass to address
this limitation.

Overall, our findings suggest that LLMs hold significant potential for automating complex retrosyn-
thesis tasks, paving the way for more efficient and scalable approaches in chemical synthesis plan-
ning. Future directions will explore the integration of dynamic knowledge updates and optimization
of LLM prompt structures to further enhance performance in out-of-distribution scenarios.

10
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REPRODUCIBILITY STATEMENT

Weights for all models are downloaded from their official repositories respectivelyﬂ We set LLMs’
sampling temperature to O during route generation for reproducibility and set the temperature to 0.2
during formatting.
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A APPENDIX

A.1 AND-OR TREE ABSTRACTION USED IN PRIOR APPROACHES

Previous retrosynthesis planning approaches abstract the problem as navigating through an AND-
OR tree as shown in

L (1) Selection ———  (2) Expansion —— (3) Update J

£ )

a0

O Molecule Nodes w\' ‘ Selected Nodes Q D Updated Nodes

O

D Reaction Nodes W) D Expanded Nodes

Figure Al: The traditional paradigm of planning-based retrosynthesis route generation represents
the process as an AND-OR tree, where molecule nodes serve as OR nodes and reaction nodes as
AND nodes. First, the planner selects a node to expand based on estimated cost. Next, a single-step
retrosynthesis reaction is applied to the molecule nodes, expanding them into an AND-OR subtree.
Finally, the cost along the pathway is updated in preparation for the next selection. The AND-OR
tree is rooted on the target molecule node and has commercially purchasable materials as leaf nodes.

A.2 DATASET STATISTICS

We report the dataset statistics in Table The test subset consists of the first 200 routes from the
test set and is slightly more challenging to synthesize compared to the overall test set.

Split No. of Routes Avg. Route Length Avg. SA Score
Train 299202 1.76 2.64
Test (all) 79529 3.04 2.77
Test (subset) 200 3.12 2.81

Table Al: Statistics of the dataset used in the experiments. SA (synthetic accessibility) Score (Ertl
& Schuffenhauer] 2009) is a heuristic metric to evaluate the difficulty of synthesis, with 10 being the
hardest and 1 being the easiest.

A.3 SUGGESTION AND FEEDBACK SCHEMA

We summarize various scenarios where the LLM may generate incorrect routes, along with corre-
sponding descriptions and suggestions for refinement, as shown in Table[A2]

A.4 PROMPTS USED

We provide the prompts used in our experiments in Table |A3[and Table Placeholders enclosed
by {{}} are used and will be filled with corresponding text during inference. While we manually
refined our prompts, there remains room for improvement, and further refinement could enhance
overall performance. We leave tasks such as automatic prompt construction for future work.
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Scenario

Description

Suggestion

Wrong Product

The final product molecule is
not the target molecule.

Round-trip valid single-step
retrosynthesis reactions for
the product molecule.

Cyclic Route

Duplicate product molecules
appear in the reactants.

NA

Disconnected Route

Invalid JSON format.

NA

Unnecessary Subroute

Molecule {mol smiles} is
already available.

You must stop its synthesis
here.

Not Round-trip Valid

Reaction {reaction smiles} is
not round-trip valid.

Round-trip valid single-step
retrosynthesis reactions for
the product molecule.

I cannot find any valid
reactions to replace it. Please
restart from its precursor.

Invalid Product Molecule

Product molecule {mol
smiles} in reaction {reaction
smiles} is invalid.

NA

Invalid Reactant Molecule

Reactants molecule(s) {mol
smiles} in reaction {reaction
smiles} is invalid.

Round-trip valid single-step
retrosynthesis reactions for
the product molecule.

Duplicate Product in
Reactants

Product molecule {mol
smiles} appears in the
reactants.

NA

Unavailable Starting Material

Starting material molecule
{mol smiles} is not
commercially available.

Round-trip valid single-step
retrosynthesis reactions for
the product molecule.

I cannot find any valid

reactions to replace it. Please

restart from its precursor.

Table A2: Feedback templates for different scenarios are provided. The text in the “description”
and “suggestion” columns will be fed to the LLM to assist in refining the route. Placeholders {} are
used, with specific molecules or reaction SMILES provided in the actual suggestions.
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System Prompt for Route Generation

As a professional chemist specialized in synthesis analysis, you are tasked with generating a full
retrosynthesis route for a target molecule provided in SMILES format.

A retrosynthesis route is a series of retrosynthesis reactions that starts from the target molecule
and ends with some commercially purchasable compounds.

To assist you, example retrosynthesis routes that are either close to the target molecule or repre-
sentative will be provided.

Your responses will receive reaction-wise feedback from chemical experts based on the validity
of SMILES inside each reaction and the round-trip validity of the reaction.

A round-trip valid reaction means that it’s predicted to produce the products in the reaction given
the reactants.

You will start with the provided examples and iteratively improve your retrosynthesis route based
on the feedback.

Here’s the Step-by-Step Breakdown for this task:

Step 1: Identify the target molecule.

Step 2: Decompose the target molecule into precursor molecules. Note that precursor molecules
are not necessarily smaller and simpler to synthesize, you should prioritize those molecules that
you already know how to synthesize,even though they might be harder to synthesize.

Step 3: For each precursor molecule, repeat the decomposition process until the simplest starting
materials are reached.

The decomposition process should be recursive, where each precursor can further break down
into its own precursors.

Here is the format of target molecule provided:
<target_molecule>

{
TARGET_MOLECULE
1}

</target_molecule>

Here is the format of example retrosynthesis routes:
<example_routes>

EXAMPLE ROUTES
H

</example_routes>

After your initial attempt, you will receive feedback in the following format:
<feedback>

FEEDBACK
</feedback>
Based on this feedback, generate an improved retrosynthesis route, again following the same

format as shown in the examples.
Only present the retrosynthesis route and nothing else.

Table A3: System Prompt for Retrosynthesis Route Generation with Refinements

17



Under review as a conference paper at ICLR 2025

Retrieved Routes Templates

{

“TargetMolecule’:
{{example_mol} }
“RetrosynthesisRoute™:
{{example_route} }

JSON Formatter Prompt Template and Template for Retrieved Routes

Instruction

As a professional research assistant, it is your job to convert the text description of a retrosyn-
thesis route into a tree in JSON format.

The given description may not be complete, it is also your job to complete the reactions in the
route with the correct retrosynthesis reactions.

No reagent information is required, please exclude them from your responses.

In the case that [TUPAC names appear in the description, use provided tool to convert it to a
SMILES string.

Output format

Your output should be in JSON format like
{
“molecule”: “TARGET_MOLECULE_SMILES”,
“children”: [
{
“molecule”: “PRECURSOR_1_SMILES”,
“children”:

]

I3
{
“molecule”: “PRECURSOR_2_SMILES”,
“children”: [
“molecule”: “SUB_PRECURSOR_1_SMILES”,
“children”: [
]
}
]
}

]

where key “molecule” is the synthesis result of all molecules in the key “children”, in a recur-
sive manner.

Key “molecule” must be a valid SMILES representation of a valid molecule, you can leave
“children” as an empty list if it’s commercially available.

User’s input

Input route description:

{{input}}

Table A4: Prompt Template for JSON Formatter
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A.5 PSEUDOCODE OF PROPOSED APPROACH

Algorithm 1: Retrosynthesis Route Generation with LLM
Input: Target Molecule ¢; Iteration Budget N; Frozen Pretrained LLM with Weights 6;
Output: Predicted Retrosynthesis Route R

(1) GenerateRoute (t, N)

(2) i+ 0;
(3) whilei > N do
/+ Molecular-Similarity—-Based RAG */
€)) if - = 0 then
) {Rg;m} < Retrieve(DBRoute, t);
@ | | {R%n} < Descrive({R2,,});
(7) Rl « f(template_gen(t, { R, })|0);
t)) else
9) ‘ R « f(template_gen(t,{RL, }, RY |, suggestion;_1|0) ;
(10) end
/* LLM-backed Formatter */
11) R «+ f(templateformat(R?)W);
/+ Suggestion from Expert Models */
12) suggestion;, frontier; < suggest(R});
/* Local Knowledge Base Update */

(13) if frontier; = @ then

// R is valid
14) Update D BRroqyte With R;-’ ;
15) break;
(16) else
a7 ift ¢ frontier; then

// R;’ is Partially Valid

(18) sub_traj < {};
19) for each new target t' in frontier; do
(20) if t' € DB.ubroutes then
(21) | sub_traj[t'] < DBsuproutes[t']
(22) else
(23) sub_traj[t'] + GenerateRoute(t,max(N —1,0));
(24) DBiubroutes[t']  sub-traj[t']
(25) end
(26) end
(27 R! « Insert(R/, sub_traj);
(28) suggestion; <— suggest(RiJ);
(29) end
(30) end
(31) 11+ 1;
(32) end

(33) Return R/;

A.6 CASE ANALYSIS

We present three case studies: where the LLM generates a round-trip valid route while Retro* fails
to (1) generate a valid route or (2) even provide a prediction, and (3) where Retro* generates a
round-trip valid route while the LLM fails to generate a valid route, as illustrated in Figure

In the first case, Retro* may fail to generate a round-trip valid route due to an invalid reaction in one
step of the retrosynthesis process, as shown in Figure [AZa] In contrast, the LLM corrects its initial
prediction in the first trial and successfully generates a fully valid round-trip route.
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It is also possible for Retro* to exhaust its entire iteration budget (500 iterations), as demonstrated
in Figure[A2b] In this case, Retro* spends excessive resources on subroutes that lead to dead ends,
such as ‘CIP(CDH(CH(CI)CI’ and ‘O=S(CICI’, for which no expert can provide any valid single-step
retrosynthesis suggestion. However, the LLM overcomes this challenge by leveraging expert advice
to generate a valid route. Upon manually examining the suggestions that contributed to the valid
route, we found that all of them came from the same single retrosynthesis model used by Retro*.
This suggests that the LLM can effectively select a single-step model leading to overall success,
even without relying on an explicit value function.

The LLM may also encounter dead ends, as shown in Figure where several attempts are made
to synthesize ‘CCOC(=0)c1c(O)c2cc(Br)c(C)c(C)c2oc1=0’. However, it is worth noting that, com-
pared to the 500 iteration budget used by Retro*, we only utilized 5 iterations to refine the route.
With additional iterations, the issue may potentially be resolved.

A.7 USER INTERFACE FOR THE RETROSYNTHESIS AGENT

We showcase the user interface of our proposed framework, hosted on a local server, as illustrated in
Figure[A3] The user inputs the SMILES representation of the target molecule, and RAG is performed
implicitly. Once the LLM generates a route prediction, the user can either provide feedback directly
or opt for ‘surrogate’ feedback generated by local expert models. This process continues until a
configurable iteration budget is reached or a valid route is found.

A.8

We rebuilt our route database using MinHashed Atom-Pair for Chiral (MAP4C), a chiral-aware
molecular fingerprint described by |Orsi & Reymond| (2024) and evaluated its impact on Retrieval-
Augmented Generation (RAG) performance. Using DeepSeek, we tested this approach on the
Retro* dataset after a single iteration, presenting empirical results highlighting molecular finger-
prints’ influence on RAG efficacy.

Metric - . - .
Retrieval Scheme Rouge Bleu Exact Match Molecule Validity T Reaction RT Validity T No. of RT Valid Routes?

No RAG at all 0.4485  0.2900 0.00% 58.31% 30.00% 1
Morgan Fingerprints 0.6605 0.5611 9.14% 87.68% 46.20% 78
MAPA4C Fingerprints 0.6442  0.5921 7.54% 89.55% 43.21% 36

Table AS: Ablation study of using chiral-aware molecular fingerprints for similarity calculation in
retrieval.

A.9 EVALUATION ON CHEMISTRY-AWARE LLMS

We evaluated ChemDFM-v1.5-8B (Zhao et al., 2024) for retrosynthesis route generation under four
configurations: (1) Vanilla, (2) fine-tuned, (3) RAG-enhanced, and (4) fine-tuned with RAG. Fine-
tuning was performed on the Retro* training dataset to generate JSON-formatted routes from prod-
uct SMILES, using low-rank adapters to reduce trainable parameters. In RAG settings, reference
routes were extracted as described in the main text and provided only during inference. We report
the evaluation results in Table It is worth noting that while fine-tuned LLMs achieve similar
results in text-related metrics like BLEU and Rouge, meaning fine-tuned LLMs possess the ability
to produce retrosynthesis trees similar to the ground truth as provided for supervised fine-tuning,
they struggle to generate valid routes, even pretrained with chemistry knowledge. Compared to our
approach without refinement,

Table A6: Details of supervised fine-tuning baseline.
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Figure A2: Three case analyses were visualized. Molecules in green boxes are commercially avail-
able, while those in red boxes are not. Reactions in black indicate round-trip validity, whereas those
in red do not.
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¢ Retrosynthesis Agent

Hi, I'm a chatbot who can generate retrosynthesis routes given a product molecule SMILES. How

can | help you?

COC(=0)clccenlCCF

{"molecule": "COC(=0)clcccn1CCF", "children": [{"molecule": "FCCI", "children": [J}, {"molecule":

"COC(=0)clcecc[nH]1" "children": [1}]}

surrogate

(&) <reaction feedback> Reaction COC(=0)clcccn1CCF>>FCCI.COC(=0)clccc[nH]1 is top-5 round-
trip valid and all SMILES inside are valid. This reaction should be valid in practice. </reaction

feedback>

Figure A3: Demonstration of Web UI

Metric Query - . - - Average Length

m Success Rate? Rouget BLEUtT Exact Match? Molecule Validity T Reaction RT Validity T Route Validity] of Valid Route |
Vanilla 8.50% 0.3545 0.4771 0.00% 0.00% 0.00% 0.00% NA
Vanilla w RAG 5.50% 0.3805  0.4738 0.00% 0.00% 0.00% 0.00% NA
Finetuned 100.00% 05513 0.6948 10.00% 98.28% 73.50% 26.00% 1.87
Finetuned w RAG 100.00% 0.6692  0.6724 9.50% 98.48% 73.83% 26.50% 1.81

Table A7: Performance of local finetuned LLMs on retro* dataset.
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A.10

We extract synthesis routes from the Pistachio dataset after applying rule-based filtering to remove
reactions that are either incomplete or uninformative. Following the approach of |Chen et al.| (2020),
we construct the training dataset of routes using reactions from the training set, the testing dataset
of routes using reactions from both the training and testing sets, and the validation dataset of routes
using reactions from both the training and validation sets. We further remove duplicate routes in
testing or validation datasets that appear in the training set, and filter out routes that are directly
synthesised by starting materials. We assess our model on 50 routes in the testing dataset. The
statistical details of the Pistachio dataset are provided in Table [A8] One thing to note that our
filtering includes removing non-necessary reactants from the reactions (reactants with molecular
similarity compared to the product less than a threshold) and also breaking multi-products reaction
into several reactions, together with the distribution shifts from USPTO to Pistachio, expert models
may not perform well on the new route dataset. We present the results on the Pistachio dataset in
Table Our proposed method, using Deepseek, achieves a higher ROUGE score but a lower
BLEU score. Upon careful examination, the low BLEU score is attributed to hallucinations by the
LLM, which generate unwanted lengthy sequences for certain molecules. Additionally, our method
achieves a higher exact match rate, primarily due to the overlapping reactions used in constructing
different dataset splits. Lastly, we observe a comparable route validity between our approach and
EG-MCTS.

Split No. of Routes Avg. Route Length Avg. SA Score
Train 73256 2.96 291
Validation 343 2.95 3.22
Test (all) 308 3.00 3.19
Test (subset) 50 2.76 3.18

Table A8: Statistics of Pistachio dataset used in the experiments. SA (synthetic accessibility) Score
(Ertl & Schuffenhauer] 2009) is a heuristic metric to evaluate the difficulty of synthesis, with 10
being the hardest and 1 being the easiest.

Metric uer e L. Average Length
m Sucgss I{am Rougel BLEUt Exact Match? Molecule Validity © Route Validity! ofVali% Rouf’e .

Retro* 94.00% 0.7177  0.5281 6.00% 100.0% 72.00% 3.28
EG-MCTS 92.00% 0.6985  0.5285 6.00% 100.0% 56.00% 1.96
Deepseek 100.00% 0.7479  0.2682 46.00% 92.59% 60.00% 2.57

Table A9: Performance on pistachio route dataset.
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