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Abstract

Diffusion models are powerful generative models
but suffer from slow sampling, often taking 1000
sequential denoising steps for one sample. As
a result, considerable efforts have been directed
toward reducing the number of denoising steps,
but these methods hurt sample quality. Instead
of reducing the number of denoising steps (trad-
ing quality for speed), in this paper we explore
an orthogonal approach: can we run the denois-
ing steps in parallel (trading compute for speed)?
In spite of the sequential nature of the denois-
ing steps, we show that surprisingly it is possible
to parallelize sampling via Picard iterations, by
guessing the solution of future denoising steps and
iteratively refining until convergence. With this
insight, we present ParaDiGMS, a novel method
to accelerate the sampling of pretrained diffusion
models by denoising multiple steps in parallel.
ParaDiGMS is the first diffusion sampling method
that enables trading compute for speed and is
even compatible with existing fast sampling tech-
niques such as DDIM and DPMSolver. Using
ParaDiGMS, we improve sampling speed by 2-4x
across a range of robotics and image generation
models, giving state-of-the-art sampling speeds
of 0.2s on 100-step DiffusionPolicy and 16s on
1000-step StableDiffusion-v2 with no measurable
degradation of task reward or FID /CLIP score.

1. Introduction

Diffusion models ( , ; s
; s ) have demonstrated powerful mod-
eling capabilities for image generation ( , ;
; ), molecular gen-

eration ( , ), robotic policies ( s :
, ), and other applications. The main limitation
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of diffusion models, however, is that sampling can be in-
conveniently slow. For example, the widely-used Denoising
Diffusion Probabilistic Models (DDPMs) ( , )
can take 1000 denoising steps to generate one sample. In
light of this, many works like DDIM ( , )
and DPMSolver ( , ) have proposed to improve
sampling speed by reducing the number of denoising steps.
Unfortunately, reducing the number of steps can come at
the cost of sample quality.

We are interested in accelerating sampling of pretrained
diffusion models without sacrificing sample quality. We
ask the following question: rather than trading quality for
speed, can we instead trade compute for speed? That is,
could we leverage additional (parallel) compute to perform
the same number of denoising steps faster? At first, this
proposal seems unlikely to work, since denoising proceeds
sequentially. Indeed, naive parallelization can let us gen-
erate multiple samples at once (improve throughput), but
generating a single sample with faster wall-clock time (im-
proving latency) appears much more difficult.

We show that, surprisingly, it is possible to improve sample
latency of diffusion models by computing denoising steps
in parallel. Our method builds on the idea of Picard itera-
tions to guess the full denoising trajectory and iteratively
refine until convergence. Empirically, the number of itera-
tions for convergence is much smaller than the number of
steps. Therefore, by computing each iteration quickly via
parallelization, we sample from the diffusion model faster.

Our method ParaDiGMS (Parallel Diffusion Generative
Model Sampling) is the first general method that allows
for the tradeoff between compute and sampling speed of
pretrained diffusion models. Remarkably, ParaDiGMS is
compatible with classifier-free guidance ( ,
) and with prior fast sampling methods ( ,
; , ) that reduce the number of denoising
steps. In other words, we present an orthogonal solution
that can form combinations with prior methods (which we
call ParaDDPM, ParaDDIM, ParaDPMSolver) to trade both
compute and quality for speed.

We experiment with ParaDiGMS across a large range of
robotics and image generation models, including Robosuite
Square, PushT, Robosuite Kitchen, StableDiffusion-v2, and
LSUN. Our method is strikingly consistent, providing an
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improvement across all tasks and all samplers (ParaDDPM,
ParaDDIM, ParaDPMSolver) of around 2-4x speedup with
no measurable decrease in quality on task reward, FID score,
or CLIP score. For example, we improve sample time of
100-step action-generation of DiffusionPolicy from 0.74s to
0.2s, and 1000-step image-generation of StableDiffusion-v2
on A100 GPUs from 50.0s to 16.2s. By enabling these faster
sampling speeds without quality degradation, ParaDiGMS
can enhance exciting applications of diffusion models such
as real-time execution of diffusion policies or interactive
generation of images.

2. Background

DDPM typically uses a 7" = 1000 step discretization of
the SDE. These denoising steps are computed sequentially
and require a full pass through the neural network py each
step, so sampling can be extremely slow. As a result, pop-
ular works such as DDIM ( s ) and DPM-
Solver ( , ) have explored the possibility of
reducing the number of denoising steps, which amounts
to using a coarser discretization with the goal of trading
sample quality for speed.

Empirically, directly reducing the number of steps of the
stochastic sampling process of DDPM hurts sample quality
significantly. Therefore many works ( s ;b;

, ) propose using an Ordinary Differential Equa-
tion (ODE) to make the sampling process more amenable
to low-step methods. These works appeal to the probability
flow ODE ( s ), a deterministic process
with the property that the marginal distribution p(x;) at
each time ¢ matches that of the SDE, so in theory sampling
from the probability flow ODE is equivalent to sampling
from the SDE, with z7 ~ N(0,1):

dm; = ( F(t)ms — %gZ(t)Vm log qt(m)> dr.

drift s

By sampling from the ODE instead of the SDE, works
such as DDIM and DPMSolver (which have connections to
numerical methods such as Euler and Heun) can reduce the
quality degradation of few-step sampling (e.g., 50 steps).

As a summary, the current landscape of sampling from pre-
trained diffusion models is comprised of full-step DDPM or
accelerated sampling techniques such as DDIM and DPM-
Solver that trade quality for speed by reducing the number
of denoising steps.

Notation We write [a, b] to denote the set {a,a+1,...,b}
and [a, b) to denote the set {a,a + 1,...,b— 1} forb > a.
We write @, to denote the set {x; : i € [a,b)}. Since our
focus is on sampling, when presenting our method, we
denote time as increasing for the reverse process.

3. Parallel computation of denoising steps

Rather than investigating additional techniques for reducing
the number of denoising steps, which can lead to quality
degradation, we look towards other approaches for accel-
erating sampling. In particular, we investigate the idea of
trading compute for speed: can we accelerate sampling by
taking denoising steps in parallel? We clarify that our goal
is not to improve sample throughput — that can be done
with naive parallelization, producing multiple samples at
the same time. Our goal is to improve sample latency — min-
imize the wall-clock time required for generating a single
sample by solving the denoising steps for a single sample
in parallel. Lowering sample latency without sacrificing
quality can greatly improve the experience of using dif-
fusion models, and enable more interactive and real-time
generation applications.

Parallelizing the denoising steps, however, seems challeng-
ing due to the sequential nature of existing sampling meth-
ods. The computation graph has a chain structure (Fig. 1),
so it is difficult to propagate information quickly down the
graph. To make headway, we present the method of Picard
iteration, a technique for solving ODEs through fixed-point
iteration. An ODE is defined by a drift function s(x, t) with
position and time arguments, and initial value xy. In the
integral form, the value at time ¢ can be written as

t
T, = T +/ s(@y, u)du.
0

In other words, the value at time ¢ must be the initial value
plus the integral of the derivative along the path of the
solution. This formula suggests a natural way of solving
the ODE by starting with a guess of the solution {x¥ : 0 <
t < 1} at initial iteration k& = 0, and iteratively refining by
updating the value at every time ¢ until convergence:

(Picard Iteration)

¢
xptl = gk +/ s(zh u)du. (1
0

Under mild conditions on s, such as continuity in time
and Lipschitz continuity in position as in the well-known
Picard-Lindelof theorem, the iterates form a convergent
sequence, and by the Banach fixed-point theorem, they con-
verge to the unique solution of the ODE with initial value x
(?)cf.][]coddington1956theory. To perform Picard iterations
numerically, we can write the discretized form of Eq. (1)
with step size 1/T, for t € [0, T7:

t—1 .
1 7
ot = gk 4 7 Z s(xk, T)' )
=0

Examining the iterative update rule in Eq. (2), we see that an
update at time ¢ depends on all previous timesteps instead of
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Figure 1: Computation graph of sequential sampling by
evaluating pg(x;41|®;), from the perspective of reverse
time.
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(a) Compute the drift of :cf:tﬂ, on a batch
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cumulative drift of points in the window

Figure 2: Computation graph of Picard iterations, which
introduces skip dependencies.

batch window
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Figure 3: ParaDiGMS algorithm: accelerating an ODE solver by computing the drift at multiple timesteps in parallel. During

iteration k, we process in parallel a batch window of size p spanning timesteps [t,t + p). The new values at a point x
updated based on the value mf at the left end of the window plus the cumulative drift 1/7°

k+1
t+j

s(x¥,i/T) of points in

are

t+j—1
i=t

the window. We then slide the window forward until the error is greater than our tolerance, and repeat for the next iteration.

just the previous timestep ¢ — 1. This amounts to introducing
skip dependencies in the computation graph (Fig. 2), which
enables information to propagate quickly down the chain
and accelerate sampling.

The key property of interest is that each Picard iteration can
be parallelized by performing the expensive computations
{s(xF,%) i €[0,T)} in parallel and then, with negligible
cost, collecting their outputs into prefix sums. Given enough
parallel processing power, the sampling time then scales
with the number of iterations K until convergence, instead

of the number of denoising steps 7T'.

The number of iterations until convergence depends on the
drift function s. More concretely, sequential evaluation
can be written as a nested evaluation of functions x},; =
hi(...ha(h1(x0))) on the initial value &y where h;(x) =
x + s(x,i/T)/T. If, for all timesteps, the drift at the true
solution can be obtained using the drift at the current guess,
then the parallel evaluation will converge in one step.

Proposition 1. (Proof in Appendix C)
s(ak, =) =s (hi_l(. (b (0))), ;) Vi<t

k+1 _ %
= Xy =Xy

It is also easy to see that even in the worst case, exact con-
vergence happens in K < T iterations since the first k

points xg.;; must equal the sequential solution xf),; after k
iterations. In practice, the number of iterations until (ap-
proximate) convergence is typically much smaller than 7,
leading to a large empirical speedup.

The idea of Picard iterations is powerful because it enables
the parallelization of denoising steps. Remarkably, Picard
iterations are also fully compatible with prior methods for
reducing the number of denoising steps. Recall that the
drift term s(x,t/T)/T can be written as h;(x;) — x; and
approximated using Euler discretization as pg(¢11|x:) —
T, but it can also be readily approximated using higher-
order methods on py. In our experiments, we demonstrate
the combination of the two axis of speedups to both reduce
the number of steps and compute the steps in parallel

4. Experiments

We experiment with our method ParaDiGMS on a suite of
robotic control tasks ( , ) including Square (

s ), PushT, Franka Kitchen ( s ),
and high-dimensional image generation models includ-
ing StableDiffusion-v2 ( , ) and LSUN
Church and Bedroom ( , ). We observe a con-
sistent improvement of around 2-4x speedup relative to the
sequential baselines without measurable degradation in sam-
ple quality as measured by task reward or FID/CLIP score.
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Table 1: Robosuite Square with ParaDiGMS using a tolerance of 7 = 0.1 and a batch window size of 20 on a single A40
GPU. Reward is computed using an average of 200 evaluation episodes, with sampling speed measured as time to generate

400/8 = 50 samples.

Sequential ParaDiGMS
Robosuite | Model Time per | Model Parallel Time per
Square Evals Reward Episode | Evals Iters Reward Episode Speedup
DDPM 100 0.85 +£0.03 37.0s 392 25 0.85 +£0.03 10.0s 3.7x
DDIM 15 0.83 £0.03 5.72s 7 0.85 £0.03 3.58s 1.6x
DPMSolver 15 0.85£0.03 5.80s 6 0.83 £0.03 3.28s 1.8x

Efficiency of ParaDDPM on StableDiffusion-v2, A100
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(b) Over 3x net wall-clock speedup for 1000-step
ParaDDPM

Figure 4: StableDiffusion-v2 generating text-conditioned
768x768 images by running ParaDDPM over a 4x96x96
latent space for 1000 steps, on A100 GPUs. In Fig. 4a
algorithm inefficiency in gray denotes the relative number
of model evaluations required as the parallel batch size
increases. The colored lines denote the hardware efficiency
provided by the multi-GPUs. As the batch size increases,
the hardware efficiency overtakes the algorithm inefficiency.
In Fig. 4b we normalize the algorithm inefficiency to 1, to
show the net wall-clock speedup of parallel sampling.

5. Conclusion

Limitations Since our parallelization procedure requires
iterating until convergence, the total number of model eval-
uations increases relative to sequential samplers. Therefore,
our method is not suitable for users with limited compute
who wish to maximize sample throughput. Nevertheless,
sample latency is often the more important metric. Trad-
ing compute for speed with ParaDiGMS makes sense for
many practical applications such as generating images inter-
actively, executing robotic policies in real time, or serving
users who are insensitive to the cost of compute.

Our method is also an approximation to the sequential sam-
plers, since we iterate until the errors fall below some tol-
erance. However, we find that using ParaDiGMS with the
reported tolerances results in no measurable degradations
of sample quality in practice across a range of tasks and
metrics. In fact, on more difficult metrics such as FID score
on LSUN Church, ParaDDPM gives both higher sample
quality and faster sampling speed than 500-step DDIM.

Discussion We present ParaDiGMS, the first accelerated
sampling technique for diffusion models that enables the
trade of compute for speed. ParaDiGMS improves sam-
pling speed by using the method of Picard iterations, which
computes multiple denoising steps in parallel through iter-
ative refinement. Remarkably, ParaDiGMS is compatible
with existing sequential sampling techniques like DDIM
and DPMSolver, opening up an orthogonal axis for opti-
mizing the sampling speed of diffusion models. Our ex-
periments demonstrate that ParaDiGMS gives around 2-4x
speedup over existing sampling methods across a range of
robotics and image generation models, without sacrificing
sample quality. As GPUs improve, the relative speedup of
ParaDiGMS will also increase, paving an exciting avenue
of trading compute for speed that will enhance diffusion
models for many applications.
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A. Additional Background

Diffusion models ( , ; , ) such as Denoising Diffusion Probabilistic Models (DDPM)
were introduced as latent-variable models with a discrete-time forward diffusion process where ¢(xy) is the data distribution,
« is a scalar function, with latent variables {x; : ¢ < T'} defined as

q(xi|zo) = N(2t; Valt) o, (1 — at))I).

By setting a(T') close to 0, (1) converges to N (0, I), allowing us to sample data o by using a standard Gaussian prior
and a learned inference model py(c:—1|x+). The inference model py is parameterized as a Gaussian with predicted mean
and time-dependent variance o2, and can be used to sample data by sequential denoising, i.e., pp(z¢) = Hthl po(Ti_1|xt).

pg(mt_1|$t) :N(mt—l;ue(mt)7at21) (3)

Many works ( ; , ) alternatively formulate diffusion models as a Stochastic Differential
Equation (SDE) by wrltlng the forward diffusion process in the form

dzy = f(t)zidt + g(t)dwe,  xo ~ q(@0), (4)
with the standard Wiener process w;, where f and g are position-independent functions that can be appropriately chosen
to match the transition distribution g(x|®o) ( , ; , ). These works use an important result
from ( , ) that the reverse process of Eq. (4) takes on the form, with 1 ~ g(x 1),

dz; = (f(t)x; — g (t)Va log qi(x)) dt + g(t) dad, )
~~
drift s Tt

where w; is the standard Wiener process in reverse time. This perspective allows us to treat the sampling process of DDPM
as solving a discretization of the SDE where the DDPM inference model pg can be used to compute an approximation
po(xi_1|x) — @ Of the drift term in Eq. (5).

B. Implementing ParaDiGMS

Implementing Picard iteration on diffusion models presents a few practical challenges, the most important being that of GPU
memory. Performing an iteration requires maintaining the entire array of points .7 over time, which can be prohibitively
large to fit into GPU memory. To address this, we devise the technique of (mini-)batching which performs Picard iteration
only on points ;.; 1, inside a window of size p that can be chosen appropriately to satisfy memory constraints. Moreover,
instead of iterating on x;.; 1, until convergence of the full window before advancing to the next window, we use a sliding
window approach to aggressively shift the window forward in time as soon as the starting timesteps in the window converge.

One other issue is the problem of extending Picard iteration to SDEs, since we rely on the determinism of ODEs to converge
to a fixed point. Fortunately, since the reverse SDE (Eq. (5)) has position-independent noise, we can sample the noise
up-front and absorb these fixed noises into the drift of the (now deterministic) differential equation. Note that the resulting
ODE is still Lipschitz continuous in position and continuous in time, guaranteeing the convergence of Picard iteration.

Finally, we need to choose a stopping criterion for the fixed-point iteration, picking a low tolerance to avoid degradations of
sample quality. A low enough tolerance ensures that the outcome of parallel sampling will be close to the outcome of the
sequential sampling process in total variation distance.

Proposition 2. (Proof in Appendix D) Assuming the iteration rule in Eq. (2) has a linear convergence rate with a factor
> 2, using the tolerance ||x — xX1||> < 46207 /T? ensures that samples of X are drawn from a distribution with total
variation distance at most € from the DDPM model distribution of Eq. (3).

The above is based on a worst-case analysis, and in our experiments, we find that using a much more relaxed tolerance such
as' Hmk'H x¥||?2 < 702, with 7 = 0.1 and D being the dimensionality of data, gives reliable speedups without any
measurable degradation in sample quality.

"For ODE methods (DDIM, DPMSolver) we still pick a tolerance value relative to the noise variance of the corresponding SDE of
DDPM.
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Algorithm 1: ParaDiGMS: parallel sampling via Picard iteration over a sliding window

Input: Diffusion model py with variances atz, tolerance 7, batch window size p, dimension D
Output: A sample from py

1 t,k<+ 0,0

2 z; ~N(0,02I) Vie[0,7) /1 Up-front sampling of noise (for SDE)
3 mg ~ N(0,1), azf — wlg Vi € [1, p] /I Sample initial condition from prior
4 whilez; T do

5 Yitj < Do (mer]-, t+7j)— mf+j V5 € [0,p) /I Compute drifts in parallel
6 atfijl_,’_l — :Bf + Zf:i vi + Z::i z; Vje0,p) /I Discretized Picard iteration
7 €ITor $— {% Hmfrjl - :Berj |2:Vj€l,p)} /1 Store error value for each timestep
8 stride <— min ({ Jj @ errorj > TO'JZ} u {p}) /1 Slide forward until we reach tolerance
9 w?ﬁ;ﬂ — wﬁ—; Vj € [1, stride] // Tnitialize new points that the window now covers
10 t < t + stride, k+—k+1

1 p < min(p, T —t)

-
Return: x7

In Algorithm 1 we present the complete procedure of ParaDiGMS, incorporating sliding window over a batch, up-front
sampling of noise, and tolerance of Picard iterations (Fig. 3). The loop starting on Line 4 performs a sliding window over
the batch of timesteps [¢, ¢ + p) in each iteration. Line 5 computes the drifts, which is the most compute-intensive part of
the algorithm, but can be efficiently parallelized. Line 6 obtains their prefix sums in parallel to run the discretized Picard
iteration update, and Lines 7-8 check the error values to determine how far forward we can shift the sliding window.

The ParaDiGMS algorithm is directly compatible with existing fast sequential sampling techniques such as DDIM and
DPMSolver, by swapping out the Euler discretization in Lines 5-6 for other solvers, such as higher-order methods like Heun.
As we see in our experiments, the combination of reducing the number of steps and solving the steps in parallel leads to
even faster sample generation.

C. Proof of Proposition 1

Proof. Assume by induction that ¥ = 27, Then

t .
1 7
il =2+ 7 ) s )

i=0
t—1
1 1 1 .t
= [z6 + T - s(xy, T)] + fs(mt ) f)
1 t
- 7]5€+1 + Ts(wfv T)
1

D. Proof of Proposition 2

Proof. A linear convergence rate with factor > 2 ensures our error from the solution x} given by sequential sampling at
each timestep ¢ is bounded by the chosen tolerance.
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Then, for each timestep ¢, since the inference model samples from a Gaussian with variance o2, we can bound the total

variation distance.

1
DTV(N(wt vUtI) |\/\/(:Bt, I)< \/QDKL(N(wt ,atI HN(:Bt, I))
_ 2 — mt”Z (e _wt P < £
4o? 4o? - T

Finally, we make use of the data processing inequality, that Dy (f(P) || f(Q)) < Dy (P || @), so the total variation
distance d, between the sample and model distribution after ¢ timesteps does not increase when transformed by pg. Then by
the triangle inequality we get that d; < d;_1 + €¢/T. giving a total variation distance dr of at most T'¢ /T = e for the final
timestep 7. O

E. Experimental Details
E.1. Diffusion policy

Recently, a number of works have demonstrated the advantages of using diffusion models in robotic control tasks for flexible
behavior synthesis or robust imitation learning on multimodal behavior ( , ; s ; s

; , ). We follow the setup of DiffusionPolicy ( s ), which is an imitation learning framework
that models action sequences. More specifically, DiffusionPolicy first specifies a prediction horizon h and a replanning
horizon r. At each environment step [, DiffusionPolicy conditions on a history of observations and predicts a sequence of
actions {a;.;4n }- Then, the policy executes the first r actions {a;.;4 } of the prediction. Therefore, for an episode of length
L and scheduler with T steps, executing a full trajectory can take T x L/r denoising steps over a dimension of |a| X h,
which can be inconveniently slow.

We examine our method on the Robosuite Square, PushT, and Robosuite Kitchen tasks. Each environment uses a prediction
horizon of 16, and replanning horizon 8. The Square task uses state-based observations with a maximum trajectory length of
400 and a position-based action space of dimensionality 7. This means the diffusion policy takes 50 samples per episode,
with each sample being a series of denoising steps over a joint action sequence of dimension 112. The PushT task also uses
state-based observations and has a maximum trajectory length of 300 and action space of 2, which results in 38 samples
with denoising steps over a joint action sequence of dimension 32. Lastly, the Kitchen task uses vision-based observations
and has a maximum trajectory length of 1200 with an action space of 7, giving 150 samples per episode and denoising steps
over a joint action sequence of dimensionality 112. For all three tasks we use a convolution-based architecture.

The DDPM scheduler in DiffusionPolicy ( , ) uses 100 step discretization, and the DDIM/DPMSolver schedulers
use 15 step discretization. For example, a trajectory in the Kitchen task requires 1200/8 = 150 samples, which amounts to
150 x 100 = 15000 denoising steps over an action sequence of dimensionality 112 with the DDPM scheduler.

In Table 2, we present results on DDPM, DDIM, DPMSolver and their parallel variants (ParaDDPM, ParaDDIM, ParaDPM-
Solver) when combined with ParaDiGMS. We plot the model evaluations (number of calls to the diffusion model py), the
task reward, and the sampling speed reported in time per episode. Although parallelization increases the total number of
necessary model evaluations, the sampling speed is more closely tied to the number of parallel iterations, which is much
lower. We see that ParaDDPM gives a speedup of 3.7x, ParaDDIM gives a speedup of 1.6x, and ParaDPMSolver gives
a speedup of 1.8x, without decrease in task reward. Table 3 presents similar findings on the PushT task, where we see
speedups on all three methods with up to 3.9x speedup on ParaDDPM.

The final robotics task we study is FrankaKitchen, a harder task with predicted action sequences of dimension 112 and an
episode length of 1200. In Table 4 we notice some decline in performance when sampling with a reduced number of steps
using DDIM and DPMSolver. On the other hand, ParaDDPM is able to maintain a high task reward. Similar to before,
ParaDiGMS consistently achieves a speedup across all 3 sampling methods, giving a speedup of 3.4x with ParaDDPM, 1.8x
with ParaDDIM, and 2.0x with ParaDPMSolver. These improvements translate to a significant decrease in the time it takes
to roll out an episode in the Kitchen task from 112s to 33.3s.
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Table 2: Robosuite Square with ParaDiGMS using a tolerance of 7 = 0.1 and a batch window size of 20 on a single A40

GPU. Reward is computed using an average of 200 evaluation episodes, with sampling speed measured as time to generate
400/8 = 50 samples.

Sequential ParaDiGMS
Robosuite | Model Time per | Model Parallel Time per
Square Evals Reward Episode | Evals Iters Reward Episode Speedup
DDPM 100 0.85 +0.03 37.0s 392 25 0.85 +0.03 10.0s 3.7x
DDIM 15 0.83 £ 0.03 5.72s 47 7 0.85 +0.03 3.58s 1.6x
DPMSolver 15 0.85 +0.03 5.80s 41 6 0.83 +0.03 3.28s 1.8x

Table 3: PushT task with ParaDiGMS using a tolerance of 7 = 0.1 and a batch window size of 20 on a single A40 GPU.

Reward is computed using an average of 200 evaluation episodes, with sampling speed measured as time to generate
[300/8] = 38 samples.

Sequential ParaDiGMS
Model Time per | Model Parallel Time per
PushT Evals Reward Episode | Evals Iters Reward Episode Speedup
DDPM 100 0.81 £0.03 32.3s 386 24 0.83 £0.03 8.33s 3.9x
DDIM 15 0.78 £ 0.03 4.22s 46 7 0.77 £ 0.03 2.54s 1.7x
DPMSolver 15 0.79 £ 0.03 4.22s 40 6 0.79 £0.03 2.15s 2.0x

Table 4: FrankaKitchen with ParaDiGMS using a tolerance of 7 = 0.1 and a batch window size of 20 on a single A40

GPU. Reward is computed using an average of 200 evaluation episodes, with sampling speed measured as time to generate
1200/8 = 150 samples.

Sequential ParaDiGMS
Franka Model Time per | Model Parallel Time per
Kitchen Evals Reward Episode Evals Iters Reward Episode Speedup
DDPM 100 0.85 +0.03 112s 390 25 0.84 +0.03 33.3s 3.4x
DDIM 15 0.80 +0.03 16.9s 47 7 0.80 +0.03 9.45s 1.8x
DPMSolver 15 0.79 £ 0.03 17.4s 41 6 0.80 +0.03 8.89s 2.0x
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Table 5: Evaluating CLIP score of ParaDiGMS on StableDiffusion-v2 over 1000 random samples from the COCO2017
captions dataset, with classifier guidance w = 7.5. CLIP score is evaluated on ViT-g-14, and sample speed is computed on
A100 GPUs.

Sequential ParaDiGMS
e Model CLIP Timeper | Model Parallel CLIP Time per
StableDiffusion-v2 Evals Score  Sample Evals Iters Score  Sample Speedup
DDPM 1000 32.1 50.0s 2040 44 32.1 16.2s 3.1x
DDIM 200 31.9 10.3s 425 16 319 5.8s 1.8x
DPMSolver 200 31.7 10.3s 411 16 31.7 5.8s 1.8x

E.2. Diffusion image generation

Next, we apply parallel sampling to diffusion-based image generation models, both for latent-space and pixel-space models.

For latent-space models, we test out StableDiffusion- V2% ( s ; s ), which generates
768x768 images using a diffusion model on a 4x96x96 latent space. For pixel-space models, we study pretrained models on
LSUN Church’/Bedroom* from Huggingface ( , ; , ), which run a diffusion model directly

over the 3x256x256 pixel space.

E.2.1. LATENT-SPACE DIFFUSION MODELS

Even with the larger image models, there is no issue fitting a batch size of 20 on a single GPU for parallelization. However,
the larger model requires more compute bandwidth, so the parallel efficiency quickly plateaus as the batch size increases, as
the single GPU becomes bottlenecked by floating-point operations per second (FLOPS). Therefore, for image models we
leverage multiple GPUs to increase FLOPS and improve the wall-clock sampling speed.

In Fig. 6 we examine the net speedup of ParaDDPM relative to DDPM on StableDiffusion-v2 using 1000-step diffusion
on A100 GPUs. The net speedup is determined by the interplay between algorithm inefficiency and hardware efficiency.
Algorithm inefficiency refers to the relative number of model evaluations of ParaDDPM compared to DDPM, which arises
from the parallel algorithm taking multiple iterations until convergence. We see in Fig. 6a that as the batch size grows,
ParaDDPM can require 2-3x more model evaluations. On the other hand, hardware efficiency refers to the relative empirical
speedup of performing a batch of model evaluations. For example, in Fig. 6a we see that evaluating a batch size of 80 on
4 GPUs (20 per GPU) is roughly 5x faster than performing 80 model evaluations sequentially. In Fig. 6b, we divide the
hardware efficiency by the algorithm inefficiency to obtain the net relative speedup of ParaDDPM over DDPM. We observe
over 3x speedup by using a batch size of 80 spread across 8 A100s. Finally, in Table 5 we verify that ParaDiGMS increases
sampling speed for ParaDDPM, ParaDDIM, and ParaDPMSolver without degradation in sample quality as measured by
CLIP score ( s ) on ViT-g-14 ( s ; s ).

One important consideration is that the algorithm inefficiency is agnostic to the choice of GPU. Therefore, as the parallel
efficiency of GPUs in the future improve for large batch sizes, we will see an even larger gap between hardware efficiency
and algorithm inefficiency. With enough hardware efficiency, the wall-clock time of sampling will be limited only by the
number of parallel iterations, leading to much larger net speedup. For example, observe that in Table 5 the number of
parallel iterations of ParaDDPM is > 20x smaller than the number of sequential steps.

E.2.2. PIXEL-SPACE DIFFUSION MODELS

Next we test out ParaDiGMS on pretrained diffusion models on LSUN Church and Bedroom, which perform diffusion
directly on a 3x256x256 pixel space. In Fig. 7, we plot the net speedup of 1000-step ParaDDPM by dividing the hardware
efficiency by the algorithm inefficiency. We observe a similar trend of around 3x speedup when using multiple GPUs.
Finally, we verify in Table 6 that ParaDiGMS maintains the same sample quality as the baseline methods as measured by
FID score on 5000 samples of LSUN Church’.

Zhttps://huggingface.co/stabilityai/stable-diffusion-2
3https://huggingface.co/google/ddpm-ema-church-256
*https://huggingface.co/google/ddpm-ema-bedroom-256

*DPMSolver is not yet integrated with the LSUN model in the Diffusers library, so we omit its comparison.
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(a) “a beautiful castle, matte (b) “abatter swings at a pitch dur- (c) “several sail boats in the water (d) “a grey suitcase sits in front
painting” ing a baseball game” at night” of a couch”

Figure 5: Samples of images generated by StableDiffusion-v2 using ParaDDPM.
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Figure 6: StableDiffusion-v2 generating text-conditioned 768x768 images by running ParaDDPM over a 4x96x96 latent
space for 1000 steps, on A100 GPUs. In Fig. 6a algorithm inefficiency in gray denotes the relative number of model
evaluations required as the parallel batch size increases. The colored lines denote the hardware efficiency provided by
the multi-GPUs. As the batch size increases, the hardware efficiency overtakes the algorithm inefficiency. In Fig. 6b we
normalize the algorithm inefficiency to 1, to show the net wall-clock speedup of parallel sampling.
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Table 6: Evaluating FID score (lower is better) of ParaDiGMS on LSUN Church using 5000 samples. Sample speed is
computed on A100 GPUs.

Sequential ParaDiGMS
Model FID  Timeper | Model Parallel FID  Time per
LSUN Church Evals Score  Sample Evals Iters Score  Sample Speedup
DDPM 1000 12.8 24.0s 2556 42 12.9 8.2s 2.9x
DDIM 500 15.7 12.28 1502 42 15.7 6.3s 1.9x

We highlight that 500-step DDIM gives noticeably worse FID score than 1000-step DDPM, whereas using ParaDDPM
allows us to maintain the same sample quality as DDPM while accelerating sampling (to be even faster than 500-step
DDIM). The ability to generate an image without quality degradation in 8.2s as opposed 24.0s can significantly increase the
viability of interactive image generation for many applications.

Net speedup of ParaDDPM on LSUN church, A100 Net speedup of ParaDDPM on LSUN bedroom, A100
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Figure 7: Unconditional generation of 256x256 images on diffusion models prtrained on the LSUN Church and Bedroom
dataset, running ParaDDPM for 1000 steps on A100 GPUs. We plot the net speedup after dividing the hardware efficiency
by the algorithm inefficiency as the batch size increases.

F. Related work

Apart from DDIM (Song et al., 2021a) and DPMSolver (Lu et al., 2022), there are additional fast sampling techniques of
pretrained models such as PNDM (Liu et al., 2022). Similar to DPMSolver, PNDM is based on higher-order ODE solving
techniques and should also be compatible with parallelization using ParaDiGMS. Other lines of work focus on distilling a
few-step model (Meng et al., 2022; Song et al., 2023) or learning a sampler (Watson et al., 2022), but these methods are

more restrictive as they require additional training.

Parallelization techniques similar to Picard iteration have been explored in theoretical works for sampling from log-
concave (Shen & Lee, 2019) and determinantal distributions (Anari et al., 2023). Our work is the first application of parallel
sampling on diffusion models, enabling a new axis of trading compute for speed.



