
Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

PDEBENCH: AN EXTENSIVE BENCHMARK FOR SCI-
ENTIFIC MACHINE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite some impressive progress in machine learning-based modeling of phys-
ical systems, there is still a lack of benchmarks for Scientific ML that are easy
to use yet challenging and representative of a wide range of problems. We intro-
duce PDEBENCH, a benchmark suite of time-dependent simulation tasks based
on Partial Differential Equations (PDEs). PDEBENCH comprises both code and
data to benchmark the performance of novel machine learning models against
classical numerical simulations and ML baselines. Our proposed set of bench-
mark problems contribute the following features: (1) A much wider range of
PDEs compared to existing benchmarks, ranging from relatively common exam-
ples to more realistic problems; (2) much larger ready-to-use datasets compared
to prior work, comprising multiple simulation runs across a large number of initial
and boundary conditions and PDE parameters; (3) more extensible source codes
with user-friendly APIs for data generation and obtaining baselines of popular
machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method).
PDEBENCH allows users to extend the benchmark freely for their own purposes
using a standardized API and to compare the performance of new models to exist-
ing baseline methods. We also propose new evaluation metrics in order to provide
a more holistic understanding of model performance in the context of Scientific
ML.

1 MOTIVATION

In the emergent area of Scientific Machine Learning (SciML), recent progress has broadened the
scope of traditional ML methods to include the time-evolution of physical systems. Within this field,
rapid progress has been made in the use of neural networks to make predictions using functional
observations over continuous domains (Chen et al., 2018; Rackauckas, 2019) or with challenging
constraints and with physically-motivated conservation laws (Lu et al., 2021; Wang et al., 2020;
Raissi et al., 2019). These neural networks provide an approach for solving PDEs complementing
traditional numerical solvers. Moreover, neural models have the advantage of being continuously
differentiable in their inputs, a useful property in several applications. While complex methods such
as Bayesian optimisation Močkus (1975); Snoek et al. (2012); O’Hagan (1978) or reduced order
modelling Guo & Hesthaven (2019) are in part an attempt to circumvent this lack of differentiability,
gradients for neural networks are readily available and efficient.

For classical ML applications such as image classification, various popular benchmarks exist, and
evaluations using these benchmarks provide a standardised means of testing the effectiveness and
efficiency of ML models. As yet, a widely accessible and challenging benchmark with ready-to-
use datasets to compare methods in SciML is missing. We aim to provide a benchmark that is
more comprehensive with respect to the PDEs covered and which enables more diverse methods for
evaluating the efficiency and accuracy of the ML method. The problems span a range of governing
equations as well as different assumptions and conditions. Data may be generated by executing
code through a common interface, or by downloading high-fidelity datasets of simulations. We
also propose an API to ease the implementation and evaluation of new methods, provide recent
competitive baseline methods such as FNOs and autoregressive models based on the U-Net, and a set
of pre-computed performance metrics for these algorithms. We may thus compare their predictions
against the “ground truth” provided by baseline simulators used to generate the data.

1

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

In this work, we propose a versatile benchmark suite for SciML (a) providing diverse datasets with
distinct properties based on 11 well-known time-dependent and time-independent PDEs, (b) cover-
ing both “classical” forward learning problems and inverse settings, (c) all accessible via a uniform
interface to read/store data across several applications, (d) extensible, (e) with results for popular
state-of-the-art ML models (FNO, U-Net, PINN) for (f) a set of metrics that are better-suited for
SciML, (g) with both data to download and code to generate more data, and (h) pre-trained mod-
els to compare against. The inverse problem scenarios comprise initial and boundary conditions
and PDE parameters (e.g. viscosity). Each data set has a sufficiently large number of samples for
training and testing for a variety of parameter values, with a resolution high enough to capture local
dynamics. As an additional note, our goal is not to provide a complete benchmark that includes all
possible combinations of inference tasks on all known experiments, but rather to ease the task for
subsequent researchers to benchmark their favoured methods. Part of our goal here is to invite other
researchers to fill in the gaps for themselves by leveraging our ready-to-run models.

2 PDEBENCH: A BENCHMARK FOR SCIENTIFIC MACHINE LEARNING

In the following we describe the general learning problem addressed with the benchmark, the cur-
rently covered PDEs, existing implemented baselines (all developed using PyTorch (Paszke et al.,
2019), and PINN specifically using DeepXDE (Lu et al., 2021)), and the ways in which the bench-
mark follows FAIR data principles Wilkinson et al. (2016).

2.1 OVERVIEW OF DATASETS AND PDES

The benchmark provides datasets generated for various PDEs ranging from 1 to 3 dimensional spa-
tial domains. Each sample is generated with different parameters, initial conditions, and boundary
conditions. Generalization to different parameters, varying initial conditions, and proper treatment
of complex boundary conditions are still open challenges in SciML Karlbauer et al. (2022); Brand-
stetter et al. (2022); Belbute-Peres et al. (2021); Leiteritz et al. (2021). The parameters which are
varied to provide several datasets include the advection speed in the advection equation, the forc-
ing term in the Darcy flow, as well as the viscosity in the Burgers’ and compressible Navier-Stokes
equations all of which can lead to significantly different behaviors of the simulated systems. Addi-
tionally, besides the periodic boundary condition that is most commonly used in SciML studies, we
also provide datasets generated with the Neumann boundary condition in the 2D diffusion-reaction
and shallow-water equations, the Cauchy boundary condition in the diffusion-sorption equation, and
the Dirichlet condition in the incompressible Navier-Stokes equation.

We designed this benchmark to represent a diverse set of challenges for emulation algorithms. In
particular, we focus on hydromechanical field equations. Following this philosophy, we selected
6 basic and 3 advanced real-world problems. The basic PDEs are stylized, simple models: 1D
advection/Burgers/Diffusion-Reaction/Diffusion-Sorption equations, 2D Diffusion-Reaction equa-
tion, and 2D DarcyFlow; the advanced and real-world PDEs incorporate features of real-world mod-
eling tasks: Compressible and incompressible Navier-Stokes equations, and shallow-water equa-
tions. The PDEs exhibit a variety of behaviors of real-world significance which are known to chal-
lenge emulators, such as sharp shock formation dynamics, sensitive dependence on initial condi-
tions, diverse boundary conditions, and spatial heterogeneity. Finding a surrogate model which can
approximate these challenging dynamics with high fidelity, we argue is a necessary precondition
to applying such models in the real world. While some of these have been used in prior work, a
publicly available benchmark dataset is, to the best of our knowledge, not available.

2.2 OVERVIEW OF METRICS

In SciML, standard evaluation metrics such as MSE and its variants fail to capture important fea-
tures of physics-based problems. For example, physics-informed ML models that are intended to
conserve physical quantities should be evaluated with appropriate metrics. Moreover, multiple eval-
uation metrics are also beneficial in comparing different aspects of ML models. Therefore, our
proposed benchmark includes novel metrics which we believe provide a deeper understanding of
the model’s performance and are designed to evaluate the models both from the data-driven and
physics perspectives. Such metrics include MSE, normalized MSE, maximum error, conservation

2

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

from pdebench.models.fno.utils import FNODatasetSingle
filename = "data/2D_diff-react_NA_NA"
train_data = FNODatasetSingle(filename)
train_loader = torch.utils.data.DataLoader(train_data)

Listing 1: Using the PyTorch data loader.
1D

CF
D

2D
-Re

ac
Diff

2D
CF

D
3D

CF
D

Ad
ve

cti
on

Bu
rge

rs
Darc

yF
low

Re
ac

Diff
dif

f-s
orp rdb

PDEs

10 4

10 2

100

RM
SE

FNO PINN Unet

Ad
ve

cti
on

Burg
ers

1D
CFD

Re
acD

iff

PDEs

10 4

10 3

10 2

10 1

100

M
SE

FNO Unet

Figure 1: Comparisons of baseline models’ performance for different problems for (a) the forward
problem and (b) the inverse problem.

error, boundary condition error, and errors in the Fourier space. Further details can be found in
Appendix B.

2.3 DATA FORMAT, BENCHMARK ACCESS, MAINTENANCE, AND EXTENSIBILITY

The benchmark consists of different data files, one for each equation, type of initial condition, and
PDE parameter, using the HDF5 Group (2022) binary data format. Each such file contains multiple
arrays where each array has the dimensions N,T,X, Y, Z, V with N the number of samples, T the
number of time steps, X,Y, Z the spatial dimensions, and V the dimension of the field. Additional
information on the data format is provided in the Supplementary Material.

PDEBENCH’s datasets are stored and maintained using DARUS, the University of Stuttgart’s data
repository based on the OpenSource Software DataVerse1. DARUS follows the Findable, Accessi-
ble, Interoperable and Reusable (FAIR) data principles Wilkinson et al. (2016). All data uploaded
to DaRUS gets a DOI as a persistent identifier, a license, and can be described with an extensive
set of metadata, organized in metadata blocks. A dedicated team ensures that DARUS is continu-
ously maintained. To download the datasets, a file containing the download metadata and a script to
download the data are provided, leveraging the download_url command of torchvision.

We also support a straightforward inclusion of the benchmark with a few lines of code. In Listing 1
we show an example leveraging pre-defined classes included in our benchmark code to load specific
datasets as PyTorch (Paszke et al., 2019) Dataset classes. Subsequently, these can be used to
construct common DataLoader instances for training custom ML models. We utilize the Hydra
(Yadan, 2019) library simplifying the configuration of both surrogate model training as well as the
generation of additional datasets. For the latter, we provide and expose various parameters of the
underlying simulations for the end user to tweak. This provides a low barrier of entry for users to
try out benchmarking with new experiments or baseline configurations.

3 A SELECTION OF EXPERIMENTS

In this section, we present a selection of experiments for the PDEBENCH datasets. An exhaustive
discussion of all results is beyond the scope of this paper. An extensive set of additional results,
tables, and plots can be found in the Appendix.

1 https://dataverse.org

3

https://dataverse.org

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

0.001 0.01 0.1 1
Diffusion Coefficient

10 5

10 4

10 3

10 2

10 1

Burgers Eq, FNO

RMSE
Max Error
fRMSE low
fRMSE mid
fRMSE high

0.01 0.1 1 10 100
Force Term

10 2

10 1

100

Normalized RMSE, DarcyFlow
FNO
Unet

1D =
= 0.1

1D inviscid

1D invicid
 outgoing bd

2D inviscid

3D inviscid

10 2

10 1

100
Compressible NS eq

RMSE
cRMSE
bRMSE
fRMSE high

Figure 2: Detailed visualization of (a) Burgers’, (b) DarcyFlow, and (c) Compressible NS eqs.

Baseline Setups We trained and tested the baseline emulator models, namely U-Net, FNO, and
PINN with the datasets generated with the PDEs described in subsection 2.1. The data was split
into training and test data: 90% was for training and 10% for test data. For FNO, we followed
the original implementation, hyperparameters, and training protocols. We trained U-Net similar to
FNO, but with the autoregressive methods with the pushforward trick with a slight modification to
the original implementation (Brandstetter et al., 2022). The PINN baseline is implemented using the
open-source DeepXDE (Lu et al., 2021) library. The training was performed on GeForce RTX 2080
GPUs for 1D/2D cases, and GeForce GTX 3090 for 3D cases.

Baseline Performance Figure 1 visualizes the RMSE performance of the surrogate models, aver-
aged for each trained model over different PDE parameters. Among the baseline surrogate models,
FNO provides the best prediction for most metrics. It learns the differential operators well, leading to
low errors even for the conserved quantities and on the boundaries. Additionally, FNO has a consis-
tent error of about 4×10−4 across the frequency spectrum for many problems highlighting its ability
to learn in Fourier space. Our baseline results further indicate that the PINNs might deal better than
expected with high-frequency features, despite prior observations (Wang et al., 2022). As an exam-
ple for an inverse problem setup, we identify the initial condition to minimize the prediction error of
the ML surrogate over 15 time steps horizon. In Figure 1b, we present the MSE of the prediction of
estimated initial condition (with error bars) for 4 of the 11 datasets (1D). The results show that FNO
outperforms U-Net also for the inverse problem. However, our benchmark also reveals several tasks
which these methods cannot treat properly. First, Figure 2a shows that the FNO’s error increases
with decreasing diffusion coefficient where a strong discontinuity appears. This can be attributed
to Gibb’s phenomenon for FNO’s limited maximum wave frequency in Fourier space, as shown by
an increase of two orders of magnitude for high-frequency fRMSE. Second, Figure 2b shows that
the normalized RMSE increases with decreasing force term, which is equivalent to decreasing the
scale-value of the solution (in our case, force term 0.01 means mean(|u|) ≈ 0.01).Third, Figure 2c
shows several metrics for the compressible Navier-Stokes equations. It shows the overall RMSE is
very bad in comparison to the basic PDEs, such as the Burgers equation. Interestingly, the 3D invis-
cid case shows lower error than 2D inviscid case. We posit this is due to lower resolution resulting
in smooth train/validation samples which FNO can learn very efficiently. This also indicates that
high-resolution training samples should be used to create a surrogate model for real-world problems
with a Reynolds number more than 106.

4 CONCLUSIONS

With PDEBENCH we contribute an extensive benchmark suite for comparing and evaluating meth-
ods on the realm of SciML. We provide both pre-computed datasets for easy access in a dataverse
as well as the code to generate new data from configurable simulation runs. The focus is on time-
dependent PDE problems ranging from simple 1D equations to challenging 3D coupled systems of
equations featuring challenging boundary conditions. Furthermore, we present a wide variety of
different evaluation metrics in order to better understand the strengths and weaknesses of the ma-
chine learning methods in a scientific computing context. We also provide an example application
for utilizing SciML methods for inverse modeling tasks with our benchmark data. We believe this
will be an important area in the future for machine learning models to produce competitive results
both in accuracy as well as runtime when compared to numerical methods.

4

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

REFERENCES

Filipe de Avila Belbute-Peres, Yi-fan Chen, and Fei Sha. Hyperpinn: Learning parameterized differ-
ential equations with physics-informed hypernetworks. In International Conference on Learning
Representations, 2021. URL https://openreview.net/pdf?id=LxUuRDUhRjM.

Deniz A. Bezgin, Aaron B. Buhendwa, and Nikolaus A. Adams. JAX-FLUIDS: A fully-
differentiable high-order computational fluid dynamics solver for compressible two-phase flows,
2022. URL https://arxiv.org/abs/2203.13760.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers.
In The Tenth International Conference on Learning Representations, 2022. URL https://
openreview.net/pdf?id=vSix3HPYKSU.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym, 2016.

Steven L. Brunton and Jose Nathan Kutz. Data-Driven Science and Engineering: Machine Learn-
ing, Dynamical Systems, and Control. Cambridge University Press, 2019. ISBN 978-1-108-
42209-3. URL https://databookuw.com.

Kai Cao. Inverse Problems for the Heat Equation Using Conjugate Gradient Methods. PhD thesis,
University of Leeds, 2018.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 6572–6583. Curran
Associates, Inc., 2018.

Richard P. Feynman. Feynman lectures on physics - Volume 1. 1963.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and
Olivier Bachem. Brax–a differentiable physics engine for large scale rigid
body simulation. arXiv preprint arXiv:2106.13281, 2021. URL https://
datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/
3def184ad8f4755ff269862ea77393dd-Paper-round1.pdf.

The HDF Group. An overview of the hdf5 technology suite and its applications, 2022. URL https:
//portal.hdfgroup.org/display/HDF5/HDF5.

Mengwu Guo and Jan S. Hesthaven. Data-driven reduced order modeling for time-dependent
problems. Computer Methods in Applied Mechanics and Engineering, 345:75–99, 2019.
ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2018.10.029. URL https://www.
sciencedirect.com/science/article/pii/S0045782518305334.

Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Subramaniam, Kaus-
tubh Tangsali, Max Rietmann, Jose del Aguila Ferrandis, Wonmin Byeon, Zhiwei Fang, and San-
jay Choudhry. NVIDIA SimNet{̂TM}: An AI-accelerated multi-physics simulation framework.
arXiv:2012.07938 [physics], December 2020.

Philipp Holl and Vladlen Koltun. Phiflow: A differentiable PDE solving framework for deep learn-
ing via physical simulations. pp. 5, 2020.

Zizhou Huang, Teseo Schneider, Minchen Li, Chenfanfu Jiang, Denis Zorin, and Daniele Panozzo.
A large-scale benchmark for the incompressible Navier-Stokes equations, 2021. URL https:
//arxiv.org/abs/2112.05309.

Tsuyoshi Inoue, Shu-ichiro Inutsuka, and Hiroshi Koyama. The Role of Ambipolar Diffusion in the
Formation Process of Moderately Magnetized Diffuse Clouds. The Astrophysical Journal, 658
(2):L99–L102, April 2007. doi: 10.1086/514816.

Matthias Karlbauer, Timothy Praditia, Sebastian Otte, Sergey Oladyshkin, Wolfgang Nowak, and
Martin V Butz. Composing partial differential equations with physics-aware neural networks. In
Proceedings of the 39th International Conference on Machine Learning, Proceedings of Machine
Learning Research, Baltimore, USA, 16–23 Jul 2022.

5

https://openreview.net/pdf?id=LxUuRDUhRjM
https://arxiv.org/abs/2203.13760
https://openreview.net/pdf?id=vSix3HPYKSU
https://openreview.net/pdf?id=vSix3HPYKSU
https://databookuw.com
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/3def184ad8f4755ff269862ea77393dd-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/3def184ad8f4755ff269862ea77393dd-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/3def184ad8f4755ff269862ea77393dd-Paper-round1.pdf
https://portal.hdfgroup.org/display/HDF5/HDF5
https://portal.hdfgroup.org/display/HDF5/HDF5
https://www.sciencedirect.com/science/article/pii/S0045782518305334
https://www.sciencedirect.com/science/article/pii/S0045782518305334
https://arxiv.org/abs/2112.05309
https://arxiv.org/abs/2112.05309

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

K. Kashinath, M. Mustafa, A. Albert, J-L. Wu, C. Jiang, S. Esmaeilzadeh, K. Azizzadenesheli,
R. Wang, A. Chattopadhyay, A. Singh, A. Manepalli, D. Chirila, R. Yu, R. Walters, B. White,
H. Xiao, H. A. Tchelepi, P. Marcus, A. Anandkumar, P. Hassanzadeh, and null Prabhat. Physics-
informed machine learning: Case studies for weather and climate modelling. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194):
20200093, April 2021. doi: 10.1098/rsta.2020.0093.

David I. Ketcheson, Kyle T. Mandli, Aron J. Ahmadia, Amal Alghamdi, Manuel Quezada de Luna,
Matteo Parsani, Matthew G. Knepley, and Matthew Emmett. PyClaw: Accessible, Extensible,
Scalable Tools for Wave Propagation Problems. SIAM Journal on Scientific Computing, 34(4):
C210–C231, November 2012.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

G.A. Klaasen and W.C. Troy. Stationary wave solutions of a system of reaction-diffusion equations
derived from the fitzhugh–nagumo equations. SIAM Journal on Applied Mathematics, 44(1):
96–110, 1984. doi: 10.1137/0144008.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning Maps Between Function Spaces.
arXiv:2108.08481 [cs, math], September 2021.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural In-
formation Processing Systems, 34, 2021.

Alexander Lavin, Hector Zenil, Brooks Paige, David Krakauer, Justin Gottschlich, Tim Mattson,
Anima Anandkumar, Sanjay Choudry, Kamil Rocki, Atılım Güneş Baydin, Carina Prunkl, Brooks
Paige, Olexandr Isayev, Erik Peterson, Peter L. McMahon, Jakob Macke, Kyle Cranmer, Ji-
axin Zhang, Haruko Wainwright, Adi Hanuka, Manuela Veloso, Samuel Assefa, Stephan Zheng,
and Avi Pfeffer. Simulation Intelligence: Towards a New Generation of Scientific Methods.
arXiv:2112.03235 [cs], December 2021.

Raphael Leiteritz, Marcel Hurler, and Dirk Pflüger. Learning free-surface flow with physics-
informed neural networks. In 2021 20th IEEE International Conference on Machine Learning
and Applications (ICMLA), pp. 1668–1673, 2021. doi: 10.1109/ICMLA52953.2021.00266.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. International Conference on Learning Representations (ICLR), 2021.

G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, and M. Krimissa. Sorp-
tion isotherms: A review on physical bases, modeling and measurement. Applied Geo-
chemistry, 22(2):249–275, 2007. ISSN 0883-2927. doi: https://doi.org/10.1016/j.apgeochem.
2006.09.010. URL https://www.sciencedirect.com/science/article/pii/
S0883292706002629.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learn-
ing library for solving differential equations. SIAM Review, 63(1):208–228, 2021. doi:
10.1137/19M1274067.

Dan MacKinlay, Dan Pagendam, Petra M Kuhnert, Tao Cui, David Robertson, and Sreekanth Ja-
nardhanan. Model Inversion for Spatio-temporal Processes using the Fourier Neural Operator. In
Neurips Workshop on Machine Learning for the Physical Sciences, pp. 7, 2021.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The M4 Competition:
100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36(1):
54–74, January 2020. doi: 10.1016/j.ijforecast.2019.04.014.

Sebastian K. Mitusch, Simon W. Funke, and Jørgen S. Dokken. Dolfin-Adjoint 2018.1: Automated
adjoints for FEniCS and Firedrake. Journal of Open Source Software, 4(38):1292, June 2019.
doi: 10.21105/joss.01292.

6

https://www.sciencedirect.com/science/article/pii/S0883292706002629
https://www.sciencedirect.com/science/article/pii/S0883292706002629

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

J. Močkus. On Bayesian Methods for Seeking the Extremum. In G. I. Marchuk (ed.), Optimization
Techniques IFIP Technical Conference: Novosibirsk, July 1–7, 1974, Lecture Notes in Computer
Science, pp. 400–404, Berlin, Heidelberg, 1975. Springer. ISBN 978-3-662-38527-2. doi: 10.
1007/978-3-662-38527-2 55.

F. Moukalled, L. Mangani, and M. Darwish. The Finite Volume Method in Computational Fluid
Dynamics. Springer, 1 edition, 2016. doi: 10.1007/978-3-319-16874-6.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

W. Nowak and A. Guthke. Entropy-based experimental design for optimal model discrimination in
the geosciences. Entropy, 18(11), 2016. doi: 10.3390/e18110409.

A. O’Hagan. Curve Fitting and Optimal Design for Prediction. Journal of the Royal Statistical
Society: Series B (Methodological), 40(1):1–24, 1978. doi: 10.1111/j.2517-6161.1978.tb01643.
x.

Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and Jason H. Moore.
PMLB: A large benchmark suite for machine learning evaluation and comparison. BioData Min-
ing, 10(1):36, December 2017. doi: 10.1186/s13040-017-0154-4.

Karl Otness, Arvi Gjoka, Joan Bruna, Daniele Panozzo, Benjamin Peherstorfer, Teseo Schneider,
and Denis Zorin. An extensible benchmark suite for learning to simulate physical systems.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 1), 2021. URL https://openreview.net/forum?id=pY9MHwmrymR.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Christopher Rackauckas. The essential tools of scientific machine learning (Scientific ML). The
Winnower, August 2019. doi: 10.15200/winn.156631.13064.

Maziar Raissi, P. Perdikaris, and George Em Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, February 2019. doi:
10.1016/j.jcp.2018.10.045.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomed-
ical Image Segmentation, May 2015.

Lars Ruthotto and Eldad Haber. Deep Neural Networks motivated by Partial Differential Equations.
arXiv:1804.04272 [cs, math, stat], April 2018.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, pp. 2951–2959.
Curran Associates, Inc., 2012.

Kimberly Stachenfeld, Drummond B. Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation, 2022. URL https://arxiv.org/abs/
2112.15275.

James M. Stone and Michael L. Norman. ZEUS-2D: A Radiation Magnetohydrodynamics Code for
Astrophysical Flows in Two Space Dimensions. I. The Hydrodynamic Algorithms and Tests. The
Astrophysical Journal Supplement, 80:753, June 1992. doi: 10.1086/191680.

7

https://openreview.net/forum?id=pY9MHwmrymR
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2112.15275
https://arxiv.org/abs/2112.15275

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

A. M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica, 19:451–559, 2010. doi:
10.1017/S0962492910000061.

Albert Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM,
January 2005. ISBN 978-0-89871-792-1.

E. F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the HLL-Riemann
solver. Shock Waves, 4(1):25–34, July 1994. doi: 10.1007/BF01414629.

A. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society
B, 237:37–72, 1952.

B. van Leer. Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to
Godunov’s Method. Journal of Computational Physics, 32(1):101–136, July 1979. doi: 10.1016/
0021-9991(79)90145-1.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards Physics-
informed Deep Learning for Turbulent Flow Prediction. arXiv:1911.08655 [physics, stat], June
2020.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022. ISSN 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2021.110768. URL https://www.sciencedirect.
com/science/article/pii/S002199912100663X.

Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton,
Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E Bourne,
et al. The fair guiding principles for scientific data management and stewardship. Scientific data,
3(1):1–9, 2016.

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019.
URL https://github.com/facebookresearch/hydra.

8

https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://github.com/facebookresearch/hydra

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

PDEBENCH: AN EXTENSIVE BENCHMARK FOR SCIENTIFIC MACHINE
LEARNING.
SUPPLEMENTARY MATERIAL

A RELATED WORK

PDE benchmarking has particular challenges. Unlike many classic datasets, PDE datasets can be
large on a gigabyte or terabyte scale and still contain only few data points. And unlike monolithic
benchmark datasets such as ImageNet, the datasets for each PDE approximation task are specific
to that task. Each set of governing equations or experiment design assumptions leads to a distinct
dataset of PDE samples. Recent works in PDEs have attempted to produce standardised datasets
covering well-known challenges (Otness et al., 2021; Huang et al., 2021; Stachenfeld et al., 2022).
Huang et al. (2021) targets non-ML uses. Stachenfeld et al. (2022) is specialised for particular
classes of equations. Of these, the excellent work of Otness et al. (2021) is most closely related,
but with only four physical systems, it still lacks sufficient scale and diversity of data to challenge
emerging ML algorithms. We expand the range of benchmarks in this domain by providing a larger,
more diverse problem selection and scale than these previous attempts (11 PDEs with different
parametrizations leading to 35 datasets). We additionally consider inverse problems for PDEs (Stu-
art, 2010; Tarantola, 2005), with the goal to identify unobserved latent parameters using ML. This
has not been covered by benchmarks so far, despite its increasing importance in the community. Fur-
thermore, most work in this scope considers classical statistical error measures such as the RMSE
over the whole domain and at most PDE-motivated variants such as the RMSE of the gradient Ot-
ness et al. (2021). Measures based on properties of the underlying physical systems, as studied in
this work, are lacking.

An overview and taxonomy of Scientific ML developments can be found in Lavin et al. (2021);
Brunton & Kutz (2019). For developing our baselines, we focus on using neural network models to
approximate the outputs of some ground truth PDE solver, given data generated by that solver, which
itself aims to directly implement the numerical solution of a given partial differential equation. A
range of methods aim to solve problems fitting this description, reviewed in Kashinath et al. (2021).
Methods include Physics-informed neural networks (PINNs) (Raissi et al., 2019), Neural operators
(NOs) (Li et al., 2021; Kovachki et al., 2021), treating ResNet as a PDE approximant (Ruthotto &
Haber, 2018), custom architectures for specific problems such as TFNet for turbulent fluid flows
(Wang et al., 2020), and generic image-to-image regression models such as the U-Net (Ronneberger
et al., 2015). These approaches each have different assumptions, domains of applicability, and data
processing requirements.

Benchmarks in machine learning are an ubiquitous feature of the field. In recent years, their design
and implementation has become a research area of its own right. Easily accessible and widely
used image classification benchmarks such as MNIST, CIFAR, and ImageNet are widely credited
with accelerating progress in machine learning. Various domains in machine learning have widely
influential datasets: In time series forecasting there are the Makridakis competitions (Makridakis
et al., 2020), in reinforcement learning there is the OpenAI Gym (Brockman et al., 2016). Generic
classification problems use, for example, the Penn Machine Learning Benchmark (Olson et al.,
2017).

Closely related to the chosen Scientific ML baselines is the problem of directly differentiating
through the numerical solver, which can itself be used in training an approximating model, or to
directly solve some optimization or control problem of interest. Differentiable direct PDE solvers
are increasingly available, e.g. Mitusch et al. (2019) and frequently built upon neural network tech-
nology stacks (Freeman et al., 2021; Bezgin et al., 2022; Holl & Koltun, 2020).

Recent efforts have attempted to unify Scientific ML surrogates for PDEs under a single interface.
For example, NVIDIA’s MODULUS/SimNet (Hennigh et al., 2020) implements a variety of meth-
ods in a single framework, although unfortunately under onerous intellectual property restrictions
and an opaque contribution process. The DeepXDE project (Lu et al., 2021) is available under an
open license and provides an impressive range of capabilities, but is largely restricted to PINN and
DeepONet methods (Raissi et al., 2019).

9

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

B DETAILED METRICS DESCRIPTION

The classic loss metrics we use are (1) root-mean-squared-error (RMSE), (2) normalized RMSE
(nRMSE), (3) maximum error. These measure the emulating model’s global performance but neglect
local performance. Thus we include extra metrics to measure specific failure modes: (4) RMSE
of the conserved value (cRMSE), (5) RMSE at boundaries (bRMSE), (6) RMSE in Fourier space
(fRMSE) constrained to low, middle, and high-frequency regions.

The normalized RMSE is a variant of the RMSE to provide scale-independent information defined
as:

nRMSE ≡ ||upred − utrue||2
||utrue||2

, (1)

where ||u||2 is the L2-norm of a (vector-valued) variable u, and utrue, upred are true and predicted
value, respectively. The maximum error measures the model’s worst prediction, which quantifies
both local performance and models’ stability of their prediction. cRMSE is defined as nRMSE ≡
||
∑

upred −
∑

utrue||2/N , which measure the deviation of the prediction from some physically
conserved value. bRMSE measures the error at the boundary, indicating if the model understand
the boundary condition properly. Finally, fRMSE measures the error in low/middle/high-frequency
ranges defined as √∑kmax

kmin
|F(upred)−F(utrue))|2

kmax − kmin + 1
, (2)

where F is a discrete Fourier transformation, and kmin, kmax are the minimum and maximum indices
in Fourier coordinates. In our paper, we define the low/middle/high-frequency regions as Low:
kmin = 0, kmax = 4, Middle: kmin = 5, kmax = 12, and High: kmin = 13, kmax = ∞. This allows
a quantitative discussion of the model performance’s dependence on the wavelength. In the multi-
dimensional cases, we first integrate the angular coordinate direction of |F [upred − utrue](k)|2, and
take the sum along the k-coordinate.

B.1 INVERSE PROBLEM METRICS

For the inverse problem setup, we selected various metrics. The major difference with respect to the
forward metrics is that we have two main quantities to measure:

• the error of the quantity we want to estimate, in our case the initial condition u0:

L(u0, û0)

where û0 is the estimated value;

• the error of the prediction based on the estimated initial condition u(t, x|u0),

L (u(t, x|u0), u(t, x|û0))

In general, we expect a larger error when we measure the error in the estimated quantity w.r.t.
the predicted quantity. This is mainly due to the early decay of high frequencies of the PDE. We
evaluated the error of the prediction at a specific instant in time t = T , that has been selected as
T = 15 for all the tested datasets, expect T = 5 for the CFD dataset.

The metrics that we used for the inverse problem are: 1) MSE 2) the normalized ℓ2 norm (L2), 3)
the normalized ℓ3 norm (L3); 4) the FFT MSE, the FFT L2, and 5) the FFT L3. For the frequency
metrics we investigated the low frequency (between 0 and 1/4 of the max frequency), the middle
frequency (between 1/4 and 3/4) and high frequency (between 3/4 and the maximum frequency)
ranges. In Fig.9, the right figure shows the frequency power density, where we see that the largest
error is found in the middle frequency range.

C TRAINING PROTOCOL AND HYPERPARAMETERS

The model was trained for 500 epochs with the Adam optimizer (Kingma & Ba, 2014) as per the
protocol of the original FNO. The initial learning rate was set as 10−3 and reduced by half after each

10

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

100 epochs. The datasets are split into 90% training and 10% validation and testing. For the PINNs,
we use DeepXDE (Lu et al., 2021) implementation. The training was performed for 15,000 epochs
with the Adam optimizer, with the learning rate set to 10−3. As with the example problems from
that library we use a fully-connected network of depth 6 with 40 neurons each. In contrast to the
other surrogate models, the PINN baseline can be trained and tested only on a single sample, and is
valid only for a specific initial and boundary condition. To get more reliable error bounds, we thus
chose to train the PINN baseline for 10 different samples per dataset and average the resulting error
metrics.

C.1 INVERSE PROBLEM

For testing the power of surrogate models to solve inverse problems, we consider a simplified sce-
nario where the machine learning model directly predicts a specific time in the future t = T . When
training to predict a specific time in the future, we reduce the training time and avoid to consider
the effect of training approaches (as discussed in the temporal analysis section ??) in evaluating the
surrogate models. We trained over Nepoch = 20 epochs and we selected as final time step T = 15
for all tested datasets, expect for the CFD dataset where we selected T = 5. We used similar param-
eters used in the forward training, while we selected 64 hidden values to be estimated for the initial
condition and 100 samples to test and 0.2 as learning rate for the gradient method. The loss function
for the gradient computation is the MSE.

D DETAILED PROBLEM DESCRIPTION

In this section, we provide more detailed descriptions of each PDE and its applications. Note that
PDE is the basic mathematical tool to describe the evolution of the system in physics. Interested
readers are referred to representative textbooks of physics, for example, (Feynman, 1963).

D.1 1D ADVECTION EQUATION

0.0 0.2 0.4 0.6 0.8 1.0
x

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50 1D Advection Equation
t =0.0
t =0.5
t =1.0
t =1.5
t =2.0

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

t

1D Advection (β = 0.4)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
1D Reaction-Diffusion Equation

t =0.0
t =0.02
t =0.04
t =0.06
t =0.08
t =0.09

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
t

1D Reaction-Diffusion (ν = 0.5, ρ = 1)

Figure 3: Visualization of the time evolution of 1D Advection equation and Reaction-Diffusion
equation.

The advection equation models pure advection behavior without non-linearity whose expression is
given as:

∂tu(t, x) + β∂xu(t, x) = 0, x ∈ (0, 1), t ∈ (0, 2], (3)
u(0, x) = u0(x), x ∈ (0, 1), (4)

where β is a constant advection speed. Note that the exact solution of the system is given as:
u(t, x) = u0(x− βt).

In our dataset, we only considered the periodic boundary condition. As an initial condition, we use
a super-position of sinusoidal waves as:

u0(x) =
∑

ki=k1,...,kN

Ai sin(kix+ ϕi), (5)

where ki = 2π{ni}/Lx are wave numbers whose {ni} are integer numbers selected randomly in
[1, nmax], N is the integer determining how many waves to be added, Lx is the calculation domain

11

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

size, Ai is a random float number uniformly chosen in [0, 1], and ϕi is the randomly chosen phase
in (0, 2π). In 1D-advection case, we set kmax = 8 and N = 2. After calculating Equation 5, we
randomly operate the absolute value function with random signature and the window-function with
10% probability, respectively.

The numerical solution was calculated with the temporally and spatially 2nd-order upwind finite
difference scheme.

D.2 1D DIFFUSION-REACTION EQUATION

Here, we consider a one-dimensional diffusion-reaction type PDE, that combines a diffusion process
and a rapid evolution from a source term Krishnapriyan et al. (2021). The equation is expressed as:

∂tu(t, x)− ν∂xxu(t, x)− ρu(1− u) = 0, x ∈ (0, 1), t ∈ (0, 1], (6)
u(0, x) = u0(x), x ∈ (0, 1). (7)

Note that the variable u develops at potentially exponential rate because of the force term which
depends on u. measure the ability to capture very rapid dynamics.

Similar to the 1D advection equation case, we use the periodic boundary condition and Equation 5
as the initial condition. To avoid an ill-defined initial condition, we also applied the absolute value
function and a normalization operation, dividing the initial condition by the maximum value. The
numerical solution was calculated with the temporally and spatially 2nd-order central difference
scheme. For the source term part, we use the piecewise-exact solution (PES) method (Inoue et al.,
2007).

D.3 BURGERS EQUATION

1.0 0.5 0.0 0.5 1.0
x

1.0

0.9

0.8

0.7

0.6

1D Burgers Equation
t =0.0
t =0.5
t =1.0
t =1.5
t =2.0

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

t

1D Burgers (ν = 0.01)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 2D Darcy Flow

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Diffusion coefficient

2D Darcy Flow (β = 1.0)

Figure 4: Visualization of the time evolution of 1D Burgers equation and 2D Darcy Flow.

The Burgers’ equation is a PDE modeling the non-linear behavior and diffusion process in fluid
dynamics as

∂tu(t, x) + ∂x(u
2(t, x)/2) = ν/π∂xxu(t, x), x ∈ (0, 1), t ∈ (0, 2], (8)

u(0, x) = u0(x), x ∈ (0, 1), (9)

where ν is the diffusion coefficient, which is assumed constant in our dataset.

Note that setting R ≡ πuL/ν describes the system’s evolution as the Reynolds number of the
Navier-Stokes equation equation 13b; R > 1 means the strong non-linear case support forming
shock phenomena, and R < 1 means the diffusive case.

Similar to the 1D advection equation case, we use the periodic boundary condition and Equation 5
as the initial condition. The numerical solution was calculated with the temporally and spatially
2nd-order upwind difference scheme for the advection term, and the central difference scheme for
the diffusion term.

D.4 DARCY FLOW

We experiment with the steady-state solution of 2D Darcy Flow over the unit square, whose viscosity
term a(x) is an input of the system. The solution of the steady-state is defined by the following

12

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

equation

−∇(a(x)∇u(x)) = f(x), x ∈ (0, 1)2, (10)

u(x) = 0, x ∈ ∂(0, 1)2. (11)

In this paper, the force term f is set as a constant value β, changing the scale of the solution u(x).
Instead of directly solving Equation 10, we obtained the solution by solving a temporal evolution
equation:

∂tu(x, t)−∇(a(x)∇u(x, t)) = f(x), x ∈ (0, 1)2, (12)

with random field initial condition, until reaching a steady state. The numerical calculation was
performed the same as the case of the 1D Diffusion-Reaction equation.

D.5 COMPRESSIBLE NAVIER-STOKES EQUATION

0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0 t=0

0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0 t=0.5

0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0 t=1.0

0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t=2.0

Figure 5: Visualization of the time evolution of the density in the case of 2D Compressible Navier-
Stokes equations (inviscid, M = 0.1).

The compressible fluid dynamic equations describe a fluid flow,

∂tρ+∇ · (ρv) = 0, (13a)
ρ(∂tv + v · ∇v) = −∇p+ η△v + (ζ + η/3)∇(∇ · v), (13b)

∂t

[
ϵ+

ρv2

2

]
+∇ ·

[(
ϵ+ p+

ρv2

2

)
v − v · σ′

]
= 0, (13c)

where ρ is the mass density, v is the velocity, p is the gas pressure, ϵ = p/(Γ − 1) is the internal
energy, Γ = 5/3, σ′ is the viscous stress tensor, and η, ζ are the shear and bulk viscosity, respectively.

PDEBENCH provides the following training datasets for the compressible Navier-Stokes equations:

Nd initial field boundary condition (η, ζ,M)

1D random field periodic (10−8, 10−8, −)
1D random field periodic (10−2, 10−2, −)
1D random field periodic (10−1, 10−1, −)
1D random field out-going (10−8, 10−8, −)
1D shock-tube out-going (10−8, 10−8, −)

2D random field periodic (10−8, 10−8, 0.1)
2D random field periodic (10−2, 10−2, 0.1)
2D random field periodic (10−1, 10−1, 0.1)
2D random field periodic (10−8, 10−8, 1.0)
2D random field periodic (10−2, 10−2, 1.0)
2D random field periodic (10−1, 10−1, 1.0)
2D turbulence periodic (10−8, 10−8, 0.1)
2D turbulence periodic (10−8, 10−8, 1.0)

3D random field periodic (10−8, 10−8, 1.0)
3D random field periodic (10−2, 10−2, 1.0)

13

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

where Nd is the number of spatial dimensions, M = |v|/cs is the Mach number, cs =
√
Γp/ρ is

the sound velocity. The outgoing boundary condition is copying the neighbor cell to the boundary
region which allows waves and fluid to escape from the computational domain, and is popular for
astrohydrodynamics simulations (Stone & Norman, 1992). The random field initial condition is
applying Equation 5 which is extended to higher dimensions for the 2D and 3D cases. Note that
density and pressure are prepared by adding a uniform background to the perturbation field Equa-
tion 5. The turbulence initial condition considers turbulent velocity with uniform mass density and
pressure. The velocity is calculated similarly to Equation 5 as

v(x, t = 0) =

n∑
i=1

Ai sin(kix+ ϕi), (14)

where n = 4 and Ai = v̄/|k|d, and d = 1, 2 when considering 2D and 3D, respectively. v̄ is
determined by the initial Mach number as v̄ = csM . To reduce the compressibility effect, we
subtracted the compressible field from Equation 14 by the Helmholtz-decomposition in the Fourier
space.

The shock-tube initial field is composed as Q(x, t = 0) = (QL, QR), where Q = (ρ,v, p) and
QL, QR are randomly determined constant values. The location of the initial discontinuity is also
randomly determined. This problem is called the ”Riemann problem”, and the initial discontinuity
generates shocks and rarefaction depending on the values of QL, QR, which are very difficult to
obtain without solving the PDEs. This scenario can be used for a rigorous test if ML models fully
understand Equation 13a - Equation 13c. The numerical solution was calculated with the temporally
and spatially 2nd-order HLLC scheme (Toro et al., 1994) with the MUSCL method (van Leer, 1979)
for the inviscid part, and the central difference scheme for the viscous part.

D.6 INHOMOGENOUS, INCOMPRESSIBLE NAVIER-STOKES

A popular simplification of the Navier-Stokes equation is the incompressible version, commonly
used to model dynamics supposed to be far lower than the speed of propagation of waves in the
medium,

∇ · v = 0, ρ(∂tv + v · ∇v) = −∇p+ η△v. (15)

These simplify the compressible Navier-Stokes equations Eq. equation 13b, by substituting the first
term in Eq. equation 15 instead of the first term in equation 13, from which we can eliminate several
elements in the second terms of Eq. equation 15. Additionally, we have introduced the assumption
that the fluid is homogeneous (i.e. not a fluid comprising two or more substances of different density
or viscosity).

We employ an augmented form of equation 15 which includes a vector field forcing term u,

ρ(∂tv + v · ∇v) = −∇p+ η△v + u. (16)

Non-periodic conditions are included to challenge models which perform well upon periodic do-
mains, such as the FNO (Li et al., 2021). The forcing term poses challenges based upon spatially
heterogeneous dynamics. Firstly, this allows us to see if the prediction methods can successfully
learn to predict in the presence of heterogeneity. Secondly, this permits us to use the spatially vary-
ing random field as a target for inverse inference.

Initial conditions v0 and inhomogeneous forcing parameters u are each drawn from isotropic Gaus-
sian random fields with truncated power-law decay τ of the power spectral density and scale σ,
where τv0 = −3, σv0 = 0.15, τu = −1, σu = 0.4. The variation in the resulting field is due to the
alteration in the random seed. We set the domain to the unit square Ω = [0, 1]

2, the viscosity to
ν = 0.01. Simulations are implemented using Phiflow Holl & Koltun (2020). Boundary conditions
are Dirichlet, clamping field velocity to null at the perimeter.

D.7 2D SHALLOW-WATER EQUATIONS

The shallow-water equations, derived from the general Navier-Stokes equations, present a suitable
framework for modelling free-surface flow problems. In 2D, these come in the form of the following

14

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 0.25

1.0
1.2
1.4
1.6
1.8

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 0.5

0.8

1.0

1.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 0.75

0.4
0.6
0.8
1.0
1.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 1

0.8

1.0

1.2

Figure 6: Visualization of the time evolution of the 2D shallow-water equations data.

system of hyperbolic PDEs,

∂th+ ∂xhu+ ∂yhv = 0 , (17a)

∂thu+ ∂x

(
u2h+

1

2
grh

2

)
+ ∂yuvh = −grh∂xb , (17b)

∂thv + ∂y

(
v2h+

1

2
grh

2

)
+ ∂xuvh = −grh∂yb , (17c)

with u, v being the velocities in horizontal and vertical direction, h describing the water depth and
b describing a spatially varying bathymetry. hu, hv can be interpreted as the directional momentum
components and gr describes the gravitational acceleration.

The specific simulation we include in our benchmark for the shallow-water equations problem as
introduced in D.7 is a 2D radial dam break scenario. On a square domain Ω = [−2.5, 2.5]

2 we
initialize the water height as a circular bump in the center of the domain

h(t = 0, x, y) =

{
2.0, for r <

√
x2 + y2

1.0, for r ≥
√
x2 + y2

(18)

with the radius r randomly sampled from U(0.3, 0.7). For generating the datasets we simulate this
problem using the PyClaw Ketcheson et al. (2012) Python package which offers a comprehensive
finite volume solver. A time evolution visualization of the equation is shown in Figure 6.

D.8 DIFFUSION-SORPTION EQUATION

The diffusion-sorption equation models a diffusion process which is retarded by a sorption process.
The equation is written as

∂tu(t, x) = D/R(u)∂xxu(t, x), x ∈ (0, 1), t ∈ (0, 500]. (19)

where D is the effective diffusion coefficient, R is the retardation factor representing the sorption
that hinders the diffusion process. Note that R is dependent on the variable u. This equation is appli-
cable to real world scenarios, one of the most prominent being groundwater contaminant transport.

This equation is retarded by the retardation factor R which is dependent on u based on the Freundlich
sorption isotherm Limousin et al. (2007):

R(u) = 1 +
1− ϕ

ϕ
ρsknfu

nf−1, (20)

where ϕ = 0.29 is the porosity of the porous medium, ρs = 2880 is the bulk density, k = 3.5×10−4

is the Freundlich’s parameter, nf = 0.874 is the Freundlich’s exponent, and the effective diffusion
coefficient D = 5 × 10−4. The initial condition is generated with a uniform distribution u(0, x) ∼
U(0, 0.2) for x ∈ (0, 1). We provide datasets discretized into Nx = 1024 and Nt = 501, as
well as the temporally downsampled version for the models training with Nt = 101. The spatial
discretization is performed using the finite volume method Moukalled et al. (2016) and the time
integration using the built-in fourth order Runge-Kutta method in the scipy package Virtanen et al.
(2020).

15

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

0 200 400
t

0.0
0.2
0.4
0.6
0.8
1.0

x

FVM, (1 0241)

0.2
0.4
0.6
0.8

Figure 7: Visualization of the time evolution of the 1D diffusion-sorption equations data.

This particular example is interesting because of a few things. First, the diffusion coefficient be-
comes non-linear with dependency on u. And based on Equation 20, it is clear that there is a
singularity when u = 0. Second, it is highly applicable to a real-world problem, namely the ground-
water contaminant transport Nowak & Guthke (2016). To date, application of machine learning to
real-world physics problems is still rare. Third, we employ boundary conditions that are not the
usual zero or periodic conditions that can be easily padded in models with a convolutional structure.
Here, we use u(t, 0) = 1.0 and u(t, 1) = D∂xu(t, 1). The second boundary condition is particu-
larly challenging since it uses a derivative instead of a constant value. For generating the datasets
we simulate this problem using a standard finite volume solver. A time evolution visualization of
the equation is shown in Figure 7.

D.9 2D DIFFUSION-REACTION EQUATION

In addition to the 1D diffusion-reaction equation, which involves only a single variable, we also
consider extending the application to a 2D domain, with two non-linearly coupled variables, namely
the activator u = u(t, x, y) and the inhibitor v = v(t, x, y). The equation is written as

∂tu = Du∂xxu+Du∂yyu+Ru, ∂tv = Dv∂xxv +Dv∂yyv +Rv , (21)

where Du and Dv are the diffusion coefficient for the activator and inhibitor, respectively, Ru =
Ru(u, v) and Rv = Rv(u, v) are the activator and inhibitor reaction function, respectively. The
domain of the simulation includes x ∈ (−1, 1), y ∈ (−1, 1), t ∈ (0, 5]. This equation is applicable
most prominently for modeling biological pattern formation.

The reaction functions for the activator and inhibitor are defined by the Fitzhugh-Nagumo equation
Klaasen & Troy (1984), written as:

Ru(u, v) = u− u3 − k − v, (22)
Rv(u, v) = u− v, (23)

where k = 5×10−3, and the diffusion coefficients for the activator and inhibitor are Du = 1×10−3

and Dv = 5 × 10−3, respectively. The initial condition is generated as standard normal random
noise u(0, x, y) ∼ N (0, 1.0) for x ∈ (−1, 1) and y ∈ (−1, 1). We provide datasets discretized into
Nx = 512, Ny = 512 and Nt = 501, as well as the downsampled version for the models training
with Nx = 128, Ny = 128, and Nt = 101. As in the 1D diffusion-sorption equation, the spatial
discretization is performed using the finite volume method Moukalled et al. (2016), and the time
integration is performed using the built-in fourth order Runge-Kutta method in the scipy package
Virtanen et al. (2020).

We included the 2D diffusion-reaction equation as an example because it serves as a challenging
benchmark problem. First, there are two variables of interest, namely the activator and inhibitor,
which are non-linearly coupled. Second, it also has applicability in real-world problems, namely
biological pattern formation Turing (1952). Third, we also employ a no-flow Neumann boundary
condition, meaning that Du∂xu = 0, Dv∂xv = 0, Du∂yu = 0, and Dv∂yv = 0 for x, y ∈ (−1, 1)2.
For generating the datasets we simulate this problem using a standard finite volume solver. A time
evolution visualization of the equation is shown in Figure 8.

16

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 1.25

0.2

0.1

0.0

0.1

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 2.5

0.2

0.0

0.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 3.75

0.2

0.0

0.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 5

0.4

0.2

0.0

0.2

0.4

Figure 8: Visualization of the time evolution of the 2D diffusion-reaction equations data.

0 20 40 60 80 100 120

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Predicted Initial Condition
True Initial Condition

0 20 40 60 80 100 120

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Predicted forward value
True forward value

0 10 20 30 40 50 60
spatial frequency

10 11

10 9

10 7

10 5

10 3

10 1

PS
D

predicted u0
x true

Figure 9: Inverse problem for the 1d advection equation with β = 0.1. The spectra density where
most of the error is concentrated in the higher frequencies is depicted on the right.

D.10 GRADIENT-BASED INVERSE METHOD

The inverse problem aims at solving an inverse inference by minimising the prediction loss(Cao,
2018; Nocedal & Wright, 1999),

L(u(t = T, x|u0), u(t = T, x|û0))

where û0 ∼ pθ(u0|u(t = T, x)) .

The generation process pθ(u0|u(t = T, x)) is a deterministic function, whose parameters θ use a
bilinear interpolation to recover the initial condition (MacKinlay et al., 2021).

Figure 9 shows the solution of the inverse problem for the 1d advection equation. On the left, we see
the true and estimated initial condition, and on the right the power density in the frequency domain.
As we can see, the error is concentrated in the mid-high frequencies. In the middle we have the true
and predicted value at time t = T . The error is smaller then in the plot on the left.

Table 1, Table 2 and Table 3 show the error in the spatial and frequency domain of 4 datasets and
using FNO and U-Net as surrogate models. In Fig.9, the left figure visualizes the true and the
estimated initial condition, while the middle figure is the predicted and the true value. As shown in
the figure on the right, the largest error is in the higher frequencies. This effect is also visible from
the frequency metrics of Tab.2 and Tab.3. In the experiment we use the same initial and boundary
conditions of the forward problem.

E DETAILED BASELINE SCORE

F DETAILED RUNTIME COMPARISON

In this section we present the detailed comparison of computation time between the PDE solver used
to generate the data and the baseline models used in this work, summarized in Table 14. The system
listed in Table 13 was used to run all timing measurements regarding the Diffusion-sorption, 2D
diffusion-reaction and Shallow-water equation scenarios. PyClaw (Ketcheson et al., 2012), a well-
optimized finite-volume Fortran code, is used as PDE solver for the shallow-water equation data
generation. Note that the experiment is only running on a single core due to its small size. Because
the PINN model is not discretized, the inference time includes evaluating the trained model at the
same discretization points of the reference simulation for the last 20 time steps of the data. E.g. the

17

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Forward model

PDE Metric FNO U-Net

Advection beta4

MSE 2.4× 10−3 ± 3.4× 10−3 1.0× 10+0 ± 5.6× 10−2

nL2 3.9× 10−2 ± 2.9× 10−2 1.0× 10+0 ± 2.8× 10−2

nL3 4.4× 10−2 ± 3.3× 10−2 1.0× 10+0 ± 2.9× 10−2

MSE’ 2.9× 10−4 ± 5.8× 10−4 9.9× 10−1 ± 2.5× 10−2

nL2’ 1.4× 10−2 ± 1.1× 10−2 1.0× 10+0 ± 8.0× 10−3

nL3’ 1.6× 10−2 ± 1.3× 10−2 1.0× 10+0 ± 8.4× 10−3

Burgers Nu1

MSE 1.0× 10+0 ± 2.2× 10−1 1.3× 10+0 ± 2.3× 10−1

nL2 1.0× 10+0 ± 1.0× 10−1 1.1× 10+0 ± 1.0× 10−1

nL3 1.0× 10+0 ± 1.0× 10−1 1.1× 10+0 ± 1.1× 10−1

MSE’ 1.3× 10−4 ± 2.8× 10−4 2.5× 10−3 ± 1.9× 10−3

nL2’ 7.0× 10−1 ± 4.6× 10−1 1.6× 10+1 ± 2.0× 10+1

nL3’ 7.0× 10−1 ± 4.4× 10−1 1.7× 10+1 ± 2.1× 10+1

CFD Shock Trans

MSE 3.4× 10+0 ± 5.3× 10−1 1.1× 10+2 ± 2.0× 10+1

nL2 1.8× 10+0 ± 1.4× 10−1 1.0× 10+1 ± 1.1× 10+0

nL3 1.9× 10+0 ± 2.7× 10−1 1.1× 10+1 ± 1.6× 10+0

MSE’ 1.0× 10−1 ± 5.9× 10−2 4.2× 10−1 ± 9.2× 10−1

nL2’ 3.3× 10−1 ± 8.5× 10−2 5.8× 10−1 ± 3.9× 10−1

nL3’ 3.6× 10−1 ± 9.6× 10−2 6.0× 10−1 ± 4.0× 10−1

ReacDiff Nu1 Rho2

MSE 1.7× 10+0 ± 2.1× 10−1 2.0× 10+0 ± 3.8× 10−1

nL2 1.3× 10+0 ± 8.4× 10−2 1.4× 10+0 ± 1.3× 10−1

nL3 1.3× 10+0 ± 8.1× 10−2 1.5× 10+0 ± 1.3× 10−1

MSE’ 5.4× 10−2 ± 1.2× 10−1 6.4× 10−1 ± 3.5× 10−1

nL2’ 1.2× 10−1 ± 1.2× 10−1 7.3× 10−1 ± 5.1× 10−2

nL3’ 1.2× 10−1 ± 1.2× 10−1 7.3× 10−1 ± 5.0× 10−2

Table 1: Error of the inverse problem. The prime indicates the error of the predition, for example
MSE’ is the MSE at time t = T . The MSE for example in the first row is one order of magnitude
lower. nL2 and nL3 are the normalized L2 and L3 norm error, nLp = ||ŷ − y||p/||y||p, p = 2, 3.

18

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Forward model

PDE Metric FNO U-Net

Advection beta4

fMSE 3.04×10−1 1.29×10+2

fMSE low 5.56×10−1 1.29×10+2

fMSE mid 5.26×10−2 1.29×10+2

fMSE high 3.03×10−1 1.29×10+2

fMSE’ 3.67×10−2 9.92×10−1

fMSE’ low 1.60×10−2 9.92×10−1

fMSE’ mid 5.74×10−2 9.92×10−1

fMSE’ high 3.68×10−2 9.92×10−1

fL2 3.91×10−2 1.00×10+0

fL2 low 3.75×10−2 1.01×10+0

fL2 mid 1.41×10+1 0.00×10+0

fL2 high 3.90×10−2 0.00×10+0

Burgers Nu1

fMSE 1.29×10+2 1.59×10+2

fMSE low 2.58×10+2 1.59×10+2

fMSE mid 1.19×10−1 1.59×10+2

fMSE high 1.29×10+2 1.59×10+2

fMSE’ 1.67×10−2 2.46×10−3

fMSE’ low 3.36×10−2 2.46×10−3

fMSE’ mid 9.26×10−7 2.46×10−3

fMSE’ high 1.66×10−2 2.46×10−3

fL2 9.98×10−1 1.11×10+0

fL2 low 9.98×10−1 1.11×10+0

fL2 mid 3.50×10+0 0.00×10+0

fL2 high 9.98×10−1 0.00×10+0

CFD Shock Trans

fMSE 4.37×10+2 1.40×10+4

fMSE low 4.37×10+2 1.40×10+4

fMSE mid 4.37×10+2 1.40×10+4

fMSE high 4.37×10+2 1.40×10+4

fMSE’ 1.28×10+1 2.19×10+2

fMSE’ low 3.21×10+1 2.19×10+2

fMSE’ mid 1.13×10+0 2.19×10+2

fMSE’ high 8.98×10+0 2.19×10+2

fL2 1.84×10+0 1.04×10+1

fL2 low 1.51×10+0 9.95×10+0

fL2 mid 0.00×10+0 0.00×10+0

fL2 high 0.00×10+0 0.00×10+0

ReacDiff Nu1 Rho2

fMSE 2.17×10+2 2.55×10+2

fMSE low 6.10×10+2 2.55×10+2

fMSE mid 1.48×10−2 2.55×10+2

fMSE high 1.28×10+2 2.55×10+2

fMSE’ 6.94×10+0 6.35×10−1

fMSE’ low 2.77×10+1 6.35×10−1

fMSE’ mid 1.14×10−5 6.35×10−1

fMSE’ high 1.29×10−4 6.35×10−1

fL2 1.30×10+0 1.41×10+0

fL2 low 1.54×10+0 1.60×10+0

fL2 mid 7.45×10+0 0.00×10+0

fL2 high 1.00×10+0 0.00×10+0

Table 2: Frequency error of the inverse problem. fMSE, fL2 and fL3 are the frequency version of the
MSE, normalized L2 and L3 norm metrics. Low, mid and high is the range of frequencies. Prime is
used for the error in the prediction, without the error of the initial condition estimation. Normalised
metric are not well defined, when the original signal is zero.

19

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Forward model

PDE Metric FNO U-Net

Advection beta4

fL2’ 1.36×10−2 1.13×10+1

fL2’ low 7.50×10−3 5.66×10+0

fL2’ mid 1.61×10+0 5.27×10+1

fL2’ high 1.36×10−2 8.01×10+0

fL3 3.14×10−2 1.00×10+0

fL3 low 3.12×10−2 1.00×10+0

fL3 mid 1.75×10+1 0.00×10+0

fL3 high 3.14×10−2 0.00×10+0

fL3’ 9.51×10−3 5.04×10+0

fL3’ low 5.62×10−3 3.18×10+0

fL3’ mid 1.47×10+0 2.77×10+1

fL3’ high 9.51×10−3 4.00×10+0

Burgers Nu1

fL2’ 7.00×10−1 1.82×10+2

fL2’ low 7.99×10−1 6.28×10+1

fL2’ mid 1.03×10+2 5.84×10+5

fL2’ high 5.39×10−1 1.31×10+2

fL3 9.97×10−1 1.04×10+0

fL3 low 9.97×10−1 1.04×10+0

fL3 mid 3.58×10+0 0.00×10+0

fL3 high 9.97×10−1 0.00×10+0

fL3’ 7.21×10−1 4.88×10+1

fL3’ low 7.99×10−1 2.40×10+1

fL3’ mid 9.35×10+1 2.98×10+5

fL3’ high 5.39×10−1 3.92×10+1

CFD Shock Trans

fL2’ 3.34×10−1 2.12×10+0

fL2’ low 2.68×10−1 2.14×10+0

fL2’ mid 0.00×10+0 0.00×10+0

fL2’ high 0.00×10+0 0.00×10+0

fL3 1.26×10+0 9.41×10+0

fL3 low 1.11×10+0 9.36×10+0

fL3 mid 0.00×10+0 0.00×10+0

fL3 high 0.00×10+0 0.00×10+0

fL3’ 2.16×10−1 2.19×10+0

fL3’ low 1.96×10−1 2.20×10+0

fL3’ mid 0.00×10+0 0.00×10+0

fL3’ high 0.00×10+0 0.00×10+0

ReacDiff Nu1 Rho2

fL2’ 1.23×10−1 1.18×10+1

fL2’ low 1.23×10−1 5.83×10+0

fL2’ mid 1.89×10+18 1.90×10+21

fL2’ high 9.03×10+18 3.93×10+21

fL3 1.27×10+0 1.29×10+0

fL3 low 1.45×10+0 1.47×10+0

fL3 mid 7.07×10+0 0.00×10+0

fL3 high 1.00×10+0 0.00×10+0

fL3’ 1.23×10−1 5.08×10+0

fL3’ low 1.23×10−1 3.18×10+0

fL3’ mid 1.07×10+18 7.25×10+20

fL3’ high 6.54×10+18 1.14×10+21

Table 3: Frequency error of the prediction of the inverse problem. fMSE, fL2 and fL3 are the
frequency version sof the MSE, normalized L2 and L3 norm metrics. Low, mid and high is the
range of the frequencies. Prime is used for the error in the prediction, without the error of the initial
condition estimation. Normalised metric are not well defined, when the original signal is zero.

20

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Table 4: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the diffusion-sorption, 2D diffusion-reaction, and
shallow-water equations.

Baseline model

PDE Parameter Metric U-Net FNO PINN

Diffusion-sorption N/A

RMSE 5.8× 10−2 5.9× 10−4 9.9× 10−2

nRMSE 1.5× 10−1 1.7× 10−3 2.2× 10−1

max error 2.9× 10−1 7.8× 10−3 2.2× 10−1

cRMSE 4.8× 10−2 1.9× 10−4 7.5× 10−2

bRMSE 6.1× 10−3 2.0× 10−3 1.4× 10−1

fRMSE low 1.9× 10−2 1.5× 10−4 3.5× 10−2

fRMSE mid 4.7× 10−3 5.0× 10−5 5.2× 10−3

fRMSE high 1.9× 10−4 7.1× 10−6 2.7× 10−4

2D diffusion-reaction N/A

RMSE 6.1× 10−2 8.1× 10−3 1.9× 10−1

nRMSE 8.4× 10−1 1.2× 10−1 1.6× 10+0

max error 1.9× 10−1 9.1× 10−2 5.0× 10−1

cRMSE 3.9× 10−2 1.7× 10−3 1.3× 10−1

bRMSE 7.8× 10−2 2.7× 10−2 2.2× 10−1

fRMSE low 1.7× 10−2 8.2× 10−4 5.7× 10−2

fRMSE mid 5.4× 10−3 7.7× 10−4 1.3× 10−2

fRMSE high 6.8× 10−4 4.1× 10−4 1.5× 10−3

Shallow-water equation N/A

RMSE 8.6× 10−2 4.5× 10−3 1.7× 10−2

nRMSE 8.3× 10−2 4.4× 10−3 1.7× 10−2

max error 4.4× 10−1 4.5× 10−2 1.3× 10−3

cRMSE 1.3× 10−2 2.0× 10−4 1.7× 10−2

bRMSE 4.2× 10−3 1.4× 10−3 1.5× 10−1

fRMSE low 2.0× 10−2 2.6× 10−4 5.9× 10−3

fRMSE mid 7.0× 10−3 3.1× 10−4 1.9× 10−3

fRMSE high 8.6× 10−4 2.5× 10−4 6.0× 10−4

2D diffusion-reaction scenario is evaluated at 1282×20 discrete points. Additionally, autoregression
is not required and therefore, it leads to significantly faster computation time relative to FNO and
U-Net.

As the case for 3D data, we also performed a similar experiment whose results are summarized in
Table 16. The used system information is listed in Table 15. Because of the severe memory usage,
the resolution was reduced to 643, though we provided a data with resolution 1283 in our official
dataset. Note that the training and inference time are shorter than the 2D cases in Table 14. This is
because the number of time-step and sample numbers are less than the 2D cases to reduce dataset
size.

G RESOLUTION SENSITIVITY OF INFERENCE TIME

Figure 10 plots the resolution dependence of the inference time of classical simulation and ML
methods for 2D/3D compressible Navier-Stokes equations cases. To calculate the inference times,
we used the same hardware resources to be a ”fair” comparison as listed in Table 15.

The figure clearly shows that the ML inference time is nearly 3-order of magnitude smaller than
that of the classical simulations. Concerning the resolution dependence, both of the ML models
show a similar dependence to the inviscid classical simulation method. Importantly, the inference
time of ML models is in general independent of the diffusion coefficient, such as viscosity. On
the other hand, the classical simulation methods increase their computation time with diffusion

21

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Table 5: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the advection equation with different parameter
values.

Baseline model

PDE Parameter Metric U-Net FNO PINN

Advection

β = 0.1

RMSE 3.8× 10−2 4.9× 10−3 7.8× 10−1

nRMSE 6.0× 10−2 9.3× 10−3 9.1× 10−1

max error 4.9× 10−1 1.4× 10−1 1.5× 10+0

cRMSE 1.5× 10−2 5.0× 10−4 5.5× 10−3

bRMSE 6.4× 10−2 4.3× 10−3 6.8× 10−1

fRMSE low 1.2× 10−2 4.1× 10−4 1.8× 10−1

fRMSE mid 5.6× 10−3 4.4× 10−4 4.9× 10−4

fRMSE high 8.6× 10−4 2.9× 10−4 6.1× 10−6

β = 0.4

RMSE 3.6× 10−1 5.9× 10−3 9.2× 10−1

nRMSE 6.7× 10−1 1.1× 10−2 1.1× 10+0

max error 1.7× 10+0 2.0× 10−1 1.7× 10+0

cRMSE 2.6× 10−1 4.6× 10−4 1.9× 10−3

bRMSE 3.7× 10−1 5.5× 10−3 7.7× 10−1

fRMSE low 1.3× 10−1 4.4× 10−4 2.1× 10−1

fRMSE mid 2.3× 10−2 4.7× 10−4 3.4× 10−3

fRMSE high 2.3× 10−3 3.4× 10−4 9.8× 10−6

β = 1.0

RMSE 1.2× 10−2 3.5× 10−3 4.0× 10−1

nRMSE 2.0× 10−2 5.9× 10−3 4.7× 10−1

max error 1.7× 10−1 8.5× 10−2 7.6× 10−1

cRMSE 6.6× 10−3 1.8× 10−4 6.0× 10−3

bRMSE 3.0× 10−2 2.6× 10−3 3.0× 10−1

fRMSE low 3.8× 10−3 1.7× 10−4 9.7× 10−2

fRMSE mid 1.5× 10−3 2.1× 10−4 1.2× 10−3

fRMSE high 4.3× 10−4 2.2× 10−4 2.2× 10−5

β = 4.0

RMSE 1.6× 10−2 5.8× 10−3 6.6× 10−1

nRMSE 2.6× 10−2 1.0× 10−2 7.7× 10−1

max error 1.4× 10−1 1.1× 10−1 1.0× 10+0

cRMSE 8.1× 10−3 3.9× 10−4 2.0× 10−2

bRMSE 3.0× 10−2 5.1× 10−3 5.5× 10−1

fRMSE low 4.6× 10−3 4.9× 10−4 1.5× 10−1

fRMSE mid 1.8× 10−3 5.7× 10−4 3.4× 10−4

fRMSE high 4.7× 10−4 2.9× 10−4 1.5× 10−5

coefficient because of the stability condition, known as Courant-Friedrich-Lewy (CFL) condition,
∆t ∝ ∆x2/η in the case of the explicit method. Here ∆x,∆t are time-step size and mesh size,
respectively, and η is the diffusion coefficient. This is much severer restriction than the inviscid case
whose CFL condition is ∆t ∝ ∆x. Hence, we can conclude that ML methods could even be suitable
for solving for the problem with including strong-diffusive regime.

H ERROR COMPARISON WITH PDE SOLVER

To further assess the benefit of the trained baseline models, we generated the 2D diffusion-reaction
data using a PDE solver with higher resolution (512× 512), and downsampled them to lower reso-
lution (128 × 128). These downsampled data were assumed as the ground truth (low discretization
error) and then were used to train the baseline models. The trained baseline model predictions were

22

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Table 6: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid),
and high frequency (fRMSE high) ranges applied to the Burgers’ equation with different parameter
values.

Baseline model

PDE Parameter Metric U-Net FNO PINN

Burgers’

ν = 0.001

RMSE 1.1× 10−1 1.3× 10−2 5.3× 10−1

nRMSE 3.4× 10−1 4.2× 10−2 9.6× 10−1

max error 5.7× 10−1 2.8× 10−1 8.2× 10−1

cRMSE 5.9× 10−2 8.5× 10−4 5.1× 10−1

bRMSE 1.0× 10−1 9.3× 10−3 5.2× 10−1

fRMSE low 4.1× 10−2 8.7× 10−4 1.6× 10−1

fRMSE mid 1.1× 10−2 1.2× 10−3 1.3× 10−2

fRMSE high 1.5× 10−3 7.7× 10−4 4.7× 10−4

ν = 0.01

RMSE 9.7× 10−2 6.4× 10−3 5.3× 10−1

nRMSE 3.0× 10−1 2.0× 10−2 9.5× 10−1

max error 5.4× 10−1 1.5× 10−1 7.5× 10−1

cRMSE 4.0× 10−2 7.2× 10−4 4.7× 10−1

bRMSE 9.7× 10−2 7.6× 10−3 4.8× 10−1

fRMSE low 3.5× 10−2 7.8× 10−4 1.8× 10−1

fRMSE mid 1.0× 10−2 9.6× 10−4 2.3× 10−2

fRMSE high 9.6× 10−4 5.2× 10−4 1.2× 10−3

ν = 0.1

RMSE 7.5× 10−2 1.4× 10−3 4.9× 10−1

nRMSE 2.8× 10−1 4.5× 10−3 8.8× 10−1

max error 4.6× 10−1 3.0× 10−2 6.6× 10−1

cRMSE 3.0× 10−2 4.5× 10−4 4.7× 10−1

bRMSE 1.0× 10−1 2.5× 10−3 3.4× 10−1

fRMSE low 2.9× 10−2 4.2× 10−4 1.5× 10−1

fRMSE mid 5.6× 10−3 3.1× 10−4 1.0× 10−2

fRMSE high 8.4× 10−4 5.4× 10−5 5.1× 10−4

ν = 1.0

RMSE 6.0× 10−2 8.1× 10−4 5.4× 10−1

nRMSE 3.6× 10−1 3.1× 10−3 9.9× 10−1

max error 3.9× 10−1 5.9× 10−3 7.1× 10−1

cRMSE 6.4× 10−2 2.4× 10−4 5.3× 10−1

bRMSE 6.6× 10−2 8.6× 10−4 6.1× 10−1

fRMSE low 2.5× 10−2 3.2× 10−4 1.5× 10−1

fRMSE mid 3.0× 10−3 2.4× 10−5 4.9× 10−3

fRMSE high 5.9× 10−4 4.9× 10−6 2.6× 10−4

compared against data that were generated using the same PDE solver but with coarser resolution
(higher discretization error). The error comparison is summarized in Table 17. We observed that
generating the data with lower resolution already accumulates high discretization error, relative to
the baseline model prediction error. However, further sensitivity analysis with regards to different
resolutions is required in future works to determine if the resolution is fine enough to be assumed as
the ground truth.

I VISUALIZATION OF MODEL PREDICTIONS

In this section, we present visualizations of the baseline model predictions, compared against the
generated datasets for the diffusion-sorption equation (Figure 11), 2D diffusion-reaction equation
(Figure 12, Figure 13, and Figure 14), the shallow-water equation (Figure 15, Figure 16, and Fig-

23

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Table 7: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the Darcy flow equation with different parameter
values.

Baseline model

PDE Parameter Metric U-Net FNO

DarcyFlow

β = 0.01

RMSE 4.0× 10−3 8.0× 10−3

nRMSE 1.1× 10+0 2.5× 10+0

max error 6.8× 10−2 1.5× 10−1

cRMSE 5.8× 10−3 1.3× 10−2

bRMSE 6.3× 10−4 4.7× 10−3

fRMSE low 2.5× 10−3 5.2× 10−3

fRMSE mid 1.3× 10−4 1.5× 10−4

fRMSE high 2.1× 10−5 1.6× 10−5

β = 0.1

RMSE 4.8× 10−3 6.2× 10−3

nRMSE 1.8× 10−1 2.2× 10−1

max error 7.0× 10−2 8.9× 10−2

cRMSE 6.0× 10−3 7.7× 10−3

bRMSE 8.6× 10−4 5.0× 10−3

fRMSE low 2.6× 10−3 3.6× 10−3

fRMSE mid 1.9× 10−4 2.6× 10−4

fRMSE high 4.4× 10−5 4.5× 10−5

β = 1.0

RMSE 6.4× 10−3 1.2× 10−2

nRMSE 3.3× 10−2 6.4× 10−2

max error 9.0× 10−2 1.1× 10−1

cRMSE 6.0× 10−3 1.1× 10−2

bRMSE 3.5× 10−3 5.5× 10−3

fRMSE low 3.0× 10−3 5.2× 10−3

fRMSE mid 3.4× 10−4 5.1× 10−4

fRMSE high 1.3× 10−4 1.5× 10−4

β = 10.0

RMSE 1.4× 10−2 2.1× 10−2

nRMSE 8.2× 10−3 1.2× 10−2

max error 2.4× 10−1 3.2× 10−1

cRMSE 9.9× 10−3 1.5× 10−2

bRMSE 9.4× 10−3 1.6× 10−2

fRMSE low 5.8× 10−3 8.3× 10−3

fRMSE mid 9.8× 10−4 1.3× 10−3

fRMSE high 3.6× 10−4 5.7× 10−4

β = 100.0

RMSE 7.3× 10−2 1.1× 10−1

nRMSE 4.4× 10−3 6.4× 10−3

max error 1.7× 10+0 2.1× 10+0

cRMSE 5.1× 10−2 8.9× 10−2

bRMSE 4.6× 10−2 7.9× 10−2

fRMSE low 2.9× 10−2 4.6× 10−2

fRMSE mid 5.3× 10−3 7.6× 10−3

fRMSE high 2.5× 10−3 3.6× 10−3

ure 17), 1D Advection equation Figure 18, 1D Burgers equation Figure 19, 1D Reaction-Diffusion
equation Figure 20, 1D compressible NS equations Figure 21, 2D Darcy flow Figure 22, and 2D
compressible NS equations Figure 23.

24

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Table 8: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the 1d diffusion-reaction equation with different
parameter values.

Baseline model

PDE Parameter Metric U-Net FNO PINN

ReacDiff

ν = 0.5, ρ = 1.0

RMSE 3.1× 10−3 6.3× 10−4 4.5× 10−2

nRMSE 6.0× 10−3 1.4× 10−3 8.0× 10−2

max error 1.8× 10−2 8.7× 10−3 7.6× 10−2

cRMSE 2.5× 10−3 1.3× 10−3 4.3× 10−2

bRMSE 3.7× 10−3 6.7× 10−4 7.5× 10−2

fRMSE low 1.1× 10−3 4.1× 10−4 1.4× 10−2

fRMSE mid 1.8× 10−4 9.1× 10−6 2.4× 10−4

fRMSE high 1.8× 10−5 1.7× 10−6 3.7× 10−6

ν = 0.5, ρ = 10.0

RMSE 6.2× 10−8 0.0× 10+0 1.4× 10−2

nRMSE 6.5× 10−8 0.0× 10+0 1.4× 10−2

max error 6.2× 10−8 0.0× 10+0 2.6× 10−2

cRMSE 6.2× 10−8 0.0× 10+0 6.2× 10−3

bRMSE 6.2× 10−8 0.0× 10+0 2.3× 10−2

fRMSE low 1.6× 10−8 0.0× 10+0 4.3× 10−3

fRMSE mid 0.0× 10+0 0.0× 10+0 2.5× 10−4

fRMSE high 0.0× 10+0 0.0× 10+0 2.9× 10−6

ν = 2.0, ρ = 1.0

RMSE 2.3× 10−3 2.9× 10−4 3.9× 10−1

nRMSE 4.5× 10−3 7.0× 10−4 7.3× 10−1

max error 2.0× 10−2 4.2× 10−3 3.9× 10−1

cRMSE 1.9× 10−3 6.4× 10−4 3.9× 10−1

bRMSE 1.8× 10−3 4.1× 10−4 3.9× 10−1

fRMSE low 7.7× 10−4 1.9× 10−4 9.7× 10−2

fRMSE mid 1.7× 10−4 9.2× 10−6 6.2× 10−5

fRMSE high 2.6× 10−5 1.8× 10−6 3.4× 10−6

ν = 2.0, ρ = 10.0

RMSE 3.1× 10−8 6.2× 10−8 3.2× 10−2

nRMSE 3.2× 10−8 6.5× 10−8 3.3× 10−2

max error 3.1× 10−8 6.2× 10−8 3.2× 10−2

cRMSE 3.1× 10−8 6.2× 10−8 3.2× 10−2

bRMSE 3.1× 10−8 6.2× 10−8 3.1× 10−2

fRMSE low 7.8× 10−9 1.6× 10−8 8.0× 10−3

fRMSE mid 0.0× 10+0 0.0× 10+0 6.4× 10−6

fRMSE high 0.0× 10+0 0.0× 10+0 2.7× 10−7

J VISUALIZATION OF INITIAL CONDITIONS

In this section, we provide a collection of initial condition visualizations for each problem. Figure 24
shows different radius of the initial perturbation used as the initial condition for five different samples
of the 2D shallow-water equation data. Figure 25 shows different random uniform initial condition
used for five different samples of the 1D diffusion-sorption equation data. Figure 26 shows different
random noise used as the initial condition for five different samples of the 2D diffusion-reaction
equation data.

In Figure 27, we plotted the several samples of the initial condition for 1D Advection and Burg-
ers equations. Figure 28 is also the similar plot of the initial condition for 1D Diffusion-Reaction
equation. Note that in this case the value of the scalar function is limited between 0 to 1 because of

25

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Table 9: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the 1d compressible Navier-Stokes equation with
different parameter values.

Baseline model

PDE Parameter Metric U-Net FNO

1DCFD

η = ζ = 0.01 Rand
periodic

RMSE 9.9× 10−1 2.7× 10−1

nRMSE 3.6× 10−1 9.5× 10−2

max error 7.8× 10+0 4.1× 10+0

cRMSE 3.6× 10−1 5.0× 10−2

bRMSE 1.0× 10+0 2.2× 10−1

fRMSE low 3.6× 10−1 7.3× 10−2

fRMSE mid 1.2× 10−1 5.5× 10−2

fRMSE high 9.2× 10−3 3.7× 10−3

η = ζ = 0.1 Rand
periodic

RMSE 6.6× 10−1 9.3× 10−2

nRMSE 7.2× 10−1 6.8× 10−2

max error 5.3× 10+0 1.5× 10+0

cRMSE 3.5× 10−1 2.7× 10−2

bRMSE 6.8× 10−1 7.6× 10−2

fRMSE low 2.5× 10−1 2.8× 10−2

fRMSE mid 5.7× 10−2 1.3× 10−2

fRMSE high 7.7× 10−3 2.0× 10−3

inviscid Rand periodic

RMSE 1.7× 10+1 4.7× 10−1

nRMSE 1.1× 10+0 1.2× 10−1

max error 2.0× 10+1 7.1× 10+0

cRMSE 1.7× 10+1 6.7× 10−2

bRMSE 1.6× 10+1 3.5× 10−1

fRMSE low 5.3× 10−1 4.5× 10+0

fRMSE mid 1.9× 10−1 1.6× 10−1

fRMSE high 2.1× 10−2 2.6× 10−3

inviscid Rand
Outgoing

RMSE 1.6× 10+0 2.6× 10−1

nRMSE 1.1× 10+1 6.7× 10+0

max error 1.2× 10+1 4.3× 10+0

cRMSE 1.5× 10+0 1.5× 10−1

bRMSE 1.8× 10+0 3.6× 10−1

fRMSE low 6.8× 10−1 9.0× 10−2

fRMSE mid 1.2× 10−1 4.5× 10−2

fRMSE high 1.6× 10−2 6.7× 10−3

inviscid Shock
Outgoing

RMSE 4.1× 10−1 1.6× 10−1

nRMSE 1.7× 10−1 4.7× 10−2

max error 6.6× 10+0 3.8× 10+0

cRMSE 2.1× 10−1 5.3× 10−2

bRMSE 5.6× 10−1 2.4× 10−1

fRMSE low 1.4× 10−1 3.7× 10−2

fRMSE mid 5.3× 10−2 2.6× 10−2

fRMSE high 1.1× 10−2 6.7× 10−3

the form of the source term. Finally, we provided several samples of the 1D and 2D CFD cases in
Figure 29 and Figure 30.

26

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Table 10: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the 2d compressible Navier-Stokes equation with
different parameter values (first part).

Baseline model

PDE Parameter Metric U-Net FNO

2DCFD

M = 0.1, inviscid
Rand periodic

RMSE 4.0× 10−1 2.6× 10−1

nRMSE 6.6× 10−1 2.8× 10−1

max error 5.1× 10+0 4.2× 10+0

cRMSE 1.5× 10−1 1.6× 10−2

bRMSE 4.3× 10−1 2.6× 10−1

fRMSE low 1.1× 10−1 4.5× 10−2

fRMSE mid 4.8× 10−2 4.4× 10−2

fRMSE high 1.7× 10−2 1.6× 10−2

M = 0.1, η = ζ =
0.01 Rand periodic

RMSE 9.1× 10−2 2.3× 10−2

nRMSE 7.1× 10−1 1.7× 10−1

max error 1.1× 10+0 4.0× 10−1

cRMSE 3.6× 10−2 5.3× 10−3

bRMSE 1.1× 10−1 2.2× 10−2

fRMSE low 2.7× 10−2 5.7× 10−3

fRMSE mid 8.2× 10−3 2.7× 10−3

fRMSE high 2.6× 10−3 6.3× 10−4

M = 0.1, η = ζ = 0.1
Rand periodic

RMSE 4.7× 10−2 4.9× 10−3

nRMSE 5.1× 10+0 3.6× 10−1

max error 6.7× 10−1 8.7× 10−2

cRMSE 3.2× 10−2 3.2× 10−3

bRMSE 6.6× 10−2 4.3× 10−3

fRMSE low 1.3× 10−2 1.4× 10−3

fRMSE mid 4.2× 10−3 4.3× 10−4

fRMSE high 2.2× 10−3 1.4× 10−4

M = 1.0, inviscid
Rand periodic

RMSE 1.5× 10+0 1.4× 10+0

nRMSE 4.7× 10−1 3.5× 10−1

max error 1.6× 10+1 1.6× 10+1

cRMSE 4.8× 10−1 1.6× 10−1

bRMSE 1.5× 10+0 1.3× 10+0

fRMSE low 4.8× 10−1 4.0× 10−1

fRMSE mid 1.2× 10−1 1.2× 10−1

fRMSE high 3.9× 10−2 3.9× 10−2

27

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Table 11: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the 2d compressible Navier-Stokes equation with
different parameter values (second part).

Baseline model

PDE Parameter Metric U-Net FNO

2DCFD

M = 1.0, η = ζ =
0.01 Rand periodic

RMSE 3.4× 10−1 1.2× 10−1

nRMSE 3.6× 10−1 9.6× 10−2

max error 3.7× 10+0 1.7× 10+0

cRMSE 1.1× 10−1 1.8× 10−2

bRMSE 3.6× 10−1 1.3× 10−1

fRMSE low 1.1× 10−1 3.3× 10−2

fRMSE mid 2.7× 10−2 1.5× 10−2

fRMSE high 6.2× 10−3 3.6× 10−3

M = 1.0, η = ζ = 0.1
Rand periodic

RMSE 1.1× 10−1 1.5× 10−2

nRMSE 9.2× 10−1 9.8× 10−2

max error 1.3× 10+0 2.4× 10−1

cRMSE 4.8× 10−2 4.8× 10−3

bRMSE 1.5× 10−1 1.7× 10−2

fRMSE low 3.0× 10−2 3.2× 10−3

fRMSE mid 1.3× 10−2 1.5× 10−3

fRMSE high 4.3× 10−3 8.9× 10−4

M = 0.1, inviscid
Turb periodic

RMSE 3.3× 10−1 2.8× 10−1

nRMSE 1.9× 10−1 1.6× 10−1

max error 2.2× 10+0 1.8× 10+0

cRMSE 1.5× 10−2 1.2× 10−2

bRMSE 3.6× 10−1 2.8× 10−1

fRMSE low 6.5× 10−2 5.0× 10−2

fRMSE mid 3.2× 10−2 3.1× 10−2

fRMSE high 8.5× 10−3 6.5× 10−3

M = 1.0, inviscid
Turb periodic

RMSE 9.5× 10−2 9.2× 10−2

nRMSE 1.4× 10−1 1.3× 10−1

max error 8.2× 10−1 7.9× 10−1

cRMSE 6.5× 10−3 4.3× 10−3

bRMSE 1.1× 10−1 9.7× 10−1

fRMSE low 1.3× 10−2 1.1× 10−2

fRMSE mid 1.2× 10−2 1.2× 10−2

fRMSE high 5.2× 10−3 5.2× 10−3

28

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Table 12: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the 3d compressible Navier-Stokes equation with
different parameter values.

Baseline model

PDE Parameter Metric U-Net FNO

3DCFD

M = 1.0 inviscid
Rand periodic

RMSE 2.2× 10+0 6.0× 10−1

nRMSE 1.0× 10+0 3.7× 10−1

max error 9.0× 10+0 3.6× 10+0

cRMSE 2.3× 10+0 8.1× 10−2

bRMSE 2.1× 10+0 6.0× 10−1

fRMSE low 7.3× 10−1 1.1× 10−1

fRMSE mid 7.6× 10−2 4.4× 10−2

fRMSE high 2.3× 10−2 9.3× 10−3

M = 1.0 inviscid
Turb periodic

RMSE 8.1× 10−2 8.2× 10−2

nRMSE 2.3× 10−1 2.4× 10−1

max error 5.0× 10−1 4.5× 10−1

cRMSE 7.3× 10−3 2.8× 10−3

bRMSE 9.9× 10−2 8.6× 10−2

fRMSE low 1.1× 10−2 7.2× 10−3

fRMSE mid 8.0× 10−3 9.4× 10−3

fRMSE high 1.7× 10−3 4.5× 10−3

Table 13: System configuration 1

CPU 2 × AMD EPYC 7742
GPU 1 × NVIDIA Volta V100

Software PyTorch@1.11, CUDA@11.3

Table 14: Comparison of computation time between the PDE solver used to generate a single data
sample and single forward runs of FNO, U-Net, and PINN. Training time of the baseline models for
one epoch are also presented in this table. The unit used for the time is seconds.

PDE Resolution Model Training time (s
epoch) Epochs Inference time (s)

Diffusion-
sorption 1 0241

PDE solver – – 59.83
FNO 97.52 500 0.32
U-Net 96.75 500 0.32
PINN 0.011 15 000 0.0027

2D diffusion-
reaction

1282

PDE solver – – 2.21
FNO 108.28 500 0.40
U-Net 83.19 500 0.61
PINN 0.022 100 0.0077

Shallow-water
equation 1282

PDE solver – – 0.62
FNO 105.16 500 0.37
U-Net 83.32 500 0.56
PINN 0.041 15 000 0.00673

Table 15: System configuration 2

GPU 1 × NVIDIA GeForce RTX 3090
Software (ML methods) PyTorch@1.11, CUDA@11.3
Software (simulations) JAX@0.2.26, CUDA@11.3

29

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Table 16: Comparison of computation time between the PDE solver used to generate a single data
sample and single forward runs of FNO, U-Net. Training time of the baseline models for one epoch
are also presented in this table. The unit used for the time is seconds.

PDE Resolution Model Training time (s
epoch) Epochs Inference time (s)

3D CFD 643

PDE solver – – 60.07
FNO 24.77 500 0.14
U-Net 62.22 500 0.27

64 256 512 1024
resolution

10 1

100

101

102

103

104

in
fe

re
nc

e
tim

e
[s

ec
on

d]

2D CFD inference time
CFD, inviscid
CFD, = =0.01
CFD, = =0.1
FNO
UNet

32 64 128 256
resolution

10 1

100

101

102

103

in
fe

re
nc

e
tim

e
[s

ec
on

d]

3D CFD inference time
CFD, inviscid
FNO
UNet

Figure 10: Plots inference time for 2D/3D CFD cases.

Table 17: Error comparison between of U-Net, FNO, and PINN prediction, as well as low-resolution
PDE solver data, against the high-resolution PDE solver data (assumed as the ground truth) for the
2D diffusion-reaction scenario.

Error metric U-Net FNO PINN low-res PDE solver

RMSE 6.1× 10−2 8.1× 10−3 1.9× 10−1 1.8× 10−1

nRMSE 8.4× 10−1 1.2× 10−1 1.6× 10+0 2.8× 10+0

max error 1.9× 10−1 9.1× 10−2 5.0× 10−1 8.9× 10−1

cRMSE 3.9× 10−2 1.7× 10−3 1.3× 10−1 4.9× 10−2

bRMSE 7.8× 10−2 2.7× 10−2 2.2× 10−1 2.1× 10−1

fRMSE low 1.7× 10−2 8.2× 10−4 5.7× 10−2 4.9× 10−2

fRMSE mid 5.4× 10−3 7.7× 10−4 1.3× 10−2 2.2× 10−2

fRMSE high 6.8× 10−4 4.1× 10−4 1.5× 10−3 3.4× 10−3

0 200 400
t

0.0
0.2
0.4
0.6
0.8
1.0

x

FVM, (1 0241)

0.2
0.4
0.6
0.8

0 200 400
t

0.0
0.2
0.4
0.6
0.8
1.0

x

FNO

0.2
0.4
0.6
0.8

0 200 400
t

0.0
0.2
0.4
0.6
0.8
1.0

x

U-Net

0.2
0.4
0.6
0.8

Figure 11: Visualization of the diffusion-sorption equation (a) data, (b) FNO prediction, and (c)
U-Net prediction.

30

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 1.25

0.2

0.1

0.0

0.1

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 2.5

0.2

0.0

0.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 3.75

0.2

0.0

0.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 5

0.4

0.2

0.0

0.2

0.4

Figure 12: Visualization of the time evolution of the 2D diffusion-reaction equation data.

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FNO, t = 1.25

0.2

0.1

0.0

0.1

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y
FNO, t = 2.5

0.2

0.0

0.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FNO, t = 3.75

0.2

0.0

0.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FNO, t = 5

0.4

0.2

0.0

0.2

0.4

Figure 13: Visualization of the time evolution of the 2D diffusion-reaction equation predicted using
FNO.

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

U-Net, t = 1.25

0.2

0.1

0.0

0.1

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

U-Net, t = 2.5

0.2

0.0

0.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

U-Net, t = 3.75

0.2

0.0

0.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

U-Net, t = 5

0.4

0.2

0.0

0.2

0.4

Figure 14: Visualization of the time evolution of the 2D diffusion-reaction equation predicted using
U-Net.

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 0.25

1.0
1.2
1.4
1.6
1.8

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 0.5

0.8

1.0

1.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 0.75

0.4
0.6
0.8
1.0
1.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 1

0.8

1.0

1.2

Figure 15: Visualization of the time evolution of the shallow water equation data.

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FNO, t = 0.25

1.0
1.2
1.4
1.6
1.8

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FNO, t = 0.5

0.8

1.0

1.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FNO, t = 0.75

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FNO, t = 1

0.8

1.0

1.2

Figure 16: Visualization of the time evolution of the shallow water equation predicted using FNO.

31

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

U-Net, t = 0.25

1.0
1.2
1.4
1.6
1.8

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

U-Net, t = 0.5

0.8

1.0

1.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

U-Net, t = 0.75

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

U-Net, t = 1

0.8

1.0

1.2

Figure 17: Visualization of the time evolution of the shallow water equation predicted using U-Net.

0.0 0.5 1.0 1.5 2.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

FVM

0.0 0.5 1.0 1.5 2.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

FNO

0.0 0.5 1.0 1.5 2.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

U-Net

Figure 18: Plots of the predictions for 1D Advection equation.

0.0 0.5 1.0 1.5 2.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

FVM

0.0 0.5 1.0 1.5 2.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

FNO

0.0 0.5 1.0 1.5 2.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

U-Net

Figure 19: Plots of the predictions for 1D Burgers equation.

0.00 0.05 0.10 0.15 0.20
t

0.0

0.2

0.4

0.6

0.8

1.0

x

FVM

0.00 0.05 0.10 0.15 0.20
t

0.0

0.2

0.4

0.6

0.8

1.0

x

FNO

0.00 0.05 0.10 0.15 0.20
t

0.0

0.2

0.4

0.6

0.8

1.0

x

U-Net

Figure 20: Plots of the predictions for 1D Reaction-Diffusion equation.

32

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

FVM

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

FNO

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

U-Net

Figure 21: Plots of the predictions of density for 1D compressible NS equations.

0.00 0.25 0.50 0.75 1.00
y

0.0

0.2

0.4

0.6

0.8

1.0

x

Input

0.00 0.25 0.50 0.75 1.00
y

0.0

0.2

0.4

0.6

0.8

1.0

x

True

0.00 0.25 0.50 0.75 1.00
y

0.0

0.2

0.4

0.6

0.8

1.0

x

FNO

0.00 0.25 0.50 0.75 1.00
y

0.0

0.2

0.4

0.6

0.8

1.0

x

U-Net

Figure 22: Plots of the predictions for 2D Darcy Flow.

0.00 0.25 0.50 0.75 1.00
y

0.0

0.2

0.4

0.6

0.8

1.0

x

t=0

0.00 0.25 0.50 0.75 1.00
y

0.0

0.2

0.4

0.6

0.8

1.0

x

True

0.00 0.25 0.50 0.75 1.00
y

0.0

0.2

0.4

0.6

0.8

1.0

x

FNO

0.00 0.25 0.50 0.75 1.00
y

0.0

0.2

0.4

0.6

0.8

1.0

x

U-Net

Figure 23: Plots of the predictions of the density for 2D compressible NS equations at the final
time-step.

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 0

1.0
1.2
1.4
1.6
1.8
2.0

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 0

1.0
1.2
1.4
1.6
1.8
2.0

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 0

1.0
1.2
1.4
1.6
1.8
2.0

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 0

1.0
1.2
1.4
1.6
1.8
2.0

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

Clawpack, (1282), t = 0

1.0
1.2
1.4
1.6
1.8
2.0

Figure 24: Visualization of the different radius of the initial perturbation used for the 2D shallow-
water equations data.

0.0 0.5 1.0
x

0.056

0.058

0.060

u

FVM, (1 0241), t = 0

0.0 0.5 1.0
x

0.0175

0.0180

0.0185

0.0190

u

FVM, (1 0241), t = 0

0.0 0.5 1.0
x

0.050

0.052

u

FVM, (1 0241), t = 0

0.0 0.5 1.0
x

0.044

0.046

0.048

u

FVM, (1 0241), t = 0

0.0 0.5 1.0
x

0.180

0.185

0.190

0.195

u

FVM, (1 0241), t = 0

Figure 25: Visualization of the random uniform initial conditions used for the 1D diffusion-sorption
equations data.

33

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 0

2

0

2

4

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 0

2

0

2

4

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 0

4

2

0

2

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 0

4

2

0

2

4

0.0 0.5 1.0
x

0.0
0.2
0.4
0.6
0.8
1.0

y

FVM, (1282), t = 0

4

2

0

2

Figure 26: Visualization of the random initial conditions used for the 2D diffusion-reaction equa-
tions data.

1 0 1
x

0.725

0.750

0.775

0.800

0.825

t=0

1 0 1
x

0.1

0.2

0.3
t=0

1 0 1
x

0.5

0.0

0.5

1.0

1.5
t=0

1 0 1
x

0.0

0.2

0.4

0.6

0.8
t=0

1 0 1
x

0.5

0.0

0.5

1.0
t=0

Figure 27: Visualization of the random initial conditions used for the 1D Advection/Burgers equa-
tions data.

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0 t=0

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0 t=0

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0 t=0

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0 t=0

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0 t=0

Figure 28: Visualization of the random initial conditions used for the 1D Reaction-Diffusion equa-
tions data.

1.0 0.5 0.0 0.5 1.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
density

1.0 0.5 0.0 0.5 1.0
1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4

velocity

1.0 0.5 0.0 0.5 1.0
40

50

60

70

80

90

100
pressure

Figure 29: Visualization of the random initial conditions used for the 1D CFD data. The different
colors mean the different samples.

0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

Figure 30: Visualization of the initial conditions of density used for the 2D CFD data.

34

	Motivation
	PDEBench: A Benchmark for Scientific Machine Learning
	Overview of Datasets and PDEs
	Overview of Metrics
	Data Format, Benchmark Access, Maintenance, and Extensibility

	A Selection of Experiments
	Conclusions
	Related Work
	Detailed metrics description
	Inverse Problem Metrics

	Training Protocol and Hyperparameters
	Inverse problem

	Detailed Problem Description
	1D Advection Equation
	1D Diffusion-Reaction Equation
	Burgers equation
	Darcy Flow
	Compressible Navier-Stokes equation
	Inhomogenous, incompressible Navier-Stokes
	2D Shallow-Water Equations
	Diffusion-Sorption Equation
	2D Diffusion-Reaction Equation
	Gradient-Based Inverse Method

	Detailed Baseline Score
	Detailed Runtime Comparison
	Resolution Sensitivity of Inference Time
	Error Comparison with PDE Solver
	Visualization of Model Predictions
	Visualization of Initial Conditions

