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ABSTRACT

Causal discovery with latent variables is a fundamental task. Yet most existing
methods rely on strong structural assumptions, such as enforcing specific indicator
patterns for latents or restricting how they can interact with others. We argue that
a core obstacle to a general, structural-assumption-free approach is the lack of an
equivalence characterization: without knowing what can be identified, one gener-
ally cannot design methods for how to identify it. In this work, we aim to close this
gap for linear non-Gaussian models. We establish the graphical criterion for when
two graphs with arbitrary latent structure and cycles are distributionally equivalent,
that is, they induce the same observed distribution set. Key to our approach is
a new tool, edge rank constraints, which fills a missing piece in the toolbox for
latent-variable causal discovery in even broader settings. We further provide a
procedure to traverse the whole equivalence class and develop an algorithm to
recover models from data up to such equivalence. To our knowledge, this is the first
equivalence characterization with latent variables in any parametric setting without
structural assumptions, and hence the first structural-assumption-free discovery
method. Code and an interactive demo are available at https://equiv.cc.

1 INTRODUCTION

At the core of scientific inquiry lies causal discovery, the task of learning causal relations from
observational data (Spirtes et al., 2000; Pearl, 2009). In many real-world scenarios, the variables of
interest can be unobserved. For instance, in psychology, personality traits are hidden behind survey
responses, and in biology, crucial regulators may be unobserved due to technical inaccessibility.
Discovering the causal structure with these latent variables, referred to as latent-variable causal
discovery, is essential for understanding and reasoning, yet remains a challenging task.

Latent-variable causal discovery has seen significant development over the past three decades. A
milestone was the Fast Causal Inference (FCI) algorithm (Spirtes, 1992), which exploits conditional
independence (CI) constraints under hidden confounding. However, FCI is typically not regarded as
a method of latent-variable causal discovery, as it focuses solely on causal relations among observed
variables, with no intension or capability to identify those among latent variables. In fact, though FCI
is already maximally informative under nonparametric CI constraints (Richardson & Spirtes, 2002;
Zhang, 2008a), it is still not informative enough for recovering latent structure.

This limitation has motivated the development of many recent approaches that go beyond CI con-
straints, typically by introducing parametric assumptions, such as linearity (Silva et al., 2003; Dong
et al., 2024), non-Gaussianity (Hoyer et al., 2008; Jin et al., 2024), mixture models (Kivva et al., 2021),
and distribution shifts (Zhang et al., 2024). Within each setting, a rich array of techniques has emerged.
For example, in the linear non-Gaussian setting alone, methods have been developed based on over-
complete independent component analysis (OICA) (Salehkaleybar et al., 2020), regression (Tashiro
et al., 2014), Bayesian estimation (Shimizu & Bollen, 2014), independence testing (Xie et al., 2020),
cumulants (Robeva & Seby, 2021), independent subspace analysis (Dai et al., 2024), and many more.

However, despite this prosperity, most methods share a clear limitation: they rely on structural
assumptions, often about how latent variables are indicated and how they can interact with others.
Common examples include measurement models where observed variables have to be pure measure-
ments of latents (Silva & Scheines, 2004; Zhang et al., 2018); hierarchical models that prohibit effects
from observed variables (Choi et al., 2011; Huang et al., 2020); sufficient number of pure children per
latent (Squires et al., 2022; Jin et al., 2024); and assumptions like triangle- or bow-freeness (Dong
et al., 2024; Wang & Drton, 2023). In addition, most methods also assume acyclicity, even though
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feedback loops are common in real systems. These assumptions, often overly strong and untestable,
not only limit applicability but also complicate method selection for practitioners.

A pressing question naturally arises: after decades of progress, is it possible now to have a general
structural-assumption-free approach for latent-variable causal discovery that, like FCI, allows arbitrary
relations among latent and observed variables, yet goes beyond FCI’s limited informativeness?

One core obstacle, we argue, is the lack of a general equivalence characterization with latent variables.
Equivalence is a notion fundamental to causal discovery: when different causal models induce the
same observed distribution set (known as distributional equivalence), no method can, or should,
distinguish among them, without extra information like interventions or sparsity constraints. The
expected discovery output is thus the entire equivalence class, the best one can hope to identify from
data. In practice, equivalence can also be defined more coarsely, depending on the specific constraints
used. One example is Markov equivalence, capturing when models entail the same CI constraints. A
well-known and nice result is that in causally sufficient, acyclic, and nonparametric models, Markov
equivalence coincides with distributional equivalence (Spirtes et al., 2000); the resulting equivalence
class is represented by a completed partially directed acyclic graph (CPDAG).

In the presence of cycles or latent variables, however, equivalence characterization becomes more
complex. For example, the nice coincidence between Markov and distributional equivalences breaks
down, even with only cycles (Spirtes, 1994; Mooij & Claassen, 2020), or only latent variables (Verma
& Pearl, 1991; Richardson et al., 2023), let alone both. The resulting equivalence classes, be it
Markov (Richardson & Spirtes, 2002; Claassen & Mooij, 2023) or distributional (Nowzohour et al.,
2017; Evans, 2018), also become far more complex. Such complications carry over to parametric
settings: for cycles alone, distributional equivalence has been characterized in linear non-Gaussian
and Gaussian models (Lacerda et al., 2008; Ghassami et al., 2020); yet for latent variables, no
characterization of any kind, whether distributional or constraint specific, is currently known to us.
The closest result (Adams et al., 2021) gives conditions for when a linear non-Gaussian acyclic model
can be uniquely identified, but leaves open describing the equivalence when such identifiability fails.

All such complications from latent variables and cycles have so far prevented a general equivalence
characterization, which is exactly what obstruct progress towards a structural-assumption-free method.
The need for such a characterization is yet clear: without knowing what can be identified, one gen-
erally cannot design methods for how to identify it. This is echoed in history: PC algorithm followed
CPDAGs; FCI’s guarantee followed maximal ancestral graphs (MAGs) (Richardson & Spirtes, 2002).

Our goal in this work is hence to overcome these challenges and establish a general equivalence
notion with latent variables and cycles. We focus on linear non-Gaussian models, a parametric setting
that has received much attention. Under this setting, we address three questions: 1) When are two
graphs with arbitrary latent variables and cycles equivalent? 2) How can one traverse the entire
equivalence class? 3) How can one recover latent-variable models up to equivalence from data?

Centered around these three questions, our contributions are summarized as follows:
1. We present a general equivalence notion that allows arbitrary latent structure and cycles in linear

non-Gaussian models. This is the first such result known to us in any parametric setting (§2).
2. We introduce a new tool, edge rank constraints. It contributes a missing piece to the broader

toolbox for latent-variable causal discovery, with potential use across many settings (§3).
3. We characterize equivalence graphically and provide procedures to traverse the entire class. Re-

sults are cleaner than expected. We provide an interactive demo at https://equiv.cc (§4).
4. We develop an efficient algorithm to recover the equivalence class from data, which is, to our

knowledge, the first structural-assumption-free method for latent-variable causal discovery (§5).

2 PROBLEM SETUP

In this section, we lay the groundwork for our study. In §2.1, we define the notion of distributional
equivalence in linear non-Gaussian latent-variable causal models. Then in §2.2, we introduce the
idea of irreducibility to rule out trivial cases, clearing the way for the main results to come.

2.1 PRELIMINARIES FOR LINEAR NON-GAUSSIAN MODELS

Notations on matrices. For a matrix M , we let Mi,j be its (i, j)-th entry. For two index sets
A,B, we let MA,B = (Ma,b)a∈A,b∈B be the submatrix of M with rows indexed by A and columns
indexed by B. We let MA,: be the rows in M indexed by A, and similarly M:,B for the columns. For
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a finite set A, we denote its cardinality by |A|. We denote by Scale(d) the set of all d× d diagonal
matrices with nonzero diagonal entries, and by Perm(d) the set of all d× d permutation matrices.
For a permutation π : V → V on a ground set V , we denote π(F ) := {π(i) : i ∈ F} for any set
F ⊆ V , and extend this notation to families of sets by π(F) := {π(F ) : F ∈ F} for F ⊂ 2V .

Notations on graphs. Throughout, by a digraph we refer to a directed graph that may contain
cycles but no self-loops (edges from a vertex to itself). In a digraph G, let V (G) be its vertex set. For
vertices a, b, we say a is a parent of b and b is a child of a, denoted by a ∈ paG(b) and b ∈ chG(a),
when a → b is an edge in G, written a → b ∈ G; a is an ancestor of b and b is a descendant of a,
denoted by a ∈ anG(b) and b ∈ deG(a), when a = b or there is a directed path a → · · · → b in G.
These notations extend to sets: e.g., for a vertex set A, anG(A) :=

⋃
a∈A anG(a).

Linear non-Gaussian (LiNG) causal models. We consider a linear non-Gaussian model associated
with a digraph G, in which random variables V = (V1, · · · , V|V |)

⊤, corresponding to the vertices of
G, are generated according to the structural equation:

V = BV + E, (1)

where E = (E1, · · · , E|V |)
⊤ consists of mutually independent, non-constant, non-Gaussian exoge-

nous noise terms. The matrix B ∈ B(G) is a weighted adjacency matrix (whose entries represent
direct causal effects) that follows G, where B(G), all adjacency matrices that follow G, is defined as:

B(G) := {B ∈ R|V |×|V | : BVj ,Vi ̸= 0 =⇒ Vi → Vj ∈ G}. (2)

Assuming I −B is invertible, solving for Equation (1) gives an equivalent mixing form:

V = (I −B)−1E =: AE, (3)

where A is called the weighted mixing matrix. The entry AVj ,Vi represents the total causal effect
from Vi to Vj . All mixing matrices that follow G, denoted by A(G), is defined as:

A(G) := {(I −B)−1 : B ∈ B(G), I −B invertible}. (4)

Latent-variable LiNG models. Let the vertices V of a digraph G be partitioned as V = L ∪X ,
where L denotes latent (unobserved) variables and X denotes observed variables. A latent-variable
model is specified by the tuple (G, X), with latent variables L omitted when clear from context.

Given a full mixing matrix A ∈ A(G), the submatrix AX,: ∈ R|X|×|V | maps exogenous noise terms
to the observed variables. The collection of such wide rectangular mixing matrices is defined as:

A(G, X) := {AX,: : A ∈ A(G)}. (5)

Accordingly, the induced observed distribution set of G on X , that is, the set of all distributions over
X that can arise from a LiNG model over (G, X), denoted P(G, X), is given by:

P(G, X) := {p(X) : X = AE, A ∈ A(G, X), E ∈ NG(|V |)}, (6)

where p(X) denotes the probability distribution of the random vector X , and NG(d) denotes the set
of all d-dim random vectors with mutually independent, non-constant, and non-Gaussian components.

We are now ready to formalize the central notion of this work: distributional equivalence.
Definition 1 (Distributional equivalence). Let G and H be two digraphs with possibly different
vertices, andX ⊆ V (G)∩V (H) be the shared observed variables. We say G andH are distributionally

equivalent (or for short, equivalent) on X , denoted by G X∼ H, when P(G, X) = P(H, X).

The equivalence (Definition 1) captures when two models yield identical observed distribution set,
i.e., observationally indistinguishable. With this notion in place, next we clean up some trivialities.

2.2 IRREDUCIBILITY: TO FIRST RULE OUT TRIVIAL CASES OF EQUIVALENCE

To study identifiability, let us first see what is inherently non-identifiable. For instance, one can
freely add latent vertices that are not ancestors of any observed variables X to a digraph G without
affecting P(G, X), yielding trivially equivalent models. Identifying those latents is both impossible
and meaningless. To rule out such trivialities, we introduce the notion of irreducibility.

Definition 2 (Irreducibility). We say a latent-variable model (G, X) is irreducible, when there exists
no digraphH with |V (H)| < |V (G)| such that G X∼ H.
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Figure 1: Examples of reducing models to their irreducible forms via the procedure in Proposition 2.
Throughout, white circles denote observed variables and grey squares denote latent variables.

Irreducibility captures when an observed distribution set cannot arise from any other model with
fewer latent variables. We now present a simple graphical condition for this property.
Proposition 1 (Graphical condition for irreducibility). A model (G, X) is irreducible, if and only
if for each non-empty set l ⊆ L, | chG(l) \ l| ≥ 2, i.e., it has more than one child outside.

Note that when G is acyclic, it suffices to check each singleLi ∈ L, consistent with the condition previ- Reviewer GjKP: Q4
We have checked
that in acyclic mod-
els, our irreducibility
condition matches
the previous “ab-
sorbability” condi-
tion (Salehkaleybar
et al., 2020).

ously derived by Salehkaleybar et al. (2020). The proof of Proposition 1, along with others, is provided
in Appendix B. The key idea here is that any violation of the condition leads to proportional columns
in mixing matrices A(G, X), so that the observed distributions can be equivalently generated by a
smaller graph with these columns merged to one. Conversely, identifiability results of OICA (Eriksson
& Koivunen, 2004) suggest that as long as in the absence of such proportional columns, the mixing
matrix is identifiable up to column scaling and permutation, so the number of latents is identifiable.

We next provide an explicit procedure for reducing an arbitrary model to its irreducible form.
Proposition 2 (Procedure of reduction to the irreducible form). Given any latent-variable model
(G, X), the following procedure outputs a digraphH such thatH X∼ G and (H, X) is irreducible.

Step 1. InitializeH as G.
Step 2. Remove vertices V (H) \ anH(X) fromH, i.e., remove latents who have no effects on X .
Step 3. Identify the maximal redundant latents in the remaining latent vertices:

mrl := {l ⊆ V (H)\X : |l| > 0, | chH(l)\l| < 2, and ∀l′ ⊋ l, | chH(l′)\l′| ≥ 2}. (7)

Step 4. For each l ∈ mrl, let c be the exact child in chH(l)\l; for each parent p ∈ paH(l)\l\{c},
add an edge p→ c intoH if not already present; finally, remove l vertices fromH.

Illustrative examples of this reduction are shown in Figure 1. This reduction lets us, without loss of
generality, restrict attention to irreducible models for the remainder, as arbitrary models are equivalent
if and only if their irreducible forms are equivalent. Note that irreducibility is not a structural
assumption as discussed in §1, but rather a canonicalization to eliminate trivialities. As a side note,
applying the reduction in Proposition 2 does not increase the number of edges or cycles. Reviewer Czvx: Q3

A “safe canonicaliza-
tion”.3 DEVELOPING GRAPHICAL TOOLS FOR CHARACTERIZING EQUIVALENCE

In the previous section, we defined distributional equivalence and irreducibility to rule out trivial
unidentifiable cases, so we can focus solely on irreducible models in what follows. Then, when are
two irreducible models equivalent? In this section, we tackle this question step by step.

Specifically, in §3.1 we first show that distributional equivalence reduces to an algebraic condition on
mixing matrices, and further to a graphical condition involving a concept familiar to the community:
path ranks, given by max-flow-min-cuts in digraphs. Although familiar, path ranks are difficult
to work with due to their global, non-local nature, as we illustrate in §3.2. To overcome this, we
introduce a new tool: edge ranks, a local, edge-level constraint that complements path ranks and is
easier to manipulate. This new tool, developed in §3.3, not only enables our final result to come in
the next section, but also enriches the broader rank-based picture beyond our specific setting.

3.1 EQUIVALENCE VIA PATH RANKS

We start by examining the algebra behind distributional equivalence. By Definition 2, all equivalent
irreducible models must have the same number of latents. This follows from OICA, which guarantees
exact recovery of the number of (nontrivial) latent variables. Hence, in what follows, when considering
the equivalence of two irreducible models (G, X) and (H, X), we can, without loss of generality,
denote their latent variables by a same set of labels, so that V (G) = V (H) = X ∪ L. Reviewer FDU9: Q4

We have made the
phrase about “same
latent variable labels”
clearer.
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We then observe that distributional equivalence can be rephrased in terms of the mixing matrices:
two models are equivalent if and only if for every mixing matrix one model can generate, the other
can also generate a version of it up to column scaling and permutation, and vice versa, due to the
scaling and permutation closedness of exogenous noise terms. Formally,
Lemma 1 (Equivalence via mixing matrices closure). Two irreducible models are equivalent,
written G X∼ H, if and only if A(G, X) = A(H, X), where for a set of matrices A ⊆ Rm×d, we let:

A := {APD : A ∈ A, P ∈ Perm(d), D ∈ Scale(d)}, (8)

that is, the closure of A up to column scaling and permutation.

Then, what are exactly these mixing matrices, namely, A(G, X)? As defined in Equations (2) to (5),
it arises from a mapping over the free parameters in adjacency matrices. Concretely, each entry of the
mixing matrix is a rational function: the numerator polynomial reflects “total causal effects” between
variables, and the denominator polynomial accounts for “global cycle discounts”, which is simply 1
when the digraph is acyclic. In cyclic cases, there is a small pathological locus where denominators
vanish, that is, where I −B becomes singular and cycles “cancel themselves.” But as we will show
in the proof, this does not affect our results. So for now, let us progress with the Zariski closure of
A(G, X), an algebraic variety that can be defined by finitely many equality constraints.

We now study these constraints. One fundamental class of them is the so-called rank constraints,
which admits a nice graphical interpretation in terms of max-flow-min-cut in digraphs, defined below:
Definition 3 (Path ranks). In a digraph G, for two sets of vertices Z, Y ⊆ V (G), the path rank
ρG(Z, Y ) is defined as the maximum number of vertex-disjoint directed paths from Y to Z in G.
By (Menger, 1927), this max-flow quantity can also be defined by its min-cut version:

ρG(Z, Y ) := min
c⊆V (G)

{|c| : c’s removal from G ensures no directed path from Y \c to Z\c}. (9)

These purely graphical quantities can be read off from the mixing matrices by examining the matrix
ranks of corresponding submatrices, which is the well-known (path) rank constraint:
Lemma 2 (Path rank constraints in mixing matrices). In a digraph G, for any two sets of vertices
Z, Y ⊆ V (G) that need not be disjoint, the following equality holds for generic choice of A ∈ A(G):

rank(AZ,Y ) = ρG(Z, Y ). (10)

Here, rank denotes the usual matrix rank, and “generic” means the equality holds almost everywhere
except for a Lebesgue measure zero set where coincidental lower matrix ranks occur.

Rank constraints bridge algebra in matrices with geometry in digraphs. They were initially proved for
acyclic graphs only (Lindström, 1973; Gessel & Viennot, 1985), and later generalized by (Talaska,
2012). They are powerful: as we will show in the proof, rank constraints alone, together with a
column permutation, suffice to determine equivalence. We directly state the result below:
Lemma 3 (Equivalence via path ranks). Two irreducible models are distributionally equivalent,
written G X∼ H, if and only if there exists a permutation π over the vertices V (G), such that

ρG(Z, Y ) = ρH(Z, π(Y )) for all Z ⊆ X and Y ⊆ V (G). (11)

From Lemma 1 to Lemma 3, so far we have arrived at a first purely graphical view of equivalence.

3.2 THE COMPLEXITY OF MANIPULATING PATH RANKS

In §3.1 we have arrived at Lemma 3, a purely graphical characterization of equivalence, which,
perhaps surprisingly, is expressed in terms of a familiar concept: path ranks. However, this is only a
start and far from operational: verifying it requires searching over all vertex permutations and all
(Z, Y ) pairs, which quickly becomes intractable due to their factorial and exponential growth, let
alone the costly graph traversal required for each single path rank computation. As an analogy to the
acyclic, causally sufficient case, Lemma 3 is like saying “having all the same d-separations,” whereas
what we seek is something simpler and more local, like “same adjacencies and v-structures.”

Then, does a simpler local condition naturally follow from Lemma 3? Unfortunately, not quite. Path
ranks are hard to work with due to their global nature: they summarize the size of “bottlenecks”,
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Figure 2: An illustration of path ranks, edge ranks, and their duality. Left: a digraph G with vertices
V partitioned to Y , C, and Z, shown by different colors. The path rank ρG(Z, Y ) = 2, with C being
a min-cut. Right: the dual edge rank rG(V \Y, V \Z) = 4, given by the maximum bipartite matching
from V \Z to V \Y , i.e., from Y ∪ C to Z ∪ C, with four matched edges highlighted in red. Four
corresponding nonzero entries placed on diagonal, also in red, confirm mrank(Q

(G)
V \Y, V \Z) = 4.

One may examine the duality in Theorem 1: w.l.o.g. let m ≤ n, there is m− 2 = m+n+2−n− 4.

but say nothing about which paths are involved or how they interact. Each single edge may lie on
multiple bottlenecks, so even a small local alteration to a digraph may trigger unpredictable global
changes in path ranks. Conversely, with latent variables, seemingly very different digraphs can still
share the same path ranks. We illustrate such complexity with the following example.

Example 1 (Complexity of viewing equivalence via path ranks). Consider the digraph G on the
left of Figure 2, with vertices partitioned into Y , C, and Z. Obviously, the path rank ρG(Z, Y ) = 2.
Now, suppose vertices {C1, C2} become latent and all others remain observed. What models are
equivalent? This is not obvious anymore. It usually takes some thought to realize that adding edges or
cycles within C, or removing one or two edges from C to Z, still preserves path ranks as in Lemma 3.
What about the Y to C structure then? This is more subtle: when n > 2, it must remain fixed; but
when n = 2, C is no longer a unique bottleneck, and suddenly, Y can point freely to both C and Z.

Things become even less intuitive when other variables are latent. For example, with m = n = 4, if
{C1, C2} are latent, there are 17 digraphs in the equivalence class (view them online). When {Y1, Y2}
or {Y1, C1} are latent, this number comes to 872 (view) and 1, 024 (view), respectively. Note that all
this comes from a well structured digraph; arbitrary structures only lead to greater complexity. △

Example 1 illustrates the complexity of path ranks in inferring graph structures. In fact, this complex-
ity is well recognized in literature: despite various techniques developed to estimate path ranks from
data (Dai et al., 2022; Sturma et al., 2024), and well-studied counterparts in the linear Gaussian (Sul-
livant et al., 2010) and discrete settings (Chen et al., 2024b) or even with selection bias (Dai et al.,
2025), when it comes to structure learning from ranks, usually restrictive structural assumptions are
required to ensure clean interpretation to where and how these paths can be.

All observations above motivate a question: is there a more local, graph-manipulable alternative to
path ranks, not just for building equivalence in this work but also as a piece in the broader toolbox?
Interestingly, the answer is yes, and we develop such a tool next: edge ranks.

3.3 EDGE RANKS: A NEW TOOL IN THE RANK-BASED PICTURE

We now introduce a new tool: edge ranks. As the name suggests, edge ranks directly operate on
edges in digraphs, which is more local and accessible in contrast to the paths used in path ranks. For
intuition, one may refer to Figure 2, which illustrates all the concepts and results below.

Let us first define edge ranks, similar to how we define path ranks previously in Definition 3:

Definition 4 (Edge ranks). In a digraph G, for two sets of vertices Z, Y ⊆ V (G), the edge rank
rG(Z, Y ) is defined as the size of the maximum bipartite matching from Y to Z via edges in G, where
self-matches (a to a for a ∈ Y ∩ Z) are allowed. Edge ranks also admit a min-cut version:

rG(Z, Y ) := min
z⊆Z, y⊆Y, z∪y⊇Z∩Y

{|z|+ |y| : there is no edge from Y \y to Z\z in G}. (12)

In parallel to how path ranks correspond to matrix ranks of mixing submatrices (cf. Lemma 2), the
pure graphical quantities of edge ranks also have their algebraic counterpart. This time, it is not the
mixing matrices at play, but directly the adjacencies.
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For clarity, let us introduce a new matrix notation, Q, in addition to the already familiar notations of
B and A, and a new notion of matching ranks, in addition to the already familiar matrix ranks.
Definition 5 (Support matrix). For a digraph G, its binary support matrix in shape |V (G)| × |V (G)|,
denoted Q(G), is given by:

Q
(G)
Vj ,Vi

= ‘× ’ if Vi = Vj or Vi → Vj ∈ G, and 0 otherwise. (13)

Definition 6 (Matching rank of a matrix). The matching rank of a matrix M ∈ Km×n is given by:

mrank(M) := max
P∈Perm(n)

∑
i=1,··· ,min(m,n) 1((MP )i,i ̸= 0). (14)

In simple terms, the matching rank of a matrix, denoted mrank, is the maximum number of nonzero
entries that can be positioned on the diagonal by permuting its columns (or rows).

We can now give the edge rank constraints, as a counterpart to path rank constraints (cf. Lemma 2).
Unlike the algebraic efforts required there, this result follows immediately from definition:
Lemma 4 (Edge rank constraints in support matrices). In a digraph G, for any two sets of vertices
Z, Y ⊆ V (G) that need not be disjoint, the following equality holds:

mrank(Q
(G)
Z,Y ) = rG(Z, Y ). (15)

So far, we have defined both path ranks and edge ranks, which at first glance appear so different:
graphically, one is global, focusing on paths, while the other is local, operating on edges; algebraically,
one is tied to weighted mixing matrices, the other to binary support matrices. However, despite these
apparent differences, a surprising and elegant duality exists between them:
Theorem 1 (Duality between path ranks and edge ranks). In a digraph G with vertices V , for any
two sets of vertices Z, Y ⊆ V that need not be disjoint, the following equality holds:

min(|Z|, |Y |)− ρG(Z, Y ) = |V | −max(|Z|, |Y |)− rG(V \Y, V \Z). (16)

This duality is powerful: it suggests that every statement phrased in terms of path ranks and its
variants, including the familiar d-separation and t-separation, can be equivalently rephrased in terms
of edge ranks. It reveals that, despite the very different graphical objects involved in the two ranks,
they offer complementary perspectives on a same notion in the digraph, namely, bottleneck, which
captures how dependencies arise in observed data, and is thus central to causal discovery.

In fact, this duality has long been studied in the matroid community (Kőnig, 1931; Perfect, 1968;
Ingleton & Piff, 1973), while only the path rank side has been well known in causal discovery. We
thus introduce edge ranks here, filling the other side to the rank-based toolbox. It is not that edge
ranks are always better, but having both perspectives is beneficial. Within this work, edge ranks
indeed lead to simpler derivations. For instance, let us rephrase Lemma 3 using edge ranks below:
Lemma 5 (Equivalence via edge ranks). Two irreducible models are distributionally equivalent,
written G X∼ H, if and only if there exists a permutation π over the vertices V (G), such that

rG(Z, Y ) = rH(π(Z), Y ) for all Z, Y ⊆ V (G) with L ⊆ Y. (17)

As we will see in the next section, this formulation paves the way to our final criterion for equivalence. Reviewer Tajr: Q3
Lemma 5 is a tran-

sitional result. The
efficient criterion de-
rived from it is Theo-
rem 2 below.

To conclude this section, we provide a side-by-side comparison of two ranks (Table 1; Appendix C.1).

4 THE GRAPHICAL CHARACTERIZATION OF DISTRIBUTIONAL EQUIVALENCE

In previous sections, through a step-by-step breakdown of equivalence, we have arrived at a key result,
Lemma 5, which, notably, is framed by a new tool we introduced: edge ranks. Building on this founda-
tion, in this section, we provide our final graphical criterion for distributional equivalence, and present
a transformational characterization that enables traversal of all digraphs in the equivalence class.

We first study the task of deciding whether two given models are equivalent. For this purpose,
although Lemma 5 offers a more local condition for each rank check, it still requires a large number
of total checks: one must go through all sets Y ⊇ L, which amounts to all subsets x ⊆ X . As noted
in our earlier analogy (§3.2), this remains akin to “same d-separations,” instead of a practical criterion
like “same adjacencies and v-structures.” Then, does Lemma 5 yield such a practical criterion?

7
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Fortunately, this time, the answer is yes. Unlike the complexities encountered with path ranks in §3.2,
edge ranks allow Lemma 5 to admit a nice local decomposition: instead of checking all subsets x ⊆ X ,
it suffices to check each singleton Xi ∈ X independently. This yields our final graphical criterion: Reviewer Czvx: Q1

The global rank de-
composition is raised
to Theorem 2 as a
standalone graphical
criterion for deter-
mining equivalence.
It also helps algo-
rithm’s efficiency.

Theorem 2 (Graphical criterion for distributional equivalence). In a digraph G, we define the
“children bases” of a vertex set Y ⊆ V (G) as vertex sets that admit perfect edge matchings from Y :

basesG(Y ) := {Z ⊆ chG(Y ) ∪ Y : rG(Z, Y ) = |Z| = |Y |}. (18)

Then, two irreducible models (G, X) and (H, X) are distributionally equivalent, if and only if there
exists a permutation π over the vertices V (G), such that the following conditions hold:{

basesG(L) = π(basesH(L)), and
basesG(L ∪ {Xi}) = π(basesH(L ∪ {Xi})) for each Xi ∈ X.

(19)

To interpret this criterion, let us consider the causally sufficient case where L = ∅. In this case, each
basesG({Xi}) is just Xi with its children. Then, Theorem 2 immediately reduces to the classical
result of exact digraph identification up to permutation (Lacerda et al., 2008). Interestingly, that result
has recently been revisited also from a bipartite matching view used here (Sharifian et al., 2025). Reviewer GjKP: Q4

We highlight that
a bipartite match-
ing view has also
recently been used
in Sharifian et al.
(2025) in the no-
latents case.

Having established Theorem 2 as an efficient criterion for determining equivalence, we now turn to
another task of traversing all digraphs in an equivalence class. For this purpose, however, a determin-
ing criterion alone offers little guidance. Again, we recall the analogy with Markov equivalence. Note
that except for the criterion of “same adjacencies and v-structures,” there is an alternative characteri-
zation: “two acyclic digraphs are equivalent if and only if one can reach the other via a sequence
of covered edge reversals,” known as “Meek conjecture” (Meek, 1997). Such a transformational
characterization offers a natural way for equivalence class traversal. In light of it, we next develop
such a transformational characterization, analogous to “Meek conjecture” for our setting.

We start with the permutation part in Theorem 2, which corresponds to row permutations to the
support matrix Q(G). Such permutations must result in valid support matrices, i.e., ones with nonzero
diagonals. By cycle decomposition of permutations, this leads to an observation: disjoint cycles in
the digraph can be freely reversed without affecting equivalence. Formally:

Lemma 6 (Admissible cycle reversals). For a digraph G, let C be any collection of vertex-disjoint
simple cycles in G. Define a new digraphH where for each edge Vi → Vj ∈ G:

1. If Vi → Vj is on a cycle in C, then include Vj → Vi inH;
2. Otherwise, if Vj is on a cycle in C with the predecessor Vk → Vj , then include Vi → Vk inH;
3. Otherwise, simply include Vi → Vj inH.

Then, with this newH, the equivalence G X∼ H still holds, for every X ⊆ V (G).

This result was also shown by (Lacerda et al., 2008). It highlights that in the linear non-Gaussian set-
ting, cycles do not introduce substantial complexity. One may illustrate it using examples in Figure 3.

We then examine a more subtle part in Theorem 2, concerning edge rank equivalence, that is, when
all the involved perfect bipartite matchings via edges are unchanged. Intuitively, it is about how edges
are structurally “crucial” for maintaining matchings. This leads to the following criterion about edge
additions or deletions, corresponding to flipping entries in the support matrix:

Lemma 7 (Admissible edge additions/deletions). Let (G, X) be an irreducible model. For any
edge Vi → Vj not currently in G, adding it to G preserves equivalence on X if and only if:

rG(Vi’s nonchildren\{Vj}, L\{Vi}) < rG(Vi’s nonchildren, L\{Vi}), (20)

where Vi’s nonchildren denotes V (G)\ chG(Vi)\{Vi}, i.e., zero entries in support column Q(G)
:,Vi

.
Conversely, an edge can be deleted if and only if it can be re-added by this criterion.

In layman’s term, Lemma 7 says that an edge Vi → Vj can be added, only when in the bipartite graph
from latents to all vertices currently not Vi’s children (including Vj), Vj stands as a “pillar” across
the maximum matchings; in matroid terms, it is a coloop. Then, since Vj is already a “pillar”, adding
this edge will not be noticed by any Y containing latent variables. Note that both Vi and Vj may be
in X or L: edges can be added within each or in either direction. Let us examine an example.

8
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L1 L2

X1 X2 X3

G1 L1 L2

X1 X2 X3

G2 L1 L2

X1 X2 X3

G3

L1 L2

X1 X2 X3

G4 L1 L2

X1 X2 X3

G5 L1 L2

X1 X2 X3

G6

Edge +/− Edge +/−

Edge +/− Edge +/−

Cycle reversalCycle reversal

Figure 3: An example distributional equivalence class consisting of 6 digraphs up to L-relabeling.

Example 2 (Illustrating edge additions via Lemma 7). We consider the digraph G1 in Figure 3,
and check why the edge X2 → L2 can be added. From L\{X2} = {L1, L2} to X2’s nonchildren
{L1, L2, X1}, there is a full matching of size 2, with (L1, L2) matched to either (L1, L2) or (X1, L2).
Since L2 appears in both as a “pillar”, adding X2 → L2 preserves edge ranks. In contrast, X2 → L1

cannot be added, which, for instance, will change rG1
({L1, L2, X1}, {L1, L2, X2}) from 2 to 3. △

We have introduced two graphical operations that preserve equivalence, namely, cycle reversals and
edge additions/deletions. Remarkably, these two operations are not only sufficient but also necessary:
together, they fully characterize equivalence. This brings us to our transformational characterization:

Theorem 3 (Transformational characterization of the equivalence class). Two irreducible models
(G, X) and (H, X) are equivalent if and only if G can be transformed intoH, up to L-relabeling, via
a sequence of admissible cycle reversals and edge additions/deletions, as defined in Lemmas 6 and 7.

Here, “up to L-relabeling” means there exists a relabeling of L in H yielding a digraph H′ such
that G reachesH′ via the sequence. Moreover, at most one cycle reversal is needed in this sequence.

Thanks to this transformational characterization, Theorem 3 offers a natural way to traverse an
equivalence class by e.g., running BFS or DFS over the space of digraphs connected via admissible
operations. Such equivalence class structures are illustrated by Figure 3, Figure 5 (Appendix C.2),
and more in our online demo. Note that this traversal can be further accelerated in implementation,
by traversing each vertex’s children independently in parallel (Lemmas 9 and 12; Appendix B).

Finally, let us return once more to the analogy with Markov equivalence. We have now established
counterparts of both “same adjacencies and v-structures” and “Meek conjecture”. A natural question
is then whether a counterpart of the CPDAG, an informative presentation of the equivalence class, can Reviewer FDU9: Q1

Thanks to your ques-
tion on CPDAG-like
presentation, we de-
veloped new results
now included in Ap-
pendix C.3, with a
brief pointer and dis-
cussion here.

also be developed. The answer is again yes. We show that within each cycle-reversal configuration,
there exists a unique maximal equivalent digraph of which all others are subgraphs. We further
provide efficient criteria to construct this maximal digraph, and to determine edges invariant across
the equivalence class (similar to arrows in a CPDAG). Due to space limit, this result is presented
in Theorem 4 (Appendix C.3). To conclude this section, we provide a side-by-side overview that
places our results with their analogues across various classical settings (Table 2; Appendix C.5).

5 ALGORITHM AND EVALUATION

In this section, we develop a structural-assumption-free algorithm to recover the underlying causal
models from observed data up to distributional equivalence. We name this algorithm as general latent-
variable Linear Non-Gaussian causal discovery (glvLiNG). Evaluation results are also provided.

Algorithm. The glvLiNG pipeline consists of three main steps: it first runs OICA on data to estimate
a mixing matrix Ã, then constructs a digraph G̃ to realize rank patterns in Ã, and finally, starting
from G̃, traverses the equivalence class using the procedure introduced in Theorem 3. Under the
assumptions of access to an oracle OICA and faithfulness (no coincidental low ranks in the mixing
matrix beyond those structurally entailed; formally stated in Assumption 1 at Appendix A), glvLiNG Reviewer Tajr: Q2

We have provided
a pointer to the the
formal definition of
faithfulness assump-
tion.

is guaranteed to recover the entire class of irreducible models equivalent to the ground-truth model.
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Proofs and detailed formulations of the glvLiNG algorithm are deferred to Appendix A for page limit.
Here, we briefly highlight the core second step: constructing a digraph to realize the observed ranks.

The main challenge lies in this second step, a rank realization task. While the satisfiability nature of Reviewer Czvx: Q1
Also added more al-
gorithm descriptions.

this task may suggest brute-force solutions like integer programming, glvLiNG instead offers a more
efficient constraint-based approach. Specifically, it proceeds in two phases. Phase 1 recovers edges
from latent variables L to all variables V , which reduces to a bipartite realization problem known in
matroid theory. Phase 2 is more delicate: recover edges from observed variables X to V . This may
seem combinatorially complex at first glance, since all ranks induced by all subsets of X must be
jointly satisfied (Lemma 3). Fortunately, as we have shown in Theorem 2, these global constraints
admit a local decomposition, allowing each single Xi’s outgoing edges to be recovered independently.
To recover these edges, we give an explicit construction (Lemma 10 in Appendix A) based directly
on querying ranks in the OICA mixing matrix, with no need for solving complex constraint systems. Reviewer GjKP: Q3

The coloop condi-
tion (Lemma 7) is
not used during
the algorithm. It
is this Lemma 10
that directly recover
edges from ranks
from the OICA mix-
ing matrix.

Evaluation. We evaluate our approach from five aspects: 1) quantifying the sizes of equivalence
classes, 2) assessing glvLiNG’s runtime, 3) benchmarking existing methods under oracle inputs, 4)
evaluating glvLiNG’s performance in simulations, and 5) applying glvLiNG to a real-world dataset.

For 1), we quantify the sizes of equivalence classes, in order to provide an illustrative sense of the
uncertainty in latent-variable models. We exhaustively partition digraphs with up to 6 vertices under
various latent configurations. For example, there are 1, 027, 080 weakly connected digraphs with 5 ver-
tices, of which 26, 430 are acyclic. When the first 2 vertices are latent, 480, 640 of these digraphs yield
irreducible models, which finally form 783 equivalence classes. Full statistics are shown in Table 3.

For 2), we assess the efficiency gain enabled by glvLiNG’s constraint-based design. We compare
the execution time against a linear programming baseline for constructing digraphs to satisfy ranks
of oracle OICA mixing matrices. Results confirm substantial speedup: glvLiNG solves cases with
n = 10 vertices in under 5s, while the baseline takes hours beyond n = 5. Full results in Table 4.

For 3), we examine how existing methods behave under structural misspecification by applying them
to arbitrary latent-variable models possibly beyond their assumptions. We evaluate LaHiCaSl (Xie
et al., 2024) and PO-LiNGAM (Jin et al., 2024), given oracle access to their required tests. Both meth-
ods tend to produce overly sparse graphs and misidentify over half of the edges. Full results in Table 5.

For 4), we evaluate glvLiNG with existing methods under finite samples. We simulate data from Reviewer GjKP: Q2
We have now added
a new simulation
study.

random irreducible models, varying numbers of observed and latent variables, graph density, and
sample size. We observe that glvLiNG performs particularly better than baselines on denser graphs
and stays more robust to latent dimensionality, likely due to avoiding model misspecification, while
baselines perform better on sparser graphs. Full setup and results are provided in Appendix D.4.

For 5), we apply glvLiNG to a real-world dataset of daily stock returns (Jan 2000-Jun 2005) from
14 major Hong Kong companies spanning banking, real estate, utilities, and commerce. glvLiNG Reviewer FDU9: Q2

We apply glvLiNG
on a Hong Kong
stock market dataset.

recovers meaningful patterns, such as major banks acting as central causal sources. The two latent
variables recovered seem also to admit plausible interpretations. Full results are in Appendix D.5.

Final remarks. We conclude with a reflection on the use of OICA in glvLiNG. While one may be
concerned about OICA’s known inefficiency in practice, we would like to note that the main focus of
this work is to characterize distributional equivalence. The glvLiNG algorithm serves more as a proof
of concept, showing that such equivalence is indeed recoverable without any structural assumption.

That said, we do see two promising directions for future improvement. 1) For estimation, several
existing methods allow partial access to rank information in the mixing matrix without explicitly
running OICA. They could be integrated into glvLiNG. 2) For algorithmic efficiency, while glvLiNG
already scales well, further pruning is possible. For instance, Theorem 3 implies that ancestral
relations among observed variables are identifiable, which may help reduce the search space.

6 CONCLUSION AND LIMITATIONS

In this work, we provide a graphical characterization of distributional equivalence for linear non-
Gaussian latent-variable models. Based on it, we develop a constraint-based algorithm, glvLiNG, that
recovers the underlying model up to equivalence from data without any structural assumptions. Central
to our approach is the introduction of edge rank constraints, a new tool in the rank-based picture. One
limitation is the use of OICA in glvLiNG, as discussed above. Future directions include developing
OICA-free algorithms, and extending new tools to broader settings like linear Gaussian systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Large Language Models Usage: We used large language models only to aid or polish writing, at
the sentence level.

Ethics Statement: This paper presents work whose goal is to advance the field of causal discovery.
We do not see any ethical or societal concerns that need to be disclosed.

Reproducibility Statement: We provide code for our algorithm, glvLiNG, along with an in-
teractive demo for traversing equivalence classes, available at an anonymous website: https:
//equiv.cc.
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A DETAILS OF THE GLVLING ALGORITHM

A.1 BASICS OF TRANSVERSAL MATROIDS

Before proceeding, let us introduce some basic concepts from matroid theory that will be used later.
Throughout, we define matroids in terms of binary matrices, interpreted as adjacency matrices of
bipartite graphs where columns point to rows. The matroid is defined over row indices, corresponding
to what is known as a transversal matroid. For more, one may refer to (Oxley, 2006).

Definition 7 (Basics of transversal matroid). Let Q ∈ {0, 1}m×n be a binary matrix, interpreted
as the adjacency matrix of a bipartite graph where columns [n] point to rows E := [m], where E is
called the ground set. For simplicity, for each row set Z ⊆ E we denote its rank as:

r(Z) := mrank(QZ,:), (A.1)

though with a slight notation abuse to the letter r we used previously for edge ranks (Definition 4).
Here, mrank is the matching rank we defined in Definition 6. This rank function r turns E into a
transversal matroid presented by Q. We record the following basic concepts of this matroid, together
with some useful properties, written directly in terms of Q and r:
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Independent/dependent sets.
Ind(Q) := {Z ⊆ E : r(Z) = |Z|},
Dep(Q) := 2E \ Ind(Q).

(A.2)

Note. Z is independent if and only if the rows Z admit a matching into the columns; dependent sets
are those with a matching deficiency.

Bases.
bases(Q) := {B ⊆ E : B ∈ Ind(Q), |B| = r(E)}. (A.3)

Note. Bases are the maximal independent sets: all its subsets are independent, and all its proper
supersets are dependent. Bases are the maximum-cardinality independent sets (all have size r(E)).
Bases uniquely determine the matroid.

Circuits.
circuits(Q) := {C ⊆ E : C ∈ Dep(Q) and ∀C ′ ⊊ C, C ′ ∈ Ind(Q)}. (A.4)

Note. Circuits are the minimal dependent sets: r(C) = |C|−1 and every proper subset is independent.
Every dependent set contains a circuit as subset. Circuits do not necessarily have the same cardinalities.
Circuits uniquely determine the matroid.

Cocircuits.
cocircuits(Q) := {D ⊆ E : r(E \D) = r(E)− 1 and ∀D′ ⊊ D, r(E \D′) = r(E)}. (A.5)

Note. Cocircuits are the minimal rank-dropping blockers: removingD lowers the full rank (by exactly
one), while removing any proper subset does not. Cocircuits meet every basis:

|D ∩B| ≥ 1, ∀D ∈ cocircuits(Q), B ∈ bases(Q). (A.6)
Equivalently, D is a minimal set intersecting all bases. By minimal we mean, for any cocircuit D, no
proper subset of D can be a cocircuit.

When cocircuits meet circuits, the intersection size is never 1. In particular,
|D ∩ C| ∈ {0, 2, 3, · · · }, ∀D ∈ cocircuits(Q), C ∈ circuits(Q). (A.7)

Equivalently, D is a minimal set not intersecting any circuit with size 1.

Cocircuits uniquely determine the matroid.

Coloops.
coloops(Q) := {e ∈ E : r(E \ {e}) = r(E)− 1}. (A.8)

Note. A coloop is an element whose presence always increases rank by 1. A coloop is an element
that is in every basis. For each element e ∈ E, the following are equivalent:
e ∈ coloops(Q)⇐⇒ {e} ∈ cocircuits(Q)⇐⇒ e is in every basis ⇐⇒ e is in no circuit. (A.9)

Coloops do not determine the matroid.

Flats.
flats(Q) := {F ⊆ E : ∀x ∈ E\F, r(F ∪ {x}) = r(F ) + 1}. (A.10)

Note. Flats are the ⊆-maximal sets that have a given rank r(F ). The family of flats uniquely
determines a matroid.

Fundamental circuit with respect to a basis. For any basis B and any e ∈ E \ B, there is a
unique circuit CB(e) such that

e ∈ CB(e) ⊆ B ∪ {e}, (A.11)
called the fundamental circuit of ew.r.t.B. Moreover, for every f ∈ CB(e)\{e}, the setB\{f}∪{e}
is a basis. Every circuit is a fundamental circuit to some B and e.

Fundamental cocircuit with respect to a basis. For any basis B and any e ∈ B, there is a unique
cocircuit DB(e) such that

e ∈ DB(e) ⊆ (E \B) ∪ {e}, (A.12)
called the fundamental cocircuit of e w.r.t. B. Moreover, for every f ∈ DB(e) \ {e}, the set
B\{e} ∪ {f} is a basis. Every cocircuit is a fundamental cocircuit to some B and e.

Having introduced these basics of transvesal matroids, below we explain our algorithm in detail.
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A.2 ALGORITHM OVERVIEW

Let us first formally define the faithfulness assumption required by the glvLiNG algorithm:
Assumption 1 (Faithfulness). Let dX := |X| be the number of observed variables. We assume
that in the true mixing matrix AX,: that generates data (as defined in Equation (5)), all dX × dX
and (dX − 1)× (dX − 1) minors exhibit matrix ranks consistent with the corresponding path ranks
entailed by the true causal graph (as characterized in Lemma 2).

In other words, there is no coincidental parameter cancellation in the data generating process that
would lead to matrix ranks lower than those structurally entailed by the graph. Note that such
faithfulness assumption, often also referred to as the genericity assumption, is standard in the
literature (Adams et al., 2021). It holds almost everywhere in the parameter space except for a
Lebesgue measure zero set where coincidental lower ranks occur.

We next elaborate on our glvLiNG algorithm. The core to the glvLiNG algorithm is to query
matrix ranks from the mixing matrix estimated from data using overcomplete ICA (OICA), and then
construct a binary support matrix (corresponding to a digraph) that satisfies these matrix ranks.

Let p(X) be a data distribution generically generated by an unknown latent-variable model (G, X),
that is, p(X) ∈ P(G, X). Without loss of generality we assume that (G, X) is irreducible. Let
Ã ∈ R|X|×|V | be a mixing matrix estimated on p(X) by OICA, and for now, we index the rows and
columns of Ã by X and V , respectively. By the identifiability of OICA, Ã is the true mixing matrix
up to column permutation and scaling. Further, with the duality between path ranks and edge ranks
(Theorem 1), we have that, there exists a permutation π of V , such that for all Z ⊆ X and Y ⊆ V ,
the following equality holds:

rank(ÃZ,Y ) = ρG(Z, π(Y )) = |Z|+ |Y | − |V |+ rG(V \π(Y ), V \Z). (A.13)

In other words, there exists an unknown binary matrix Q ∈ {0, 1}|V |×|V |, whose matching ranks
mrank(QZ,Y ) can be queried for any Z, Y ⊆ V with L ⊆ Y , despite its exact entry values being
unknown. Such a matrix must exist, with one specific matrix, Q(G) with rows permuted by π, being
an example. As long as one can recover this matrix Q, one can then permute its rows to place nonzero
entries on the diagonal, and the resulting matrix must exactly be some support matrix for a digraphH
with G X∼ H, by Lemma 5. Such a row permutation to have nonzero diagonals must also exists, as
mrank(Q) = |V |, by setting Z, Y both to ∅ in Equation (A.13).

Our problem then reduces to: how can one recover such a Q matrix from rank queries? We express
this problem in a more general formulation, as follows:

Key Problem: Matrix Recovery to Satisfy Matching Rank Queries

Let Q ∈ {0, 1}m×n be a binary matrix whose entries are unknown. Let the columns be
partitioned as [n] = L ∪X , where L is a fixed subset. For any Z ⊆ [m] and any Y ⊆ [n]
satisfying L ⊆ Y , one may query the matching rank of the submatrix QZ,Y , which, for
simplicity, is denoted as an oracle function:

r(Z, Y ) := mrank(QZ,Y ). (A.14)

The task is: using only access to this oracle, construct a binary matrix H ∈ {0, 1}m×n such
that for all Z ⊆ [m] and Y ⊆ [n] with L ⊆ Y , the following condition holds:

mrank(HZ,Y ) = r(Z, Y ). (A.15)

That is, H is required to satisfy the matching rank oracle on all valid (Z, Y ) pairs.

Clearly, the key problem posed above is essentially a satisfiability problem, and can be solved
via brute-force methods such as linear programming. However, in what follows, we present a
significantly more efficient and structured procedure. Note that the matching rank queries in the
problem are equivalent to providing the transversal matroids on each submatrix Q:,Y . Thus, for
convenience, throughout the rest of this appendix, we may freely use the matroid language introduced
in Definition 7.
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Overview of our procedure: Our reconstruction procedure consists of two phases:

Phase 1: Impute the columns in H indexed by L to satisfy the matroid bases(Q:,L). Equivalently,
this is to construct a bipartite graph that realizes a given transversal matroid.

Phase 2: Impute the remaining columns indexed by X such that all matroids induced by Q:,L∪{x}
for x ⊆ X are satisfied. Although this may appear combinatorially complex at first
glance, we show that each singleton column in X can in fact be imputed independently.

A.3 PHASE 1: BIPARTITE GRAPH REALIZATION

Let us first formulate the problem of Phase 1:

Problem of Phase 1: Bipartite Graph Realization of Transversal Matroids

Let Q ∈ {0, 1}m×l be a binary matrix with unknown entries, but known matroid bases(Q).
The task is: Construct a binary matrix H ∈ {0, 1}m×l such that:

bases(H) = bases(Q). (A.16)

That is, construct an example bipartite graph, represented by H , to realize a transversal
matroid, given by bases(Q).

By duality, this problem is equivalent to reconstructing the digraph representation of the strict
gammoid that is the dual of the transversal matroid based on the seminal paper by (Mason, 1972) and
dualizing the result using the Fundamental Lemma by (Ingleton & Piff, 1973).

The bases of the dual matroid Q∗ are given by bases(Q∗) = {E\B | B ∈ bases(Q)}. The α-system
for Q∗ is defined as the bipartite graph with the following incidence relation

IQ∗ = {(e, (F, i)) ∈ E × (flats(Q∗),N) | F ∈ flats(Q∗), e ∈ F, i ∈ N, 1 ≤ i ≤ αQ∗(F )},
(A.17)

where

αQ∗(F ) = |F | − rQ∗(F )−
⋃

G∈flats(Q∗), G⊊F

αQ∗(G). (A.18)

Since Q is a transversal matroid, Q∗ is a strict gammoid, and therefore all αQ∗(F ) ≥ 0,∑
F∈flats(Q∗) αQ∗(F ) = |E| − rQ∗(E) = rQ(E), and the α-system for Q∗ has a maximal matching

that covers all (F, i), and each such matching has the property that the set of unmatched elements
from E forms a basis T of Q∗.

Now fix such a maximal matching, let T ⊆ be the unmatched basis, and let (Fe, ie) be the vertex that
is matched to e for all e ∈ E\T . Define the digraph D = (V,A) with V = E and A = {(u, v) ∈
E × E | u /∈ T, v ∈ Fu, v ̸= u}. The digraph D represents the strict gammoid Q∗ (Mason, 1972).
Using the fundamental lemma (Ingleton & Piff, 1973), we obtain that

H = {(e, t) ∈ E × (E\T ) | e ∈ Ft} (A.19)

represents the transversal matroid Q.

A.4 PHASE 2: AUGMENTING A BIPARTITE GRAPH FOR MATROID EXTENSIONS

Having imputed the values in H:,L, we then impute the remaining X columns:
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Problem of Phase 2: Augmenting a Bipartite Graph to Realize Matroid Extensions

Let Q ∈ {0, 1}m×n be a binary matrix with unknown entries, and columns partitioned as
[n] = L ∪X for a fixed L. For every subset x ⊆ X , the matroid bases(Q:,L∪x) is known.

Let H ∈ {0, 1}m×n be a partially imputed matrix such that bases(H:,L) = bases(Q:,L) is
already satisfied, while the columns indexed by X remain unassigned.

The task is: Fill in the remaining columns of H such that for all x ⊆ X ,

bases(H:,L∪x) = bases(Q:,L∪x). (A.20)

That is, augment the bipartite graph, represented by H:,L, by adding more “sources” X , so
that matroids are realized for all subsets of X extended with L.

One may first question whether such an imputation is possible, since overall the already assignedH:,L

only realizes the matroid equality bases(H:,L) = bases(Q:,L), but the exact entry values recovery
H:,L = Q:,L is not guaranteed (and also impossible).

We show that such an imputation is indeed possible, via the following result:

Lemma 8 (How the transversal matroid changes when augmenting more sources). For two
binary matrices Q1 ∈ {0, 1}m×n1 and Q2 ∈ {0, 1}m×n2 , we denote by [Q1|Q2] ∈ {0, 1}m×(n1+n2)

the matrix obtained by horizontally concatenating Q1 with Q2. Then, we have:

Ind([Q1|Q2]) = {Z1 ∪ Z2 : Z1 ∈ Ind(Q1), Z2 ∈ Ind(Q2)}. (A.21)

In other words, two matrices’ matroids sufficiently determine the matroid of their augmentation.

With Lemma 8, every bases(H:,L∪x) equals bases([Q:,L|H:,x]), and thus the imputation is possible.

Then, how to solve for this imputation? At the first glance, one may have concern on the complexity:
in contrast to solving Phase 1’s realization problem for only one matroid induced by L, now we need
to realize combinatorially many matroids induced by L ∪ x for all x ⊆ X . When trying to impute a
single column H:,Xi

, this column can appear in many subsets x ∋ Xi.

Interestingly, all these subsets can be disentangled: one do not need to explicitly realize each x ⊆ X .
Instead, it suffices to just realize each singleton augmentation for Xi ∈ X independently.

We show this by the following result:

Lemma 9 (Reducing all union equivalence checks to singleton checks). Let Q,H ∈ {0, 1}m×n

be two binary matrices with columns partitioned as [n] = L ∪X for a fixed L. Then, the condition

bases(Q:,L∪x) = bases(H:,L∪x), ∀x ⊆ X, (A.22)

holds, if and only if the condition

{
bases(Q:,L) = bases(H:,L), and
bases(Q:,L∪{Xi}) = bases(H:,L∪{Xi}), ∀Xi ∈ X,

(A.23)

holds.

With Lemma 9, the remaining problem of Phase 2 can be reduced to solving for each singleton
augmentation, formulated as follows:
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Problem of Phase 2 (Reduced): Augmenting a Bipartite Graph with a Singleton Source

Let H ∈ {0, 1}m×(l+1) be a partially known binary matrix whose columns are partitioned as
[l + 1] = L ∪ {x} for a fixed L. The two matroids bases(H) and bases(H:,L) are known,
while the exact values at the column H:,x remain unknown.

The task is: Fill in the column H:,x to satisfy the given matroid bases(H).

That is, augment the bipartite graph, represented by H:,L, by adding one extra “source” x, so
that it extends the current transversal matroid correctly.

To solve this singleton augmentation problem, one could at worst exhaustively try all 2m possible
fillings. In what follows, however, we present a more efficient, deterministic construction:
Lemma 10 (Constructing a particular solution for singleton augmentation). Let H ∈
{0, 1}m×(l+1) be a binary matrix with columns partitioned as [l + 1] = L ∪ {x}. Define

D := {i ∈ {1, . . . ,m} | ∀C ∈ circuits(H) : i ∈ C ⇒ C\{i} /∈ Ind(H:,L)}. (A.24)

Define a new matrix H ′ where H ′
:,L = H:,L and the column x is replaced by H ′

i,x = 1 if i ∈ D and
0 otherwise. Then, the whole matroid remains unchanged after this column x replacement:

bases(H ′) = bases(H). (A.25)

With this result, we complete the final step of the Key Problem defined above and can obtain a binary
matrix H that satisfies all rank constraints.

Proofs of Lemmas 8 to 10 are all given in Appendix B.

To interpret H as a digraph representation, we perform a final row permutation to place nonzeros
along the diagonal. Standard algorithms such as the n-rooks method may be used for the row
permutation. We keep the column indices of L ∪X fixed and reindex the rows to match the same
ordered list L∪X . The resulting matrix encodes a model distributionally equivalent to the underlying
model that general the data. One may then run BFS/DFS using Theorem 3 to obtain the whole
equivalence class.

With all above, we conclude the algorithm part.

B PROOFS OF MAIN RESULTS

Note that we present the proofs in an order that differs slightly from their appearance, arranged
instead according to their logical dependencies.

B.1 PROOFS OF IRREDUCIBILITY RESULTS

The irreducibility results rely on the identifiability of (overcomplete) independent component analysis
(ICA). So we first restate them here.

A linear irreducible ICA model can be described by the equation

X = AE, (B.1)

where E = (E1, · · · , Em)⊤ are unknown mutually independent random variables, namely sources,
and X = (X1, · · · , Xp)

⊤ are observed random variables, namely mixtures. A ∈ Rp×m, namely the
mixing matrix, is constrained to have no pairwise proportional columns (including zero columns).
The tuple (A,E) is called an irreducible ICA representation of X .
Lemma 11 (Identifiability of ICA; (Eriksson & Koivunen, 2004)). Let (A,E) and (B,S) be two
irreducible ICA representations of a p-dim random vector X , where A ∈ Rp×m and B ∈ Rp×n. If
every component of E follows a non-Gaussian distribution, then the following properties hold:

1. m = n.
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2. Every column of A is proportional to some column of B, and vice versa.

3. Every component of S follows a non-Gaussian distribution1.

Proposition 1 (Graphical condition for irreducibility). A model (G, X) is irreducible, if and only
if for each non-empty set l ⊆ L, | chG(l) \ l| ≥ 2, i.e., it has more than one child outside.

Proof of Proposition 1. Due to the identifiability of OICA, irreducibility is equivalent to that there
are no proportional columns in the mixing matrix, which, with Lemma 2, is that

ρG(X,v) ≥ 2, ∀v ⊆ V with |v| ≥ 2. (B.2)

When v contains 2 or more vertices from observed X , this condition is naturally satisfied. So we
only need to consider v that contains at most one vertex from X and at least one vertex from L.

When v contains only L vertices, the violation of Equation (B.2) leads to the graphical criterion.
When v contains one X vertex, say, Xi, and Equation (B.2) is violated, it means the min-cut from v
to X is simply {Xi}, which implies that the min-cut from the remaining latent vertices v \ {Xi} to
X is either ∅ or {Xi}. This also leads to the graphical criterion.

Proposition 2 (Procedure of reduction to the irreducible form). Given any latent-variable model
(G, X), the following procedure outputs a digraphH such thatH X∼ G and (H, X) is irreducible.

Step 1. InitializeH as G.
Step 2. Remove vertices V (H) \ anH(X) fromH, i.e., remove latents who have no effects on X .
Step 3. Identify the maximal redundant latents in the remaining latent vertices:

mrl := {l ⊆ V (H)\X : |l| > 0, | chH(l)\l| < 2, and ∀l′ ⊋ l, | chH(l′)\l′| ≥ 2}. (7)

Step 4. For each l ∈ mrl, let c be the exact child in chH(l)\l; for each parent p ∈ paH(l)\l\{c},
add an edge p→ c intoH if not already present; finally, remove l vertices fromH.

Proof of Proposition 2. This graphical operation directly translates the operation to merge all maxi-
mally proportional columns in the mixing matrix into single columns. This ensures the irreducible
H.

Note that by removing maximally redundant latents, the added edges in step 4 will not be removed
later, i.e., for each l operated in step 4,

| chH(l) \ l| = 1, and (chH(l) ∪ paH(l) \ l) ∩ (∪mrl) = ∅. (B.3)

This ensures the well-defined graphical operation.

B.2 PROOF FROM RANK EQUIVALENCE TO DISTRIBUTIONAL EQUIVALENCE

Lemma 3 (Equivalence via path ranks). Two irreducible models are distributionally equivalent,
written G X∼ H, if and only if there exists a permutation π over the vertices V (G), such that

ρG(Z, Y ) = ρH(Z, π(Y )) for all Z ⊆ X and Y ⊆ V (G). (11)
1But note that unlike 2., S may still be unreachable from E via only permutation and scaling. In other words,

the model is identifiable, but not unique. See Example 2 of Eriksson & Koivunen (2004).
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Proof of Lemma 3. We first show the “⇒” direction.

By Lemma 2 there is a generic choice A ∈ A(G) that realizes the rank structure for all Z, Y ⊆ V (G):
rank(AZ,Y ) = ρG(Z, Y ). With Lemma 1 we obtain from G X∼ H with A ∈ A(G, X) = A(H, X)
that there is a matrix B ∈ A(H, X), a permutation matrix P , and a scaling matrix D such that
AX,: = BPD. Let π be the column-permutation that corresponds to the matrix P .

Now, let Z ⊆ X and Y ⊆ V (G) = V (H), then we have the desired equation
ρG(Z, Y ) = rank(AZ,Y ) = rank((BPD)Z,Y ) = rank((BP )Z,Y ) (B.4)

= rank(BZ,π(Y )) = ρH(Z, π(Y )). (B.5)

We then show the “⇐” direction.

For any Z ⊆ X , the partial application ρG(Z, _) is the rank function of a strict gammoid
MG,Z = Γ(G, Z, V (G)) defined by the digraph G on the ground set V (G) with the set of termi-
nals Z. Analogously, ρH(Z, _) is the rank function a strict gammoid MH,Z defined by the digraphH
on the same ground set and the same set of terminals.

Equation (11) implies that π is an isomorphism between MG,Z and MH,Z , for all Z ⊆ X simultane-
ously. Clearly, π is also an isomorphism between the dual matroids M∗

G,Z and M∗
H,Z .

It follows from the Fundamental Lemma in (Ingleton & Piff, 1973) that the support matrices Q(G) and
Q(H) define isomorphic families of transversal matroids that are represented by the corresponding
row-sub-matrices of all (I −BG) with sufficiently general weights and BG ∈ B(G); and (I −BH)
with sufficiently general weights and BH ∈ B(H), respectively.

In (Brylawski, 1975) it is shown that every transversal matroid may be represented by vectors that
lie in the faces of a simplex such that for every minimal non-trivial combination of the zero vector
by a set of representing vectors, this set lies on a common simplex face with rank one less than
the cardinality of the set of vectors. Over R such vectors can be found almost surely by taking the
incidence matrix of the transversal system and choosing a random value for each nonzero entry. All
matrices over R that represent the transversal matroid can be produced by this procedure.

Choosing random values for the nonzero entries of Q(G) (and Q(H)) gives almost surely a matrix
that represents the respective family of transversal matroids in such a general simplex position, with
nonzero entries on the diagonal. By row scaling, this matrix can be brought into the desired form
(I − B) where all diagonal entries are equal to 1. Scaling the columns and rows of a matrix by
nonzero factors does not alter the family of matroids represented by a matrix, and does not change
whether a matrix is in general simplex position.

The matrices in A ∈ A(G, X) (and A(H, X)) are row-restrictions of inverses of diagonal-1-scaled
versions of matrices in general simplex position;

A = (SR)−1
X,: = R−1

X,:S
−1, (B.6)

whereR is a randomized valuation ofQ(G), and S is a diagonal matrix consisting of the multiplicative
inverses of the diagonal entries of R.

Let P be the permutation matrix for π, and let T be the diagonal matrix consisting of the multiplicative
inverses of the diagonal entries of PR. Then there is

A′ = (TPR)−1
X,: ∈ A(H, X). (B.7)

Since S and T are invertible diagonal matrices, we have

A′ = R−1
X,:S

−1SP−1T−1 = ASP−1T−1 = AP−1(SPT
−1), (B.8)

where SP is a diagonal matrix with (SP )i,i = Sπ(i),π(i).

So A′ arises from A by permuting and scaling columns, thus A(G, X) = A(H, X). Finally, with
Lemma 1 we have G X∼ H.
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B.3 PROOFS OF MATROID-PRESERVING COLUMN AUGMENTATION: A CORE COMPONENT

B.3.1 CONSTRUCTING PARTICULAR SOLUTIONS TO A COLUMN AUGMENTATION

We begin with the two auxiliary lemmas introduced in Appendix A, namely, Lemmas 8 and 10.
Lemma 8 (How the transversal matroid changes when augmenting more sources). For two
binary matrices Q1 ∈ {0, 1}m×n1 and Q2 ∈ {0, 1}m×n2 , we denote by [Q1|Q2] ∈ {0, 1}m×(n1+n2)

the matrix obtained by horizontally concatenating Q1 with Q2. Then, we have:
Ind([Q1|Q2]) = {Z1 ∪ Z2 : Z1 ∈ Ind(Q1), Z2 ∈ Ind(Q2)}. (A.21)

In other words, two matrices’ matroids sufficiently determine the matroid of their augmentation.

Proof of Lemma 8. Straightforward. Let N1 = [n1] and N2 = [n2] be the column indices. For the
“⊆” direction, we just consider for each Z ∈ Ind([Q1|Q2]), its matched sources in N1 ∪N2 can be
split back into N1 and N2. For the “⊇” direction, Z1 can be matched into N1 and Z2\Z1 can be
matched into N2, which, when put together, is still independent, since N1 and N2 are disjoint.

Lemma 10 (Constructing a particular solution for singleton augmentation). Let H ∈
{0, 1}m×(l+1) be a binary matrix with columns partitioned as [l + 1] = L ∪ {x}. Define

D := {i ∈ {1, . . . ,m} | ∀C ∈ circuits(H) : i ∈ C ⇒ C\{i} /∈ Ind(H:,L)}. (A.24)

Define a new matrix H ′ where H ′
:,L = H:,L and the column x is replaced by H ′

i,x = 1 if i ∈ D and
0 otherwise. Then, the whole matroid remains unchanged after this column x replacement:

bases(H ′) = bases(H). (A.25)

Proof of Lemma 10. We show that H and H ′ represent the same transversal matroid by comparing
their independent families.

In case that Ind(H:,L) = Ind(H), then D is the set of coloops of H:,L. Since every maximal
partial transversal of H:,L already contains each d ∈ D, the bases of H ′ are precisely the bases of
H:,L, so the matroids for H , H:,L, and H ′ are the same.

Otherwise, if Ind(H:,L) ⊊ Ind(H), then H:,L has a maximal partial transversal that can be
extended by some element e with He,x = 1. Because the cardinality of the bases of H is one
more than the cardinality of the bases of H:,L, we have that every basis B with respect to H can
be partitioned into a basis B0 of H:,L and an extra element b ∈ B\B0 where Hb,x = 1. Clearly
B0 ∈ Ind(H ′) and if b ∈ D, then B is also a basis for H ′.

Assume that b /∈ D, then there is a circuit C of H with b ∈ C such that C\{b} ∈ Ind(H:,L). The
corresponding partial transversal ofH:,L can be extended by sending ϕ(b) = x, but then this extended
partial transversal proves that C is independent, contradicting that C is a circuit of H , so b ∈ D must
be the case. Thus Ind(H) ⊆ Ind(H ′).

Now let B be a basis for H ′ and assume that B /∈ Ind(H). By set inclusion, B /∈ Ind(H:,L). So
there is maximal partial transversal ϕ of H ′ and some b ∈ B such that

ϕ(b) = x and ϕ[B\{b}] ⊆ L. (B.9)

Hence,

B\{b} ∈ Ind(H:,L) ⊆ Ind(H). (B.10)

Since B /∈ Ind(H), there is a circuit C ⊆ B with b ∈ C. But then C\{b} ⊆ B\{b} is independent
in H:,L, so b /∈ D. This is a contradiction to H ′

b,ϕ(b) = H ′
b,x = 1, because ϕ is a partial transversal

of H ′. Therefore Ind(H ′) ⊆ Ind(H) establishing the equality Ind(H ′) = Ind(H) which implies
bases(H ′) = bases(H) since bases are precisely the maximal independent sets.
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B.3.2 TRAVERSING ALL SOLUTIONS TO A COLUMN AUGMENTATION

Now, we have proved the two auxiliary lemmas introduced in Appendix A.

We observe that these two lemmas are centering around one problem, as formulated in the text box
titled “Problem of Phase 2 (Reduced)”: suppose we already know both a transversal matroid itself
and the transversal matroid of it after augmented with an unknown singleton column, how can we
recover this unknown singleton column to satisfy these two matroids?

In Lemma 10, we have shown a particular solution. Then, what are all the possible solutions, and
how can we find them? Among all solutions, is there anything special about the particular solution
given in Lemma 10? Are there any other particular solutions that might enjoy other properties?

Let us first define all these solutions:
Definition 8 (Solution set of matroid-preserving column augmentations). Let Q ∈ {0, 1}m×n

be a binary matrix. For each x ∈ [n], we denote all column vectors that can be used to replace Q’s
column x while preserving Q’s matroid by:

colaug(Q, x) := { D ⊆ 2[m] : bases([ Q:,[n]\{x} | 1D ]) = bases(Q) }, (B.11)

where the name colaug stands for “column augmentation”, 1D denotes a column vector with ones at
entries in D and zeros elsewhere, and the notation [ · | · ] denotes matrices’ horizontal concatenation.
Apparently, colaug(Q, x) is non-empty, since at least the current column Q:,x satisfies the condition,
as well as the particular column 1D defined in Lemma 10, which may be different from Q:,x.

Before we study how we may traverse all solutions in colaug(Q, x), let us pay more attention to the
particular solutions, since 1) they offer an efficient way to get a solution directly from the matroids,
without the need to solving alpha systems, which leads to algorithm speedups, and 2) as we will show
below, they have meaningful implications to characterize the whole solution class.

We already have a particular solution from Lemma 10, which checks when a single-element deletion
from each new circuit still leads to dependent sets before augmentation. In other words, these items
are those who contribute to the newly introduced circuits. Following the proof to Lemma 10, we have
that these items forms not only a solution, but also a unique maximal inclusive solution:

Corollary 1 (Determining items that must not appear in any solution). Let Q ∈ {0, 1}m×(l+1)

be a binary matrix with columns partitioned as [l + 1] = L ∪ {x}. Let D ⊆ [m] be the particular
solution constructed in Lemma 10, and let colaug(Q, x) ⊆ 2[m] be all the solutions of x-column
augmentation defined in Definition 8. Then, the following condition holds:

D =
⋃

colaug(Q, x). (B.12)

In other words, by giving a unique maximal solution, Lemma 10 characterizes which items in [m]
can be included in some solution(s), or equivalently, which items must not appear in any solution.

This then naturally leads to another question: which are the items that must be included in all solutions,
and more importantly, is there an efficient way to determine them, just like Lemma 10, without having
to traverse the whole solution set? The answer is yes, by taking complements to Lemma 10:

Corollary 2 (Determining items that must appear in all solutions). Let Q ∈ {0, 1}m×(l+1) be a
binary matrix with columns partitioned as L ∪ {x}. We define the “difference in cocircuits” as

diffcc(Q, x) := cocircuits(Q) \ cocircuits(Q:,L). (B.13)

Further, for any A ⊆ 2V , a set of subsets of some universe V , we define the minimum-sized elements
of A (with a slightly special treat on ∅) as:

minimum(A) :=

{{a ∈ A : |a| = mina′∈a |a′|}, if A ̸= ∅,
{∅}, otherwise.

(B.14)

The minimal-inclusion elements of A (with a slightly special treat on ∅) is then:
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minimal(A) :=

{{a ∈ A : ∄ a′ ∈ A with a′ ⊊ a}, if A ̸= ∅,
{∅}, otherwise.

(B.15)

Then, the following conditions always hold:

1. The minimum-sized new cocircuits are all particular solutions. Moreover, they are exactly
those minimal-inclusion ones among all solutions, which have a same (minimum) size:

minimal(colaug(Q, x)) = minimum(colaug(Q, x)) = minimum(diffcc(Q, x)).
(B.16)

2. Non-minimum-sized new cocircuits are not solutions, that is,

(diffcc(Q, x) \minimum(diffcc(Q, x))) ∩ colaug(Q, x) = ∅. (B.17)

3. The intersection of minimum-sized new cocircuits may not be a solution itself, but it charac-
terizes exactly items that must appear in all solutions:⋂

minimum(diffcc(Q, x)) =
⋂

colaug(Q, x). (B.18)

Roughly speaking, Corollary 2 takes a complement to Corollary 1: for any valid solution, it must
complete new bases (witnessed by minimal new cocircuits), so any item that appears in every such
minimum new cocircuit must appear in all valid solutions.

We use an example to illustrate these definitions above.
Example 3 (Illustration of Definition 8). Suppose Q is a matrix with row indices {1, 2, 3, 4} and
column indices {α, β, γ}, as follows.

Q =


α β γ

1 0 × 0
2 × 0 0
3 × × ×
4 × 0 0

, then


bases(Q) = {{1, 2, 3}, {1, 3, 4}},
circuits(Q) = {{2, 4}},
cocircuits(Q) = {{1}, {3}, {2, 4}}.

(B.19)

Consider the case with x = α. The remaining columns are:

Q:,{β,γ} =


β γ

1 × 0
2 0 0
3 × ×
4 0 0

, with


bases(Q:,{β,γ}) = {{1, 3}},
circuits(Q:,{β,γ}) = {{2}, {4}},
cocircuits(Q:,{β,γ}) = {{1}, {3}}.

(B.20)

The particular solution (also the maximal unique solution) given by Lemma 10 and Corollary 1 is:

D = {1, 2, 3, 4}, (B.21)

where 1 and 3 are coloops, and 2 and 4 lead to the new circuits in Q.

The particular solutions given by Corollary 2 are:

minimum(diffcc(Q,α)) := minimum(cocircuits(Q) \ cocircuits(Q:,{β,γ}))

= minimum({{1}, {3}, {2, 4}} \ {{1}, {3}})
= minimum({{2, 4}}),
= {{2, 4}}.

(B.22)

In total, there are four possible columns that can replace Q:,α without changing the matroid:

colaug(Q,α) = {{2, 4}, {1, 2, 4}, {2, 3, 4}, {1, 2, 3, 4}} . (B.23)

For example, choose D = {1, 2, 4} ∈ colaug(Q,α), one may verify that
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Let Q′ =


α β γ

1 × × 0
2 × 0 0
3 0 × ×
4 × 0 0

, still we have bases(Q′) = bases(Q) = {{1, 2, 3}, {1, 3, 4}}.

(B.24)

For now, let us not consider how these whole solutions colaug(Q,α) are obtained; one may just think
of them as obtained by exhaustively searching over all 24 possible columns.

Consider the case with x = β. The remaining columns are:

Q:,{α,γ} =


α γ

1 0 0
2 × 0
3 × ×
4 × 0

, with


bases(Q:,{α,γ}) = {{2, 3}, {3, 4}},
circuits(Q:,{α,γ}) = {{1}, {2, 4}},
cocircuits(Q:,{α,γ}) = {{3}, {2, 4}}.

(B.25)

So, the maximal solution (Lemma 10 and Corollary 1) is: D = {1, 3}.
The minimal solutions (Corollary 2) are: minimum(diffcc(Q, β)) = {{1}}.
And all the possible solutions are: colaug(Q, β) = {{1}, {1, 3}}.

Consider the case with x = γ. The remaining columns are:

Q:,{α,β} =


α β

1 0 ×
2 × 0
3 × ×
4 × 0

, with


bases(Q:,{α,β}) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}},
circuits(Q:,{α,β}) = {{2, 4}, {1, 2, 3}, {1, 3, 4}},
cocircuits(Q:,{α,β}) = {{1, 3}, {1, 2, 4}, {2, 3, 4}}.

(B.26)

So, the maximal solution (Lemma 10 and Corollary 1) is: D = {1, 3}.
The minimal solutions (Corollary 2) are: minimum(diffcc(Q, γ)) = {{1}, {3}}.
And all the possible solutions are: colaug(Q, β) = {{1}, {3}, {1, 3}}.

△

So far, we have introduced the definitions about “matroid-preserving column augmentations”, and
have provided particular ways to construct both the unique maximal solution and the set of minimal
solutions. Then, starting from these particular solutions, or starting from any solution, how can we
span to the whole solution set? This is answered by the following result.

We now present the structure among all column augmentations, which describes how how the whole
solutions can be traversed, and is thus important to our result about equivalence class traversal. In
particular, any two solutions can reach each other by a sequence of “edge additions/deletions”.

Lemma 12 (The whole column augmentations can be traversed by edge additions/deletions).
For any matrix Q ∈ {0, 1}m×n and a column index x ∈ [n], we define a digraph termed GaugQ,x, which
is a Hasse diagram with vertices being elements of colaug(Q, x), and edges being:

Di → Dj ∈ GaugQ,x ⇐⇒ Di ⊊ Dj with |Dj \Di| = 1, ∀Di, Dj ∈ colaug(Q, x). (B.27)

Then, this digraph is weakly connected.

We illustrate Lemma 12 by recalling Example 3:
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{2, 4}

{1, 2, 4} {2, 3, 4}

{1, 2, 3, 4}

(a) GaugQ,α

{1}

{1, 3}

(b) GaugQ,β

{3}{1}

{1, 3}

(c) GaugQ,γ

Figure 4: Example Hasse diagrams (defined in Lemma 12) over the solution sets of matroid-preserving
column augmentations. Instances from the earlier Example 3 are used. In each diagram, the root
vertices, corresponding to the minimal solutions (see Corollary 2) are highlighted in red, while the
leaf vertex, corresponding to the unique maximal solution (see Corollary 1) are highlighted in blue.

Proof of Lemma 12. Let

D = {i ∈ {1, . . . ,m} | ∀C ∈ circuits(Q) : i ∈ C ⇒ C\{i} /∈ Ind(Q:,[n]\{x})}. (B.28)

From Lemma 10, we know D ∈ colaug(Q, x).

Let D′ ∈ colaug(Q, x), then D′ ⊆ D, because if there is d′ ∈ D′ with d′ /∈ D, then there exists a
circuit C in Q with d′ ∈ C such that C\{d′} has a partial transversal omitting the column x. This
partial transversal may be extended to C by sending d′ to the column x, which then can be extended
to a basis BC ⊇ C in the transversal matroid represented by (Q:,[n]\{x} 1D′). But Q cannot have a
basis that contains one of its circuits, which implies that D′ /∈ colaug(Q, x). So D is the maximal
element of colaug(Q, x).

Let D′ ∈ colaug(Q, x) with D′ ̸= D and let d ∈ D\D′. Let B ∈ bases(Q), then B ∈
bases((Q:,[n]\{x} 1D′)). The maximal partial transversal ϕ that witnesses the independence ofB with
respect to (Q:,[n]\{x} 1D′) also witnesses the independence ofB with respect to (Q:,[n]\{x} 1D′∪{d}).
So we have

bases(Q) = bases((Q:,[n]\{x} 1D′)) ⊆ bases((Q:,[n]\{x} 1D′∪{d})). (B.29)

Now, let B ∈ bases((Q:,[n]\{x} 1D′∪{d})). The maximal partial transversal witnessing B with
respect to (Q:,[n]\{x} 1D′∪{d}) is also a maximal partial transversal with respect to (Q:,[n]\{x} 1D),
so B ∈ bases((Q:,[n]\{x} 1D)) = bases(Q). Therefore,

bases((Q:,[n]\{x} 1D′∪{d})) = bases(Q), and D′ ∪ {d} ∈ colaug(Q, x). (B.30)

Hence, for every D0, D1 ∈ colaug(Q, x) there is a directed path to D which gives

D0 → · · · → D ← · · · ← D1, (B.31)

Therefore, GaugQ,x is weakly connected.

B.3.3 FROM ONE COLUMN AUGMENTATION TO MULTIPLE COLUMNS’ JOINT
AUGMENTATION

We have now shown how one can obtain particular solutions or traverse all solutions to a single
column augmentation. In what follows, we shift from one column augmentation to multiple column
augmentation, which directly relates to our final graphical criterion to be shown in next section: we
need to augment the whole X columns, identifying their outgoing edges.

Interestingly, this seemingly combinatorially complex satisfiability problem can be decomposed
locally, that is, it suffices to satisfy each singleton column augmentation independently, shown below.
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Lemma 9 (Reducing all union equivalence checks to singleton checks). Let Q,H ∈ {0, 1}m×n

be two binary matrices with columns partitioned as [n] = L ∪X for a fixed L. Then, the condition

bases(Q:,L∪x) = bases(H:,L∪x), ∀x ⊆ X, (A.22)

holds, if and only if the condition{
bases(Q:,L) = bases(H:,L), and
bases(Q:,L∪{Xi}) = bases(H:,L∪{Xi}), ∀Xi ∈ X,

(A.23)

holds.

Proof of Lemma 9. Clearly, condition A.23 is a special case of condition A.22 with the choices
x ∈ {∅, {X1}, . . . , {Xk}}, thus if A.22 holds, then so does A.23.

If A.22 does not hold, then there is some x ⊆ X such that bases(Q:,L∪x) ̸= bases(H:,L∪x). W.l.o.g.
we may assume that there is some B ∈ bases(Q:,L∪x) with B /∈ bases(H:,L∪x).

If |x| ≤ 1, then A.23 clearly does not hold.

Now assume that |x| > 1. Choose B ∈ bases(Q:,L∪x)\ bases(H:,L∪x) and a partial transversal
ϕ : B → L∪x for Q:,L∪x such that δ := |{b ∈ B | Hb,ϕ(b) = 0}| is minimal. Due to the minimality
of δ (may be obtained via basis exchange), there is exactly one b ∈ B such that Hb,ϕ(b) = 0. Let

B′ = {b′ ∈ B | ϕ(b′) ∈ L ∪ {ϕ(b)}, (B.32)

then B′ is a basis of Q:,L∪{ϕ(b)}, but B′ is not a basis of H:,L∪{ϕ(b)}, shown below:

Assume that B′ is a basis of H:,L∪{ϕ(b)}, then there is a partial transversal ψ : B′ → L ∪ {ϕ(b)}.
Construct

ϕ′ : B → H:,L∪x (B.33)

such that

ϕ′(b′) =

{
ψ(b′) for b′ ∈ B′,

ϕ(b′) for b′ ∈ B\B′.
(B.34)

ϕ′ is a partial transversal, because

ϕ[B\B′] ∩ (L ∪ {ϕ(b)}) = ∅, (B.35)

due to the definition of B′. Thus if ϕ′(b0) = ϕ′(b1). Then:

1◦ Either {b0, b1} ⊆ B′: in this case, ϕ′(b0) = ψ(b0) = ψ(b1) = ϕ′(b1) implies b0 = b1;

2◦ Otherwise we have {b0, b1} ⊆ B\B′, and then ϕ′(b0) = ϕ(b0) = ϕ(b1) = ϕ′(b1) implies
b0 = b1.

But then ϕ′ witnesses that B is a basis of H:,L∪x, contradicting the original assumption. Thus
bases(Q:,L∪{ϕ(b)} ̸= bases(H:,L∪{ϕ(b)} and A.23 does not hold, too.

We have then finished proof to Lemma 9.

B.4 PROOFS OF THE GRAPHICAL CRITERION AND TRANSFORMATIONAL CHARACTERIZATION

We first note that the graphical criterion (Theorem 2) is a direct consequence of Lemma 9, that is,
instead of checking for bases of all subsets x ⊆ X , we only need to check for bases for each singleton
Xi ∈ X . Since Lemma 9 is already proved above, in this section, we focus on the proof of the
transformational characterization (Theorem 3).
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Lemma 7 (Admissible edge additions/deletions). Let (G, X) be an irreducible model. For any
edge Vi → Vj not currently in G, adding it to G preserves equivalence on X if and only if:

rG(Vi’s nonchildren\{Vj}, L\{Vi}) < rG(Vi’s nonchildren, L\{Vi}), (20)

where Vi’s nonchildren denotes V (G)\ chG(Vi)\{Vi}, i.e., zero entries in support column Q(G)
:,Vi

.
Conversely, an edge can be deleted if and only if it can be re-added by this criterion.

Proof of Lemma 7. Let us first prove a weaker version of this result, that is, without the permutation
part involved in checking equivalence (Lemma 5). Put formally, letH be the digraph after altering an
edge Vi → Vj in G. We study the if and only if condition (in terms of this edge) for the following

rG(Z, Y ) = rH(Z, Y ) for all Z ⊆ V (G) and L ⊆ Y ⊆ V (G) (B.36)

to hold. According to Lemma 9, this condition holds if and only if a reduced version hold:

bases(Q
(G)
:,L∪{Vi}) = bases(Q

(H)
:,L∪{Vi}). (B.37)

That is, one only need to check whether a single transversal matroid is changed. Then, when can
an edge in a bipartite graph be altered while the transversal matroid induced by this bipartite graph
keeps unchanged? We show the condition by the following lemma.

Lemma 13 (When an edge in a bipartite graph can be altered without changing the transversal
matroid). Let Q ∈ {0, 1}m×n be a binary support matrix. For any (Vj , Vi) ∈ [m]× [n] such that
QVj ,Vi

= 0, define H ∈ {0, 1}m×n by HVj ,Vi
= 1 and Hz,y = Qz,y for all other entries. For

convenience, denote Vi’s non-children in Q and column indices except for Vi by:

R := {z ∈ [m] : Qz,Vi
= 0};

Y := [n]\{Vi}.
(B.38)

Then, the following conditions are equivalent to each other:

1. bases(Q) = bases(H);

2. bases(QR,:) = bases(HR,:);

3. mrank(QR,:) = mrank(HR,:);

4. mrank(QR\{Vj},Y ) < mrank(QR,Y ), that is, Vj is a coloop among R in the transversal
matroid induced by QR,Y , and so removing it from ground set lowers the rank (by 1).

Proof of Lemma 13. We first have two immediate observations. (i) By construction, QR,{Vi} is the
zero column, whereas HR,{Vi} has a single 1 in row Vj . (ii) For any Z ⊆ [m] with Vj /∈ Z, the
submatrices QZ,: and HZ,: coincide, hence their matching ranks (and base behavior) coincide.

We now prove the implications among the four conditions by

(1)⇒ (2)⇒ (3) ⇐⇒ (4)⇒ (2)⇒ (1).

(1)⇒ (2). Trivial. Taking restrictions on ground sets preserves equality of matroids.

(2)⇒ (3). Trivial. Same matroids have the same ranks.

(3) ⇐⇒ (4). Let ν := mrank(QR,Y ) and ν′ := mrank(QR\{Vj},Y ). Note that

mrank(QR,:) = mrank(QR,Y ) = mrank(HR,Y ) = ν, (B.39)

because the column Vi is useless (full zero) for R in Q. In H , the only new edge incident to R is
(Vi, Vj); therefore any matching on R in H is either:

• a matching that does not use column Vi, hence has size at most ν, or
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• a matching that does use the edge (Vi, Vj) and then matches the remaining R \ {Vj} into Y ,
hence has size at most 1 + ν′.

Consequently,
mrank(HR,:) = max{ν, 1 + ν′}. (B.40)

Thus mrank(HR,:) = mrank(QR,:) holds if and only if 1 + ν′ ≤ ν, i.e., ν′ < ν, which is precisely
(4). This proves (3) ⇐⇒ (4).

(4) ⇒ (2). Assume (4). In the transversal matroid M induced by QR,Y , the inequality
mrank(QR\{Vj},Y ) < mrank(QR,Y ) means that Vj is a coloop ofM (see Definition 7). A standard
matroid identity for coloops states that for all Z ⊆ R \ {Vj},

mrank(QZ∪{Vj},Y ) = mrank(QZ,Y ) + 1. (B.41)

Combining this with Equation (B.40) (applied now to each Z ⊆ R) shows that adding the edge
(Vi, Vj) cannot change the matching rank of any Z ⊆ R; so in particular, the bases onR is unchanged:
bases(QR,:) = bases(HR,:).

(2)⇒ (1). For any Z ⊆ [m], we write ZR := Z ∩R and Zout := Z \R.

• If a maximum matching of HZ,: does not use (Vi, Vj), then it is also a matching in QZ,:,
and the ranks agree.

• If a maximum matching of HZ,: does use (Vi, Vj), then its restriction to ZR is a maximum
matching of HZR,: that uses the column Vi. By (2) (which holds for all subsets of R as
shown above), there exists a maximum matching of QZR,: of the same size that avoids Vi.
Replacing the H-matching on ZR by this Q-matching on ZR (and keeping the Zout-part
unchanged) yields a matching of QZ,: of the same cardinality as the original one in HZ,:.

Hence mrank(QZ,:) = mrank(HZ,:) for all Z ⊆ [m], which is equivalent to bases(Q) = bases(H).

All implications are proved, so the four conditions are equivalent. The result on deleting an edge is
just the same as adding back this edge from the resulted graph.

The condition shown in Lemma 13 is exactly the condition we have in Lemma 7, and hence the
weaker version without permutation (Equation (B.36)) is already proved.

The prove the full version, we only need to show that when the condition in Equation (B.37) fails,
then with any permutation they still cannot be rendered equivalent. This is straightforward, since
with one edge difference, the independent sets Ind(Q

(G)
:,L∪{Vi}) and Ind(Q

(H)
:,L∪{Vi}), if not equal,

must admit a strict inclusion relation between them, so there is no way for these two matroids to be
isomorphic.

We have now finished the proof of Lemma 7.

Theorem 3 (Transformational characterization of the equivalence class). Two irreducible models
(G, X) and (H, X) are equivalent if and only if G can be transformed intoH, up to L-relabeling, via
a sequence of admissible cycle reversals and edge additions/deletions, as defined in Lemmas 6 and 7.

Here, “up to L-relabeling” means there exists a relabeling of L in H yielding a digraph H′ such
that G reachesH′ via the sequence. Moreover, at most one cycle reversal is needed in this sequence.

Proof of Theorem 3. The proof to this result for traversing the equivalence class for the whole class
directly relates to the helpful lemmas we have shown in Appendix B.3, i.e., how the whole solution
set of column(s) augmentation is structured.
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Lemma 12 is core to our result: it shows that the whole space of satisfiable column augmentations
can be traversed by applying sequences of “one-edge different” operations, and these operations
are exactly the “admissible edge additions/deletions” we show in Lemma 7 (for edges from X),
and Lemma 13 (for edges fromL). From Lemma 12, we also have a way to traverse all bipartite graphs
that realizes a given transversal matroid. This can be viewed as a generalization from single-column
to multi-column augmentation:

Corollary 3 (Traverse all bipartite graphs that realize a transversal matroid). Let Q,H ∈
{0, 1}m×n be two binary matrices. Q and H induce a same transversal matroid, i.e., bases(Q) =
bases(H), if and only if Q can reach H via a sequence of admissible edge additions/deletions defined
in Lemma 13, followed by a column permutation. Moreover, similar to Corollary 1, among all
matrices that can be reached from Q via sequences of edge additions/deletions, there exists a unique
maximal matrix whose support is the union of supports of all these reachable matrices.

Corollary 3 directly relates to our traversal on the Q(G)
:,L part. But it is worth noting that unlike the

independent decomposition of column augmentations for each Xi, here the edge additions/deletions
have to be operated within the whole matrix space. We cannot simply run column augmentation for
each Li and take the Cartesian product. To see this, let Q = [[1, 1]] with columns α, β. Obviously,
colaug(Q,α) = {∅, {1}}, and also colaug(Q, β) = {∅, {1}}. However, we cannot take a product
and let Q′ = [[0, 0]], which induces a matroid different from Q.

Now, putting Lemma 12, Corollary 3, and Lemma 9 together, we have a way to traverse all digraphs
that achieve the same matroids over the tower of all sources that include some latent vertices:

Corollary 4 (Traverse all digraphs that realize same matroid tower under latents). Let Q,H ∈
{0, 1}m×n be two binary matrices with columns partitioned as [n] = L ∪X . Then, the condition

bases(Q:,L∪x) = bases(H:,L∪x), ∀x ⊆ X, (B.42)

holds, if and only if the bases(Q:,L) = bases(H:,L), (graphical criterion in Corollary 3), and for all
Xi ∈ X , {i ∈ [m] : Qi,Xi = 1} ∈ colaug(H:,L∪{Xi}, Xi) (graphical criterion in Lemma 12).

In other words, Q can reach H via a sequence of admissible edge additions/deletions, followed by a
permutation only among the columns in L. Corollary 4 directly relates to our traversal on the Q(G).

If we are to allow the equivalence up to row permutation, i.e., permuting the ground set as in Lemma 5,
only a row permutation appended to the end of the operations in Corollary 4 is needed.

Finally, a treatment to ensure nonzero diagonals for digraphs.

• Since in our case we need to exclude matrices with zero diagonals, this row permutation
becomes the “at most one step” within the sequence (Theorem 3), instead of at the end.

• The L-relabeling part, however, can still be put at the end, since to relabel the L vertices in
a digraph G, it is to apply a permutation on the columns Q(G)

:,L first, and then to apply the

same permutation back on the rows Q(G)
L,: . This operation still ensures the nonzero diagonals.

This becomes the “up to L-relabeling” term in Theorem 3.

We have now finished the proof of Theorem 3.

B.5 OTHER IMMEDIATE OR KNOWN RESULTS

We omit the proofs of the remaining results occurred in this manuscript: some of them follow
immediately from the already proved results, including Lemmas 1, 4 and 5, and the others are results
shown by existing work, including Lemmas 2 and 6 and Theorem 1.
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C DISCUSSION

C.1 SUMMARY: A SIDE-BY-SIDE COMPARISON BETWEEN PATH RANKS AND EDGE RANKS

Table 1: A side-by-side comparison between path ranks and edge ranks.

Aspect Path rank (Matrix rank) Edge rank (Matching rank)
Intuition Algebraic independence Combinatorial independence

Full rank of a d × d
square matrix M

rank(M) = d ⇐⇒ the determi-
nant of M is nonzero

mrank(M) = d ⇐⇒ the perma-
nent of M is nonzero

Graphical constraints in
digraphs

ρG(Z, Y ), the maximum number of
vertex-disjoint directed paths from
Y to Z (Definition 3), equals the
matrix rank of generic mixing sub-
matrices AZ,Y (Lemma 2)

rG(Z, Y ), the size of the maximum
bipartite matching from Y to Z via
direct edges (Definition 4), equals
the matching rank of the support
submatrix Q(G)

Z,Y (Lemma 4)

Matroid representations Strict gammoids in digraphs (Per-
fect, 1968)

Transversal matroids in bipartite
graphs (Ingleton & Piff, 1973)

Duality (Theorem 1) min(|Z|, |Y |)− ρG(Z, Y ) = |V | −max(|Z|, |Y |)− rG(V \Y, V \Z)

C.2 ANOTHER EXAMPLE DISTRIBUTIONAL EQUIVALENCE CLASS

G1 L1

X1

X3

X2

G2 L1

X1

X3

X2

G3 L1

X1

X3

X2

G4 L1

X1

X3

X2

G5 L1

X1

X3

X2

G6 L1

X1

X3

X2

G7 L1

X1

X3

X2

G8 L1

X1

X3

X2

G9 L1

X1

X3

X2

G10 L1

X1

X3

X2

G1
G2

G3 G4

G5
G6

G7

G8
G9

G10

Figure 5: Left: An example distributional equivalence class consisting of 10 digraphs. Right:
Transitions among these digraphs, where solid edges indicate edge additions or deletions, and dashed
edges indicate cycle reversals.

We show another example distributional equivalence class in Figure 5, in addition to the Figure 3
already shown in main text. The points of this example, different from those of Figure 3, are that:

1. Partitioned by cycle reversals (removing the dashed edges in the right of Figure 5), the classes
connected by only edge additions/deletions (solid edges) are not necessarily isomorphic to
each other. Here, there are 3, 3, 4 digraphs within each such class, respectively.

2. To illustrate cases where cycles intersect.
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C.3 A PRESENTATION OF THE EQUIVALENCE CLASS

In the main text, we have presented both a graphical criterion to check for equivalence (Theorem 2)
and a transformational characterization to traverse the entire equivalence class (Theorem 3). These
results are analogous to the “same adjacencies and v-structures” and the “covered edge reversal
(Meek conjecture)” in the fully observed, acyclic, Markov equivalence setting.

However, note that in that classical setting, there is another familiar result, CPDAG, which serves
as an informative presentation of the equivalence class. This naturally raises the question: can we
construct an analogous presentation in the context of this work? We answer this affirmatively. In
what follows, we outline how this presentation can be constructed step by step.

Step 1. Identifiability of ancestral relations among observed variables. As a preliminary
observation, we first note that the ancestral relations among observed variables X are invariant across
all equivalent digraphs (this follows from how admissible edge additions/deletions are defined, and
the fact that cycle reversal does not alter the ancestral relations). Thus, presenting an arbitrary digraph
in the equivalence class suffices to inform users the true ancestral relations amongX . For applications
such as experimental design involving observed variables, this alone is informative enough.

Step 2. Unique maximal digraph within the class. We show that under each cycle-reversal con-
figuration, there exists a unique maximal digraph in the equivalence class such that every equivalent
digraph is a subgraph of it. We further provide an explicit construction of this maximal digraph
(Corollary 1), without needing to enumerate all equivalent digraphs and then take the maximal one.
Analogous to the “largest chain graph” in Frydenberg (1990), this maximal digraph can serve as a
basis of the presentation, informing users which causal relations are guaranteed to be absent.

Step 3. Characterizing edges that must appear. Building on the previous step, we also charac-
terize edges that must be present in all equivalent digraphs. Again, these edges can be determined
efficiently via a graphical condition (Corollary 2), without needing to enumerate all equivalent
digraphs and then take the intersection. Note that it is an explicit construction, so iterative procedures
(such as arrow propagation in Meek rules (Meek, 1995)) are not needed either. These edges can be
visually highlighted on the basis maximal digraph, in analogous to the arrows in CPDAGs, or “visible
edges” in PAGs (Zhang, 2008b). They inform users which causal relations they can fully trust.

Such presentation is formally defined in Theorem 4, and examples of it are shown in Figure 6.

L1 L2

X1 X2 X3

L1

X1

X3

X2

Figure 6: Illustrative presentations of equivalence classes. Left: Presentation of equivalent digraphs
G1,G2,G3 under a same cycle-reversal configuration from Figure 3. The basis digraph shown is the
unique maximal equivalent digraph (Step 2 above). In it, solid edges denote those that must appear
in all equivalent digraphs, while dashed edges are those that can be removed (Step 3 above). One
may use Corollaries 1 and 2 to check how they are determined. Right: A similar presentation for
digraphs G3,G4,G7,G10 from Figure 5. Remark: One might ask why we present the equivalence
class separately for each cycle-reversal configuration rather than for the entire class. The reason is
that taking the union over all digraphs in the entire class can, unlike within one configuration, yield a
supergraph that is itself out of the equivalence class, potentially producing misleading interpretations.
In fact, this separation only leads to more informative presentations, shown by Theorem 4 below.

Theorem 4 (Presentation of an equivalence class). For an irreducible model (G, X), we construct a
digraph whose vertices are V (G) and whose directed edges come in two types: solid and dashed. All
edges are determined by Corollary 1, and among them the solid ones are determined by Corollary 2.
We denote this digraph by CP(G), echoing the sense of “complete partial” as in CPDAGs.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

For convenience, let E(G) be the whole equivalence class, that is, the set of all digraphsH on vertices

V (G) such thatH X∼ G. Let F(G) denote the set of all digraphs reachable from G via sequences of
admissible edge addition/deletions as defined in Lemma 7. Clearly, F(G) ⊆ E(G).
Then, the presentation CP(G) enjoys the following properties:

1. CP(G) ∈ F(G);

2. For everyH ∈ F(G), the edge set ofH is a subset of the edge set of CP(G);

3. The intersection of the edge sets of allH ∈ F(G) equals the solid edges of CP(G);

4. For everyH ∈ E(G), let CP(H) be its own presentation. Then, CP(H) can be transformed
into CP(G) via an L-relabel and a cycle reversal (alongside the solid/dashed edge types).

It is worth noting that a dashed edge in a presentation means that there exists at least one equivalent
digraph without this edge. However, it does not imply that dashed edges can be arbitrarily removed
without affecting equivalence: they have to obey the rank constraints. This is in a similar spirit of
undirected edges in a CPDAG: an undirected edge means that there exist at least two equivalent
DAGs who have different orientations on this edge. However, it does not imply that undirected edges
can be arbitrarily oriented: there are additional constraints like no new v-structures, no cycles, etc.

We are not sure whether such additional constraints can, or should, be also incorporated into the
presentation, or at least summarized as a set of rules like Meek rules (especially given the availability
of an interactive traversal tool). But in any case, we put it here as a possible future step:

Step 4. Quantifying bounds on edges between vertex groups. Extending step 3, one may describe
bounds on the number of edges between vertex groups (e.g., “at least 2 and at most 4 edges from
vertices Y to vertices Z”). Such constraints may be presented like “underlined bows” in cyclic
digraphs (Richardson, 1996) or “hyperedges” in mDAGs (Evans, 2016). We have not developed this
result (though we hypothesize that they likely also follow from Theorem 2), because we are not sure
how much practical informativeness it can offer to users.

Lastly, we also list the presentation of prior knowledge as a future step.

Step 5. Incorporating additional prior knowledge. As with other equivalence presentations,
prior knowledge such as acyclicity, stable cycles, or certain causal orderings can further refine the
equivalence class and its presentation (Perković et al., 2017). While we have not explored this part
either, it motivates future theoretical developments, such as interventional equivalence classes, and
parameter identifiability results based on the equivalence class established in this work.

C.4 EXAMPLES OF NON-RANK CONSTRAINTS IN MIXING MATRICES

In Lemma 3 we have shown that path rank equivalence in mixing matrices sufficiently lead to
distributional equivalence. However, this does not imply that there are no other constraints in mixing
matrices. As an analogy, in the causally sufficient linear Gaussian system, CI equivalence (zero
partial correlations in covariance matrices) sufficiently lead to distributional equivalence, but there
are still other constraints, like the Tetrad constraints in the covariance matrices.

Below we give an example of non-rank constraints in mixing matrices.

Consider a digraph G with 4 vertices:

1

2

3

4

a

b

c

d

e
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Its mixing matrix is:

A =


1 2 3 4

1 1 bc c ce
2 a 1− cde ac ace
3 ab+ de b 1 e
4 d bcd cd 1− abc

× 1

1− abc− cde . (C.1)

We can verify the following constraint holds:

A2,4A3,2A4,1 − A2,1A3,4A4,2

= ace× b× d − a× e× bcd
= 0.

(C.2)

Just like rank constraints, this constraint is also immune to arbitrary column scaling, that is, it also
survives in the OICA estimated mixing matrix. However, this is not a rank constraint.

One may also verify some other non-rank constraints in this A, for example,

A2,2A3,4A4,1 +A2,4A3,1A4,2 +A2,1A3,2A4,4

= 2A2,1A3,4A4,2 −A2,2A3,1A4,4,
(C.3)

and

A2
2,4A3,1A3,2A4,2 +A2,1A2,2A

2
3,4A4,2 +A2,1A2,4A

2
3,2A4,4

= 2A2,1A2,4A3,2A3,4A4,2 +A2,2A2,4A3,1A3,2A4,4,
(C.4)

both of which are also immune to column scaling.

We are not sure whether there are any specific geometry interpretations underlying these equality
constraints. These examples are brutal-force searched from ideal elimination.

We notice that these equality constraints occur among the {2, 3, 4} rows, meaning that when vertex
{1} is latent and {2, 3, 4} observed, these constraints will also appear in the OICA mixing ma-
trix. Fortunately, with Lemma 3, we know rank constraints alone can determine the distributional
equivalence, so the equivalence among these constraints as well.

For example, one may verify that these constraints also occur in all 3 digraphs in the equivalence
class, shown below, while this equivalence class is obtained only by the rank-based criterion (which
is trivial in this case since only cycle reversals are applied).

1

2

3

4

1

2

3

4

1

2

3

4

Note that the nice result of Lemma 3 only occurs at the linear non-Gaussian case, where path ranks
are one-sided, so that it can be directly dualized to a transversal matroid that can be represented by
vectors that lie in the faces of some simplex.

In the linear Gaussian case, with the two-sided path ranks in covariance matrices, there can be
more constraints. In that setting, however, rank constraints equivalence do not necessarily imply
distributional equivalence: there can be other unmatched equality constraints, e.g., the Pentad, Hexad
constraints and beyond (Drton et al., 2007), let alone other inequality constraints.

C.5 RELATED WORK

Equivalence characterizations We first review various approaches to characterize equivalence
of causal models. At the same time, we summarize the multiple results developed in this work and
situate them within this broader landscape of related literature.
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Table 2: A side-by-side overview of representative works on equivalence characterizations across
different settings using different approaches. The final column summarizes this work’s contributions.

Settings
Markov equivalence in
fully observed acyclic
graphs

Markov equivalence in
acyclic graphs with
latents

Distributional
equivalence in LiNG
models with latents and
cycles (this work)

St
ru

ct
ur

al

Level 1 “Same d-separations” “Same d-separations”
“Same path/edge ranks up
to permutation”
(Lemmas 3 and 5)

Level 2

“Same adjacencies and
minimal complexes/
v-structures” (Frydenberg,
1990; Verma & Pearl,
1991)

“Same FCI outputs”
(Spirtes & Verma, 1992);
“Same MAG adjacencies,
v-structures, and colliders
on discriminating paths”
(Spirtes & Richardson,
1996; Richardson &
Spirtes, 2002); “Same head
and tails” (Hu & Evans,
2020)

“Same bases in children
for L itself and with each
singleton Xi, up to
permutation” (Theorem 2)

Level 3

“Maximal (deflagged)
chain graphs; essential
graphs” (Frydenberg,
1990; Andersson et al.,
1997; Roverato et al.,
2006); “CPDAGs” (Spirtes
& Glymour, 1991; Meek,
1995)

“Arrowhead completeness”
(Ali et al., 2005); “Full
completeness of PAG
orientations” (Zhang,
2008a); With background
knowledge (still
incomplete; (Andrews
et al., 2020;
Venkateswaran & Perković,
2024))

“Unique maximal
equivalent graph with
edges that must always
appear, up to cycle
reversal” (Theorem 4)

Transfor-
mational

“Covered edge reversal
(Meek conjecture)”
(Chickering, 1995; Meek,
1997; Chickering, 2002);
“Weakly covered edge
reversal” (Markham et al.,
2022) for unconditional
equivalence

“Covered edge reversal”
(Zhang & Spirtes, 2005;
Tian, 2005; Ogarrio et al.,
2016; Claassen & Bucur,
2022)

“Admissible edge
additions/deletions and
cycle reversals”
(Theorem 3)

Traversal
algorithms

DAGs traversal within one
CPDAG (Meek, 1995;
Chickering, 1995;
Wienöbst et al., 2023);
CPDAGs traversal
(Steinsky, 2003; Chen
et al., 2016)

MAGs traversal within one
PAG (Wang et al., 2024;
2025)

BFS/DFS by admissible
transformations
(Theorem 3), with
additional parallel speedup
by column decomposition
(Lemmas 9 and 12)

In general, approaches to characterize equivalence can be categorized into three types:

1. Structural characterizations, which provide conditions for determining equivalence be-
tween given graphs, and give rise to summary presentations. However, they do not directly
lead to equivalence class traversal methods. They can be further stratified by their complexity,
informativeness, or purpose, as follows:
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• Level 1. Graphical conditions necessary and sufficient for determining equivalence, but
more as definitions than practical criteria; usually require combinatorial complexities.

• Level 2. Practical graphical criteria for determining equivalence; still necessary and
sufficient, but more efficient than Level 1.

• Level 3. Sound and complete conditions or presentations that summarize the equiva-
lence class. While Level 2 criteria efficiently determine equivalence, they do not fully
capture what can be identified; Level 3 addresses this gap. Level 3 can also be used for
determining equivalence, but it will be less efficient than Level 2.

2. Transformational characterizations, which provide natural ways for traversing the equiva-
lence class, and are useful for developing score-based algorithms. However, as a comple-
ment, they are not suited for directly determining equivalence between given graphs, or for
developing summary presentations to the equivalence class.

3. Traversal algorithms, for enumerating, sampling, or counting elements of the equivalence
class, where transformational characterizations are usually helpful.

We present in Table 2 a side-by-side overview of representative prior works and this work across these
approaches in different settings. This unified view may help to better understand the contributions of
this work, and as well to clarify the methodological implications among these approaches.

There is also a wide range of additional work characterizing equivalences under many other settings,
which are not put in Table 2 due to space limit. These include efforts to develop Markov properties
and establish Markov equivalence in fully observed models with cycles, such as in linear Gaussian
settings (Richardson, 1996; Claassen & Mooij, 2023), discrete settings (Pearl & Dechter, 1996), and
general nonlinear settings (Spirtes, 1994; Forré & Mooij, 2017; Mooij & Claassen, 2020), as well as
nonlinear settings with latent variables and selection bias (Yao & Mooij, 2025). The distributional
equivalence of fully observed linear Gaussian cyclic models has been studied in Ghassami et al. (2020);
Drton et al. (2025b). Nonparametric equivalence with latent variables has also been characterized
in (Evans, 2018; Markham & Grosse-Wentrup, 2020; Jiang & Aragam, 2023; Richardson et al., 2023).
From a method view, transformational characterizations have gained increasing attention recently,
including (Ghassami et al., 2020; Markham et al., 2022; Johnson & Semnani, 2025; Améndola et al.,
2025).

Below, we then provide a more comprehensive review of the relevant literature on latent-variable
causal discovery, in particular those under the linear non-Gaussian models (Shimizu et al., 2006).

Parametric settings for latent-variable causal discovery A prosperous line of statistical tools
beyond conditional independencies have been developed. These include rank constraints (Sullivant
et al., 2010; Spirtes et al., 2000) and more general equality constraints (Drton, 2018) in the linear
Gaussian setting; and high-order moment constraints (Xie et al., 2020; Adams et al., 2021; Robeva
& Seby, 2021; Dai et al., 2022; 2024; Chen et al., 2024a), which exploit non-Gaussianity for
identifiability. In addition to these, matrix decomposition methods (Anandkumar et al., 2013), copula-
based constraints (Cui et al., 2018), and mixture oracles (Kivva et al., 2021) were also developed.

Algorithms for latent-variable causal discovery Building on these statistical tools, many latent
variable causal discovery algorithms have been proposed. Many of them fall within the constraint-
based framework, by using CI tests and algebraic constraints to infer causal relations. Examples
include those based on rank or tetrad constraints (Silva et al., 2003; 2006; Silva & Scheines, 2004;
Choi et al., 2011; Kummerfeld & Ramsey, 2016; Huang et al., 2022; Dong et al., 2024; 2025). Recent
efforts have also attempted to formalize score-based methods for latent-variable causal discovery
(Jabbari et al., 2017; Ng et al., 2024).

Linear non-Gaussian models Thanks to the strong identifiability results given by OICA, the linear
non-Gaussian models have received much attention for causal discovery with latent variables or cycles:
(Améndola et al., 2023; Salehkaleybar et al., 2020; Wang & Drton, 2023; Maeda & Shimizu, 2020;
Silva & Shimizu, 2017; Dai et al., 2024; Yang et al., 2022; 2024; Shimizu, 2022; Drton et al., 2025a;
Liu et al., 2021; Schkoda et al., 2024; Tramontano et al., 2022; Rothenhäusler et al., 2015), together
with those discussed in §1, and many more. Beyond structure learning, LiNG models also provide
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benign conditions for many other tasks, including causal effect identification (Tchetgen Tchetgen et al.,
2024; Kivva et al., 2023; Xie et al., 2022; Tramontano et al., 2024; 2025), model selection (Schkoda
& Drton, 2025), covariate selection (Zhang & Wiedermann, 2024), experimental design (Sharifian
et al., 2025), etc.

Below, we also discuss how the results in this work, especially the edge rank tools and the motivation
of a bipartite matching view, may be generalized to other parameter settings.

For the linear Gaussian setting, existing results in the literature can be directly translated into our
edge rank language. Unlike the non-Gaussian setting where the mixing matrix is identifiable, in the
Gaussian setting, only the covariance matrix is available. The graphical characterization of covariance
matrix ranks, known as “trek-separation,” has been established by Sullivant et al. (2010). Specifically,
the concept of a bottleneck, which we term the “path rank” on the one-sided directed paths, is
extended to the bottleneck along the two-sided directed paths, known as “treks". Since the duality
between path ranks and edge ranks hold universally in graphs regardless of the parametric setting,
the existing characterization on trek-based path ranks can be directly translated into trek-based edge
rank language. As for the technical roadmap, one may first note that the non-Gaussian equivalence
condition we build in this work is necessary but not sufficient for the Gaussian setting. That is, two
graphs that are equivalent in non-Gaussian models are guaranteed to remain equivalent in Gaussian
models; however, graphs that are distinguishable under non-Gaussianity may collapse into the same
equivalence class under Gaussianity. We see the closing of this gap as the most immediate future
direction for extending our current work.

For the discrete setting, our results are likely generalizable as well. Several recent works have
explored path ranks in graphs from discrete data (Gu & Xu, 2023; Chen et al., 2024b), where the
algebraic counterpart becomes the tensor ranks in the contingency table. However, a precise graphical
characterization, analogous to “trek-separation” in the Gaussian case above, has yet to be developed.
That said, such a characterization is promising, since the linear Gaussian and discrete models behave
similarly in many aspects. For example, both are closed under marginalization and conditionalization;
both admit a correspondence between Markov and distributional equivalence, in both cyclic and
acyclic cases (Geiger & Meek, 1996; Pearl & Dechter, 1996). Motivated by these parallels already
noted in literature, we believe our results can also extend to the discrete setting, and will be directly
applicable once the corresponding graphical characterization is developed.

For nonlinear or even nonparametric settings, theoretical generalization remains possible. When
the model is partially linear and partially nonlinear, low-dimensional bottlenecks in the linear
component remain directly observable through covariance ranks (Spirtes, 2013). When the model
is fully nonlinear or even nonparametric, there also exists prior results on the identifiability of
latent-variable models (Hu, 2008; 2017). Although the techniques differ, the underlying motivation
remains closely related to ranks, particularly those in the Jacobian matrix. However, despite the
theoretical meaningfulness, the practical estimation and reliable testing of these ranks remain an open
challenge. This challenge can be echoed by viewing rank constraints as generalizations of conditional
independence constraints. In linear models, conditional independencies correspond to low ranks in
the covariance matrix and can be directed tested via Fisher’s Z test. In contrast, robust conditional
independence tests in nonlinear settings are still under active development (Duong & Nguyen, 2024;
Yang et al., 2025).
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D EVALUATION RESULTS

D.1 QUANTIFYING THE SIZES OF EQUIVALENCE CLASSES
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D.2 ASSESSING GLVLING ALGORITHM’S RUNTIME

Table 4: Running time comparison between our glvLiNG algorithm and a mixed integer linear
programming (MILP) baseline for constructing digraphs that satisfy the rank constraints of oracle
OICA mixing matrices. Ground-truth graphs are generated from the Erdős–Rényi model with total
number of vertices n and average in-degree avgdeg, with ℓ vertices randomly designated as latent.
Each entry reports the mean and standard deviation over 50 models (when completed); empty entries
indicate runs that did not finish within 10 minutes. All times are reported in seconds. Experiments
were run on an Apple M4 chip.

n ℓ avgdeg MILP glvLiNG glvLiNG Phase 1 glvLiNG Phase 2

5 1 1 0.045 ± 0.013 0.015 ± 0.005 0.014 ± 0.005 0.001 ± 0.000
3 0.112 ± 0.008 0.020 ± 0.002 0.019 ± 0.002 0.001 ± 0.000

7
1 1 0.101 ± 0.045 0.098 ± 0.044 0.002 ± 0.000

3 0.169 ± 0.024 0.165 ± 0.024 0.004 ± 0.000

3 1 37.402 ± 0.000 0.048 ± 0.013 0.045 ± 0.012 0.003 ± 0.001
3 0.083 ± 0.014 0.075 ± 0.013 0.007 ± 0.001

9

1 1 0.691 ± 0.304 0.687 ± 0.303 0.004 ± 0.001
3 1.129 ± 0.191 1.122 ± 0.190 0.007 ± 0.001

3 1 0.319 ± 0.091 0.308 ± 0.090 0.009 ± 0.001
3 0.667 ± 0.132 0.634 ± 0.128 0.031 ± 0.007

5 1 0.082 ± 0.023 0.075 ± 0.022 0.005 ± 0.001
3 0.260 ± 0.057 0.230 ± 0.051 0.023 ± 0.005

11

1 1 3.637 ± 1.533 3.630 ± 1.532 0.007 ± 0.000
3 7.706 ± 0.883 7.693 ± 0.881 0.013 ± 0.002

3 1 2.174 ± 0.499 2.142 ± 0.500 0.030 ± 0.002
3 4.979 ± 0.763 4.873 ± 0.748 0.102 ± 0.021

5 1 0.530 ± 0.111 0.492 ± 0.111 0.032 ± 0.002
3 2.348 ± 0.426 2.170 ± 0.396 0.159 ± 0.045

13

1 1 22.838 ± 9.667 22.827 ± 9.667 0.011 ± 0.001
3 38.173 ± 7.725 38.155 ± 7.721 0.017 ± 0.005

3 1 12.501 ± 4.602 12.404 ± 4.593 0.094 ± 0.016
3 23.517 ± 5.807 23.362 ± 5.751 0.150 ± 0.062

5 1 4.277 ± 1.430 4.069 ± 1.433 0.190 ± 0.009
3 13.150 ± 4.009 12.376 ± 3.712 0.723 ± 0.310
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D.3 BENCHMARKING EXISTING METHODS UNDER ORACLE INPUTS

Table 5: Evaluation of existing methods under possible model misspecification on arbitrary latent-
variable models. Ground-truth graphs are generated from the Erdős-Rényi model with total number
of vertices n and average in-degree avgdeg, with ℓ vertices randomly designated as latent. Only
irreducible models are chosen. Each entry reports the mean and standard deviation of the structural
Hamming distances (SHDs) between the result and truth over 50 random models.
Algorithms are provided with their oracle tests, that is, for them to directly query oracle generalized
independent noise (GIN) conditions from the digraph. When the number of their identified latent
variables is fewer than truth, we simply add isolated latent variables into the result. When the
identified number of latents is larger (which seems not happened), we planned to choose the removal
that leads to best result. Finally, the best possible result is reported, i.e., we choose the digraph in
the ground-truth equivalence class that is closer to their output as the truth. The latent variables are
viewed as unlabeled.

n ℓ avgdeg PO-LiNGAM FastGIN

10

3

1 15.48 ± 2.75 31.64 ± 4.62
2 24.30 ± 4.41 36.80 ± 4.22
3 35.40 ± 3.61 39.96 ± 4.88
4 45.22 ± 3.53 41.04 ± 3.81

5

1 18.04 ± 3.99 32.36 ± 4.38
2 28.44 ± 3.48 36.68 ± 4.31
3 39.18 ± 3.60 40.42 ± 4.40
4 50.00 ± 3.45 41.00 ± 4.57

15

3

1 31.10 ± 4.87 74.22 ± 8.04
2 48.26 ± 6.67 76.80 ± 6.66
3 64.12 ± 5.59 81.64 ± 8.28
4 84.60 ± 5.73 85.56 ± 8.61

5

1 35.02 ± 5.74 71.70 ± 6.94
2 54.84 ± 6.04 78.44 ± 7.01
3 72.96 ± 6.62 79.98 ± 8.15
4 92.28 ± 7.71 82.50 ± 7.35

7

1 36.44 ± 5.63 71.34 ± 8.37
2 58.00 ± 6.24 77.90 ± 8.25
3 79.90 ± 7.34 79.16 ± 8.79
4 101.04 ± 5.90 84.56 ± 8.99

20

3

1 48.60 ± 6.12 129.88 ± 14.18
2 76.92 ± 8.29 136.36 ± 13.05
3 103.04 ± 8.30 138.24 ± 11.98
4 129.14 ± 10.46 146.86 ± 13.02

5

1 54.04 ± 5.23 122.78 ± 12.67
2 84.10 ± 8.44 136.04 ± 12.85
3 115.72 ± 8.72 139.76 ± 13.64
4 146.44 ± 9.10 141.64 ± 10.75

7

1 58.70 ± 6.36 128.46 ± 11.96
2 92.86 ± 8.41 132.48 ± 12.36
3 124.00 ± 9.60 140.76 ± 12.31
4 155.48 ± 7.83 143.76 ± 11.55

9

1 64.40 ± 7.38 120.08 ± 12.43
2 98.04 ± 10.43 135.24 ± 12.75
3 134.16 ± 10.34 137.52 ± 12.30
4 167.86 ± 11.28 142.76 ± 11.39
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D.4 EVALUATING GLVLING’S PERFORMANCE WITH EXISTING METHODS IN SIMULATIONS

OICA estimation part We first describe how we handle the OICA estimation part.

For our choice of OICA implementation, we have tried multiple options and find that overall, the
MATLAB implementation2 of SDP-ICA (Podosinnikova et al., 2019) tends to provide best estimated
mixing matrices across multiple settings. We thus adopt it in our experiments.

For the number of latent variables, although theoretically identifiable, existing OICA implemen-
tations still require specifying this number as an input. Hence, following the common practice as
in (Salehkaleybar et al., 2020), we test multiple candidate values and select the one minimizing the
loss on a held out set.

Handling empirical ranks in an OICA matrix We then explain how we process the mixing matrix
estimated from OICA. Having obtained an OICA-estimated mixing matrix, the core task of glvLiNG
becomes constructing a bipartite graph to realize the rank patterns in this mixing matrix, which define
a transversal matroid. When OICA is not an oracle, these empirical ranks may violate matroid axioms,
just like how conditional independencies in data may violate a graphoid in nonparametric settings.

To address this, in our implementation, we assign a “full-rank confidence score” to each relevant block
of A. Specifically, let σmin be A’s minimum singular value, we use the score 1

1+exp(−α(σmin−ϵ)) , and
in experiments, we set α = 25 and ϵ = 0.02. Then, in phase 1 (recovering latent outgoing edges),
we approximate the closest valid transversal matroid that maximizes agreement with these scores.
In phase 2 (recovering observed outgoing edges), for efficiency we simply threshold these scores to
determine each variable’s outgoing edges independently. We have simulated and verified that this
procedure is robust to moderately noisy ranks, by e.g., assigning true full-rank blocks scores from
N (0.75, 0.2) and others from N (0.25, 0.2), both 0, 1 truncated.

Simulation setup In simulation, we compare glvLiNG with existing methods including LaHi-
CaSl3 (Xie et al., 2024) and PO-LiNGAM4 (Jin et al., 2024). We generate random Erdős-Rényi
model with total number of vertices n from 5 to 13, number of latent variables ℓ from 1 to 5, average
in-degree d of 1 and 3, and sample size N from 1, 000 to 200, 000. We sample data with linear causal
weights uniformly from [−2.5,−0.5] ∪ [0.5, 2.5], and exogenous noise are sampled from a uniform
distribution [−0.5, 0.5], following (Podosinnikova et al., 2019). We calculate the minimum SHD
between all graphs in the true equivalence class to the discovery output graph as the SHD result.

Simulation results The results are presented in Figure 7. From it we have the following observa-
tions:

First of all, it is not surprising to see that LaHiCaSl and PO-LiNGAM perform better when the
graph is sparser. For example, when d = 1, these two methods perform better than glvLiNG, though
the difference remains modest. This is perhaps because, when the graph is sparser, maintaining
irreducibility typically means more edges outgoing from latent variables, while edges from observed
ones to others are fewer. This aligns well with the model assumptions of these two methods. For
example, LaHiCaSl assumes a hierarchical latent-variable model in which all observed variables
are leaf nodes. Given this additional benefit from their sparsity constraints, and the fact that both
LaHiCaSl and PO-LiNGAM estimates ranks using the GIN condition which is more efficient than
OICA, it is not surprising to see that they perform better in this setting.

However, when the graph is denser, glvLiNG performs particularly better. For example, when d = 3,
glvLiNG consistently outperforms the other two methods, and the difference is considerable. This is
perhaps because, when the graph is denser, more complex structures become common, including ar-
bitrary edges between latent and observed variables, as well as cycles. Model assumptions of existing
methods are more likely to be violated, making them less effective at recovering these structures. In
contrast, with a structural-assumption-free design, glvLiNG avoids such model misspecification, and
still allows the recovery of these structures.

2https://github.com/gilgarmish/oica
3https://github.com/jinshi201/LaHiCaSl
4https://github.com/Songyao-Jin/PO-LiNGAM
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Figure 7: Simulation results comparing glvLiNG with existing methods with varying sample size
N (the global x-axis), and each subplot shows a setting under a specific number of total variables n,
number of latent variables ℓ, and the average in-degree d. Mean and standard deviation of SHD are
calculated from 25 random irreducible models.

We also observe that glvLiNG tends to be more robust to latent dimensionality. For example, when
n = 13 and d = 3, increasing the number of latents ℓ from 1 to 5, the average SHD of glvLiNG
increases from 33.1 to 35.7, while other method, such as PO-LiNGAM, increases from 35.3 to 50.7.
This is perhaps because glvLiNG jointly recovers all latent-outgoing edges at once, using an OICA
mixing matrix whose dimensionality is already fixed. In contrast, the other two methods requires
incrementally clustering and adding latent variables.

D.5 ANALYZING A REAL-WORLD DATASET WITH GLVLING ALGORITHM

For the real-world experiment, we use a Hong Kong stock market dataset that involves the daily
dividend/split-adjusted closing prices for 14 major stocks from January 4, 2000 to June 17, 2005
(1331 samples). These 14 stocks represent the dominant sectors of the market: 3 of them are on
banking (HSBC Holdings, Hang Seng Bank, Bank of East Asia), 5 on real estate (Cheung Kong,
Henderson Land, Hang Lung Properties, Sun Hung Kai Properties, Wharf Holdings), 3 on utilities
(CLP Holdings, HK & China Gas, HK Electric), and 3 on commerce (Hutchison, Swire Pacific ’A’,
Cathay Pacific Airways). All of them were constituents of Hang Seng Index (HSI), and they were
almost the largest companies of the Hong Kong stock market at the time.

By applying glvLiNG on this dataset, we recovered an equivalence class of causal graphs containing
2 latent variables. The presentation (see Appendix C.3) of this equivalence class is shown in Figure 8.
Here is a summary: the class consists of 19,008 causal graphs with 16=14+2 vertices, and among
them the numbers of edges range between 29 to 34. In the presentation, there are 20 “solid” (must
appear) and 14 “dashed” (may appear) edges.

This result suggests several interesting observations, as follows:
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L1

L2

x1: Cheung Kong

x12: Swire 'A'

x10: Hutchisonx3: HK & China Gas

x2: CLP Hldgs

x6: HK Electric

x9: Henderson Land

x7: Hang Lung Devx4: Wharf (Hldgs)

x8: Hang Seng Bank

x5: HSBC Hldg

x11: Sun Hung Kai Prop

x14: Cathay Pacific Air

x13: Bank of East Asia

Figure 8: Presentation of the equivalence class that glvLiNG estimates from the stock market data.
Different colors of nodes indicate different sectors. Solid and dashed edges indicate edges that must
appear in all or at least one equivalent graph(s).

1. Large banks seem to be major upstream causes. For example, the two largest banks, HSBC
Holdings and Hang Seng Bank, together form a 2-cycle that has 9 children across sectors,
but there are no edges into them.

2. Real estates, in contrast, seem to be downstream effect receivers. For example, Cheung
Kong has 10 parents, but only 1 edge pointing out from it.

3. Utilities are heavily involved in cycles. For example, among 17 simple cycles in the graph,
CLP Holdings belongs to 11 of them. These cycles are often across sectors as utilities - real
estate - commerce - utilities.

4. One latent variable seems interpretable. It has one parent HSBC Holdings, and three
children (all with solid edges): Cheung Kong, Hutchison, and Swire Pacific ’A’. Among
them, Cheung Kong and Hutchison were two core holdings of a same group.

5. Stocks under the same sector tend to be connected more closely.
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