

# 000 001 002 003 004 005 006 DISTRIBUTIONAL EQUIVALENCE IN LINEAR NON- 007 GAUSSIAN LATENT-VARIABLE CYCLIC CAUSAL MODELS: CHARACTERIZATION AND LEARNING 008 009

010 **Anonymous authors**  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053

Paper under double-blind review

## ABSTRACT

Causal discovery with latent variables is a fundamental task. Yet most existing methods rely on strong structural assumptions, such as enforcing specific indicator patterns for latents or restricting how they can interact with others. We argue that a core obstacle to a general, structural-assumption-free approach is the lack of an equivalence characterization: without knowing what can be identified, one generally cannot design methods for how to identify it. In this work, we aim to close this gap for linear non-Gaussian models. We establish the graphical criterion for when two graphs with arbitrary latent structure and cycles are *distributionally equivalent*, that is, they induce the same observed distribution set. Key to our approach is a new tool, *edge rank* constraints, which fills a missing piece in the toolbox for latent-variable causal discovery in even broader settings. We further provide a procedure to traverse the whole equivalence class and develop an algorithm to recover models from data up to such equivalence. To our knowledge, this is the first equivalence characterization with latent variables in any parametric setting without structural assumptions, and hence the first structural-assumption-free discovery method. Code and an interactive demo are available at <https://equiv.cc>.

## 1 INTRODUCTION

At the core of scientific inquiry lies causal discovery, the task of learning causal relations from observational data (Spirtes et al., 2000; Pearl, 2009). In many real-world scenarios, the variables of interest can be unobserved. For instance, in psychology, personality traits are hidden behind survey responses, and in biology, crucial regulators may be unobserved due to technical inaccessibility. Discovering the causal structure with these latent variables, referred to as latent-variable causal discovery, is essential for understanding and reasoning, yet remains a challenging task.

Latent-variable causal discovery has seen significant development over the past three decades. A milestone was the Fast Causal Inference (FCI) algorithm (Spirtes, 1992), which exploits conditional independence (CI) constraints under hidden confounding. However, FCI is typically not regarded as a method of latent-variable causal discovery, as it focuses solely on causal relations among observed variables, with no intension or capability to identify those among latent variables. In fact, though FCI is already maximally informative under nonparametric CI constraints (Richardson & Spirtes, 2002; Zhang, 2008a), it is still not informative enough for recovering latent structure.

This limitation has motivated the development of many recent approaches that go beyond CI constraints, typically by introducing parametric assumptions, such as linearity (Silva et al., 2003; Dong et al., 2024), non-Gaussianity (Hoyer et al., 2008; Jin et al., 2024), mixture models (Kivva et al., 2021), and distribution shifts (Zhang et al., 2024). Within each setting, a rich array of techniques has emerged. For example, in the linear non-Gaussian setting alone, methods have been developed based on overcomplete independent component analysis (OICA) (Salehkaleybar et al., 2020), regression (Tashiro et al., 2014), Bayesian estimation (Shimizu & Bollen, 2014), independence testing (Xie et al., 2020), cumulants (Robeva & Seby, 2021), independent subspace analysis (Dai et al., 2024), and many more.

However, despite this prosperity, most methods share a clear limitation: they rely on structural assumptions, often about how latent variables are indicated and how they can interact with others. Common examples include measurement models where observed variables have to be pure measurements of latents (Silva & Scheines, 2004; Zhang et al., 2018); hierarchical models that prohibit effects from observed variables (Choi et al., 2011; Huang et al., 2020); sufficient number of pure children per latent (Squires et al., 2022; Jin et al., 2024); and assumptions like triangle- or bow-freeness (Dong et al., 2024; Wang & Drton, 2023). In addition, most methods also assume acyclicity, even though

## Thank all reviewers!

We sincerely thank all the reviewers for the valuable comments and the time dedicated. In this updated manuscript, we have carefully considered and incorporated the review comments.

We provide color-coded side notes that correspond to comments/questions by each reviewer (Reviewer GjKP, Reviewer FDU9, Reviewer Tajar, Reviewer Czvx).

The changes to the manuscript are highlighted in blue.

054 feedback loops are common in real systems. These assumptions, often overly strong and untestable,  
 055 not only limit applicability but also complicate method selection for practitioners.  
 056

057 A pressing question naturally arises: after decades of progress, is it possible now to have a general  
 058 structural-assumption-free approach for latent-variable causal discovery that, like FCI, allows arbitrary  
 059 relations among latent and observed variables, yet goes beyond FCI’s limited informativeness?

060 One core obstacle, we argue, is the lack of a general equivalence characterization with latent variables.  
 061 Equivalence is a notion fundamental to causal discovery: when different causal models induce the  
 062 same observed distribution set (known as *distributional equivalence*), no method can, or should,  
 063 distinguish among them, without extra information like interventions or sparsity constraints. The  
 064 expected discovery output is thus the entire *equivalence class*, the best one can hope to identify from  
 065 data. In practice, equivalence can also be defined more coarsely, depending on the specific constraints  
 066 used. One example is *Markov equivalence*, capturing when models entail the same CI constraints. A  
 067 well-known and nice result is that in causally sufficient, acyclic, and nonparametric models, Markov  
 068 equivalence coincides with distributional equivalence (Spirtes et al., 2000); the resulting equivalence  
 069 class is represented by a completed partially directed acyclic graph (CPDAG).  
 070

071 In the presence of cycles or latent variables, however, equivalence characterization becomes more  
 072 complex. For example, the nice coincidence between Markov and distributional equivalences breaks  
 073 down, even with only cycles (Spirtes, 1994; Mooij & Claassen, 2020), or only latent variables (Verma  
 074 & Pearl, 1991; Richardson et al., 2023), let alone both. The resulting equivalence classes, be it  
 075 Markov (Richardson & Spirtes, 2002; Claassen & Mooij, 2023) or distributional (Nowzohour et al.,  
 076 2017; Evans, 2018), also become far more complex. Such complications carry over to parametric  
 077 settings: for cycles alone, distributional equivalence has been characterized in linear non-Gaussian  
 078 and Gaussian models (Lacerda et al., 2008; Ghassami et al., 2020); yet for latent variables, no  
 079 characterization of any kind, whether distributional or constraint specific, is currently known to us.  
 080 The closest result (Adams et al., 2021) gives conditions for when a linear non-Gaussian acyclic model  
 081 can be uniquely identified, but leaves open describing the equivalence when such identifiability fails.  
 082

083 All such complications from latent variables and cycles have so far prevented a general equivalence  
 084 characterization, which is exactly what obstructs progress towards a structural-assumption-free method.  
 085 The need for such a characterization is yet clear: without knowing *what* can be identified, one generally  
 086 cannot design methods for *how* to identify it. This is echoed in history: PC algorithm followed  
 087 CPDAGs; FCI’s guarantee followed maximal ancestral graphs (MAGs) (Richardson & Spirtes, 2002).  
 088

089 Our goal in this work is hence to overcome these challenges and establish a general equivalence  
 090 notion with latent variables and cycles. We focus on linear non-Gaussian models, a parametric setting  
 091 that has received much attention. Under this setting, we address three questions: **1)** When are two  
 092 graphs with arbitrary latent variables and cycles equivalent? **2)** How can one traverse the entire  
 093 equivalence class? **3)** How can one recover latent-variable models up to equivalence from data?  
 094

095 Centered around these three questions, our contributions are summarized as follows:

- 096 1. We present a general equivalence notion that allows arbitrary latent structure and cycles in linear  
 097 non-Gaussian models. This is the first such result known to us in any parametric setting (§2).
- 098 2. We introduce a new tool, *edge rank* constraints. It contributes a missing piece to the broader  
 099 toolbox for latent-variable causal discovery, with potential use across many settings (§3).
- 100 3. We characterize equivalence graphically and provide procedures to traverse the entire class. Re-  
 101 sults are cleaner than expected. We provide an interactive demo at <https://equiv.cc> (§4).
- 102 4. We develop an efficient algorithm to recover the equivalence class from data, which is, to our  
 103 knowledge, the first structural-assumption-free method for latent-variable causal discovery (§5).

## 104 2 PROBLEM SETUP

105 In this section, we lay the groundwork for our study. In §2.1, we define the notion of distributional  
 106 equivalence in linear non-Gaussian latent-variable causal models. Then in §2.2, we introduce the  
 107 idea of irreducibility to rule out trivial cases, clearing the way for the main results to come.

### 108 2.1 PRELIMINARIES FOR LINEAR NON-GAUSSIAN MODELS

109 **Notations on matrices.** For a matrix  $M$ , we let  $M_{i,j}$  be its  $(i,j)$ -th entry. For two index sets  
 110  $A, B$ , we let  $M_{A,B} = (M_{a,b})_{a \in A, b \in B}$  be the submatrix of  $M$  with rows indexed by  $A$  and columns  
 111 indexed by  $B$ . We let  $M_{A,:}$  be the rows in  $M$  indexed by  $A$ , and similarly  $M_{:B}$  for the columns. For

108 a finite set  $A$ , we denote its cardinality by  $|A|$ . We denote by  $\text{Scale}(d)$  the set of all  $d \times d$  diagonal  
 109 matrices with nonzero diagonal entries, and by  $\text{Perm}(d)$  the set of all  $d \times d$  permutation matrices.  
 110 For a permutation  $\pi : V \rightarrow V$  on a ground set  $V$ , we denote  $\pi(F) := \{\pi(i) : i \in F\}$  for any set  
 111  $F \subseteq V$ , and extend this notation to families of sets by  $\pi(\mathcal{F}) := \{\pi(F) : F \in \mathcal{F}\}$  for  $\mathcal{F} \subset 2^V$ .  
 112

113 **Notations on graphs.** Throughout, by a *digraph* we refer to a directed graph that may contain  
 114 cycles but no self-loops (edges from a vertex to itself). In a digraph  $\mathcal{G}$ , let  $V(\mathcal{G})$  be its vertex set. For  
 115 vertices  $a, b$ , we say  $a$  is a *parent* of  $b$  and  $b$  is a *child* of  $a$ , denoted by  $a \in \text{pa}_{\mathcal{G}}(b)$  and  $b \in \text{ch}_{\mathcal{G}}(a)$ ,  
 116 when  $a \rightarrow b$  is an edge in  $\mathcal{G}$ , written  $a \rightarrow b \in \mathcal{G}$ ;  $a$  is an *ancestor* of  $b$  and  $b$  is a *descendant* of  $a$ ,  
 117 denoted by  $a \in \text{ang}_{\mathcal{G}}(b)$  and  $b \in \text{deg}(a)$ , when  $a = b$  or there is a directed path  $a \rightarrow \dots \rightarrow b$  in  $\mathcal{G}$ .  
 118 These notations extend to sets: e.g., for a vertex set  $A$ ,  $\text{ang}_{\mathcal{G}}(A) := \bigcup_{a \in A} \text{ang}_{\mathcal{G}}(a)$ .  
 119

120 **Linear non-Gaussian (LiNG) causal models.** We consider a *linear non-Gaussian model* associated  
 121 with a digraph  $\mathcal{G}$ , in which random variables  $V = (V_1, \dots, V_{|V|})^\top$ , corresponding to the vertices of  
 122  $\mathcal{G}$ , are generated according to the structural equation:

$$V = BV + E, \quad (1)$$

123 where  $E = (E_1, \dots, E_{|V|})^\top$  consists of mutually independent, non-constant, non-Gaussian exoge-  
 124 nous noise terms. The matrix  $B \in \mathcal{B}(\mathcal{G})$  is a weighted *adjacency matrix* (whose entries represent  
 125 *direct causal effects*) that follows  $\mathcal{G}$ , where  $\mathcal{B}(\mathcal{G})$ , all adjacency matrices that follow  $\mathcal{G}$ , is defined as:

$$\mathcal{B}(\mathcal{G}) := \{B \in \mathbb{R}^{|V| \times |V|} : B_{V_j, V_i} \neq 0 \implies V_i \rightarrow V_j \in \mathcal{G}\}. \quad (2)$$

126 Assuming  $I - B$  is invertible, solving for Equation (1) gives an equivalent mixing form:  
 127

$$V = (I - B)^{-1}E =: AE, \quad (3)$$

128 where  $A$  is called the weighted *mixing matrix*. The entry  $A_{V_j, V_i}$  represents the *total causal effect*  
 129 from  $V_i$  to  $V_j$ . All mixing matrices that follow  $\mathcal{G}$ , denoted by  $\mathcal{A}(\mathcal{G})$ , is defined as:  
 130

$$\mathcal{A}(\mathcal{G}) := \{(I - B)^{-1} : B \in \mathcal{B}(\mathcal{G}), I - B \text{ invertible}\}. \quad (4)$$

131 **Latent-variable LiNG models.** Let the vertices  $V$  of a digraph  $\mathcal{G}$  be partitioned as  $V = L \cup X$ ,  
 132 where  $L$  denotes *latent* (unobserved) variables and  $X$  denotes *observed* variables. A *latent-variable*  
 133 *model* is specified by the tuple  $(\mathcal{G}, X)$ , with latent variables  $L$  omitted when clear from context.  
 134

135 Given a full mixing matrix  $A \in \mathcal{A}(\mathcal{G})$ , the submatrix  $A_{X,:} \in \mathbb{R}^{|X| \times |V|}$  maps exogenous noise terms  
 136 to the observed variables. The collection of such wide rectangular mixing matrices is defined as:  
 137

$$\mathcal{A}(\mathcal{G}, X) := \{A_{X,:} : A \in \mathcal{A}(\mathcal{G})\}. \quad (5)$$

138 Accordingly, the induced *observed distribution set* of  $\mathcal{G}$  on  $X$ , that is, the set of all distributions over  
 139  $X$  that can arise from a LiNG model over  $(\mathcal{G}, X)$ , denoted  $\mathcal{P}(\mathcal{G}, X)$ , is given by:  
 140

$$\mathcal{P}(\mathcal{G}, X) := \{p(X) : X = AE, A \in \mathcal{A}(\mathcal{G}, X), E \in \text{NG}(|V|)\}, \quad (6)$$

141 where  $p(X)$  denotes the probability distribution of the random vector  $X$ , and  $\text{NG}(d)$  denotes the set  
 142 of all  $d$ -dim random vectors with mutually independent, non-constant, and non-Gaussian components.  
 143

144 We are now ready to formalize the central notion of this work: *distributional equivalence*.  
 145

146 **Definition 1 (Distributional equivalence).** Let  $\mathcal{G}$  and  $\mathcal{H}$  be two digraphs with possibly different  
 147 vertices, and  $X \subseteq V(\mathcal{G}) \cap V(\mathcal{H})$  be the shared observed variables. We say  $\mathcal{G}$  and  $\mathcal{H}$  are *distributionally*  
 148 *equivalent* (or for short, *equivalent*) on  $X$ , denoted by  $\mathcal{G} \xrightarrow{X} \mathcal{H}$ , when  $\mathcal{P}(\mathcal{G}, X) = \mathcal{P}(\mathcal{H}, X)$ .  
 149

150 The equivalence (Definition 1) captures when two models yield identical observed distribution set,  
 151 i.e., observationally indistinguishable. With this notion in place, next we clean up some trivialities.  
 152

## 153 2.2 IRREDUCIBILITY: TO FIRST RULE OUT TRIVIAL CASES OF EQUIVALENCE

154 To study identifiability, let us first see what is inherently non-identifiable. For instance, one can  
 155 freely add latent vertices that are not ancestors of any observed variables  $X$  to a digraph  $\mathcal{G}$  without  
 156 affecting  $\mathcal{P}(\mathcal{G}, X)$ , yielding trivially equivalent models. Identifying those latents is both impossible  
 157 and meaningless. To rule out such trivialities, we introduce the notion of *irreducibility*.  
 158

159 **Definition 2 (Irreducibility).** We say a latent-variable model  $(\mathcal{G}, X)$  is *irreducible*, when there exists  
 160 no digraph  $\mathcal{H}$  with  $|V(\mathcal{H})| < |V(\mathcal{G})|$  such that  $\mathcal{G} \xrightarrow{X} \mathcal{H}$ .  
 161

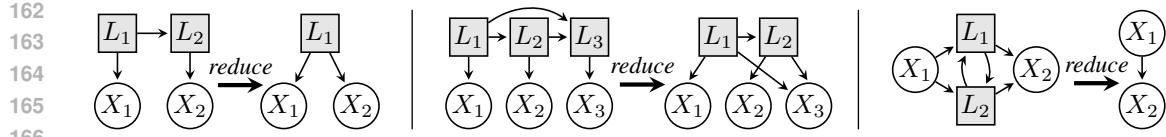


Figure 1: Examples of reducing models to their irreducible forms via the procedure in Proposition 2. Throughout, white circles denote observed variables and grey squares denote latent variables.

Irreducibility captures when an observed distribution set cannot arise from any other model with fewer latent variables. We now present a simple graphical condition for this property.

**Proposition 1 (Graphical condition for irreducibility).** *A model  $(\mathcal{G}, X)$  is irreducible, if and only if for each non-empty set  $\mathbf{l} \subseteq L$ ,  $|\text{ch}_{\mathcal{G}}(\mathbf{l}) \setminus \mathbf{l}| \geq 2$ , i.e., it has more than one child outside.*

Note that when  $\mathcal{G}$  is acyclic, it suffices to check each single  $L_i \in L$ , consistent with the condition previously derived by Salehkaleybar et al. (2020). The proof of Proposition 1, along with others, is provided in Appendix B. The key idea here is that any violation of the condition leads to proportional columns in mixing matrices  $\mathcal{A}(\mathcal{G}, X)$ , so that the observed distributions can be equivalently generated by a smaller graph with these columns merged to one. Conversely, identifiability results of OICA (Eriksson & Koivunen, 2004) suggest that as long as in the absence of such proportional columns, the mixing matrix is identifiable up to column scaling and permutation, so the number of latents is identifiable.

We next provide an explicit procedure for reducing an arbitrary model to its irreducible form.

**Proposition 2 (Procedure of reduction to the irreducible form).** *Given any latent-variable model  $(\mathcal{G}, X)$ , the following procedure outputs a digraph  $\mathcal{H}$  such that  $\mathcal{H} \stackrel{X}{\sim} \mathcal{G}$  and  $(\mathcal{H}, X)$  is irreducible.*

*Step 1. Initialize  $\mathcal{H}$  as  $\mathcal{G}$ .*

*Step 2. Remove vertices  $V(\mathcal{H}) \setminus \text{an}_{\mathcal{H}}(X)$  from  $\mathcal{H}$ , i.e., remove latents who have no effects on  $X$ .*

*Step 3. Identify the maximal redundant latents in the remaining latent vertices:*

$$\text{mrl} := \{\mathbf{l} \subseteq V(\mathcal{H}) \setminus X : |\mathbf{l}| > 0, |\text{ch}_{\mathcal{H}}(\mathbf{l}) \setminus \mathbf{l}| < 2, \text{ and } \forall \mathbf{l}' \supsetneq \mathbf{l}, |\text{ch}_{\mathcal{H}}(\mathbf{l}') \setminus \mathbf{l}'| \geq 2\}. \quad (7)$$

*Step 4. For each  $\mathbf{l} \in \text{mrl}$ , let  $c$  be the exact child in  $\text{ch}_{\mathcal{H}}(\mathbf{l}) \setminus \mathbf{l}$ ; for each parent  $p \in \text{pa}_{\mathcal{H}}(\mathbf{l}) \setminus \{\mathbf{l}\}$ , add an edge  $p \rightarrow c$  into  $\mathcal{H}$  if not already present; finally, remove  $\mathbf{l}$  vertices from  $\mathcal{H}$ .*

Illustrative examples of this reduction are shown in Figure 1. This reduction lets us, without loss of generality, restrict attention to irreducible models for the remainder, as arbitrary models are equivalent if and only if their irreducible forms are equivalent. Note that irreducibility is not a structural assumption as discussed in §1, but rather a canonicalization to eliminate trivialities. **As a side note, applying the reduction in Proposition 2 does not increase the number of edges or cycles.**

**Reviewer GjKP: Q4**  
We have checked that in acyclic models, our irreducibility condition matches the previous “absorbability” condition (Salehkaleybar et al., 2020).

### 3 DEVELOPING GRAPHICAL TOOLS FOR CHARACTERIZING EQUIVALENCE

In the previous section, we defined distributional equivalence and irreducibility to rule out trivial unidentifiable cases, so we can focus solely on irreducible models in what follows. Then, when are two irreducible models equivalent? In this section, we tackle this question step by step.

Specifically, in §3.1 we first show that distributional equivalence reduces to an algebraic condition on mixing matrices, and further to a graphical condition involving a concept familiar to the community: *path ranks*, given by max-flow-min-cuts in digraphs. Although familiar, path ranks are difficult to work with due to their global, non-local nature, as we illustrate in §3.2. To overcome this, we introduce a new tool: *edge ranks*, a local, edge-level constraint that complements path ranks and is easier to manipulate. This new tool, developed in §3.3, not only enables our final result to come in the next section, but also enriches the broader rank-based picture beyond our specific setting.

**Reviewer Czvx: Q3**  
A “safe canonicalization”.

#### 3.1 EQUIVALENCE VIA PATH RANKS

We start by examining the algebra behind distributional equivalence. By Definition 2, all equivalent irreducible models must have the same number of latents. This follows from OICA, which guarantees exact recovery of the number of (nontrivial) latent variables. Hence, in what follows, when considering the equivalence of two irreducible models  $(\mathcal{G}, X)$  and  $(\mathcal{H}, X)$ , we can, without loss of generality, denote their latent variables by a same set of labels, so that  $V(\mathcal{G}) = V(\mathcal{H}) = X \cup L$ .

**Reviewer FDU9: Q4**  
We have made the phrase about “same latent variable labels” clearer.

We then observe that distributional equivalence can be rephrased in terms of the mixing matrices: two models are equivalent if and only if for every mixing matrix one model can generate, the other can also generate a version of it up to column scaling and permutation, and vice versa, due to the scaling and permutation closedness of exogenous noise terms. Formally,

**Lemma 1 (Equivalence via mixing matrices closure).** *Two irreducible models are equivalent, written  $\mathcal{G} \xrightarrow{X} \mathcal{H}$ , if and only if  $\overline{\mathcal{A}(\mathcal{G}, X)} = \overline{\mathcal{A}(\mathcal{H}, X)}$ , where for a set of matrices  $\mathcal{A} \subseteq \mathbb{R}^{m \times d}$ , we let:*

$$\overline{\mathcal{A}} := \{APD : A \in \mathcal{A}, P \in \text{Perm}(d), D \in \text{Scale}(d)\}, \quad (8)$$

that is, the closure of  $\mathcal{A}$  up to column scaling and permutation.

Then, what are exactly these mixing matrices, namely,  $\mathcal{A}(\mathcal{G}, X)$ ? As defined in Equations (2) to (5), it arises from a mapping over the free parameters in adjacency matrices. Concretely, each entry of the mixing matrix is a rational function: the numerator polynomial reflects “total causal effects” between variables, and the denominator polynomial accounts for “global cycle discounts”, which is simply 1 when the digraph is acyclic. In cyclic cases, there is a small pathological locus where denominators vanish, that is, where  $I - B$  becomes singular and cycles “cancel themselves.” But as we will show in the proof, this does not affect our results. So for now, let us progress with the Zariski closure of  $\mathcal{A}(\mathcal{G}, X)$ , an algebraic variety that can be defined by finitely many *equality constraints*.

We now study these constraints. One fundamental class of them is the so-called *rank constraints*, which admits a nice graphical interpretation in terms of *max-flow-min-cut* in digraphs, defined below:

**Definition 3 (Path ranks).** In a digraph  $\mathcal{G}$ , for two sets of vertices  $Z, Y \subseteq V(\mathcal{G})$ , the *path rank*  $\rho_{\mathcal{G}}(Z, Y)$  is defined as the maximum number of vertex-disjoint directed paths from  $Y$  to  $Z$  in  $\mathcal{G}$ . By (Menger, 1927), this max-flow quantity can also be defined by its min-cut version:

$$\rho_{\mathcal{G}}(Z, Y) := \min_{c \subseteq V(\mathcal{G})} \{|c| : c\text{'s removal from } \mathcal{G} \text{ ensures no directed path from } Y \setminus c \text{ to } Z \setminus c\}. \quad (9)$$

These purely graphical quantities can be read off from the mixing matrices by examining the matrix ranks of corresponding submatrices, which is the well-known (path) rank constraint:

**Lemma 2 (Path rank constraints in mixing matrices).** *In a digraph  $\mathcal{G}$ , for any two sets of vertices  $Z, Y \subseteq V(\mathcal{G})$  that need not be disjoint, the following equality holds for generic choice of  $A \in \mathcal{A}(\mathcal{G})$ :*

$$\text{rank}(A_{Z, Y}) = \rho_{\mathcal{G}}(Z, Y). \quad (10)$$

Here, *rank* denotes the usual matrix rank, and “generic” means the equality holds almost everywhere except for a Lebesgue measure zero set where coincidental lower matrix ranks occur.

Rank constraints bridge algebra in matrices with geometry in digraphs. They were initially proved for acyclic graphs only (Lindström, 1973; Gessel & Viennot, 1985), and later generalized by (Talaska, 2012). They are powerful: as we will show in the proof, rank constraints alone, together with a column permutation, suffice to determine equivalence. We directly state the result below:

**Lemma 3 (Equivalence via path ranks).** *Two irreducible models are distributionally equivalent, written  $\mathcal{G} \xrightarrow{X} \mathcal{H}$ , if and only if there exists a permutation  $\pi$  over the vertices  $V(\mathcal{G})$ , such that*

$$\rho_{\mathcal{G}}(Z, Y) = \rho_{\mathcal{H}}(Z, \pi(Y)) \quad \text{for all } Z \subseteq X \text{ and } Y \subseteq V(\mathcal{G}). \quad (11)$$

From Lemma 1 to Lemma 3, so far we have arrived at a first purely graphical view of equivalence.

### 3.2 THE COMPLEXITY OF MANIPULATING PATH RANKS

In §3.1 we have arrived at Lemma 3, a purely graphical characterization of equivalence, which, perhaps surprisingly, is expressed in terms of a familiar concept: path ranks. However, this is only a start and far from operational: verifying it requires searching over all vertex permutations and all  $(Z, Y)$  pairs, which quickly becomes intractable due to their factorial and exponential growth, let alone the costly graph traversal required for each single path rank computation. As an analogy to the acyclic, causally sufficient case, Lemma 3 is like saying “having all the same d-separations,” whereas what we seek is something simpler and more local, like “same adjacencies and v-structures.”

Then, does a simpler local condition naturally follow from Lemma 3? Unfortunately, not quite. Path ranks are hard to work with due to their global nature: they summarize the size of “bottlenecks”,

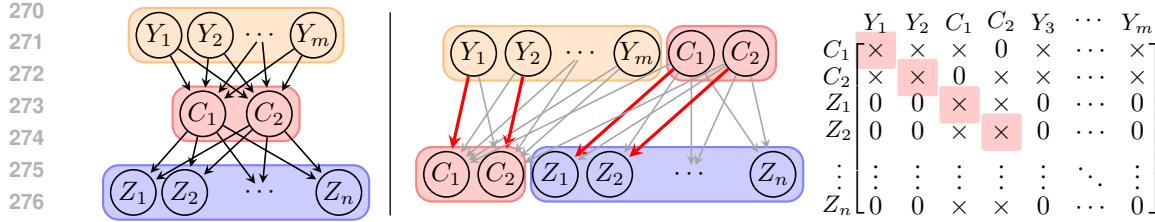


Figure 2: An illustration of path ranks, edge ranks, and their duality. Left: a digraph  $\mathcal{G}$  with vertices  $V$  partitioned to  $Y$ ,  $C$ , and  $Z$ , shown by different colors. The path rank  $\rho_{\mathcal{G}}(Z, Y) = 2$ , with  $C$  being a min-cut. Right: the dual edge rank  $r_{\mathcal{G}}(V \setminus Y, V \setminus Z) = 4$ , given by the maximum bipartite matching from  $V \setminus Z$  to  $V \setminus Y$ , i.e., from  $Y \cup C$  to  $Z \cup C$ , with four matched edges highlighted in red. Four corresponding nonzero entries placed on diagonal, also in red, confirm  $\text{mrank}(Q_{V \setminus Y, V \setminus Z}^{(G)}) = 4$ . One may examine the duality in Theorem 1: w.l.o.g. let  $m \leq n$ , there is  $m - 2 = m + n + 2 - n - 4$ .

but say nothing about which paths are involved or how they interact. Each single edge may lie on multiple bottlenecks, so even a small local alteration to a digraph may trigger unpredictable global changes in path ranks. Conversely, with latent variables, seemingly very different digraphs can still share the same path ranks. We illustrate such complexity with the following example.

**Example 1 (Complexity of viewing equivalence via path ranks).** Consider the digraph  $\mathcal{G}$  on the left of Figure 2, with vertices partitioned into  $Y$ ,  $C$ , and  $Z$ . Obviously, the path rank  $\rho_{\mathcal{G}}(Z, Y) = 2$ . Now, suppose vertices  $\{C_1, C_2\}$  become latent and all others remain observed. What models are equivalent? This is not obvious anymore. It usually takes some thought to realize that adding edges or cycles within  $C$ , or removing one or two edges from  $C$  to  $Z$ , still preserves path ranks as in Lemma 3. What about the  $Y$  to  $C$  structure then? This is more subtle: when  $n > 2$ , it must remain fixed; but when  $n = 2$ ,  $C$  is no longer a unique bottleneck, and suddenly,  $Y$  can point freely to both  $C$  and  $Z$ .

Things become even less intuitive when other variables are latent. For example, with  $m = n = 4$ , if  $\{C_1, C_2\}$  are latent, there are 17 digraphs in the equivalence class (view them online). When  $\{Y_1, Y_2\}$  or  $\{Y_1, C_1\}$  are latent, this number comes to 872 (view) and 1,024 (view), respectively. Note that all this comes from a well structured digraph; arbitrary structures only lead to greater complexity.  $\triangle$

Example 1 illustrates the complexity of path ranks in inferring graph structures. In fact, this complexity is well recognized in literature: despite various techniques developed to estimate path ranks from data (Dai et al., 2022; Sturma et al., 2024), and well-studied counterparts in the linear Gaussian (Sullivant et al., 2010) and discrete settings (Chen et al., 2024b) or even with selection bias (Dai et al., 2025), when it comes to structure learning from ranks, usually restrictive structural assumptions are required to ensure clean interpretation to where and how these paths can be.

All observations above motivate a question: is there a more local, graph-manipulable alternative to path ranks, not just for building equivalence in this work but also as a piece in the broader toolbox? Interestingly, the answer is yes, and we develop such a tool next: edge ranks.

### 3.3 EDGE RANKS: A NEW TOOL IN THE RANK-BASED PICTURE

We now introduce a new tool: *edge ranks*. As the name suggests, edge ranks directly operate on edges in digraphs, which is more local and accessible in contrast to the paths used in path ranks. For intuition, one may refer to Figure 2, which illustrates all the concepts and results below.

Let us first define edge ranks, similar to how we define path ranks previously in Definition 3:

**Definition 4 (Edge ranks).** In a digraph  $\mathcal{G}$ , for two sets of vertices  $Z, Y \subseteq V(\mathcal{G})$ , the *edge rank*  $r_{\mathcal{G}}(Z, Y)$  is defined as the size of the maximum bipartite matching from  $Y$  to  $Z$  via edges in  $\mathcal{G}$ , where self-matches ( $a$  to  $a$  for  $a \in Y \cap Z$ ) are allowed. Edge ranks also admit a min-cut version:

$$r_{\mathcal{G}}(Z, Y) := \min_{z \subseteq Z, y \subseteq Y, z \cup y \supseteq Z \cap Y} \{|z| + |y| : \text{there is no edge from } Y \setminus y \text{ to } Z \setminus z \text{ in } \mathcal{G}\}. \quad (12)$$

In parallel to how path ranks correspond to matrix ranks of mixing submatrices (cf. Lemma 2), the pure graphical quantities of edge ranks also have their algebraic counterpart. This time, it is not the mixing matrices at play, but directly the adjacencies.

324 For clarity, let us introduce a new matrix notation,  $Q$ , in addition to the already familiar notations of  
 325  $B$  and  $A$ , and a new notion of *matching ranks*, in addition to the already familiar matrix ranks.

326 **Definition 5 (Support matrix).** For a digraph  $\mathcal{G}$ , its binary *support matrix* in shape  $|V(\mathcal{G})| \times |V(\mathcal{G})|$ ,  
 327 denoted  $Q^{(\mathcal{G})}$ , is given by:

$$329 Q_{V_j, V_i}^{(\mathcal{G})} = ' \times ' \text{ if } V_i = V_j \text{ or } V_i \rightarrow V_j \in \mathcal{G}, \text{ and } 0 \text{ otherwise.} \quad (13)$$

330 **Definition 6 (Matching rank of a matrix).** The *matching rank* of a matrix  $M \in \mathbb{K}^{m \times n}$  is given by:

$$332 \text{mrank}(M) := \max_{P \in \text{Perm}(n)} \sum_{i=1, \dots, \min(m, n)} \mathbb{1}((MP)_{i,i} \neq 0). \quad (14)$$

333 In simple terms, the matching rank of a matrix, denoted *mrank*, is the maximum number of nonzero  
 334 entries that can be positioned on the diagonal by permuting its columns (or rows).

335 We can now give the edge rank constraints, as a counterpart to path rank constraints (cf. Lemma 2).  
 336 Unlike the algebraic efforts required there, this result follows immediately from definition:

337 **Lemma 4 (Edge rank constraints in support matrices).** *In a digraph  $\mathcal{G}$ , for any two sets of vertices  
 338  $Z, Y \subseteq V(\mathcal{G})$  that need not be disjoint, the following equality holds:*

$$340 \text{mrank}(Q_{Z, Y}^{(\mathcal{G})}) = r_{\mathcal{G}}(Z, Y). \quad (15)$$

341 So far, we have defined both path ranks and edge ranks, which at first glance appear so different:  
 342 graphically, one is global, focusing on paths, while the other is local, operating on edges; algebraically,  
 343 one is tied to weighted mixing matrices, the other to binary support matrices. However, despite these  
 344 apparent differences, a surprising and elegant duality exists between them:

345 **Theorem 1 (Duality between path ranks and edge ranks).** *In a digraph  $\mathcal{G}$  with vertices  $V$ , for any  
 346 two sets of vertices  $Z, Y \subseteq V$  that need not be disjoint, the following equality holds:*

$$347 \min(|Z|, |Y|) - \rho_{\mathcal{G}}(Z, Y) = |V| - \max(|Z|, |Y|) - r_{\mathcal{G}}(V \setminus Y, V \setminus Z). \quad (16)$$

348 This duality is powerful: it suggests that every statement phrased in terms of path ranks and its  
 349 variants, including the familiar *d-separation* and *t-separation*, can be equivalently rephrased **in terms  
 350 of edge ranks**. It reveals that, despite the very different graphical objects involved in the two ranks,  
 351 they offer complementary perspectives on a same notion in the digraph, namely, *bottleneck*, which  
 352 captures how dependencies arise in observed data, and is thus central to causal discovery.

353 In fact, this duality has long been studied in the matroid community (König, 1931; Perfect, 1968;  
 354 Ingleton & Piff, 1973), while only the path rank side has been well known in causal discovery. We  
 355 thus introduce edge ranks here, filling the other side to the rank-based toolbox. It is not that edge  
 356 ranks are always better, but having both perspectives is beneficial. Within this work, edge ranks  
 357 indeed lead to simpler derivations. For instance, let us rephrase Lemma 3 using edge ranks below:

358 **Lemma 5 (Equivalence via edge ranks).** *Two irreducible models are distributionally equivalent,  
 359 written  $\mathcal{G} \xrightarrow{X} \mathcal{H}$ , if and only if there exists a permutation  $\pi$  over the vertices  $V(\mathcal{G})$ , such that*

$$360 r_{\mathcal{G}}(Z, Y) = r_{\mathcal{H}}(\pi(Z), Y) \quad \text{for all } Z, Y \subseteq V(\mathcal{G}) \text{ with } L \subseteq Y. \quad (17)$$

361 As we will see in the next section, this formulation paves the way to our final criterion for equivalence.  
 362 To conclude this section, we provide a side-by-side comparison of two ranks (Table 1; Appendix C.1).

## 363 4 THE GRAPHICAL CHARACTERIZATION OF DISTRIBUTIONAL EQUIVALENCE

364 In previous sections, through a step-by-step breakdown of equivalence, we have arrived at a key result,  
 365 Lemma 5, which, notably, is framed by a new tool we introduced: edge ranks. Building on this founda-  
 366 tion, in this section, we provide our final graphical criterion for distributional equivalence, and present  
 367 a transformational characterization that enables traversal of all digraphs in the equivalence class.

368 We first study the task of deciding whether two given models are equivalent. For this purpose,  
 369 although Lemma 5 offers a more local condition for each rank check, it still requires a large number  
 370 of total checks: one must go through all sets  $Y \supseteq L$ , which amounts to all subsets  $x \subseteq X$ . As noted  
 371 in our earlier analogy (§3.2), this remains akin to “same d-separations,” instead of a practical criterion  
 372 like “same adjacencies and v-structures.” Then, does Lemma 5 yield such a practical criterion?

**Reviewer Tahr: Q3**

Lemma 5 is a transitional result. The efficient criterion derived from it is Theorem 2 below.

378 Fortunately, this time, the answer is yes. Unlike the complexities encountered with path ranks in §3.2,  
 379 edge ranks allow Lemma 5 to admit a nice local decomposition: instead of checking all subsets  $x \subseteq X$ ,  
 380 it suffices to check each singleton  $X_i \in X$  independently. This yields our final graphical criterion:  
 381

**Theorem 2 (Graphical criterion for distributional equivalence).** *In a digraph  $\mathcal{G}$ , we define the “children bases” of a vertex set  $Y \subseteq V(\mathcal{G})$  as vertex sets that admit perfect edge matchings from  $Y$ :*

$$\text{bases}_{\mathcal{G}}(Y) := \{Z \subseteq \text{ch}_{\mathcal{G}}(Y) \cup Y : r_{\mathcal{G}}(Z, Y) = |Z| = |Y|\}. \quad (18)$$

385 *Then, two irreducible models  $(\mathcal{G}, X)$  and  $(\mathcal{H}, X)$  are distributionally equivalent, if and only if there  
 386 exists a permutation  $\pi$  over the vertices  $V(\mathcal{G})$ , such that the following conditions hold:*

$$\begin{cases} \text{bases}_{\mathcal{G}}(L) = \pi(\text{bases}_{\mathcal{H}}(L)), & \text{and} \\ \text{bases}_{\mathcal{G}}(L \cup \{X_i\}) = \pi(\text{bases}_{\mathcal{H}}(L \cup \{X_i\})) & \text{for each } X_i \in X. \end{cases} \quad (19)$$

**Reviewer Czvx: Q1**

The global rank decomposition is raised to Theorem 2 as a standalone graphical criterion for determining equivalence. It also helps algorithm’s efficiency.

390 To interpret this criterion, let us consider the causally sufficient case where  $L = \emptyset$ . In this case, each  
 391  $\text{bases}_{\mathcal{G}}(\{X_i\})$  is just  $X_i$  with its children. Then, Theorem 2 immediately reduces to the classical  
 392 result of exact digraph identification up to permutation (Lacerda et al., 2008). Interestingly, that result  
 393 has recently been revisited also from a bipartite matching view used here (Sharifian et al., 2025).  
 394

395 Having established Theorem 2 as an efficient criterion for determining equivalence, we now turn to  
 396 another task of traversing all digraphs in an equivalence class. For this purpose, however, a determin-  
 397 ing criterion alone offers little guidance. Again, we recall the analogy with Markov equivalence. Note  
 398 that except for the criterion of “same adjacencies and v-structures,” there is an alternative character-  
 399 ization: “two acyclic digraphs are equivalent if and only if one can reach the other via a sequence  
 400 of *covered edge reversals*,” known as “Meek conjecture” (Meek, 1997). Such a transformational  
 401 characterization offers a natural way for equivalence class traversal. In light of it, we next develop  
 402 such a transformational characterization, analogous to “Meek conjecture” for our setting.

403 We start with the permutation part in Theorem 2, which corresponds to row permutations to the  
 404 support matrix  $Q^{(\mathcal{G})}$ . Such permutations must result in valid support matrices, i.e., ones with nonzero  
 405 diagonals. By cycle decomposition of permutations, this leads to an observation: disjoint cycles in  
 406 the digraph can be freely reversed without affecting equivalence. Formally:

407 **Lemma 6 (Admissible cycle reversals).** *For a digraph  $\mathcal{G}$ , let  $\mathcal{C}$  be any collection of vertex-disjoint  
 408 simple cycles in  $\mathcal{G}$ . Define a new digraph  $\mathcal{H}$  where for each edge  $V_i \rightarrow V_j \in \mathcal{G}$ :*

- 409 1. *If  $V_i \rightarrow V_j$  is on a cycle in  $\mathcal{C}$ , then include  $V_j \rightarrow V_i$  in  $\mathcal{H}$ ;*
- 410 2. *Otherwise, if  $V_j$  is on a cycle in  $\mathcal{C}$  with the predecessor  $V_k \rightarrow V_j$ , then include  $V_i \rightarrow V_k$  in  $\mathcal{H}$ ;*
- 411 3. *Otherwise, simply include  $V_i \rightarrow V_j$  in  $\mathcal{H}$ .*

413 *Then, with this new  $\mathcal{H}$ , the equivalence  $\mathcal{G} \xrightarrow{X} \mathcal{H}$  still holds, for every  $X \subseteq V(\mathcal{G})$ .*

**Reviewer GjKP: Q4**

We highlight that a bipartite matching view has also recently been used in Sharifian et al. (2025) in the no-latents case.

415 This result was also shown by (Lacerda et al., 2008). It highlights that in the linear non-Gaussian set-  
 416 ting, cycles do not introduce substantial complexity. One may illustrate it using examples in Figure 3.

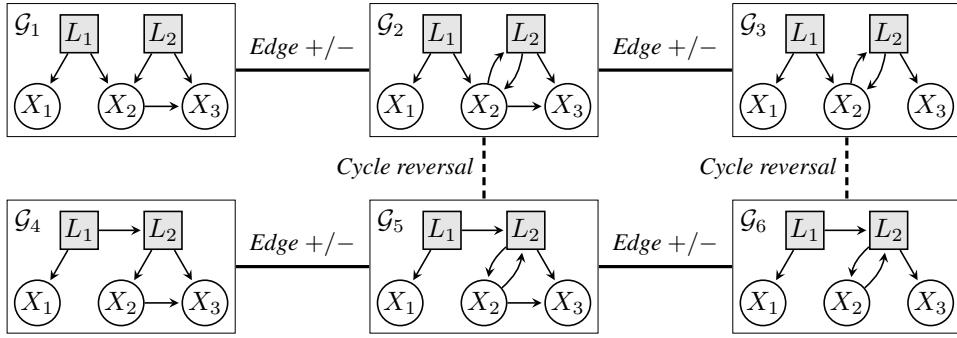
417 We then examine a more subtle part in Theorem 2, concerning edge rank equivalence, that is, when  
 418 all the involved perfect bipartite matchings via edges are unchanged. Intuitively, it is about how edges  
 419 are structurally “crucial” for maintaining matchings. This leads to the following criterion about edge  
 420 additions or deletions, corresponding to flipping entries in the support matrix:

421 **Lemma 7 (Admissible edge additions/deletions).** *Let  $(\mathcal{G}, X)$  be an irreducible model. For any  
 422 edge  $V_i \rightarrow V_j$  not currently in  $\mathcal{G}$ , adding it to  $\mathcal{G}$  preserves equivalence on  $X$  if and only if:*

$$r_{\mathcal{G}}(V_i \text{ 's nonchildren} \setminus \{V_j\}, L \setminus \{V_i\}) < r_{\mathcal{G}}(V_i \text{ 's nonchildren}, L \setminus \{V_i\}), \quad (20)$$

425 where  $V_i$  ‘s nonchildren denotes  $V(\mathcal{G}) \setminus \text{ch}_{\mathcal{G}}(V_i) \setminus \{V_i\}$ , i.e., zero entries in support column  $Q_{:, V_i}^{(\mathcal{G})}$ .  
 426 Conversely, an edge can be deleted if and only if it can be re-added by this criterion.

428 In layman’s term, Lemma 7 says that an edge  $V_i \rightarrow V_j$  can be added, only when in the bipartite graph  
 429 from latents to all vertices currently not  $V_i$ ’s children (including  $V_j$ ),  $V_j$  stands as a “pillar” across  
 430 the maximum matchings; in matroid terms, it is a *coloop*. Then, since  $V_j$  is already a “pillar”, adding  
 431 this edge will not be noticed by any  $Y$  containing latent variables. Note that both  $V_i$  and  $V_j$  may be  
 in  $X$  or  $L$ : edges can be added within each or in either direction. Let us examine an example.

Figure 3: An example distributional equivalence class consisting of 6 digraphs up to  $L$ -relabeling.

**Example 2 (Illustrating edge additions via Lemma 7).** We consider the digraph  $\mathcal{G}_1$  in Figure 3, and check why the edge  $X_2 \rightarrow L_2$  can be added. From  $L \setminus \{X_2\} = \{L_1, L_2\}$  to  $X_2$ 's nonchildren  $\{L_1, L_2, X_1\}$ , there is a full matching of size 2, with  $(L_1, L_2)$  matched to either  $(L_1, L_2)$  or  $(X_1, L_2)$ . Since  $L_2$  appears in both as a ‘‘pillar’’, adding  $X_2 \rightarrow L_2$  preserves edge ranks. In contrast,  $X_2 \rightarrow L_1$  cannot be added, which, for instance, will change  $r_{\mathcal{G}_1}(\{L_1, L_2, X_1\}, \{L_1, L_2, X_2\})$  from 2 to 3.  $\triangle$

We have introduced two graphical operations that preserve equivalence, namely, cycle reversals and edge additions/deletions. Remarkably, these two operations are not only sufficient but also necessary: together, they fully characterize equivalence. This brings us to our transformational characterization:

**Theorem 3 (Transformational characterization of the equivalence class).** Two irreducible models  $(\mathcal{G}, X)$  and  $(\mathcal{H}, X)$  are equivalent if and only if  $\mathcal{G}$  can be transformed into  $\mathcal{H}$ , up to  $L$ -relabeling, via a sequence of admissible cycle reversals and edge additions/deletions, as defined in Lemmas 6 and 7.

Here, ‘‘up to  $L$ -relabeling’’ means there exists a relabeling of  $L$  in  $\mathcal{H}$  yielding a digraph  $\mathcal{H}'$  such that  $\mathcal{G}$  reaches  $\mathcal{H}'$  via the sequence. Moreover, at most one cycle reversal is needed in this sequence.

Thanks to this transformational characterization, Theorem 3 offers a natural way to traverse an equivalence class by e.g., running BFS or DFS over the space of digraphs connected via admissible operations. Such equivalence class structures are illustrated by Figure 3, Figure 5 (Appendix C.2), and more in our online demo. Note that this traversal can be further accelerated in implementation, by traversing each vertex’s children independently in parallel (Lemmas 9 and 12; Appendix B).

Finally, let us return once more to the analogy with Markov equivalence. We have now established counterparts of both ‘‘same adjacencies and v-structures’’ and ‘‘Meek conjecture’’. A natural question is then whether a counterpart of the CPDAG, an informative presentation of the equivalence class, can also be developed. The answer is again yes. We show that within each cycle-reversal configuration, there exists a unique maximal equivalent digraph of which all others are subgraphs. We further provide efficient criteria to construct this maximal digraph, and to determine edges invariant across the equivalence class (similar to arrows in a CPDAG). Due to space limit, this result is presented in Theorem 4 (Appendix C.3). To conclude this section, we provide a side-by-side overview that places our results with their analogues across various classical settings (Table 2; Appendix C.5).

## 5 ALGORITHM AND EVALUATION

In this section, we develop a structural-assumption-free algorithm to recover the underlying causal models from observed data up to distributional equivalence. We name this algorithm as general latent-variable Linear Non-Gaussian causal discovery (glvLiNG). Evaluation results are also provided.

**Algorithm.** The glvLiNG pipeline consists of three main steps: it first runs OICA on data to estimate a mixing matrix  $\tilde{A}$ , then constructs a digraph  $\tilde{\mathcal{G}}$  to realize rank patterns in  $\tilde{A}$ , and finally, starting from  $\tilde{\mathcal{G}}$ , traverses the equivalence class using the procedure introduced in Theorem 3. Under the assumptions of access to an oracle OICA and faithfulness (no coincidental low ranks in the mixing matrix beyond those structurally entailed; formally stated in Assumption 1 at Appendix A), glvLiNG is guaranteed to recover the entire class of irreducible models equivalent to the ground-truth model.

**Reviewer FDU9: Q1**  
Thanks to your question on CPDAG-like presentation, we developed new results now included in Appendix C.3, with a brief pointer and discussion here.

**Reviewer Tair: Q2**

We have provided a pointer to the the formal definition of faithfulness assumption.

486 Proofs and detailed formulations of the glvLiNG algorithm are deferred to Appendix A for page limit.  
 487 Here, we briefly highlight the core second step: constructing a digraph to realize the observed ranks.  
 488

489 The main challenge lies in this second step, a rank realization task. While the satisfiability nature of  
 490 this task may suggest brute-force solutions like integer programming, glvLiNG instead offers a more  
 491 efficient constraint-based approach. Specifically, it proceeds in two phases. Phase 1 recovers edges  
 492 from latent variables  $L$  to all variables  $V$ , which reduces to a bipartite realization problem known in  
 493 matroid theory. Phase 2 is more delicate: recover edges from observed variables  $X$  to  $V$ . This may  
 494 seem combinatorially complex at first glance, since *all* ranks induced by *all* subsets of  $X$  must be  
 495 jointly satisfied (Lemma 3). Fortunately, as we have shown in Theorem 2, these global constraints  
 496 admit a local decomposition, allowing each single  $X_i$ ’s outgoing edges to be recovered independently.  
 497 **To recover these edges, we give an explicit construction (Lemma 10 in Appendix A) based directly**  
 498 **on querying ranks in the OICA mixing matrix, with no need for solving complex constraint systems.**

**Reviewer Czvx: Q1**  
 Also added more algorithm descriptions.

499 **Evaluation.** We evaluate our approach from five aspects: 1) quantifying the sizes of equivalence  
 500 classes, 2) assessing glvLiNG’s runtime, 3) benchmarking existing methods under oracle inputs, 4)  
 501 **evaluating glvLiNG’s performance in simulations, and 5) applying glvLiNG to a real-world dataset.**

502 For 1), we quantify the sizes of equivalence classes, in order to provide an illustrative sense of the  
 503 uncertainty in latent-variable models. We exhaustively partition digraphs with up to 6 vertices under  
 504 various latent configurations. For example, there are 1,027,080 weakly connected digraphs with 5 ver-  
 505 tices, of which 26,430 are acyclic. When the first 2 vertices are latent, 480,640 of these digraphs yield  
 506 irreducible models, which finally form 783 equivalence classes. Full statistics are shown in Table 3.

507 For 2), we assess the efficiency gain enabled by glvLiNG’s constraint-based design. We compare  
 508 the execution time against a linear programming baseline for constructing digraphs to satisfy ranks  
 509 of oracle OICA mixing matrices. Results confirm substantial speedup: glvLiNG solves cases with  
 510  $n = 10$  vertices in under 5s, while the baseline takes hours beyond  $n = 5$ . Full results in Table 4.

511 For 3), we examine how existing methods behave under structural misspecification by applying them  
 512 to arbitrary latent-variable models possibly beyond their assumptions. We evaluate LaHiCaSl (Xie  
 513 et al., 2024) and PO-LiNGAM (Jin et al., 2024), given oracle access to their required tests. Both meth-  
 514 ods tend to produce overly **sparse** graphs and misidentify over half of the edges. Full results in Table 5.

515 For 4), we evaluate glvLiNG with existing methods under finite samples. **We simulate data from**  
 516 **random irreducible models, varying numbers of observed and latent variables, graph density, and**  
 517 **sample size.** We observe that glvLiNG performs particularly better than baselines on denser graphs  
 518 and stays more robust to latent dimensionality, likely due to avoiding model misspecification, while  
 519 baselines perform better on sparser graphs. Full setup and results are provided in Appendix D.4.

**Reviewer GjKP: Q2**  
 We have now added  
 a new simulation  
 study.

520 For 5), we apply glvLiNG to a real-world dataset of daily stock returns (Jan 2000-Jun 2005) from  
 521 14 major Hong Kong companies spanning banking, real estate, utilities, and commerce. **glvLiNG**  
 522 **recovers meaningful patterns, such as major banks acting as central causal sources. The two latent**  
 523 **variables recovered seem also to admit plausible interpretations. Full results are in Appendix D.5.**

524 **Final remarks.** We conclude with a reflection on the use of OICA in glvLiNG. While one may be  
 525 concerned about OICA’s known inefficiency in practice, we would like to note that the main focus of  
 526 this work is to characterize distributional equivalence. The glvLiNG algorithm serves more as a proof  
 527 of concept, showing that such equivalence is indeed recoverable without any structural assumption.

528 That said, we do see two promising directions for future improvement. 1) For estimation, several  
 529 existing methods allow partial access to rank information in the mixing matrix without explicitly  
 530 running OICA. They could be integrated into glvLiNG. 2) For algorithmic efficiency, while glvLiNG  
 531 already scales well, further pruning is possible. For instance, Theorem 3 implies that ancestral  
 532 relations among observed variables are identifiable, which may help reduce the search space.

## 533 6 CONCLUSION AND LIMITATIONS

535 In this work, we provide a graphical characterization of distributional equivalence for linear non-  
 536 Gaussian latent-variable models. Based on it, we develop a constraint-based algorithm, glvLiNG, that  
 537 recovers the underlying model up to equivalence from data without any structural assumptions. Central  
 538 to our approach is the introduction of edge rank constraints, a new tool in the rank-based picture. One  
 539 limitation is the use of OICA in glvLiNG, as discussed above. Future directions include developing  
 OICA-free algorithms, and extending new tools to broader settings like linear Gaussian systems.

**Reviewer FDU9: Q2**  
 We apply glvLiNG  
 on a Hong Kong  
 stock market dataset.

540     **Large Language Models Usage:** We used large language models only to aid or polish writing, at  
 541     the sentence level.  
 542

543     **Ethics Statement:** This paper presents work whose goal is to advance the field of causal discovery.  
 544     We do not see any ethical or societal concerns that need to be disclosed.  
 545

546     **Reproducibility Statement:** We provide code for our algorithm, glvLiNG, along with an in-  
 547     teractive demo for traversing equivalence classes, available at an anonymous website: <https://equiv.cc>.  
 548

550     **REFERENCES**  
 551

552     Jeffrey Adams, Niels Hansen, and Kun Zhang. Identification of partially observed linear causal models:  
 553       Graphical conditions for the Non-Gaussian and heterogeneous cases. *Advances in Neural Information  
 554       Processing Systems*, 34:22822–22833, 2021.

555     Ayesha R Ali, Thomas S Richardson, Peter L Spirtes, and Jiji Zhang. Towards characterizing Markov equivalence  
 556       classes for directed acyclic graphs with latent variables. *arXiv preprint arXiv:1207.1365*, 2005.

558     Carlos Améndola, Mathias Drton, Alexandros Grosdos, Roser Homs, and Elina Robeva. Third-order moment  
 559       varieties of linear Non-Gaussian graphical models. *Information and Inference: A Journal of the IMA*, 12(3):  
 560       iaad007, 2023.

561     Carlos Améndola, Tobias Boege, Benjamin Hollering, and Pratik Misra. Structural identifiability of graphical  
 562       continuous lyapunov models. *arXiv preprint arXiv:2510.04985*, 2025.

563     Animashree Anandkumar, Daniel Hsu, Adel Javanmard, and Sham Kakade. Learning linear Bayesian networks  
 564       with latent variables. In *International Conference on Machine Learning*, pp. 249–257. PMLR, 2013.

566     Steen A Andersson, David Madigan, and Michael D Perlman. A characterization of Markov equivalence classes  
 567       for acyclic digraphs. *The Annals of Statistics*, 25(2):505–541, 1997.

568     Bryan Andrews, Peter Spirtes, and Gregory F Cooper. On the completeness of causal discovery in the presence of  
 569       latent confounding with tiered background knowledge. In *International Conference on Artificial Intelligence  
 570       and Statistics*, pp. 4002–4011. PMLR, 2020.

571     Thomas H. Brylawski. An Affine Representation for Transversal Geometries. *Studies in Applied Mathematics*,  
 572       54(2):143–160, 1975. doi: 10.1002/sapm1975542143. URL [https://doi.org/10.1002/  
 573       sapm1975542143](https://doi.org/10.1002/sapm1975542143).

575     Eunice Yuh-Jie Chen, Arthur Choi Choi, and Adnan Darwiche. Enumerating equivalence classes of Bayesian  
 576       networks using ec graphs. In *Artificial Intelligence and Statistics*, pp. 591–599. PMLR, 2016.

577     Wei Chen, Zhiyi Huang, Ruichu Cai, Zhifeng Hao, and Kun Zhang. Identification of causal structure with latent  
 578       variables based on higher order cumulants. In *Proceedings of the AAAI Conference on Artificial Intelligence*,  
 579       volume 38, pp. 20353–20361, 2024a.

580     Zhengming Chen, Ruichu Cai, Feng Xie, Jie Qiao, Anpeng Wu, Zijian Li, Zhifeng Hao, and Kun Zhang.  
 581       Learning discrete latent variable structures with tensor rank conditions. *Advances in Neural Information  
 582       Processing Systems*, 37:17398–17427, 2024b.

583     David Maxwell Chickering. A transformational characterization of equivalent Bayesian network structures. In  
 584       *Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence*, UAI’95, pp. 87–98, 1995.

586     David Maxwell Chickering. Optimal structure identification with greedy search. *Journal of machine learning  
 587       research*, 3(Nov):507–554, 2002.

588     Myung Jin Choi, Vincent YF Tan, Animashree Anandkumar, and Alan S Willsky. Learning latent tree graphical  
 589       models. *The Journal of Machine Learning Research*, 12:1771–1812, 2011.

590     Tom Claassen and Ioan G Bucur. Greedy equivalence search in the presence of latent confounders. In *Conference  
 591       on Uncertainty in Artificial Intelligence*, 2022.

593     Tom Claassen and Joris M Mooij. Establishing Markov equivalence in cyclic directed graphs. In *Uncertainty in  
 594       Artificial Intelligence*, pp. 433–442. PMLR, 2023.

594 Ruifei Cui, Perry Groot, Moritz Schauer, and Tom Heskes. Learning the causal structure of copula models with  
 595 latent variables. *UAI*, 2018.

596

597 Haoyue Dai, Peter Spirtes, and Kun Zhang. Independence testing-based approach to causal discovery under  
 598 measurement error and linear Non-Gaussian models. *Advances in Neural Information Processing Systems*,  
 599 35:27524–27536, 2022.

600 Haoyue Dai, Ignavier Ng, Yujia Zheng, Zhengqing Gao, and Kun Zhang. Local causal discovery with linear Non-  
 601 Gaussian cyclic models. In *International Conference on Artificial Intelligence and Statistics*, pp. 154–162.  
 602 PMLR, 2024.

603 Haoyue Dai, Yiwen Qiu, Ignavier Ng, Xinshuai Dong, Peter Spirtes, and Kun Zhang. Latent variable causal  
 604 discovery under selection bias. In *Forty-second International Conference on Machine Learning*, 2025. URL  
 605 <https://openreview.net/forum?id=W9YdVrSJh>.

606 Xinshuai Dong, Biwei Huang, Ignavier Ng, Xiangchen Song, Yujia Zheng, Songyao Jin, Roberto Legaspi, Peter  
 607 Spirtes, and Kun Zhang. A versatile causal discovery framework to allow causally-related hidden variables.  
 608 In *The Twelfth International Conference on Learning Representations*, 2024.

609

610 Xinshuai Dong, Ignavier Ng, Boyang Sun, Haoyue Dai, Guang-Yuan Hao, Shunxing Fan, Peter Spirtes, Yumou  
 611 Qiu, and Kun Zhang. Permutation-based rank test in the presence of discretization and application in causal  
 612 discovery with mixed data. In *Forty-second International Conference on Machine Learning*, 2025. URL  
 613 <https://openreview.net/forum?id=VBTHduhm4K>.

614 Mathias Drton. Algebraic problems in structural equation modeling. In *The 50th anniversary of Gröbner bases*,  
 615 volume 77, pp. 35–87. Mathematical Society of Japan, 2018.

616 Mathias Drton, Bernd Sturmfels, and Seth Sullivant. Algebraic factor analysis: tetrads, pentads and beyond.  
 617 *Probability Theory and Related Fields*, 138(3):463–493, 2007.

618

619 Mathias Drton, Marina Garrote-López, Niko Nikov, Elina Robeva, and Y Samuel Wang. Causal discovery  
 620 for linear Non-Gaussian models with disjoint cycles. In *The 41st Conference on Uncertainty in Artificial  
 621 Intelligence*, 2025a.

622 Mathias Drton, Benjamin Hollering, and Jun Wu. Identifiability of homoscedastic linear structural equation  
 623 models using algebraic matroids. *Advances in Applied Mathematics*, 163:102794, 2025b. ISSN 0196-  
 624 8858. doi: <https://doi.org/10.1016/j.aam.2024.102794>. URL <https://www.sciencedirect.com/science/article/pii/S019688582400126X>.

625

626 Bao Duong and Thi Kim Hue Nguyen. Normalizing flows for conditional independence testing. *Knowledge and  
 627 Information Systems*, 2024.

628

629 Jan Eriksson and Visa Koivunen. Identifiability, separability, and uniqueness of linear ica models. *IEEE signal  
 630 processing letters*, 11(7):601–604, 2004.

631

632 Robin J Evans. Graphs for margins of Bayesian networks. *Scandinavian Journal of Statistics*, 43(3):625–648,  
 2016.

633

634 Robin J Evans. Margins of discrete Bayesian networks. *The Annals of Statistics*, 46(6A):2623–2656, 2018.

635

636 Patrick Forré and Joris M Mooij. Markov properties for graphical models with cycles and latent variables. *arXiv  
 637 preprint arXiv:1710.08775*, 2017.

638

639 Morten Frydenberg. The chain graph Markov property. *Scandinavian journal of statistics*, pp. 333–353, 1990.

640

641 Dan Geiger and Christopher Meek. Graphical models and exponential families. *arXiv preprint arXiv:1301.7376*,  
 1996.

642

643 Ira Gessel and Gérard Viennot. Binomial determinants, paths, and hook length formulae. *Advances in  
 644 mathematics*, 58(3):300–321, 1985.

645

646 AmirEmad Ghassami, Alan Yang, Negar Kiyavash, and Kun Zhang. Characterizing distribution equivalence and  
 647 structure learning for cyclic and acyclic directed graphs. In *International Conference on Machine Learning*,  
 2020. pp. 3494–3504. PMLR, 2020.

648

649 Yuqi Gu and Gongjun Xu. Identifiability of hierarchical latent attribute models. *arXiv preprint arXiv:1906.07869*,  
 2023.

648 Patrik O Hoyer, Shohei Shimizu, Antti J Kerminen, and Markus Palviainen. Estimation of causal effects using  
 649 linear Non-Gaussian causal models with hidden variables. *International Journal of Approximate Reasoning*,  
 650 49(2):362–378, 2008.

651 Yingyao Hu. Identification and estimation of nonlinear models with misclassification error using instrumental  
 652 variables: A general solution. *Journal of Econometrics*, 144(1):27–61, 2008.

653

654 Yingyao Hu. The econometrics of unobservables: Applications of measurement error models in empirical  
 655 industrial organization and labor economics. *Journal of econometrics*, 200(2):154–168, 2017.

656 Zhongyi Hu and Robin Evans. Faster algorithms for Markov equivalence. In *Conference on Uncertainty in*  
 657 *Artificial Intelligence*, pp. 739–748. PMLR, 2020.

658 Biwei Huang, Kun Zhang, Jiji Zhang, Joseph Ramsey, Ruben Sanchez-Romero, Clark Glymour, and Bernhard  
 659 Schölkopf. Causal discovery from heterogeneous/nonstationary data. *Journal of Machine Learning Research*,  
 660 21(89):1–53, 2020.

661

662 Biwei Huang, Charles Jia Han Low, Feng Xie, Clark Glymour, and Kun Zhang. Latent hierarchical causal  
 663 structure discovery with rank constraints. *Advances in neural information processing systems*, 35:5549–5561,  
 664 2022.

665 Aubrey W Ingleton and Mike J Piff. Gammoids and transversal matroids. *Journal of Combinatorial Theory,*  
 666 *Series B*, 15(1):51–68, 1973.

667 Fattaneh Jabbari, Joseph Ramsey, Peter Spirtes, and Gregory Cooper. Discovery of causal models that contain  
 668 latent variables through Bayesian scoring of independence constraints. In *Machine Learning and Knowledge*  
 669 *Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22,*  
 670 *2017, Proceedings, Part II 10*, pp. 142–157. Springer, 2017.

671 Yibo Jiang and Bryon Aragam. Learning nonparametric latent causal graphs with unknown interventions.  
 672 *Advances in Neural Information Processing Systems*, 36:60468–60513, 2023.

673

674 Songyao Jin, Feng Xie, Guangyi Chen, Biwei Huang, Zhengming Chen, Xinshuai Dong, and Kun Zhang.  
 675 Structural estimation of partially observed linear Non-Gaussian acyclic model: A practical approach with  
 676 identifiability. In *The Twelfth International Conference on Learning Representations*, 2024.

677 Joseph Johnson and Pardis Semnani. Characteristic imsets for cyclic linear causal models and the chickering  
 678 ideal. *arXiv preprint arXiv:2506.13407*, 2025.

679 Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Learning latent causal graphs via  
 680 mixture oracles. *Advances in Neural Information Processing Systems*, 34:18087–18101, 2021.

681 Yaroslav Kivva, Saber Salehkaleybar, and Negar Kiyavash. A cross-moment approach for causal effect estimation.  
 682 *Advances in Neural Information Processing Systems*, 36:9944–9955, 2023.

683

684 Dénes König. Graphs and matrices. *Matematikai és Fizikai Lapok*, 38:116–119, 1931.

685 Erich Kummerfeld and Joseph Ramsey. Causal clustering for 1-factor measurement models. In *Proceedings of*  
 686 *the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1655–1664,  
 687 2016.

688 Gustavo Lacerda, Peter Spirtes, Joseph Ramsey, and Patrik O. Hoyer. Discovering cyclic causal models by  
 689 independent components analysis. In *Conference on Uncertainty in Artificial Intelligence*, 2008.

690 Bernt Lindström. On the vector representations of induced matroids. *Bulletin of the London Mathematical*  
 691 *Society*, 5(1):85–90, 1973.

693 Yiheng Liu, Elina Robeva, and Huanqing Wang. Learning linear Non-Gaussian graphical models with multidiri-  
 694 ected edges. *Journal of Causal Inference*, 9(1):250–263, 2021.

695 Takashi Nicholas Maeda and Shohei Shimizu. RCD: Repetitive causal discovery of linear non-Gaussian acyclic  
 696 models with latent confounders. In *International Conference on Artificial Intelligence and Statistics*, 2020.

697

698 Alex Markham and Moritz Grosse-Wentrup. Measurement dependence inducing latent causal models. In  
 699 *Conference on Uncertainty in Artificial Intelligence*, pp. 590–599. PMLR, 2020.

700 Alex Markham, Danai Deligeorgaki, Pratik Misra, and Liam Solus. A transformational characterization of  
 701 unconditionally equivalent Bayesian networks. In *International Conference on Probabilistic Graphical*  
 702 *Models*, pp. 109–120. PMLR, 2022.

702 J.H. Mason. On a class of matroids arising from paths in graphs. *Proceedings of the London Mathematical Society*, 3(1):55–74, 1972.

703

704 Christopher Meek. Causal inference and causal explanation with background knowledge. In *Proceedings of the Eleventh conference on Uncertainty in artificial intelligence*, pp. 403–410, 1995.

705

706

707 Christopher Meek. *Graphical Models: Selecting causal and statistical models*. PhD thesis, Carnegie Mellon University, 1997.

708

709 Karl Menger. Zur allgemeinen kurventheorie. *Fund. Math.*, 10:96–1159, 1927.

710

711 Joris M Mooij and Tom Claassen. Constraint-based causal discovery using partial ancestral graphs in the presence of cycles. In *Conference on Uncertainty in Artificial Intelligence*, pp. 1159–1168. Pmlr, 2020.

712

713 Ignavier Ng, Xinshuai Dong, Haoyue Dai, Biwei Huang, Peter Spirtes, and Kun Zhang. Score-based causal discovery of latent variable causal models. In *Forty-first International Conference on Machine Learning*, 2024.

714

715

716 Christopher Nowzohour, Marloes H Maathuis, Robin J Evans, and Peter Bühlmann. Distributional equivalence and structure learning for bow-free acyclic path diagrams. *Electronic Journal of Statistics*, 2017.

717

718

719 Juan Miguel Ogarrio, Peter Spirtes, and Joe Ramsey. A hybrid causal search algorithm for latent variable models. In *Proceedings of the Eighth International Conference on Probabilistic Graphical Models*, pp. 368–379, 2016.

720

721

722 James G Oxley. *Matroid theory*, volume 3. Oxford University Press, USA, 2006.

723

724 Judea Pearl. *Causality: models, reasoning and inference*. Cambridge University Press, 2009.

725

726 Judea Pearl and Rina Dechter. Identifying independencies in causal graphs with feedback. *ArXiv*, 1996.

727

728 Hazel Perfect. Applications of menger’s graph theorem. *Journal of Mathematical Analysis and Applications*, 22(1):96–111, 1968.

729

730 Emilija Perković, Markus Kalisch, and Malo H Maathuis. Interpreting and using CPDAGs with background knowledge. *arXiv preprint arXiv:1707.02171*, 2017.

731

732 Anastasia Podosinnikova, Amelia Perry, Alexander S Wein, Francis Bach, Alexandre d’Aspremont, and David Sontag. Overcomplete independent component analysis via sdp. In *The 22nd international conference on artificial intelligence and statistics*, pp. 2583–2592. PMLR, 2019.

733

734 Thomas Richardson and Peter Spirtes. Ancestral graph Markov models. *The Annals of Statistics*, 30(4):962–1030, 2002.

735

736

737 Thomas S Richardson. *Discovering cyclic causal structure*. Department of Philosophy, Carnegie Mellon University, 1996.

738

739 Thomas S Richardson, Robin J Evans, James M Robins, and Ilya Shpitser. Nested Markov properties for acyclic directed mixed graphs. *The Annals of Statistics*, 51(1):334–361, 2023.

740

741 Elina Robeva and Jean-Baptiste Seby. Multi-trek separation in linear structural equation models. *SIAM Journal on Applied Algebra and Geometry*, 5(2):278–303, 2021.

742

743

744 Dominik Rothenhäusler, Christina Heinze, Jonas Peters, and Nicolai Meinshausen. Backshift: Learning causal cyclic graphs from unknown shift interventions. *Advances in Neural Information Processing Systems*, 28, 2015.

745

746

747 Alberto Roverato, Milan Studený, and David Madigan. A graphical representation of equivalence classes of amp chain graphs. *Journal of Machine Learning Research*, 7(6), 2006.

748

749 Saber Salehkaleybar, AmirEmad Ghassami, Negar Kiyavash, and Kun Zhang. Learning linear Non-Gaussian causal models in the presence of latent variables. *The Journal of Machine Learning Research*, 21(1):1436–1459, 2020.

750

751

752 Daniela Schkoda and Mathias Drton. Goodness-of-fit tests for linear Non-Gaussian structural equation models. *Biometrika*, pp. asaf046, 2025.

753

754

755 Daniela Schkoda, Elina Robeva, and Mathias Drton. Causal discovery of linear Non-Gaussian causal models with unobserved confounding. *arXiv preprint arXiv:2408.04907*, 2024.

756 Ehsan Sharifian, Saber Salehkaleybar, and Negar Kiyavash. Near-optimal experiment design in linear Non-  
 757 Gaussian cyclic models. In *The Thirty-ninth Annual Conference on Neural Information Processing Systems*,  
 758 2025. URL <https://openreview.net/forum?id=opAU0pY1cP>.

759 Shohei Shimizu. *Statistical causal discovery: LiNGAM approach*. Springer, 2022.

760 Shohei Shimizu and Kenneth Bollen. Bayesian estimation of causal direction in acyclic structural equation  
 761 models with individual-specific confounder variables and Non-Gaussian distributions. *Journal of Machine  
 762 Learning Research-JMLR*, 15(1):2629–2652, 2014.

763 Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear Non-Gaussian  
 764 acyclic model for causal discovery. *Journal of Machine Learning Research*, 7(10), 2006.

765 Ricardo Silva and Richard Scheines. *Generalized measurement models*. Carnegie Mellon University. Center for  
 766 Automated Learning and Discovery, 2004.

767 Ricardo Silva and Shohei Shimizu. Learning instrumental variables with structural and Non-Gaussianity  
 768 assumptions. *Journal of Machine Learning Research*, 18(120):1–49, 2017.

769 Ricardo Silva, Richard Scheines, Clark Glymour, and Peter Spirtes. Learning measurement models for un-  
 770 observed variables. In *Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence*,  
 771 UAI’03, 2003.

772 Ricardo Silva, Richard Scheines, Clark Glymour, and Peter Spirtes. Learning the structure of linear latent  
 773 variable models. *Journal of Machine Learning Research*, 7(2), 2006.

774 Peter Spirtes. Building causal graphs from statistical data in the presence of latent variables. *Department of  
 775 Philosophy technical report*, 1992.

776 Peter Spirtes. Conditional independence in directed cyclic graphical models representing feedback or mixtures.  
 777 Technical report, Philosophy, Methodology and Logic Technical Report 59, CMU, 1994.

778 Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. *Social Science  
 779 Computer Review*, 9:62–72, 1991.

780 Peter Spirtes and Thomas Richardson. A polynomial time algorithm for determining DAG equivalence in the  
 781 presence of latent variables and selection bias. In *Proceedings of the 6th International Workshop on Artificial  
 782 Intelligence and Statistics*, volume 12, 1996.

783 Peter Spirtes and Thomas Verma. Equivalence of causal models with latent variables. *Carnegie Mellon University  
 784 Tech Report*, 1992.

785 Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. *Causation, prediction, and search*.  
 786 MIT press, 2000.

787 Peter L Spirtes. Calculation of entailed rank constraints in partially non-linear and cyclic models. *arXiv preprint  
 788 arXiv:1309.7004*, 2013.

789 Chandler Squires, Annie Yun, Eshaan Nichani, Raj Agrawal, and Caroline Uhler. Causal structure discovery  
 790 between clusters of nodes induced by latent factors. In *Conference on Causal Learning and Reasoning*, pp.  
 791 669–687. PMLR, 2022.

792 Bertran Steinsky. Enumeration of labelled chain graphs and labelled essential directed acyclic graphs. *Discrete  
 793 mathematics*, 270(1-3):267–278, 2003.

794 Nils Sturma, Chandler Squires, Mathias Drton, and Caroline Uhler. Unpaired multi-domain causal representation  
 795 learning. *Advances in Neural Information Processing Systems*, 36, 2024.

796 Seth Sullivant, Kelli Talaska, and Jan Draisma. Trek separation for Gaussian graphical models. *The Annals of  
 797 Statistics*, 38(3):1665–1685, 2010.

798 Kelli Talaska. Determinants of weighted path matrices. *arXiv: Combinatorics*, 2012. URL <https://api.semanticscholar.org/CorpusID:119671799>.

799 Tatsuya Tashiro, Shohei Shimizu, Aapo Hyvärinen, and Takashi Washio. Parcelingam: A causal ordering method  
 800 robust against latent confounders. *Neural computation*, 26(1):57–83, 2014.

801 Eric J Tchetgen Tchetgen, Andrew Ying, Yifan Cui, Xu Shi, and Wang Miao. An introduction to proximal  
 802 causal inference. *Statistical Science*, 39(3):375–390, 2024.

810 Jin Tian. Generating Markov equivalent maximal ancestral graphs by single edge replacement. In *Conference*  
 811 *on Uncertainty in Artificial Intelligence*, 2005.

812

813 Daniele Tramontano, Anthea Monod, and Mathias Drton. Learning linear Non-Gaussian polytree models. In  
 814 *Uncertainty in Artificial Intelligence*, pp. 1960–1969. PMLR, 2022.

815 Daniele Tramontano, Mathias Drton, and Jalal Etesami. Parameter identification in linear Non-Gaussian causal  
 816 models under general confounding. *arXiv preprint arXiv:2405.20856*, 2024.

817

818 Daniele Tramontano, Yaroslav Kivva, Saber Salehkaleybar, Negar Kiyavash, and Mathias Drton. Causal effect  
 819 identification in lvLiNGAM from higher-order cumulants. In *Forty-second International Conference on*  
 820 *Machine Learning*, 2025. URL <https://openreview.net/forum?id=39JKH8k3FS>.

821

822 Aparajithan Venkateswaran and Emilija Perković. Towards complete causal explanation with expert knowledge.  
 823 *arXiv preprint arXiv:2407.07338*, 2024.

824

825 Thomas S Verma and Judea Pearl. Equivalence and synthesis of causal models. In *Uncertainty in Artificial*  
 826 *Intelligence*, 1991.

827

828 Tian-Zuo Wang, Wen-Bo Du, and Zhi-Hua Zhou. An efficient maximal ancestral graph listing algorithm. In  
 829 *Forty-first International Conference on Machine Learning*, 2024.

830

831 Tian-Zuo Wang, Wen-Bo Du, and Zhi-Hua Zhou. Polynomial-delay mag listing with novel locally complete  
 832 orientation rules. In *Forty-second International Conference on Machine Learning*, 2025.

833

834 Y Samuel Wang and Mathias Drton. Causal discovery with unobserved confounding and Non-Gaussian data.  
 835 *Journal of Machine Learning Research*, 24(271):1–61, 2023.

836

837 Marcel Wienöbst, Malte Luttermann, Max Bannach, and Maciej Liskiewicz. Efficient enumeration of Markov  
 838 equivalent DAGs. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 12313–  
 839 12320, 2023.

840

841 Feng Xie, Ruichu Cai, Biwei Huang, Clark Glymour, Zhifeng Hao, and Kun Zhang. Generalized independent  
 842 noise condition for estimating latent variable causal graphs. *Advances in Neural Information Processing*  
 843 *Systems*, 33:14891–14902, 2020.

844

845 Feng Xie, Yangbo He, Zhi Geng, Zhengming Chen, Ru Hou, and Kun Zhang. Testability of instrumental  
 846 variables in linear Non-Gaussian acyclic causal models. *Entropy*, 24(4):512, 2022.

847

848 Feng Xie, Biwei Huang, Zhengming Chen, Ruichu Cai, Clark Glymour, Zhi Geng, and Kun Zhang. Generalized  
 849 independent noise condition for estimating causal structure with latent variables. *Journal of Machine Learning*  
 850 *Research*, 25(191):1–61, 2024. URL <http://jmlr.org/papers/v25/23-1052.html>.

851

852 Baoying Yang, Jing Qin, Jing Ning, and Yukun Liu. Double robust conditional independence test for novel  
 853 biomarkers given established risk factors with survival data. *Biometrics*, 81(4):ujaf133, 2025.

854

855 Yuqin Yang, AmirEmad Ghassami, Mohamed Nafea, Negar Kiyavash, Kun Zhang, and Ilya Shpitser. Causal  
 856 discovery in linear latent variable models subject to measurement error. *Advances in Neural Information*  
 857 *Processing Systems*, 35:874–886, 2022.

858

859 Yuqin Yang, Mohamed S Nafea, Negar Kiyavash, Kun Zhang, and AmirEmad Ghassami. Causal discovery in  
 860 linear models with unobserved variables and measurement error. In *NeurIPS 2024 Causal Representation*  
 861 *Learning Workshop*, 2024. URL <https://openreview.net/forum?id=L1Zfs3wgCg>.

862

863 Binghua Yao and Joris Mooij. Sigma-maximal ancestral graphs. In *The 41st Conference on Uncertainty in*  
 864 *Artificial Intelligence*, 2025. URL <https://openreview.net/forum?id=8dpnJ1EdrH>.

865

866 Bixi Zhang and Wolfgang Wiedermann. Covariate selection in causal learning under Non-Gaussianity. *Behavior*  
 867 *Research Methods*, 56(4):4019–4037, 2024.

868

869 Jiji Zhang. On the completeness of orientation rules for causal discovery in the presence of latent confounders  
 870 and selection bias. *Artificial Intelligence*, 172(16–17):1873–1896, 2008a.

871

872 Jiji Zhang. Causal reasoning with ancestral graphs. *Journal of Machine Learning Research*, 9(7), 2008b.

873

874 Jiji Zhang and Peter Spirtes. A transformational characterization of Markov equivalence for directed acyclic  
 875 graphs with latent variables. In *Conference on Uncertainty in Artificial Intelligence*, 2005.

864 Kun Zhang, Mingming Gong, Joseph D Ramsey, Kayhan Batmanghelich, Peter Spirtes, and Clark Glymour.  
865 Causal discovery with linear Non-Gaussian models under measurement error: Structural identifiability results.  
866 In *UAI*, pp. 1063–1072, 2018.

867 Kun Zhang, Shaoan Xie, Ignavier Ng, and Yujia Zheng. Causal representation learning from multiple dis-  
868 tributions: A general setting. In *Forty-first International Conference on Machine Learning*, 2024. URL  
869 <https://openreview.net/forum?id=Pte6iiXvpf>.

870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917

918

919

920

921

922

923

924

# Appendix

## Table of Contents

|          |                                                                                   |           |
|----------|-----------------------------------------------------------------------------------|-----------|
| <b>A</b> | <b>Details of the glvLiNG algorithm</b>                                           | <b>18</b> |
| A.1      | Basics of Transversal Matroids . . . . .                                          | 18        |
| A.2      | Algorithm Overview . . . . .                                                      | 20        |
| A.3      | Phase 1: Bipartite Graph Realization . . . . .                                    | 21        |
| A.4      | Phase 2: Augmenting a Bipartite Graph for Matroid Extensions . . . . .            | 21        |
| <b>B</b> | <b>Proofs of Main Results</b>                                                     | <b>23</b> |
| B.1      | Proofs of Irreducibility Results . . . . .                                        | 23        |
| B.2      | Proof from Rank Equivalence to Distributional Equivalence . . . . .               | 24        |
| B.3      | Proofs of Matroid-Preserving Column Augmentation: a Core Component . . . . .      | 26        |
| B.3.1    | Constructing Particular Solutions to a Column Augmentation . . . . .              | 26        |
| B.3.2    | Traversing All Solutions to a Column Augmentation . . . . .                       | 27        |
| B.3.3    | From One Column Augmentation to Multiple Columns' Joint Augmentation              | 30        |
| B.4      | Proofs of the Graphical Criterion and Transformational Characterization . . . . . | 31        |
| B.5      | Other Immediate or Known Results . . . . .                                        | 34        |
| <b>C</b> | <b>Discussion</b>                                                                 | <b>35</b> |
| C.1      | Summary: A Side-by-side Comparison Between Path Ranks and Edge Ranks . . . . .    | 35        |
| C.2      | Another Example Distributional Equivalence Class . . . . .                        | 35        |
| C.3      | A Presentation of the Equivalence Class . . . . .                                 | 36        |
| C.4      | Examples of Non-Rank Constraints in Mixing Matrices . . . . .                     | 37        |
| C.5      | Related Work . . . . .                                                            | 38        |
| <b>D</b> | <b>Evaluation Results</b>                                                         | <b>42</b> |
| D.1      | Quantifying the Sizes of Equivalence Classes . . . . .                            | 42        |
| D.2      | Assessing glvLiNG Algorithm's Runtime . . . . .                                   | 43        |
| D.3      | Benchmarking Existing Methods under Oracle Inputs . . . . .                       | 44        |
| D.4      | Evaluating glvLiNG's Performance with Existing Methods in Simulations . . . . .   | 45        |
| D.5      | Analyzing a Real-World Dataset with glvLiNG Algorithm . . . . .                   | 46        |

## A DETAILS OF THE GLVLiNG ALGORITHM

### A.1 BASICS OF TRANSVERSAL MATROIDS

Before proceeding, let us introduce some basic concepts from matroid theory that will be used later. Throughout, we define matroids in terms of binary matrices, interpreted as adjacency matrices of bipartite graphs where columns point to rows. The matroid is defined over row indices, corresponding to what is known as a *transversal matroid*. For more, one may refer to (Oxley, 2006).

**Definition 7 (Basics of transversal matroid).** Let  $Q \in \{0, 1\}^{m \times n}$  be a binary matrix, interpreted as the adjacency matrix of a bipartite graph where columns  $[n]$  point to rows  $E := [m]$ , where  $E$  is called the *ground set*. For simplicity, for each row set  $Z \subseteq E$  we denote its rank as:

$$r(Z) := \text{mrk}(Q_{Z,:}), \quad (\text{A.1})$$

though with a slight notation abuse to the letter  $r$  we used previously for edge ranks (Definition 4). Here,  $\text{mrk}$  is the matching rank we defined in Definition 6. This rank function  $r$  turns  $E$  into a transversal matroid presented by  $Q$ . We record the following basic concepts of this matroid, together with some useful properties, written directly in terms of  $Q$  and  $r$ :

972 **Independent/dependent sets.**

$$\begin{aligned} 973 \quad \text{Ind}(Q) &:= \{Z \subseteq E : r(Z) = |Z|\}, \\ 974 \quad \text{Dep}(Q) &:= 2^E \setminus \text{Ind}(Q). \end{aligned} \tag{A.2}$$

976 Note.  $Z$  is independent if and only if the rows  $Z$  admit a matching into the columns; dependent sets  
977 are those with a matching deficiency.

978 **Bases.**

$$979 \quad \text{bases}(Q) := \{B \subseteq E : B \in \text{Ind}(Q), |B| = r(E)\}. \tag{A.3}$$

980 Note. Bases are the maximal independent sets: all its subsets are independent, and all its proper  
981 supersets are dependent. Bases are the maximum-cardinality independent sets (all have size  $r(E)$ ).  
982 Bases uniquely determine the matroid.

983 **Circuits.**

$$985 \quad \text{circuits}(Q) := \{C \subseteq E : C \in \text{Dep}(Q) \text{ and } \forall C' \subsetneq C, C' \in \text{Ind}(Q)\}. \tag{A.4}$$

986 Note. Circuits are the minimal dependent sets:  $r(C) = |C| - 1$  and every proper subset is independent.  
987 Every dependent set contains a circuit as subset. Circuits do not necessarily have the same cardinalities.  
988 Circuits uniquely determine the matroid.

989 **Cocircuits.**

$$991 \quad \text{cocircuits}(Q) := \{D \subseteq E : r(E \setminus D) = r(E) - 1 \text{ and } \forall D' \subsetneq D, r(E \setminus D') = r(E)\}. \tag{A.5}$$

992 Note. Cocircuits are the minimal rank-dropping blockers: removing  $D$  lowers the full rank (by exactly  
993 one), while removing any proper subset does not. Cocircuits meet every basis:

$$994 \quad |D \cap B| \geq 1, \quad \forall D \in \text{cocircuits}(Q), B \in \text{bases}(Q). \tag{A.6}$$

995 Equivalently,  $D$  is a minimal set intersecting all bases. By minimal we mean, for any cocircuit  $D$ , no  
996 proper subset of  $D$  can be a cocircuit.

997 When cocircuits meet circuits, the intersection size is never 1. In particular,

$$998 \quad |D \cap C| \in \{0, 2, 3, \dots\}, \quad \forall D \in \text{cocircuits}(Q), C \in \text{circuits}(Q). \tag{A.7}$$

1000 Equivalently,  $D$  is a minimal set not intersecting any circuit with size 1.

1001 Cocircuits uniquely determine the matroid.

1002 **Coloops.**

$$1003 \quad \text{coloops}(Q) := \{e \in E : r(E \setminus \{e\}) = r(E) - 1\}. \tag{A.8}$$

1004 Note. A coloop is an element whose presence always increases rank by 1. A coloop is an element  
1005 that is in every basis. For each element  $e \in E$ , the following are equivalent:

$$1007 \quad e \in \text{coloops}(Q) \iff \{e\} \in \text{cocircuits}(Q) \iff e \text{ is in every basis} \iff e \text{ is in no circuit.} \tag{A.9}$$

1008 Coloops *do not* determine the matroid.

1009 **Flats.**

$$1010 \quad \text{flats}(Q) := \{F \subseteq E : \forall x \in E \setminus F, r(F \cup \{x\}) = r(F) + 1\}. \tag{A.10}$$

1011 Note. Flats are the  $\subseteq$ -maximal sets that have a given rank  $r(F)$ . The family of flats uniquely  
1012 determines a matroid.

1014 **Fundamental circuit with respect to a basis.** For any basis  $B$  and any  $e \in E \setminus B$ , there is a  
1015 unique circuit  $C_B(e)$  such that

$$1016 \quad e \in C_B(e) \subseteq B \cup \{e\}, \tag{A.11}$$

1017 called the fundamental circuit of  $e$  w.r.t.  $B$ . Moreover, for every  $f \in C_B(e) \setminus \{e\}$ , the set  $B \setminus \{f\} \cup \{e\}$   
1018 is a basis. Every circuit is a fundamental circuit to some  $B$  and  $e$ .

1019 **Fundamental cocircuit with respect to a basis.** For any basis  $B$  and any  $e \in B$ , there is a unique  
1020 cocircuit  $D_B(e)$  such that

$$1021 \quad e \in D_B(e) \subseteq (E \setminus B) \cup \{e\}, \tag{A.12}$$

1022 called the fundamental cocircuit of  $e$  w.r.t.  $B$ . Moreover, for every  $f \in D_B(e) \setminus \{e\}$ , the set  
1023  $B \setminus \{e\} \cup \{f\}$  is a basis. Every cocircuit is a fundamental cocircuit to some  $B$  and  $e$ .

1024 Having introduced these basics of transvesal matroids, below we explain our algorithm in detail.

1026 A.2 ALGORITHM OVERVIEW  
1027

1028 Let us first formally define the faithfulness assumption required by the glvLiNG algorithm:

1029 **Assumption 1 (Faithfulness).** Let  $d_X := |X|$  be the number of observed variables. We assume  
1030 that in the true mixing matrix  $A_{X,:}$  that generates data (as defined in Equation (5)), all  $d_X \times d_X$   
1031 and  $(d_X - 1) \times (d_X - 1)$  minors exhibit matrix ranks consistent with the corresponding path ranks  
1032 entailed by the true causal graph (as characterized in Lemma 2).1033 In other words, there is no coincidental parameter cancellation in the data generating process that  
1034 would lead to matrix ranks lower than those structurally entailed by the graph. Note that such  
1035 faithfulness assumption, often also referred to as the genericity assumption, is standard in the  
1036 literature (Adams et al., 2021). It holds almost everywhere in the parameter space except for a  
1037 Lebesgue measure zero set where coincidental lower ranks occur.1038 We next elaborate on our glvLiNG algorithm. The core to the glvLiNG algorithm is to query  
1039 matrix ranks from the mixing matrix estimated from data using overcomplete ICA (OICA), and then  
1040 construct a binary support matrix (corresponding to a digraph) that satisfies these matrix ranks.1041 Let  $p(X)$  be a data distribution generically generated by an unknown latent-variable model  $(\mathcal{G}, X)$ ,  
1042 that is,  $p(X) \in \mathcal{P}(\mathcal{G}, X)$ . Without loss of generality we assume that  $(\mathcal{G}, X)$  is irreducible. Let  
1043  $\tilde{A} \in \mathbb{R}^{|X| \times |V|}$  be a mixing matrix estimated on  $p(X)$  by OICA, and for now, we index the rows and  
1044 columns of  $\tilde{A}$  by  $X$  and  $V$ , respectively. By the identifiability of OICA,  $\tilde{A}$  is the true mixing matrix  
1045 up to column permutation and scaling. Further, with the duality between path ranks and edge ranks  
1046 (Theorem 1), we have that, there exists a permutation  $\pi$  of  $V$ , such that for all  $Z \subseteq X$  and  $Y \subseteq V$ ,  
1047 the following equality holds:

1048 
$$\text{rank}(\tilde{A}_{Z,Y}) = \rho_{\mathcal{G}}(Z, \pi(Y)) = |Z| + |Y| - |V| + r_{\mathcal{G}}(V \setminus \pi(Y), V \setminus Z). \quad (\text{A.13})$$

1049 In other words, there exists an unknown binary matrix  $Q \in \{0, 1\}^{|V| \times |V|}$ , whose matching ranks  
1050  $\text{mrank}(Q_{Z,Y})$  can be queried for any  $Z, Y \subseteq V$  with  $L \subseteq Y$ , despite its exact entry values being  
1051 unknown. Such a matrix must exist, with one specific matrix,  $Q^{(\mathcal{G})}$  with rows permuted by  $\pi$ , being  
1052 an example. As long as one can recover this matrix  $Q$ , one can then permute its rows to place nonzero  
1053 entries on the diagonal, and the resulting matrix must exactly be some support matrix for a digraph  $\mathcal{H}$   
1054 with  $\mathcal{G} \xrightarrow{X} \mathcal{H}$ , by Lemma 5. Such a row permutation to have nonzero diagonals must also exists, as  
1055  $\text{mrank}(Q) = |V|$ , by setting  $Z, Y$  both to  $\emptyset$  in Equation (A.13).1056 Our problem then reduces to: how can one recover such a  $Q$  matrix from rank queries? We express  
1057 this problem in a more general formulation, as follows:1058 **Key Problem: Matrix Recovery to Satisfy Matching Rank Queries**1059 Let  $Q \in \{0, 1\}^{m \times n}$  be a binary matrix whose entries are unknown. Let the columns be  
1060 partitioned as  $[n] = L \cup X$ , where  $L$  is a fixed subset. For any  $Z \subseteq [m]$  and any  $Y \subseteq [n]$   
1061 satisfying  $L \subseteq Y$ , one may query the matching rank of the submatrix  $Q_{Z,Y}$ , which, for  
1062 simplicity, is denoted as an oracle function:

1063 
$$r(Z, Y) := \text{mrank}(Q_{Z,Y}). \quad (\text{A.14})$$

1064 **The task is:** using only access to this oracle, construct a binary matrix  $H \in \{0, 1\}^{m \times n}$  such  
1065 that for all  $Z \subseteq [m]$  and  $Y \subseteq [n]$  with  $L \subseteq Y$ , the following condition holds:

1066 
$$\text{mrank}(H_{Z,Y}) = r(Z, Y). \quad (\text{A.15})$$

1067 That is,  $H$  is required to satisfy the matching rank oracle on all valid  $(Z, Y)$  pairs.1068  
1069 Clearly, the key problem posed above is essentially a satisfiability problem, and can be solved  
1070 via brute-force methods such as linear programming. However, in what follows, we present a  
1071 significantly more efficient and structured procedure. Note that the matching rank queries in the  
1072 problem are equivalent to providing the transversal matroids on each submatrix  $Q_{:,Y}$ . Thus, for  
1073 convenience, throughout the rest of this appendix, we may freely use the matroid language introduced  
1074 in Definition 7.

1080 **Overview of our procedure:** Our reconstruction procedure consists of two phases:  
 1081

1082 Phase 1: Impute the columns in  $H$  indexed by  $L$  to satisfy the matroid bases( $Q_{:,L}$ ). Equivalently,  
 1083 this is to construct a bipartite graph that realizes a given transversal matroid.  
 1084

1085 Phase 2: Impute the remaining columns indexed by  $X$  such that all matroids induced by  $Q_{:,L \cup \{x\}}$   
 1086 for  $x \subseteq X$  are satisfied. Although this may appear combinatorially complex at first  
 1087 glance, we show that each singleton column in  $X$  can in fact be imputed independently.  
 1088

1089 **A.3 PHASE 1: BIPARTITE GRAPH REALIZATION**  
 1090

1091 Let us first formulate the problem of Phase 1:  
 1092

1093 **Problem of Phase 1: Bipartite Graph Realization of Transversal Matroids**  
 1094

1095 Let  $Q \in \{0, 1\}^{m \times l}$  be a binary matrix with unknown entries, but known matroid bases( $Q$ ).  
 1096

1097 **The task is:** Construct a binary matrix  $H \in \{0, 1\}^{m \times l}$  such that:

$$1098 \text{bases}(H) = \text{bases}(Q). \quad (\text{A.16})$$

1099 That is, construct an example bipartite graph, represented by  $H$ , to realize a transversal  
 1100 matroid, given by bases( $Q$ ).  
 1101

1104 By duality, this problem is equivalent to reconstructing the digraph representation of the strict  
 1105 gammoid that is the dual of the transversal matroid based on the seminal paper by (Mason, 1972) and  
 1106 dualizing the result using the Fundamental Lemma by (Ingleton & Piff, 1973).

1107 The bases of the dual matroid  $Q^*$  are given by  $\text{bases}(Q^*) = \{E \setminus B \mid B \in \text{bases}(Q)\}$ . The  $\alpha$ -system  
 1108 for  $Q^*$  is defined as the bipartite graph with the following incidence relation  
 1109

$$1110 I_{Q^*} = \{(e, (F, i)) \in E \times (\text{flats}(Q^*), \mathbb{N}) \mid F \in \text{flats}(Q^*), e \in F, i \in \mathbb{N}, 1 \leq i \leq \alpha_{Q^*}(F)\}, \quad (\text{A.17})$$

1112 where

$$1114 \alpha_{Q^*}(F) = |F| - r_{Q^*}(F) - \bigcup_{G \in \text{flats}(Q^*), G \subsetneq F} \alpha_{Q^*}(G). \quad (\text{A.18})$$

1117 Since  $Q$  is a transversal matroid,  $Q^*$  is a strict gammoid, and therefore all  $\alpha_{Q^*}(F) \geq 0$ ,  
 1118  $\sum_{F \in \text{flats}(Q^*)} \alpha_{Q^*}(F) = |E| - r_{Q^*}(E) = r_Q(E)$ , and the  $\alpha$ -system for  $Q^*$  has a maximal matching  
 1119 that covers all  $(F, i)$ , and each such matching has the property that the set of unmatched elements  
 1120 from  $E$  forms a basis  $T$  of  $Q^*$ .

1121 Now fix such a maximal matching, let  $T \subseteq E$  be the unmatched basis, and let  $(F_e, i_e)$  be the vertex that  
 1122 is matched to  $e$  for all  $e \in E \setminus T$ . Define the digraph  $D = (V, A)$  with  $V = E$  and  $A = \{(u, v) \in E \times E \mid u \notin T, v \in F_u, v \neq u\}$ . The digraph  $D$  represents the strict gammoid  $Q^*$  (Mason, 1972).  
 1123 Using the fundamental lemma (Ingleton & Piff, 1973), we obtain that  
 1124

$$1126 H = \{(e, t) \in E \times (E \setminus T) \mid e \in F_t\} \quad (\text{A.19})$$

1128 represents the transversal matroid  $Q$ .  
 1129

1130 **A.4 PHASE 2: AUGMENTING A BIPARTITE GRAPH FOR MATROID EXTENSIONS**  
 1131

1132 Having imputed the values in  $H_{:,L}$ , we then impute the remaining  $X$  columns:  
 1133

1134  
1135**Problem of Phase 2: Augmenting a Bipartite Graph to Realize Matroid Extensions**1136  
1137  
1138  
1139  
1140

Let  $Q \in \{0, 1\}^{m \times n}$  be a binary matrix with unknown entries, and columns partitioned as  $[n] = L \cup X$  for a fixed  $L$ . For every subset  $\mathbf{x} \subseteq X$ , the matroid bases( $Q_{:,L \cup \mathbf{x}}$ ) is known.

Let  $H \in \{0, 1\}^{m \times n}$  be a partially imputed matrix such that  $\text{bases}(H_{:,L}) = \text{bases}(Q_{:,L})$  is already satisfied, while the columns indexed by  $X$  remain unassigned.

**The task is:** Fill in the remaining columns of  $H$  such that for all  $\mathbf{x} \subseteq X$ ,

$$\text{bases}(H_{:,L \cup \mathbf{x}}) = \text{bases}(Q_{:,L \cup \mathbf{x}}). \quad (\text{A.20})$$

That is, augment the bipartite graph, represented by  $H_{:,L}$ , by adding more “sources”  $X$ , so that matroids are realized for all subsets of  $X$  extended with  $L$ .

1146  
1147  
1148

One may first question whether such an imputation is possible, since overall the already assigned  $H_{:,L}$  only realizes the matroid equality  $\text{bases}(H_{:,L}) = \text{bases}(Q_{:,L})$ , but the exact entry values recovery  $H_{:,L} = Q_{:,L}$  is not guaranteed (and also impossible).

We show that such an imputation is indeed possible, via the following result:

1153  
1154

**Lemma 8 (How the transversal matroid changes when augmenting more sources).** *For two binary matrices  $Q_1 \in \{0, 1\}^{m \times n_1}$  and  $Q_2 \in \{0, 1\}^{m \times n_2}$ , we denote by  $[Q_1 | Q_2] \in \{0, 1\}^{m \times (n_1 + n_2)}$  the matrix obtained by horizontally concatenating  $Q_1$  with  $Q_2$ . Then, we have:*

1158

$$\text{Ind}([Q_1 | Q_2]) = \{Z_1 \cup Z_2 : Z_1 \in \text{Ind}(Q_1), Z_2 \in \text{Ind}(Q_2)\}. \quad (\text{A.21})$$

1160  
1161

*In other words, two matrices’ matroids sufficiently determine the matroid of their augmentation.*

1162  
1163  
1164

With Lemma 8, every  $\text{bases}(H_{:,L \cup \mathbf{x}})$  equals  $\text{bases}([Q_{:,L} | H_{:,X}])$ , and thus the imputation is possible.

1165  
1166  
1167  
1168  
1169

Then, how to solve for this imputation? At the first glance, one may have concern on the complexity: in contrast to solving Phase 1’s realization problem for only one matroid induced by  $L$ , now we need to realize combinatorially many matroids induced by  $L \cup \mathbf{x}$  for all  $\mathbf{x} \subseteq X$ . When trying to impute a single column  $H_{:,X_i}$ , this column can appear in many subsets  $\mathbf{x} \ni X_i$ .

1170  
1171

Interestingly, all these subsets can be disentangled: one do not need to explicitly realize each  $\mathbf{x} \subseteq X$ . Instead, it suffices to just realize each singleton augmentation for  $X_i \in X$  independently.

1172

We show this by the following result:

1173  
1174  
1175

**Lemma 9 (Reducing all union equivalence checks to singleton checks).** *Let  $Q, H \in \{0, 1\}^{m \times n}$  be two binary matrices with columns partitioned as  $[n] = L \cup X$  for a fixed  $L$ . Then, the condition*

1176  
1177

$$\text{bases}(Q_{:,L \cup \mathbf{x}}) = \text{bases}(H_{:,L \cup \mathbf{x}}), \quad \forall \mathbf{x} \subseteq X, \quad (\text{A.22})$$

1178  
1179  
1180

*holds, if and only if the condition*

1181  
1182  
1183

$$\begin{cases} \text{bases}(Q_{:,L}) = \text{bases}(H_{:,L}), \text{ and} \\ \text{bases}(Q_{:,L \cup \{X_i\}}) = \text{bases}(H_{:,L \cup \{X_i\}}), \quad \forall X_i \in X, \end{cases} \quad (\text{A.23})$$

1184  
1185  
1186

*holds.*

1187

With Lemma 9, the remaining problem of Phase 2 can be reduced to solving for each singleton augmentation, formulated as follows:

1188  
1189**Problem of Phase 2 (Reduced): Augmenting a Bipartite Graph with a Singleton Source**1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197

Let  $H \in \{0, 1\}^{m \times (l+1)}$  be a partially known binary matrix whose columns are partitioned as  $[l+1] = L \cup \{x\}$  for a fixed  $L$ . The two matroids  $\text{bases}(H)$  and  $\text{bases}(H_{:,L})$  are known, while the exact values at the column  $H_{:,x}$  remain unknown.

**The task is:** Fill in the column  $H_{:,x}$  to satisfy the given matroid  $\text{bases}(H)$ .

That is, augment the bipartite graph, represented by  $H_{:,L}$ , by adding one extra “source”  $x$ , so that it extends the current transversal matroid correctly.

1198

To solve this singleton augmentation problem, one could at worst exhaustively try all  $2^m$  possible fillings. In what follows, however, we present a more efficient, deterministic construction:

1201  
1202

**Lemma 10 (Constructing a particular solution for singleton augmentation).** *Let  $H \in \{0, 1\}^{m \times (l+1)}$  be a binary matrix with columns partitioned as  $[l+1] = L \cup \{x\}$ . Define*

1203  
1204

$$D := \{i \in \{1, \dots, m\} \mid \forall C \in \text{circuits}(H) : i \in C \Rightarrow C \setminus \{i\} \notin \text{Ind}(H_{:,L})\}. \quad (\text{A.24})$$

1205  
1206  
1207  
1208

Define a new matrix  $H'$  where  $H'_{:,L} = H_{:,L}$  and the column  $x$  is replaced by  $H'_{:,x} = 1$  if  $i \in D$  and 0 otherwise. Then, the whole matroid remains unchanged after this column  $x$  replacement:

$$\text{bases}(H') = \text{bases}(H). \quad (\text{A.25})$$

1209  
1210  
1211  
1212

With this result, we complete the final step of the Key Problem defined above and can obtain a binary matrix  $H$  that satisfies all rank constraints.

Proofs of Lemmas 8 to 10 are all given in Appendix B.

1213  
1214  
1215  
1216  
1217  
1218

To interpret  $H$  as a digraph representation, we perform a final row permutation to place nonzeros along the diagonal. Standard algorithms such as the  $n$ -rooks method may be used for the row permutation. We keep the column indices of  $L \cup X$  fixed and reindex the rows to match the same ordered list  $L \cup X$ . The resulting matrix encodes a model distributionally equivalent to the underlying model that generalizes the data. One may then run BFS/DFS using Theorem 3 to obtain the whole equivalence class.

1219  
1220

With all above, we conclude the algorithm part.

1221  
1222**B PROOFS OF MAIN RESULTS**1223  
1224  
1225

Note that we present the proofs in an order that differs slightly from their appearance, arranged instead according to their logical dependencies.

1226  
1227**B.1 PROOFS OF IRREDUCIBILITY RESULTS**1228  
1229  
1230

The irreducibility results rely on the identifiability of (overcomplete) independent component analysis (ICA). So we first restate them here.

1231  
1232  
1233

A linear irreducible ICA model can be described by the equation

$$X = AE, \quad (\text{B.1})$$

1234  
1235  
1236  
1237

where  $E = (E_1, \dots, E_m)^\top$  are unknown mutually independent random variables, namely *sources*, and  $X = (X_1, \dots, X_p)^\top$  are observed random variables, namely *mixtures*.  $A \in \mathbb{R}^{p \times m}$ , namely the *mixing matrix*, is constrained to have no pairwise proportional columns (including zero columns). The tuple  $(A, E)$  is called an *irreducible ICA representation* of  $X$ .

1238  
1239  
1240  
1241

**Lemma 11** (Identifiability of ICA; (Eriksson & Koivunen, 2004)). *Let  $(A, E)$  and  $(B, S)$  be two irreducible ICA representations of a  $p$ -dim random vector  $X$ , where  $A \in \mathbb{R}^{p \times m}$  and  $B \in \mathbb{R}^{p \times n}$ . If every component of  $E$  follows a non-Gaussian distribution, then the following properties hold:*

1.  $m = n$ .

1242      2. Every column of  $A$  is proportional to some column of  $B$ , and vice versa.  
 1243  
 1244      3. Every component of  $S$  follows a non-Gaussian distribution<sup>1</sup>.  
 1245  
 1246

1247 **Proposition 1 (Graphical condition for irreducibility).** A model  $(\mathcal{G}, X)$  is irreducible, if and only  
 1248 if for each non-empty set  $\mathbf{l} \subseteq L$ ,  $|\text{ch}_{\mathcal{G}}(\mathbf{l}) \setminus \mathbf{l}| \geq 2$ , i.e., it has more than one child outside.  
 1249

1250 *Proof of Proposition 1.* Due to the identifiability of OICA, irreducibility is equivalent to that there  
 1251 are no proportional columns in the mixing matrix, which, with Lemma 2, is that

1252       $\rho_{\mathcal{G}}(X, \mathbf{v}) \geq 2, \quad \forall \mathbf{v} \subseteq V \text{ with } |\mathbf{v}| \geq 2. \quad (\text{B.2})$   
 1253

1254 When  $\mathbf{v}$  contains 2 or more vertices from observed  $X$ , this condition is naturally satisfied. So we  
 1255 only need to consider  $\mathbf{v}$  that contains at most one vertex from  $X$  and at least one vertex from  $L$ .  
 1256

1257 When  $\mathbf{v}$  contains only  $L$  vertices, the violation of Equation (B.2) leads to the graphical criterion.  
 1258 When  $\mathbf{v}$  contains one  $X$  vertex, say,  $X_i$ , and Equation (B.2) is violated, it means the min-cut from  $\mathbf{v}$   
 1259 to  $X$  is simply  $\{X_i\}$ , which implies that the min-cut from the remaining latent vertices  $\mathbf{v} \setminus \{X_i\}$  to  
 1260  $X$  is either  $\emptyset$  or  $\{X_i\}$ . This also leads to the graphical criterion.  $\square$   
 1261  
 1262  
 1263  
 1264

1265 **Proposition 2 (Procedure of reduction to the irreducible form).** Given any latent-variable model  
 1266  $(\mathcal{G}, X)$ , the following procedure outputs a digraph  $\mathcal{H}$  such that  $\mathcal{H} \xrightarrow{X} \mathcal{G}$  and  $(\mathcal{H}, X)$  is irreducible.

1267      Step 1. Initialize  $\mathcal{H}$  as  $\mathcal{G}$ .

1268      Step 2. Remove vertices  $V(\mathcal{H}) \setminus \text{an}_{\mathcal{H}}(X)$  from  $\mathcal{H}$ , i.e., remove latents who have no effects on  $X$ .

1269      Step 3. Identify the maximal redundant latents in the remaining latent vertices:

1270       $\text{mrl} := \{\mathbf{l} \subseteq V(\mathcal{H}) \setminus X : |\mathbf{l}| > 0, |\text{ch}_{\mathcal{H}}(\mathbf{l}) \setminus \mathbf{l}| < 2, \text{ and } \forall \mathbf{l}' \supsetneq \mathbf{l}, |\text{ch}_{\mathcal{H}}(\mathbf{l}') \setminus \mathbf{l}'| \geq 2\}. \quad (7)$   
 1271

1272      Step 4. For each  $\mathbf{l} \in \text{mrl}$ , let  $c$  be the exact child in  $\text{ch}_{\mathcal{H}}(\mathbf{l}) \setminus \mathbf{l}$ ; for each parent  $p \in \text{pa}_{\mathcal{H}}(\mathbf{l}) \setminus \{c\}$ ,  
 1273      add an edge  $p \rightarrow c$  into  $\mathcal{H}$  if not already present; finally, remove  $\mathbf{l}$  vertices from  $\mathcal{H}$ .  
 1274

1275 *Proof of Proposition 2.* This graphical operation directly translates the operation to merge all maxi-  
 1276 mally proportional columns in the mixing matrix into single columns. This ensures the irreducible  
 1277  $\mathcal{H}$ .  
 1278

1279 Note that by removing maximally redundant latents, the added edges in step 4 will not be removed  
 1280 later, i.e., for each  $\mathbf{l}$  operated in step 4,

1281       $|\text{ch}_{\mathcal{H}}(\mathbf{l}) \setminus \mathbf{l}| = 1, \text{ and } (\text{ch}_{\mathcal{H}}(\mathbf{l}) \cup \text{pa}_{\mathcal{H}}(\mathbf{l}) \setminus \mathbf{l}) \cap (\cup \text{mrl}) = \emptyset. \quad (\text{B.3})$   
 1282

1283 This ensures the well-defined graphical operation.  $\square$   
 1284  
 1285  
 1286  
 1287  
 1288

## B.2 PROOF FROM RANK EQUIVALENCE TO DISTRIBUTIONAL EQUIVALENCE

1289 **Lemma 3 (Equivalence via path ranks).** Two irreducible models are distributionally equivalent,  
 1290 written  $\mathcal{G} \xrightarrow{X} \mathcal{H}$ , if and only if there exists a permutation  $\pi$  over the vertices  $V(\mathcal{G})$ , such that

1291       $\rho_{\mathcal{G}}(Z, Y) = \rho_{\mathcal{H}}(Z, \pi(Y)) \quad \text{for all } Z \subseteq X \text{ and } Y \subseteq V(\mathcal{G}). \quad (11)$   
 1292

1293      <sup>1</sup>But note that unlike 2.,  $S$  may still be unreachable from  $E$  via only permutation and scaling. In other words,  
 1294 the model is *identifiable*, but not *unique*. See Example 2 of Eriksson & Koivunen (2004).

1296 *Proof of Lemma 3.* We first show the “ $\Rightarrow$ ” direction.  
 1297

1298 By Lemma 2 there is a generic choice  $A \in \mathcal{A}(\mathcal{G})$  that realizes the rank structure for all  $Z, Y \subseteq V(\mathcal{G})$ :  
 1299  $\text{rank}(A_{Z,Y}) = \rho_{\mathcal{G}}(Z, Y)$ . With Lemma 1 we obtain from  $\mathcal{G} \xrightarrow{X} \mathcal{H}$  with  $A \in \overline{\mathcal{A}(\mathcal{G}, X)} = \overline{\mathcal{A}(\mathcal{H}, X)}$   
 1300 that there is a matrix  $B \in \mathcal{A}(\mathcal{H}, X)$ , a permutation matrix  $P$ , and a scaling matrix  $D$  such that  
 1301  $A_{X,:} = BPD$ . Let  $\pi$  be the column-permutation that corresponds to the matrix  $P$ .

1302 Now, let  $Z \subseteq X$  and  $Y \subseteq V(\mathcal{G}) = V(\mathcal{H})$ , then we have the desired equation  
 1303

$$\rho_{\mathcal{G}}(Z, Y) = \text{rank}(A_{Z,Y}) = \text{rank}((BPD)_{Z,Y}) = \text{rank}((BP)_{Z,Y}) \quad (\text{B.4})$$

$$= \text{rank}(B_{Z,\pi(Y)}) = \rho_{\mathcal{H}}(Z, \pi(Y)). \quad (\text{B.5})$$

1306 We then show the “ $\Leftarrow$ ” direction.  
 1307

1308 For any  $Z \subseteq X$ , the partial application  $\rho_{\mathcal{G}}(Z, \_)$  is the rank function of a strict gammoid  
 1309  $M_{\mathcal{G},Z} = \Gamma(\mathcal{G}, Z, V(\mathcal{G}))$  defined by the digraph  $\mathcal{G}$  on the ground set  $V(\mathcal{G})$  with the set of termi-  
 1310 nals  $Z$ . Analogously,  $\rho_{\mathcal{H}}(Z, \_)$  is the rank function a strict gammoid  $M_{\mathcal{H},Z}$  defined by the digraph  $\mathcal{H}$   
 1311 on the same ground set and the same set of terminals.

1312 Equation (11) implies that  $\pi$  is an isomorphism between  $M_{\mathcal{G},Z}$  and  $M_{\mathcal{H},Z}$ , for all  $Z \subseteq X$  simultane-  
 1313 ously. Clearly,  $\pi$  is also an isomorphism between the dual matroids  $M_{\mathcal{G},Z}^*$  and  $M_{\mathcal{H},Z}^*$ .

1314 It follows from the Fundamental Lemma in (Ingleton & Piff, 1973) that the support matrices  $Q^{(\mathcal{G})}$  and  
 1315  $Q^{(\mathcal{H})}$  define isomorphic families of transversal matroids that are represented by the corresponding  
 1316 row-sub-matrices of all  $(I - B_{\mathcal{G}})$  with sufficiently general weights and  $B_{\mathcal{G}} \in \mathcal{B}(\mathcal{G})$ ; and  $(I - B_{\mathcal{H}})$   
 1317 with sufficiently general weights and  $B_{\mathcal{H}} \in \mathcal{B}(\mathcal{H})$ , respectively.  
 1318

1319 In (Brylawski, 1975) it is shown that every transversal matroid may be represented by vectors that  
 1320 lie in the faces of a simplex such that for every minimal non-trivial combination of the zero vector  
 1321 by a set of representing vectors, this set lies on a common simplex face with rank one less than  
 1322 the cardinality of the set of vectors. Over  $\mathbb{R}$  such vectors can be found almost surely by taking the  
 1323 incidence matrix of the transversal system and choosing a random value for each nonzero entry. All  
 1324 matrices over  $\mathbb{R}$  that represent the transversal matroid can be produced by this procedure.

1325 Choosing random values for the nonzero entries of  $Q^{(\mathcal{G})}$  (and  $Q^{(\mathcal{H})}$ ) gives almost surely a matrix  
 1326 that represents the respective family of transversal matroids in such a general simplex position, with  
 1327 nonzero entries on the diagonal. By row scaling, this matrix can be brought into the desired form  
 1328  $(I - B)$  where all diagonal entries are equal to 1. Scaling the columns and rows of a matrix by  
 1329 nonzero factors does not alter the family of matroids represented by a matrix, and does not change  
 1330 whether a matrix is in general simplex position.

1331 The matrices in  $A \in \mathcal{A}(\mathcal{G}, X)$  (and  $\mathcal{A}(\mathcal{H}, X)$ ) are row-restrictions of inverses of diagonal-1-scaled  
 1332 versions of matrices in general simplex position;

$$A = (SR)_{X,:}^{-1} = R_{X,:}^{-1}S^{-1}, \quad (\text{B.6})$$

1333 where  $R$  is a randomized valuation of  $Q^{(\mathcal{G})}$ , and  $S$  is a diagonal matrix consisting of the multiplicative  
 1334 inverses of the diagonal entries of  $R$ .  
 1335

1336 Let  $P$  be the permutation matrix for  $\pi$ , and let  $T$  be the diagonal matrix consisting of the multiplicative  
 1337 inverses of the diagonal entries of  $PR$ . Then there is

$$A' = (TPR)_{X,:}^{-1} \in \mathcal{A}(\mathcal{H}, X). \quad (\text{B.7})$$

1338 Since  $S$  and  $T$  are invertible diagonal matrices, we have  
 1339

$$A' = R_{X,:}^{-1}S^{-1}SP^{-1}T^{-1} = ASP^{-1}T^{-1} = AP^{-1}(SPT^{-1}), \quad (\text{B.8})$$

1340 where  $S_P$  is a diagonal matrix with  $(S_P)_{i,i} = S_{\pi(i),\pi(i)}$ .  
 1341

1342 So  $A'$  arises from  $A$  by permuting and scaling columns, thus  $\overline{\mathcal{A}(\mathcal{G}, X)} = \overline{\mathcal{A}(\mathcal{H}, X)}$ . Finally, with  
 1343 Lemma 1 we have  $\mathcal{G} \xrightarrow{X} \mathcal{H}$ .  
 1344

□

1350 B.3 PROOFS OF MATROID-PRESERVING COLUMN AUGMENTATION: A CORE COMPONENT  
13511352 B.3.1 CONSTRUCTING PARTICULAR SOLUTIONS TO A COLUMN AUGMENTATION  
13531354 We begin with the two auxiliary lemmas introduced in Appendix A, namely, Lemmas 8 and 10.  
13551356 **Lemma 8 (How the transversal matroid changes when augmenting more sources).** *For two*  
1357 *binary matrices  $Q_1 \in \{0, 1\}^{m \times n_1}$  and  $Q_2 \in \{0, 1\}^{m \times n_2}$ , we denote by  $[Q_1 | Q_2] \in \{0, 1\}^{m \times (n_1 + n_2)}$*   
1358 *the matrix obtained by horizontally concatenating  $Q_1$  with  $Q_2$ . Then, we have:*

1359 
$$\text{Ind}([Q_1 | Q_2]) = \{Z_1 \cup Z_2 : Z_1 \in \text{Ind}(Q_1), Z_2 \in \text{Ind}(Q_2)\}. \quad (\text{A.21})$$

1360 *In other words, two matrices' matroids sufficiently determine the matroid of their augmentation.*1361 *Proof of Lemma 8.* Straightforward. Let  $N_1 = [n_1]$  and  $N_2 = [n_2]$  be the column indices. For the  
1362 “ $\subseteq$ ” direction, we just consider for each  $Z \in \text{Ind}([Q_1 | Q_2])$ , its matched sources in  $N_1 \cup N_2$  can be  
1363 split back into  $N_1$  and  $N_2$ . For the “ $\supseteq$ ” direction,  $Z_1$  can be matched into  $N_1$  and  $Z_2 \setminus Z_1$  can be  
1364 matched into  $N_2$ , which, when put together, is still independent, since  $N_1$  and  $N_2$  are disjoint.1365  $\square$ 1366  
1367 **Lemma 10 (Constructing a particular solution for singleton augmentation).** *Let  $H \in$*   
1368  $\{0, 1\}^{m \times (l+1)}$  *be a binary matrix with columns partitioned as  $[l+1] = L \cup \{x\}$ . Define*

1369 
$$D := \{i \in \{1, \dots, m\} \mid \forall C \in \text{circuits}(H) : i \in C \Rightarrow C \setminus \{i\} \notin \text{Ind}(H_{:,L})\}. \quad (\text{A.24})$$

1370 *Define a new matrix  $H'$  where  $H'_{:,L} = H_{:,L}$  and the column  $x$  is replaced by  $H'_{i,x} = 1$  if  $i \in D$  and  
1371 0 otherwise. Then, the whole matroid remains unchanged after this column  $x$  replacement:*

1372 
$$\text{bases}(H') = \text{bases}(H). \quad (\text{A.25})$$

1373  
1374 *Proof of Lemma 10.* We show that  $H$  and  $H'$  represent the same transversal matroid by comparing  
1375 their independent families.1376 **In case that**  $\text{Ind}(H_{:,L}) = \text{Ind}(H)$ , then  $D$  is the set of coloops of  $H_{:,L}$ . Since every maximal  
1377 partial transversal of  $H_{:,L}$  already contains each  $d \in D$ , the bases of  $H'$  are precisely the bases of  
1378  $H_{:,L}$ , so the matroids for  $H$ ,  $H_{:,L}$ , and  $H'$  are the same.1379 **Otherwise, if**  $\text{Ind}(H_{:,L}) \subsetneq \text{Ind}(H)$ , then  $H_{:,L}$  has a maximal partial transversal that can be  
1380 extended by some element  $e$  with  $H_{e,x} = 1$ . Because the cardinality of the bases of  $H$  is one  
1381 more than the cardinality of the bases of  $H_{:,L}$ , we have that every basis  $B$  with respect to  $H$  can  
1382 be partitioned into a basis  $B_0$  of  $H_{:,L}$  and an extra element  $b \in B \setminus B_0$  where  $H_{b,x} = 1$ . Clearly  
1383  $B_0 \in \text{Ind}(H')$  and if  $b \in D$ , then  $B$  is also a basis for  $H'$ .1384 Assume that  $b \notin D$ , then there is a circuit  $C$  of  $H$  with  $b \in C$  such that  $C \setminus \{b\} \in \text{Ind}(H_{:,L})$ . The  
1385 corresponding partial transversal of  $H_{:,L}$  can be extended by sending  $\phi(b) = x$ , but then this extended  
1386 partial transversal proves that  $C$  is independent, contradicting that  $C$  is a circuit of  $H$ , so  $b \in D$  must  
1387 be the case. Thus  $\text{Ind}(H) \subseteq \text{Ind}(H')$ .1388 Now let  $B$  be a basis for  $H'$  and assume that  $B \notin \text{Ind}(H)$ . By set inclusion,  $B \notin \text{Ind}(H_{:,L})$ . So  
1389 there is maximal partial transversal  $\phi$  of  $H'$  and some  $b \in B$  such that

1390 
$$\phi(b) = x \text{ and } \phi[B \setminus \{b\}] \subseteq L. \quad (\text{B.9})$$

1391 Hence,

1392 
$$B \setminus \{b\} \in \text{Ind}(H_{:,L}) \subseteq \text{Ind}(H). \quad (\text{B.10})$$

1393 Since  $B \notin \text{Ind}(H)$ , there is a circuit  $C \subseteq B$  with  $b \in C$ . But then  $C \setminus \{b\} \subseteq B \setminus \{b\}$  is independent  
1394 in  $H_{:,L}$ , so  $b \notin D$ . This is a contradiction to  $H'_{b,\phi(b)} = H'_{b,x} = 1$ , because  $\phi$  is a partial transversal  
1395 of  $H'$ . Therefore  $\text{Ind}(H') \subseteq \text{Ind}(H)$  establishing the equality  $\text{Ind}(H') = \text{Ind}(H)$  which implies  
1396  $\text{bases}(H') = \text{bases}(H)$  since bases are precisely the maximal independent sets.  $\square$ 1397  
1398  
1399  
1400  
1401  
1402  
1403

1404 B.3.2 TRAVERSING ALL SOLUTIONS TO A COLUMN AUGMENTATION  
1405

1406 Now, we have proved the two auxiliary lemmas introduced in Appendix A.

1407 We observe that these two lemmas are centering around one problem, as formulated in the text box  
1408 titled “**Problem of Phase 2 (Reduced)**”: suppose we already know both a transversal matroid itself  
1409 and the transversal matroid of it after augmented with an unknown singleton column, how can we  
1410 recover this unknown singleton column to satisfy these two matroids?1411 In Lemma 10, we have shown a particular solution. Then, what are all the possible solutions, and  
1412 how can we find them? Among all solutions, is there anything special about the particular solution  
1413 given in Lemma 10? Are there any other particular solutions that might enjoy other properties?

1414 Let us first define all these solutions:

1415 **Definition 8 (Solution set of matroid-preserving column augmentations).** Let  $Q \in \{0, 1\}^{m \times n}$   
1416 be a binary matrix. For each  $x \in [n]$ , we denote all column vectors that can be used to replace  $Q$ ’s  
1417 column  $x$  while preserving  $Q$ ’s matroid by:

1418 
$$\text{colaug}(Q, x) := \{ D \subseteq 2^{[m]} : \text{bases}([Q_{:, [n] \setminus \{x\}} \mid \mathbb{1}_D]) = \text{bases}(Q) \}, \quad (\text{B.11})$$

1419 where the name `colaug` stands for “column augmentation”,  $\mathbb{1}_D$  denotes a column vector with ones at  
1420 entries in  $D$  and zeros elsewhere, and the notation  $[\cdot \mid \cdot]$  denotes matrices’ horizontal concatenation.  
1421 Apparently,  $\text{colaug}(Q, x)$  is non-empty, since at least the current column  $Q_{:, x}$  satisfies the condition,  
1422 as well as the particular column  $\mathbb{1}_D$  defined in Lemma 10, which may be different from  $Q_{:, x}$ .1423 Before we study how we may traverse all solutions in  $\text{colaug}(Q, x)$ , let us pay more attention to the  
1424 particular solutions, since 1) they offer an efficient way to get a solution directly from the matroids,  
1425 without the need to solving alpha systems, which leads to algorithm speedups, and 2) as we will show  
1426 below, they have meaningful implications to characterize the whole solution class.1427 We already have a particular solution from Lemma 10, which checks when a single-element deletion  
1428 from each new circuit still leads to dependent sets before augmentation. In other words, these items  
1429 are those who contribute to the newly introduced circuits. Following the proof to Lemma 10, we have  
1430 that these items forms not only a solution, but also a unique maximal inclusive solution:1431 **Corollary 1 (Determining items that must not appear in any solution).** Let  $Q \in \{0, 1\}^{m \times (l+1)}$   
1432 be a binary matrix with columns partitioned as  $[l+1] = L \cup \{x\}$ . Let  $D \subseteq [m]$  be the particular  
1433 solution constructed in Lemma 10, and let  $\text{colaug}(Q, x) \subseteq 2^{[m]}$  be all the solutions of  $x$ -column  
1434 augmentation defined in Definition 8. Then, the following condition holds:

1435 
$$D = \bigcup \text{colaug}(Q, x). \quad (\text{B.12})$$

1436 In other words, by giving a unique maximal solution, Lemma 10 characterizes which items in  $[m]$   
1437 can be included in some solution(s), or equivalently, which items must not appear in any solution.1438 This then naturally leads to another question: which are the items that must be included in all solutions,  
1439 and more importantly, is there an efficient way to determine them, just like Lemma 10, without having  
1440 to traverse the whole solution set? The answer is yes, by taking complements to Lemma 10:1441 **Corollary 2 (Determining items that must appear in all solutions).** Let  $Q \in \{0, 1\}^{m \times (l+1)}$  be a  
1442 binary matrix with columns partitioned as  $L \cup \{x\}$ . We define the “difference in cocircuits” as

1443 
$$\text{diffcc}(Q, x) := \text{cocircuits}(Q) \setminus \text{cocircuits}(Q_{:, L}). \quad (\text{B.13})$$

1444 Further, for any  $A \subseteq 2^V$ , a set of subsets of some universe  $V$ , we define the minimum-sized elements  
1445 of  $A$  (with a slightly special treat on  $\emptyset$ ) as:

1446 
$$\text{minimum}(A) := \begin{cases} \{a \in A : |a| = \min_{a' \in A} |a'|\}, & \text{if } A \neq \emptyset, \\ \{\emptyset\}, & \text{otherwise.} \end{cases} \quad (\text{B.14})$$

1447 The minimal-inclusion elements of  $A$  (with a slightly special treat on  $\emptyset$ ) is then:

$$\begin{aligned} 1458 \quad \text{minimal}(A) &:= \begin{cases} \{a \in A : \nexists a' \in A \text{ with } a' \subsetneq a\}, & \text{if } A \neq \emptyset, \\ 1459 \quad \{\emptyset\}, & \text{otherwise.} \end{cases} \quad (B.15) \\ 1460 \end{aligned}$$

1461 Then, the following conditions always hold:

1463 1. The minimum-sized new cocircuits are all particular solutions. Moreover, they are exactly  
1464 those minimal-inclusion ones among all solutions, which have a same (minimum) size:

$$1465 \quad \text{minimal}(\text{colaug}(Q, x)) = \text{minimum}(\text{colaug}(Q, x)) = \text{minimum}(\text{diffcc}(Q, x)). \quad (B.16) \\ 1466$$

1467 2. Non-minimum-sized new cocircuits are not solutions, that is,

$$1469 \quad (\text{diffcc}(Q, x) \setminus \text{minimum}(\text{diffcc}(Q, x))) \cap \text{colaug}(Q, x) = \emptyset. \quad (B.17) \\ 1470$$

1471 3. The intersection of minimum-sized new cocircuits may not be a solution itself, but it characterizes exactly items that must appear in all solutions:

$$1473 \quad \bigcap \text{minimum}(\text{diffcc}(Q, x)) = \bigcap \text{colaug}(Q, x). \quad (B.18) \\ 1474$$

1475 Roughly speaking, Corollary 2 takes a complement to Corollary 1: for any valid solution, it must  
1476 complete new bases (witnessed by minimal new cocircuits), so any item that appears in every such  
1477 minimum new cocircuit must appear in all valid solutions.

1479 We use an example to illustrate these definitions above.

1480 **Example 3 (Illustration of Definition 8).** Suppose  $Q$  is a matrix with row indices  $\{1, 2, 3, 4\}$  and  
1481 column indices  $\{\alpha, \beta, \gamma\}$ , as follows.

$$1483 \quad Q = \begin{matrix} & \alpha & \beta & \gamma \\ 1 & 0 & \times & 0 \\ 2 & \times & 0 & 0 \\ 3 & \times & \times & \times \\ 4 & \times & 0 & 0 \end{matrix}, \quad \text{then } \begin{cases} \text{bases}(Q) = \{\{1, 2, 3\}, \{1, 3, 4\}\}, \\ \text{circuits}(Q) = \{\{2, 4\}\}, \\ \text{cocircuits}(Q) = \{\{1\}, \{3\}, \{2, 4\}\}. \end{cases} \quad (B.19) \\ 1484 \\ 1485 \\ 1486 \\ 1487$$

1488 Consider the case with  $x = \alpha$ . The remaining columns are:

$$1490 \quad Q_{:, \{\beta, \gamma\}} = \begin{matrix} & \beta & \gamma \\ 1 & \times & 0 \\ 2 & 0 & 0 \\ 3 & \times & \times \\ 4 & 0 & 0 \end{matrix}, \quad \text{with } \begin{cases} \text{bases}(Q_{:, \{\beta, \gamma\}}) = \{\{1, 3\}\}, \\ \text{circuits}(Q_{:, \{\beta, \gamma\}}) = \{\{2\}, \{4\}\}, \\ \text{cocircuits}(Q_{:, \{\beta, \gamma\}}) = \{\{1\}, \{3\}\}. \end{cases} \quad (B.20) \\ 1491 \\ 1492 \\ 1493 \\ 1494 \\ 1495$$

1496 The particular solution (also the maximal unique solution) given by Lemma 10 and Corollary 1 is:

$$1497 \quad D = \{1, 2, 3, 4\}, \quad (B.21) \\ 1498$$

1499 where 1 and 3 are coloops, and 2 and 4 lead to the new circuits in  $Q$ .

1500 The particular solutions given by Corollary 2 are:

$$1503 \quad \begin{aligned} \text{minimum}(\text{diffcc}(Q, \alpha)) &:= \text{minimum}(\text{cocircuits}(Q) \setminus \text{cocircuits}(Q_{:, \{\beta, \gamma\}})) \\ 1504 &= \text{minimum}(\{\{1\}, \{3\}, \{2, 4\}\} \setminus \{\{1\}, \{3\}\}) \\ 1505 &= \text{minimum}(\{\{2, 4\}\}), \\ 1506 &= \{\{2, 4\}\}. \end{aligned} \quad (B.22) \\ 1507$$

1508 In total, there are four possible columns that can replace  $Q_{:, \alpha}$  without changing the matroid:

$$1510 \quad \text{colaug}(Q, \alpha) = \{\{2, 4\}, \{1, 2, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}. \quad (B.23) \\ 1511$$

1512 For example, choose  $D = \{1, 2, 4\} \in \text{colaug}(Q, \alpha)$ , one may verify that

1512  
 1513  
 1514  
 1515  
 1516  
 1517  
 Let  $Q' = \begin{bmatrix} \alpha & \beta & \gamma \\ 1 & \text{X} & \times & 0 \\ 2 & \text{X} & 0 & 0 \\ 3 & \text{0} & \times & \times \\ 4 & \text{X} & 0 & 0 \end{bmatrix}$ , still we have  $\text{bases}(Q') = \text{bases}(Q) = \{\{1, 2, 3\}, \{1, 3, 4\}\}$ .  
 1518  
 1519  
 1520  
 1521  
 1522  
 Consider the case with  $x = \beta$ . The remaining columns are:  
 1523  
 1524  
 1525  
 1526  
 1527  
 1528  

$$Q_{:, \{\alpha, \gamma\}} = \begin{bmatrix} \alpha & \gamma \\ 1 & 0 & 0 \\ 2 & \times & 0 \\ 3 & \times & \times \\ 4 & \times & 0 \end{bmatrix}, \quad \text{with } \begin{cases} \text{bases}(Q_{:, \{\alpha, \gamma\}}) = \{\{2, 3\}, \{3, 4\}\}, \\ \text{circuits}(Q_{:, \{\alpha, \gamma\}}) = \{\{1\}, \{2, 4\}\}, \\ \text{cocircuits}(Q_{:, \{\alpha, \gamma\}}) = \{\{3\}, \{2, 4\}\}. \end{cases} \quad (\text{B.25})$$

1529 So, the maximal solution (Lemma 10 and Corollary 1) is:  $D = \{1, 3\}$ .  
 1530  
 1531 The minimal solutions (Corollary 2) are:  $\text{minimum}(\text{diffcc}(Q, \beta)) = \{\{1\}\}$ .  
 1532  
 1533 And all the possible solutions are:  $\text{colaug}(Q, \beta) = \{\{1\}, \{1, 3\}\}$ .  
 1534

1535 Consider the case with  $x = \gamma$ . The remaining columns are:  
 1536  
 1537  
 1538  
 1539  
 1540  
 1541  

$$Q_{:, \{\alpha, \beta\}} = \begin{bmatrix} \alpha & \beta \\ 1 & 0 & \times \\ 2 & \times & 0 \\ 3 & \times & \times \\ 4 & \times & 0 \end{bmatrix}, \quad \text{with } \begin{cases} \text{bases}(Q_{:, \{\alpha, \beta\}}) = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{3, 4\}\}, \\ \text{circuits}(Q_{:, \{\alpha, \beta\}}) = \{\{2, 4\}, \{1, 2, 3\}, \{1, 3, 4\}\}, \\ \text{cocircuits}(Q_{:, \{\alpha, \beta\}}) = \{\{1, 3\}, \{1, 2, 4\}, \{2, 3, 4\}\}. \end{cases} \quad (\text{B.26})$$

1543 So, the maximal solution (Lemma 10 and Corollary 1) is:  $D = \{1, 3\}$ .  
 1544  
 1545 The minimal solutions (Corollary 2) are:  $\text{minimum}(\text{diffcc}(Q, \gamma)) = \{\{1\}, \{3\}\}$ .  
 1546 And all the possible solutions are:  $\text{colaug}(Q, \beta) = \{\{1\}, \{3\}, \{1, 3\}\}$ .  
 1547  
 1548  
 1549

1550 So far, we have introduced the definitions about “matroid-preserving column augmentations”, and  
 1551 have provided particular ways to construct both the unique maximal solution and the set of minimal  
 1552 solutions. Then, starting from these particular solutions, or starting from any solution, how can we  
 1553 span to the whole solution set? This is answered by the following result.

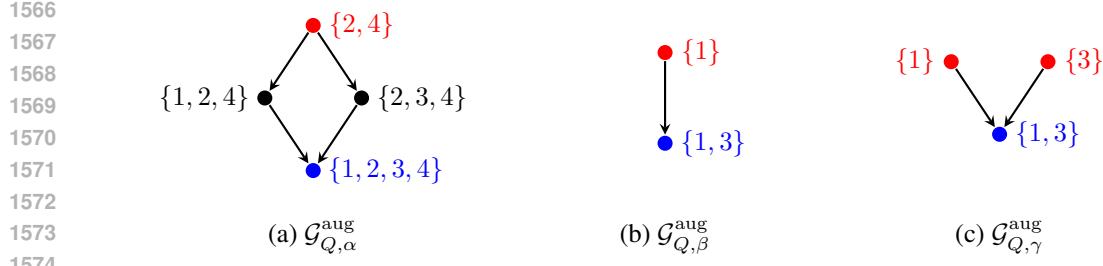
1554 We now present the structure among all column augmentations, which describes how the whole  
 1555 solutions can be traversed, and is thus important to our result about equivalence class traversal. In  
 1556 particular, any two solutions can reach each other by a sequence of “edge additions/deletions”.  
 1557

1558 **Lemma 12 (The whole column augmentations can be traversed by edge additions/deletions).**  
 1559 For any matrix  $Q \in \{0, 1\}^{m \times n}$  and a column index  $x \in [n]$ , we define a digraph termed  $\mathcal{G}_{Q, x}^{\text{aug}}$ , which  
 1560 is a Hasse diagram with vertices being elements of  $\text{colaug}(Q, x)$ , and edges being:

1561  
 1562  $D_i \rightarrow D_j \in \mathcal{G}_{Q, x}^{\text{aug}} \iff D_i \subsetneq D_j \text{ with } |D_j \setminus D_i| = 1, \quad \forall D_i, D_j \in \text{colaug}(Q, x).$  (B.27)  
 1563

1564 Then, this digraph is weakly connected.

1565 We illustrate Lemma 12 by recalling Example 3:



1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619

Figure 4: Example Hasse diagrams (defined in Lemma 12) over the solution sets of matroid-preserving column augmentations. Instances from the earlier Example 3 are used. In each diagram, the root vertices, corresponding to the minimal solutions (see Corollary 2) are highlighted in red, while the leaf vertex, corresponding to the unique maximal solution (see Corollary 1) are highlighted in blue.

*Proof of Lemma 12.* Let

$$D = \{i \in \{1, \dots, m\} \mid \forall C \in \text{circuits}(Q) : i \in C \Rightarrow C \setminus \{i\} \notin \text{Ind}(Q_{:, [n] \setminus \{x\}})\}. \quad (\text{B.28})$$

From Lemma 10, we know  $D \in \text{colaug}(Q, x)$ .

Let  $D' \in \text{colaug}(Q, x)$ , then  $D' \subseteq D$ , because if there is  $d' \in D'$  with  $d' \notin D$ , then there exists a circuit  $C$  in  $Q$  with  $d' \in C$  such that  $C \setminus \{d'\}$  has a partial transversal omitting the column  $x$ . This partial transversal may be extended to  $C$  by sending  $d'$  to the column  $x$ , which then can be extended to a basis  $B_C \supseteq C$  in the transversal matroid represented by  $(Q_{:, [n] \setminus \{x\}} \mathbb{1}_{D'})$ . But  $Q$  cannot have a basis that contains one of its circuits, which implies that  $D' \notin \text{colaug}(Q, x)$ . So  $D$  is the maximal element of  $\text{colaug}(Q, x)$ .

Let  $D' \in \text{colaug}(Q, x)$  with  $D' \neq D$  and let  $d \in D \setminus D'$ . Let  $B \in \text{bases}(Q)$ , then  $B \in \text{bases}((Q_{:, [n] \setminus \{x\}} \mathbb{1}_{D'}))$ . The maximal partial transversal  $\phi$  that witnesses the independence of  $B$  with respect to  $(Q_{:, [n] \setminus \{x\}} \mathbb{1}_{D'})$  also witnesses the independence of  $B$  with respect to  $(Q_{:, [n] \setminus \{x\}} \mathbb{1}_{D' \cup \{d\}})$ . So we have

$$\text{bases}(Q) = \text{bases}((Q_{:, [n] \setminus \{x\}} \mathbb{1}_{D'})) \subseteq \text{bases}((Q_{:, [n] \setminus \{x\}} \mathbb{1}_{D' \cup \{d\}})). \quad (\text{B.29})$$

Now, let  $B \in \text{bases}((Q_{:, [n] \setminus \{x\}} \mathbb{1}_{D' \cup \{d\}}))$ . The maximal partial transversal witnessing  $B$  with respect to  $(Q_{:, [n] \setminus \{x\}} \mathbb{1}_{D' \cup \{d\}})$  is also a maximal partial transversal with respect to  $(Q_{:, [n] \setminus \{x\}} \mathbb{1}_D)$ , so  $B \in \text{bases}((Q_{:, [n] \setminus \{x\}} \mathbb{1}_D)) = \text{bases}(Q)$ . Therefore,

$$\text{bases}((Q_{:, [n] \setminus \{x\}} \mathbb{1}_{D' \cup \{d\}})) = \text{bases}(Q), \text{ and } D' \cup \{d\} \in \text{colaug}(Q, x). \quad (\text{B.30})$$

Hence, for every  $D_0, D_1 \in \text{colaug}(Q, x)$  there is a directed path to  $D$  which gives

$$D_0 \rightarrow \dots \rightarrow D \leftarrow \dots \leftarrow D_1, \quad (\text{B.31})$$

Therefore,  $\mathcal{G}_{Q,x}^{\text{aug}}$  is weakly connected.  $\square$

### B.3.3 FROM ONE COLUMN AUGMENTATION TO MULTIPLE COLUMNS' JOINT AUGMENTATION

We have now shown how one can obtain particular solutions or traverse all solutions to a single column augmentation. In what follows, we shift from one column augmentation to multiple column augmentation, which directly relates to our final graphical criterion to be shown in next section: we need to augment the whole  $X$  columns, identifying their outgoing edges.

Interestingly, this seemingly combinatorially complex satisfiability problem can be decomposed locally, that is, it suffices to satisfy each singleton column augmentation independently, shown below.

1620  
1621 **Lemma 9 (Reducing all union equivalence checks to singleton checks).** Let  $Q, H \in \{0, 1\}^{m \times n}$   
1622 be two binary matrices with columns partitioned as  $[n] = L \cup X$  for a fixed  $L$ . Then, the condition  
1623

$$\text{bases}(Q_{:,L \cup \mathbf{x}}) = \text{bases}(H_{:,L \cup \mathbf{x}}), \quad \forall \mathbf{x} \subseteq X, \quad (\text{A.22})$$

1624 holds, if and only if the condition  
1625

$$\begin{cases} \text{bases}(Q_{:,L}) = \text{bases}(H_{:,L}), \text{ and} \\ \text{bases}(Q_{:,L \cup \{X_i\}}) = \text{bases}(H_{:,L \cup \{X_i\}}), \quad \forall X_i \in X, \end{cases} \quad (\text{A.23})$$

1626 holds.  
1627

1628 *Proof of Lemma 9.* Clearly, condition A.23 is a special case of condition A.22 with the choices  
1629  $\mathbf{x} \in \{\emptyset, \{X_1\}, \dots, \{X_k\}\}$ , thus if A.22 holds, then so does A.23.  
1630

1631 If A.22 does not hold, then there is some  $\mathbf{x} \subseteq X$  such that  $\text{bases}(Q_{:,L \cup \mathbf{x}}) \neq \text{bases}(H_{:,L \cup \mathbf{x}})$ . W.l.o.g.  
1632 we may assume that there is some  $B \in \text{bases}(Q_{:,L \cup \mathbf{x}})$  with  $B \notin \text{bases}(H_{:,L \cup \mathbf{x}})$ .  
1633

1634 **If  $|\mathbf{x}| \leq 1$ , then A.23 clearly does not hold.**  
1635

1636 **Now assume that  $|\mathbf{x}| > 1$ .** Choose  $B \in \text{bases}(Q_{:,L \cup \mathbf{x}}) \setminus \text{bases}(H_{:,L \cup \mathbf{x}})$  and a partial transversal  
1637  $\phi: B \rightarrow L \cup \mathbf{x}$  for  $Q_{:,L \cup \mathbf{x}}$  such that  $\delta := |\{b \in B \mid H_{b,\phi(b)} = 0\}|$  is minimal. Due to the minimality  
1638 of  $\delta$  (may be obtained via basis exchange), there is exactly one  $b \in B$  such that  $H_{b,\phi(b)} = 0$ . Let  
1639

$$B' = \{b' \in B \mid \phi(b') \in L \cup \{\phi(b)\}\}, \quad (\text{B.32})$$

1640 then  $B'$  is a basis of  $Q_{:,L \cup \{\phi(b)\}}$ , but  $B'$  is not a basis of  $H_{:,L \cup \{\phi(b)\}}$ , shown below:  
1641

1642 Assume that  $B'$  is a basis of  $H_{:,L \cup \{\phi(b)\}}$ , then there is a partial transversal  $\psi: B' \rightarrow L \cup \{\phi(b)\}$ .  
1643 Construct  
1644

$$\phi': B \rightarrow H_{:,L \cup \mathbf{x}} \quad (\text{B.33})$$

1645 such that  
1646

$$\phi'(b') = \begin{cases} \psi(b') & \text{for } b' \in B', \\ \phi(b') & \text{for } b' \in B \setminus B'. \end{cases} \quad (\text{B.34})$$

1647  $\phi'$  is a partial transversal, because  
1648

$$\phi[B \setminus B'] \cap (L \cup \{\phi(b)\}) = \emptyset, \quad (\text{B.35})$$

1649 due to the definition of  $B'$ . Thus if  $\phi'(b_0) = \phi'(b_1)$ . Then:  
1650

1651 1° Either  $\{b_0, b_1\} \subseteq B'$ : in this case,  $\phi'(b_0) = \psi(b_0) = \psi(b_1) = \phi'(b_1)$  implies  $b_0 = b_1$ ;  
1652 2° Otherwise we have  $\{b_0, b_1\} \subseteq B \setminus B'$ , and then  $\phi'(b_0) = \phi(b_0) = \phi(b_1) = \phi'(b_1)$  implies  
1653  $b_0 = b_1$ .  
1654

1655 But then  $\phi'$  witnesses that  $B$  is a basis of  $H_{:,L \cup \mathbf{x}}$ , contradicting the original assumption. Thus  
1656  $\text{bases}(Q_{:,L \cup \{\phi(b)\}}) \neq \text{bases}(H_{:,L \cup \{\phi(b)\}})$  and A.23 does not hold, too.  
1657

1658 We have then finished proof to Lemma 9.  $\square$   
1659

#### 1660 B.4 PROOFS OF THE GRAPHICAL CRITERION AND TRANSFORMATIONAL CHARACTERIZATION

1661 We first note that the graphical criterion (Theorem 2) is a direct consequence of Lemma 9, that is,  
1662 instead of checking for bases of all subsets  $\mathbf{x} \subseteq X$ , we only need to check for bases for each singleton  
1663  $X_i \in X$ . Since Lemma 9 is already proved above, in this section, we focus on the proof of the  
1664 transformational characterization (Theorem 3).  
1665

1674  
1675 **Lemma 7 (Admissible edge additions/deletions).** Let  $(\mathcal{G}, X)$  be an irreducible model. For any  
1676 edge  $V_i \rightarrow V_j$  not currently in  $\mathcal{G}$ , adding it to  $\mathcal{G}$  preserves equivalence on  $X$  if and only if:  
1677

$$r_{\mathcal{G}}(V_i \text{ 's nonchildren} \setminus \{V_j\}, L \setminus \{V_i\}) < r_{\mathcal{G}}(V_i \text{ 's nonchildren}, L \setminus \{V_i\}), \quad (20)$$

1678 where  $V_i$  's nonchildren denotes  $V(\mathcal{G}) \setminus \text{ch}_{\mathcal{G}}(V_i) \setminus \{V_i\}$ , i.e., zero entries in support column  $Q_{:,V_i}^{(\mathcal{G})}$ .  
1679 Conversely, an edge can be deleted if and only if it can be re-added by this criterion.  
1680

1681 *Proof of Lemma 7.* Let us first prove a weaker version of this result, that is, without the permutation  
1682 part involved in checking equivalence (Lemma 5). Put formally, let  $\mathcal{H}$  be the digraph after altering an  
1683 edge  $V_i \rightarrow V_j$  in  $\mathcal{G}$ . We study the if and only if condition (in terms of this edge) for the following  
1684

$$r_{\mathcal{G}}(Z, Y) = r_{\mathcal{H}}(Z, Y) \quad \text{for all } Z \subseteq V(\mathcal{G}) \text{ and } L \subseteq Y \subseteq V(\mathcal{G}) \quad (B.36)$$

1685 to hold. According to Lemma 9, this condition holds if and only if a reduced version hold:  
1686

$$\text{bases}(Q_{:,L \cup \{V_i\}}^{(\mathcal{G})}) = \text{bases}(Q_{:,L \cup \{V_i\}}^{(\mathcal{H})}). \quad (B.37)$$

1687 That is, one only need to check whether a single transversal matroid is changed. Then, when can  
1688 an edge in a bipartite graph be altered while the transversal matroid induced by this bipartite graph  
1689 keeps unchanged? We show the condition by the following lemma.  
1690

1691 **Lemma 13 (When an edge in a bipartite graph can be altered without changing the transversal  
1692 matroid).** Let  $Q \in \{0, 1\}^{m \times n}$  be a binary support matrix. For any  $(V_j, V_i) \in [m] \times [n]$  such that  
1693  $Q_{V_j, V_i} = 0$ , define  $H \in \{0, 1\}^{m \times n}$  by  $H_{V_j, V_i} = 1$  and  $H_{z,y} = Q_{z,y}$  for all other entries. For  
1694 convenience, denote  $V_i$  's non-children in  $Q$  and column indices except for  $V_i$  by:  
1695

$$\begin{aligned} R &:= \{z \in [m] : Q_{z,V_i} = 0\}; \\ Y &:= [n] \setminus \{V_i\}. \end{aligned} \quad (B.38)$$

1696 Then, the following conditions are equivalent to each other:  
1697

1.  $\text{bases}(Q) = \text{bases}(H)$ ;
2.  $\text{bases}(Q_{R,:}) = \text{bases}(H_{R,:})$ ;
3.  $\text{mrank}(Q_{R,:}) = \text{mrank}(H_{R,:})$ ;
4.  $\text{mrank}(Q_{R \setminus \{V_j\}, Y}) < \text{mrank}(Q_{R,Y})$ , that is,  $V_j$  is a coloop among  $R$  in the transversal  
1700 matroid induced by  $Q_{R,Y}$ , and so removing it from ground set lowers the rank (by 1).  
1701

1702 *Proof of Lemma 13.* We first have two immediate observations. (i) By construction,  $Q_{R,\{V_i\}}$  is the  
1703 zero column, whereas  $H_{R,\{V_i\}}$  has a single 1 in row  $V_j$ . (ii) For any  $Z \subseteq [m]$  with  $V_j \notin Z$ , the  
1704 submatrices  $Q_{Z,:}$  and  $H_{Z,:}$  coincide, hence their matching ranks (and base behavior) coincide.  
1705

1706 We now prove the implications among the four conditions by  
1707

$$(1) \Rightarrow (2) \Rightarrow (3) \iff (4) \Rightarrow (2) \Rightarrow (1).$$

1708 (1)  $\Rightarrow$  (2). Trivial. Taking restrictions on ground sets preserves equality of matroids.  
1709

1710 (2)  $\Rightarrow$  (3). Trivial. Same matroids have the same ranks.  
1711

1712 (3)  $\iff$  (4). Let  $\nu := \text{mrank}(Q_{R,Y})$  and  $\nu' := \text{mrank}(Q_{R \setminus \{V_j\}, Y})$ . Note that  
1713

$$\text{mrank}(Q_{R,:}) = \text{mrank}(Q_{R,Y}) = \text{mrank}(H_{R,Y}) = \nu, \quad (B.39)$$

1714 because the column  $V_i$  is useless (full zero) for  $R$  in  $Q$ . In  $H$ , the only new edge incident to  $R$  is  
1715  $(V_i, V_j)$ ; therefore any matching on  $R$  in  $H$  is either:  
1716

- 1717 • a matching that *does not use* column  $V_i$ , hence has size at most  $\nu$ , or  
1718

1728 • a matching that *does use* the edge  $(V_i, V_j)$  and then matches the remaining  $R \setminus \{V_j\}$  into  $Y$ ,  
 1729 hence has size at most  $1 + \nu'$ .  
 1730

1731 Consequently,

$$\text{mrank}(H_{R,:}) = \max\{\nu, 1 + \nu'\}. \quad (\text{B.40})$$

1733 Thus  $\text{mrank}(H_{R,:}) = \text{mrank}(Q_{R,:})$  holds if and only if  $1 + \nu' \leq \nu$ , i.e.,  $\nu' < \nu$ , which is precisely  
 1734 (4). This proves (3)  $\iff$  (4).

1736 (4)  $\Rightarrow$  (2). Assume (4). In the transversal matroid  $\mathcal{M}$  induced by  $Q_{R,Y}$ , the inequality  
 1737  $\text{mrank}(Q_{R \setminus \{V_j\}, Y}) < \text{mrank}(Q_{R,Y})$  means that  $V_j$  is a *coloop* of  $\mathcal{M}$  (see Definition 7). A standard  
 1738 matroid identity for coloops states that for all  $Z \subseteq R \setminus \{V_j\}$ ,

$$\text{mrank}(Q_{Z \cup \{V_j\}, Y}) = \text{mrank}(Q_{Z,Y}) + 1. \quad (\text{B.41})$$

1741 Combining this with Equation (B.40) (applied now to *each*  $Z \subseteq R$ ) shows that adding the edge  
 1742  $(V_i, V_j)$  cannot change the matching rank of *any*  $Z \subseteq R$ ; so in particular, the bases on  $R$  is unchanged:  
 1743  $\text{bases}(Q_{R,:}) = \text{bases}(H_{R,:})$ .

1744 (2)  $\Rightarrow$  (1). For any  $Z \subseteq [m]$ , we write  $Z_R := Z \cap R$  and  $Z_{\text{out}} := Z \setminus R$ .

1747 • If a maximum matching of  $H_{Z,:}$  *does not use*  $(V_i, V_j)$ , then it is also a matching in  $Q_{Z,:}$ ,  
 1748 and the ranks agree.

1749 • If a maximum matching of  $H_{Z,:}$  *does use*  $(V_i, V_j)$ , then its restriction to  $Z_R$  is a maximum  
 1750 matching of  $H_{Z_R,:}$  that uses the column  $V_i$ . By (2) (which holds for all subsets of  $R$  as  
 1751 shown above), there exists a maximum matching of  $Q_{Z_R,:}$  of the *same* size that avoids  $V_i$ .  
 1752 Replacing the  $H$ -matching on  $Z_R$  by this  $Q$ -matching on  $Z_R$  (and keeping the  $Z_{\text{out}}$ -part  
 1753 unchanged) yields a matching of  $Q_{Z,:}$  of the same cardinality as the original one in  $H_{Z,:}$ .

1755 Hence  $\text{mrank}(Q_{Z,:}) = \text{mrank}(H_{Z,:})$  for all  $Z \subseteq [m]$ , which is equivalent to  $\text{bases}(Q) = \text{bases}(H)$ .

1757 All implications are proved, so the four conditions are equivalent. The result on deleting an edge is  
 1758 just the same as adding back this edge from the resulted graph.  $\square$

1760 The condition shown in Lemma 13 is exactly the condition we have in Lemma 7, and hence the  
 1761 weaker version without permutation (Equation (B.36)) is already proved.

1763 To prove the full version, we only need to show that when the condition in Equation (B.37) fails,  
 1764 then with any permutation they still cannot be rendered equivalent. This is straightforward, since  
 1765 with one edge difference, the independent sets  $\text{Ind}(Q_{:,L \cup \{V_i\}}^{(\mathcal{G})})$  and  $\text{Ind}(Q_{:,L \cup \{V_i\}}^{(\mathcal{H})})$ , if not equal,  
 1766 must admit a strict inclusion relation between them, so there is no way for these two matroids to be  
 1767 isomorphic.

1768 We have now finished the proof of Lemma 7.

$\square$

1773 **Theorem 3 (Transformational characterization of the equivalence class).** *Two irreducible models*  
 1774  $(\mathcal{G}, X)$  and  $(\mathcal{H}, X)$  *are equivalent if and only if*  $\mathcal{G}$  *can be transformed into*  $\mathcal{H}$ , *up to L-relabeling, via*  
 1775 *a sequence of admissible cycle reversals and edge additions/deletions, as defined in Lemmas 6 and 7.*

1777 *Here, “up to L-relabeling” means there exists a relabeling of L in  $\mathcal{H}$  yielding a digraph  $\mathcal{H}'$  such*

1778 *that  $\mathcal{G}$  reaches  $\mathcal{H}'$  via the sequence. Moreover, at most one cycle reversal is needed in this sequence.*

1779

1780 *Proof of Theorem 3.* The proof to this result for traversing the equivalence class for the whole class  
 1781 directly relates to the helpful lemmas we have shown in Appendix B.3, i.e., how the whole solution  
 set of column(s) augmentation is structured.

1782 Lemma 12 is core to our result: it shows that the whole space of satisfiable column augmentations  
 1783 can be traversed by applying sequences of “one-edge different” operations, and these operations  
 1784 are exactly the “admissible edge additions/deletions” we show in Lemma 7 (for edges from  $X$ ),  
 1785 and Lemma 13 (for edges from  $L$ ). From Lemma 12, we also have a way to traverse all bipartite graphs  
 1786 that realizes a given transversal matroid. This can be viewed as a generalization from single-column  
 1787 to multi-column augmentation:

1788 **Corollary 3 (Traverse all bipartite graphs that realize a transversal matroid).** *Let  $Q, H \in$   
 1789  $\{0, 1\}^{m \times n}$  be two binary matrices.  $Q$  and  $H$  induce a same transversal matroid, i.e.,  $\text{bases}(Q) =$   
 1790  $\text{bases}(H)$ , if and only if  $Q$  can reach  $H$  via a sequence of admissible edge additions/deletions defined  
 1791 in Lemma 13, followed by a column permutation. Moreover, similar to Corollary 1, among all  
 1792 matrices that can be reached from  $Q$  via sequences of edge additions/deletions, there exists a unique  
 1793 maximal matrix whose support is the union of supports of all these reachable matrices.*

1794 Corollary 3 directly relates to our traversal on the  $Q_{:,L}^{(\mathcal{G})}$  part. But it is worth noting that unlike the  
 1795 independent decomposition of column augmentations for each  $X_i$ , here the edge additions/deletions  
 1796 have to be operated within the whole matrix space. We cannot simply run column augmentation for  
 1797 each  $L_i$  and take the Cartesian product. To see this, let  $Q = [[1, 1]]$  with columns  $\alpha, \beta$ . Obviously,  
 1798  $\text{colaug}(Q, \alpha) = \{\emptyset, \{1\}\}$ , and also  $\text{colaug}(Q, \beta) = \{\emptyset, \{1\}\}$ . However, we cannot take a product  
 1799 and let  $Q' = [[0, 0]]$ , which induces a matroid different from  $Q$ .

1800 Now, putting Lemma 12, Corollary 3, and Lemma 9 together, we have a way to traverse all digraphs  
 1801 that achieve the same matroids over the tower of all sources that include some latent vertices:

1802 **Corollary 4 (Traverse all digraphs that realize same matroid tower under latents).** *Let  $Q, H \in$   
 1803  $\{0, 1\}^{m \times n}$  be two binary matrices with columns partitioned as  $[n] = L \cup X$ . Then, the condition*

$$\text{bases}(Q_{:,L \cup \mathbf{x}}) = \text{bases}(H_{:,L \cup \mathbf{x}}), \quad \forall \mathbf{x} \subseteq X, \quad (\text{B.42})$$

1804 holds, if and only if the  $\text{bases}(Q_{:,L}) = \text{bases}(H_{:,L})$ , (graphical criterion in Corollary 3), and for all  
 1805  $X_i \in X$ ,  $\{i \in [m] : Q_{i,X_i} = 1\} \in \text{colaug}(H_{:,L \cup \{X_i\}}, X_i)$  (graphical criterion in Lemma 12).

1806 In other words,  $Q$  can reach  $H$  via a sequence of admissible edge additions/deletions, followed by a  
 1807 permutation only among the columns in  $L$ . Corollary 4 directly relates to our traversal on the  $Q^{(\mathcal{G})}$ .

1808 If we are to allow the equivalence up to row permutation, i.e., permuting the ground set as in Lemma 5,  
 1809 only a row permutation appended to the end of the operations in Corollary 4 is needed.

1810 Finally, a treatment to ensure nonzero diagonals for digraphs.

- 1811 Since in our case we need to exclude matrices with zero diagonals, this row permutation  
 1812 becomes the “at most one step” within the sequence (Theorem 3), instead of at the end.
- 1813 The  $L$ -relabeling part, however, can still be put at the end, since to relabel the  $L$  vertices in  
 1814 a digraph  $\mathcal{G}$ , it is to apply a permutation on the columns  $Q_{:,L}^{(\mathcal{G})}$  first, and then to apply the  
 1815 same permutation back on the rows  $Q_{L,:}^{(\mathcal{G})}$ . This operation still ensures the nonzero diagonals.  
 1816 This becomes the “up to  $L$ -relabeling” term in Theorem 3.

1817 We have now finished the proof of Theorem 3. □

## 1826 B.5 OTHER IMMEDIATE OR KNOWN RESULTS

1827 We omit the proofs of the remaining results occurred in this manuscript: some of them follow  
 1828 immediately from the already proved results, including Lemmas 1, 4 and 5, and the others are results  
 1829 shown by existing work, including Lemmas 2 and 6 and Theorem 1.

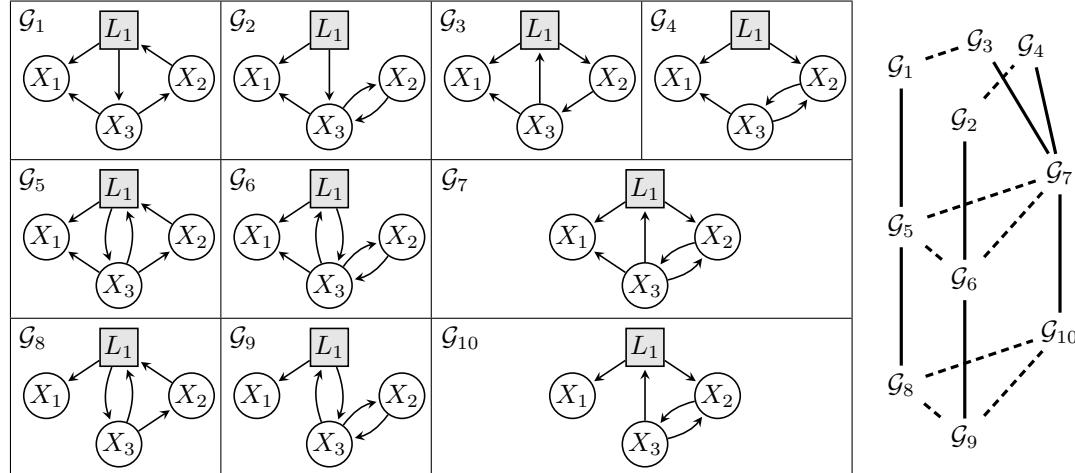
## 1836 C DISCUSSION

### 1838 C.1 SUMMARY: A SIDE-BY-SIDE COMPARISON BETWEEN PATH RANKS AND EDGE RANKS

1841 Table 1: A side-by-side comparison between path ranks and edge ranks.

| 1843 Aspect                                        | 1844 Path rank (Matrix rank)                                                                                                                                                         | 1845 Edge rank (Matching rank)                                                                                                                                                              |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1844 Intuition                                     | 1845 Algebraic independence                                                                                                                                                          | 1846 Combinatorial independence                                                                                                                                                             |
| 1845 Full rank of a $d \times d$ square matrix $M$ | 1846 $\text{rank}(M) = d \iff$ the determinant of $M$ is nonzero                                                                                                                     | 1847 $\text{mrank}(M) = d \iff$ the permanent of $M$ is nonzero                                                                                                                             |
| 1846 Graphical constraints in digraphs             | 1847 $\rho_G(Z, Y)$ , the maximum number of vertex-disjoint directed paths from $Y$ to $Z$ (Definition 3), equals the matrix rank of generic mixing submatrices $A_{Z, Y}$ (Lemma 2) | 1848 $r_G(Z, Y)$ , the size of the maximum bipartite matching from $Y$ to $Z$ via direct edges (Definition 4), equals the matching rank of the support submatrix $Q_{Z, Y}^{(G)}$ (Lemma 4) |
| 1847 Matroid representations                       | 1848 Strict gammoids in digraphs (Perfect, 1968)                                                                                                                                     | 1849 Transversal matroids in bipartite graphs (Ingleton & Piff, 1973)                                                                                                                       |
| 1848 Duality (Theorem 1)                           | 1849 $\min( Z ,  Y ) - \rho_G(Z, Y) =  V  - \max( Z ,  Y ) - r_G(V \setminus Y, V \setminus Z)$                                                                                      | 1850                                                                                                                                                                                        |

### 1859 C.2 ANOTHER EXAMPLE DISTRIBUTIONAL EQUIVALENCE CLASS



1878 Figure 5: Left: An example distributional equivalence class consisting of 10 digraphs. Right: 1879 Transitions among these digraphs, where solid edges indicate edge additions or deletions, and dashed 1880 edges indicate cycle reversals.

1881 We show another example distributional equivalence class in Figure 5, in addition to the Figure 3 1882 already shown in main text. The points of this example, different from those of Figure 3, are that: 1883

- 1884 1. Partitioned by cycle reversals (removing the dashed edges in the right of Figure 5), the classes 1885 connected by only edge additions/deletions (solid edges) are not necessarily isomorphic to 1886 each other. Here, there are 3, 3, 4 digraphs within each such class, respectively.
- 1887 2. To illustrate cases where cycles intersect.

1890  
1891

## C.3 A PRESENTATION OF THE EQUIVALENCE CLASS

1892  
1893  
1894  
1895

In the main text, we have presented both a graphical criterion to check for equivalence (Theorem 2) and a transformational characterization to traverse the entire equivalence class (Theorem 3). These results are analogous to the “same adjacencies and v-structures” and the “covered edge reversal (Meek conjecture)” in the fully observed, acyclic, Markov equivalence setting.

1896  
1897  
1898  
1899

However, note that in that classical setting, there is another familiar result, CPDAG, which serves as an informative presentation of the equivalence class. This naturally raises the question: can we construct an analogous presentation in the context of this work? We answer this affirmatively. In what follows, we outline how this presentation can be constructed step by step.

1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907

**Step 1. Identifiability of ancestral relations among observed variables.** As a preliminary observation, we first note that the ancestral relations among observed variables  $X$  are invariant across all equivalent digraphs (this follows from how admissible edge additions/deletions are defined, and the fact that cycle reversal does not alter the ancestral relations). Thus, presenting an arbitrary digraph in the equivalence class suffices to inform users the true ancestral relations among  $X$ . For applications such as experimental design involving observed variables, this alone is informative enough.

1908  
1909  
1910  
1911  
1912  
1913  
1914

**Step 2. Unique maximal digraph within the class.** We show that under each cycle-reversal configuration, there exists a unique maximal digraph in the equivalence class such that every equivalent digraph is a subgraph of it. We further provide an explicit construction of this maximal digraph (Corollary 1), without needing to enumerate all equivalent digraphs and then take the maximal one. Analogous to the “largest chain graph” in Frydenberg (1990), this maximal digraph can serve as a basis of the presentation, informing users which causal relations are *guaranteed to be absent*.

1915  
1916  
1917  
1918  
1919  
1920  
1921  
1922

**Step 3. Characterizing edges that must appear.** Building on the previous step, we also characterize edges that must be present in *all* equivalent digraphs. Again, these edges can be determined efficiently via a graphical condition (Corollary 2), without needing to enumerate all equivalent digraphs and then take the intersection. Note that it is an explicit construction, so iterative procedures (such as arrow propagation in Meek rules (Meek, 1995)) are not needed either. These edges can be visually highlighted on the basis maximal digraph, in analogous to the arrows in CPDAGs, or “visible edges” in PAGs (Zhang, 2008b). They inform users which causal relations *they can fully trust*.

1923  
1924

Such presentation is formally defined in Theorem 4, and examples of it are shown in Figure 6.

1925  
1926  
1927  
1928  
19291930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1940

Figure 6: Illustrative presentations of equivalence classes. **Left:** Presentation of equivalent digraphs  $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3$  under a same cycle-reversal configuration from Figure 3. The basis digraph shown is the unique maximal equivalent digraph (Step 2 above). In it, solid edges denote those that must appear in all equivalent digraphs, while dashed edges are those that can be removed (Step 3 above). One may use Corollaries 1 and 2 to check how they are determined. **Right:** A similar presentation for digraphs  $\mathcal{G}_3, \mathcal{G}_4, \mathcal{G}_7, \mathcal{G}_{10}$  from Figure 5. **Remark:** One might ask why we present the equivalence class separately for each cycle-reversal configuration rather than for the entire class. The reason is that taking the union over all digraphs in the entire class can, unlike within one configuration, yield a supergraph that is itself out of the equivalence class, potentially producing misleading interpretations. In fact, this separation only leads to more informative presentations, shown by Theorem 4 below.

1941  
1942  
1943

**Theorem 4 (Presentation of an equivalence class).** For an irreducible model  $(\mathcal{G}, X)$ , we construct a digraph whose vertices are  $V(\mathcal{G})$  and whose directed edges come in two types: solid and dashed. All edges are determined by Corollary 1, and among them the solid ones are determined by Corollary 2. We denote this digraph by  $CP(\mathcal{G})$ , echoing the sense of “complete partial” as in CPDAGs.

1944 For convenience, let  $\mathcal{E}(\mathcal{G})$  be the whole equivalence class, that is, the set of all digraphs  $\mathcal{H}$  on vertices  
 1945  $V(\mathcal{G})$  such that  $\mathcal{H} \stackrel{X}{\sim} \mathcal{G}$ . Let  $\mathcal{F}(\mathcal{G})$  denote the set of all digraphs reachable from  $\mathcal{G}$  via sequences of  
 1946 admissible edge addition/deletions as defined in Lemma 7. Clearly,  $\mathcal{F}(\mathcal{G}) \subseteq \mathcal{E}(\mathcal{G})$ .  
 1947

1948 Then, the presentation  $\text{CP}(\mathcal{G})$  enjoys the following properties:

1949 1.  $\text{CP}(\mathcal{G}) \in \mathcal{F}(\mathcal{G})$ ;  
 1950 2. For every  $\mathcal{H} \in \mathcal{F}(\mathcal{G})$ , the edge set of  $\mathcal{H}$  is a subset of the edge set of  $\text{CP}(\mathcal{G})$ ;  
 1951 3. The intersection of the edge sets of all  $\mathcal{H} \in \mathcal{F}(\mathcal{G})$  equals the solid edges of  $\text{CP}(\mathcal{G})$ ;  
 1952 4. For every  $\mathcal{H} \in \mathcal{E}(\mathcal{G})$ , let  $\text{CP}(\mathcal{H})$  be its own presentation. Then,  $\text{CP}(\mathcal{H})$  can be transformed  
 1953 into  $\text{CP}(\mathcal{G})$  via an L-relabel and a cycle reversal (alongside the solid/dashed edge types).  
 1954

1955 It is worth noting that a dashed edge in a presentation means that there exists at least one equivalent  
 1956 digraph without this edge. However, it does not imply that dashed edges can be arbitrarily removed  
 1957 without affecting equivalence: they have to obey the rank constraints. This is in a similar spirit of  
 1958 undirected edges in a CPDAG: an undirected edge means that there exist at least two equivalent  
 1959 DAGs who have different orientations on this edge. However, it does not imply that undirected edges  
 1960 can be arbitrarily oriented: there are additional constraints like no new v-structures, no cycles, etc.  
 1961

1962 We are not sure whether such additional constraints can, or should, be also incorporated into the  
 1963 presentation, or at least summarized as a set of rules like Meek rules (especially given the availability  
 1964 of an interactive traversal tool). But in any case, we put it here as a possible future step:  
 1965

1966 **Step 4. Quantifying bounds on edges between vertex groups.** Extending step 3, one may describe  
 1967 bounds on the number of edges between vertex groups (e.g., “at least 2 and at most 4 edges from  
 1968 vertices  $Y$  to vertices  $Z$ ”). Such constraints may be presented like “underlined bows” in cyclic  
 1969 digraphs (Richardson, 1996) or “hyperedges” in mDAGs (Evans, 2016). We have not developed this  
 1970 result (though we hypothesize that they likely also follow from Theorem 2), because we are not sure  
 1971 how much practical informativeness it can offer to users.  
 1972

1973 Lastly, we also list the presentation of prior knowledge as a future step.  
 1974

1975 **Step 5. Incorporating additional prior knowledge.** As with other equivalence presentations,  
 1976 prior knowledge such as acyclicity, stable cycles, or certain causal orderings can further refine the  
 1977 equivalence class and its presentation (Perković et al., 2017). While we have not explored this part  
 1978 either, it motivates future theoretical developments, such as interventional equivalence classes, and  
 1979 parameter identifiability results based on the equivalence class established in this work.  
 1980

#### 1981 C.4 EXAMPLES OF NON-RANK CONSTRAINTS IN MIXING MATRICES

1982 In Lemma 3 we have shown that path rank equivalence in mixing matrices sufficiently lead to  
 1983 distributional equivalence. However, this does not imply that there are no other constraints in mixing  
 1984 matrices. As an analogy, in the causally sufficient linear Gaussian system, CI equivalence (zero  
 1985 partial correlations in covariance matrices) sufficiently lead to distributional equivalence, but there  
 1986 are still other constraints, like the Tetrad constraints in the covariance matrices.  
 1987

1988 Below we give an example of non-rank constraints in mixing matrices.  
 1989

1990 Consider a digraph  $\mathcal{G}$  with 4 vertices:  
 1991



1998 Its mixing matrix is:  
 1999

$$2000 \quad 1 \quad 2 \quad 3 \quad 4 \\ 2001 \quad 1 \quad bc \quad c \quad ce \\ 2002 \quad a \quad 1 - cde \quad ac \quad ace \\ 2003 \quad ab + de \quad b \quad 1 \quad e \\ 2004 \quad d \quad bcd \quad cd \quad 1 - abc$$

$$A = \frac{1}{1 - abc - cde} \times \frac{1}{1 - abc} \quad (C.1)$$

2005 We can verify the following constraint holds:  
 2006

$$2007 \quad A_{2,4} A_{3,2} A_{4,1} - A_{2,1} A_{3,4} A_{4,2} \\ 2008 \quad = ace \times b \times d - a \times e \times bcd \\ 2009 \quad = 0.$$

2010 Just like rank constraints, this constraint is also immune to arbitrary column scaling, that is, it also  
 2011 survives in the OICA estimated mixing matrix. However, this is not a rank constraint.  
 2012

2013 One may also verify some other non-rank constraints in this  $A$ , for example,  
 2014

$$2015 \quad A_{2,2} A_{3,4} A_{4,1} + A_{2,4} A_{3,1} A_{4,2} + A_{2,1} A_{3,2} A_{4,4} \\ 2016 \quad = 2 A_{2,1} A_{3,4} A_{4,2} - A_{2,2} A_{3,1} A_{4,4},$$

2017 and  
 2018

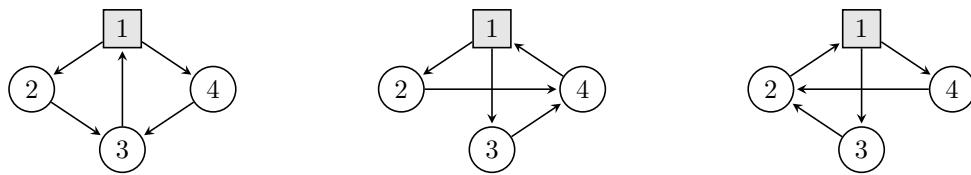
$$2019 \quad A_{2,4}^2 A_{3,1} A_{3,2} A_{4,2} + A_{2,1} A_{2,2} A_{3,4}^2 A_{4,2} + A_{2,1} A_{2,4} A_{3,2}^2 A_{4,4} \\ 2020 \quad = 2 A_{2,1} A_{2,4} A_{3,2} A_{3,4} A_{4,2} + A_{2,2} A_{2,4} A_{3,1} A_{3,2} A_{4,4},$$

2022 both of which are also immune to column scaling.  
 2023

2024 We are not sure whether there are any specific geometry interpretations underlying these equality  
 2025 constraints. These examples are brutal-force searched from ideal elimination.  
 2026

2027 We notice that these equality constraints occur among the  $\{2, 3, 4\}$  rows, meaning that when vertex  
 2028  $\{1\}$  is latent and  $\{2, 3, 4\}$  observed, these constraints will also appear in the OICA mixing  
 2029 matrix. Fortunately, with Lemma 3, we know rank constraints alone can determine the distributional  
 2030 equivalence, so the equivalence among these constraints as well.  
 2031

2032 For example, one may verify that these constraints also occur in all 3 digraphs in the equivalence  
 2033 class, shown below, while this equivalence class is obtained only by the rank-based criterion (which  
 2034 is trivial in this case since only cycle reversals are applied).  
 2035



2040 Note that the nice result of Lemma 3 only occurs at the linear non-Gaussian case, where path ranks  
 2041 are one-sided, so that it can be directly dualized to a transversal matroid that can be represented by  
 2042 vectors that lie in the faces of some simplex.  
 2043

2044 In the linear Gaussian case, with the two-sided path ranks in covariance matrices, there can be  
 2045 more constraints. In that setting, however, rank constraints equivalence do not necessarily imply  
 2046 distributional equivalence: there can be other unmatched equality constraints, e.g., the Pentad, Hexad  
 2047 constraints and beyond (Drton et al., 2007), let alone other inequality constraints.  
 2048

## C.5 RELATED WORK

2049 **Equivalence characterizations** We first review various approaches to characterize equivalence  
 2050 of causal models. At the same time, we summarize the multiple results developed in this work and  
 2051 situate them within this broader landscape of related literature.

2052  
2053  
2054  
2055  
2056  
2057  
2058  
2059  
2060  
2061  
2062  
2063  
2064  
2065  
2066  
2067  
2068  
2069  
2070  
2071  
2072  
2073  
2074  
2075  
2076  
2077  
2078  
2079  
2080  
2081  
2082  
2083  
2084  
2085  
2086  
2087  
2088  
2089  
2090  
2091  
2092  
2093  
2094  
2095  
2096  
2097  
2098  
2099  
2100  
2101  
2102  
2103  
2104  
2105

Table 2: A side-by-side overview of representative works on equivalence characterizations across different settings using different approaches. The final column summarizes this work’s contributions.

| Settings             | Markov equivalence in fully observed acyclic graphs                                                                                                                                   | Markov equivalence in acyclic graphs with latents                                                                                                                                                                          | Distributional equivalence in LiNG models with latents and cycles (this work)                                                 |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Structural           | <b>Level 1</b> “Same d-separations”                                                                                                                                                   | “Same d-separations”                                                                                                                                                                                                       | “Same path/edge ranks up to permutation” (Lemmas 3 and 5)                                                                     |
|                      | <b>Level 2</b> “Same adjacencies and minimal complexes/v-structures” (Frydenberg, 1990; Verma & Pearl, 1991)                                                                          | “Same FCI outputs” (Spirtes & Verma, 1992); “Same MAG adjacencies, v-structures, and colliders on discriminating paths” (Spirtes & Richardson, 1996; Richardson & Spirtes, 2002); “Same head and tails” (Hu & Evans, 2020) | “Same bases in children for $L$ itself and with each singleton $X_i$ , up to permutation” (Theorem 2)                         |
|                      | <b>Level 3</b> “Maximal (deflagged) chain graphs; essential graphs” (Frydenberg, 1990; Andersson et al., 1997; Roverato et al., 2006); “CPDAGs” (Spirtes & Glymour, 1991; Meek, 1995) | “Arrowhead completeness” (Ali et al., 2005); “Full completeness of PAG orientations” (Zhang, 2008a); With background knowledge (still incomplete; (Andrews et al., 2020; Venkateswaran & Perković, 2024))                  | “Unique maximal equivalent graph with edges that must always appear, up to cycle reversal” (Theorem 4)                        |
| Transformational     | “Covered edge reversal (Meek conjecture)” (Chickering, 1995; Meek, 1997; Chickering, 2002); “Weakly covered edge reversal” (Markham et al., 2022) for unconditional equivalence       | “Covered edge reversal” (Zhang & Spirtes, 2005; Tian, 2005; Ogarrio et al., 2016; Claassen & Bucur, 2022)                                                                                                                  | “Admissible edge additions/deletions and cycle reversals” (Theorem 3)                                                         |
| Traversal algorithms | DAGs traversal within one CPDAG (Meek, 1995; Chickering, 1995; Wienöbst et al., 2023); CPDAGs traversal (Steinsky, 2003; Chen et al., 2016)                                           | MAGs traversal within one PAG (Wang et al., 2024; 2025)                                                                                                                                                                    | BFS/DFS by admissible transformations (Theorem 3), with additional parallel speedup by column decomposition (Lemmas 9 and 12) |

2100  
2101  
2102  
2103  
2104  
2105  
In general, approaches to characterize equivalence can be categorized into three types:

1. **Structural characterizations**, which provide conditions for determining equivalence between given graphs, and give rise to summary presentations. However, they do not directly lead to equivalence class traversal methods. They can be further stratified by their complexity, informativeness, or purpose, as follows:

- **Level 1.** Graphical conditions necessary and sufficient for determining equivalence, but more as definitions than practical criteria; usually require combinatorial complexities.
- **Level 2.** Practical graphical criteria for determining equivalence; still necessary and sufficient, but more efficient than Level 1.
- **Level 3.** Sound and complete conditions or presentations that summarize the equivalence class. While Level 2 criteria efficiently determine equivalence, they do not fully capture what can be identified; Level 3 addresses this gap. Level 3 can also be used for determining equivalence, but it will be less efficient than Level 2.

2. **Transformational characterizations**, which provide natural ways for traversing the equivalence class, and are useful for developing score-based algorithms. However, as a complement, they are not suited for directly determining equivalence between given graphs, or for developing summary presentations to the equivalence class.

3. **Traversal algorithms**, for enumerating, sampling, or counting elements of the equivalence class, where transformational characterizations are usually helpful.

We present in Table 2 a side-by-side overview of representative prior works and this work across these approaches in different settings. This unified view may help to better understand the contributions of this work, and as well to clarify the methodological implications among these approaches.

There is also a wide range of additional work characterizing equivalences under many other settings, which are not put in Table 2 due to space limit. These include efforts to develop Markov properties and establish Markov equivalence in fully observed models with cycles, such as in linear Gaussian settings (Richardson, 1996; Claassen & Mooij, 2023), discrete settings (Pearl & Dechter, 1996), and general nonlinear settings (Spirtes, 1994; Forré & Mooij, 2017; Mooij & Claassen, 2020), as well as nonlinear settings with latent variables and selection bias (Yao & Mooij, 2025). The distributional equivalence of fully observed linear Gaussian cyclic models has been studied in Ghassami et al. (2020); Drton et al. (2025b). Nonparametric equivalence with latent variables has also been characterized in (Evans, 2018; Markham & Grosse-Wentrup, 2020; Jiang & Aragam, 2023; Richardson et al., 2023). From a method view, transformational characterizations have gained increasing attention recently, including (Ghassami et al., 2020; Markham et al., 2022; Johnson & Semnani, 2025; Améndola et al., 2025).

Below, we then provide a more comprehensive review of the relevant literature on latent-variable causal discovery, in particular those under the linear non-Gaussian models (Shimizu et al., 2006).

**Parametric settings for latent-variable causal discovery** A prosperous line of statistical tools beyond conditional independencies have been developed. These include rank constraints (Sullivant et al., 2010; Spirtes et al., 2000) and more general equality constraints (Drton, 2018) in the linear Gaussian setting; and high-order moment constraints (Xie et al., 2020; Adams et al., 2021; Robeva & Seby, 2021; Dai et al., 2022; 2024; Chen et al., 2024a), which exploit non-Gaussianity for identifiability. In addition to these, matrix decomposition methods (Anandkumar et al., 2013), copula-based constraints (Cui et al., 2018), and mixture oracles (Kivva et al., 2021) were also developed.

**Algorithms for latent-variable causal discovery** Building on these statistical tools, many latent variable causal discovery algorithms have been proposed. Many of them fall within the constraint-based framework, by using CI tests and algebraic constraints to infer causal relations. Examples include those based on rank or tetrad constraints (Silva et al., 2003; 2006; Silva & Scheines, 2004; Choi et al., 2011; Kummerfeld & Ramsey, 2016; Huang et al., 2022; Dong et al., 2024; 2025). Recent efforts have also attempted to formalize score-based methods for latent-variable causal discovery (Jabbari et al., 2017; Ng et al., 2024).

**Linear non-Gaussian models** Thanks to the strong identifiability results given by OICA, the linear non-Gaussian models have received much attention for causal discovery with latent variables or cycles: (Améndola et al., 2023; Salehkaleybar et al., 2020; Wang & Drton, 2023; Maeda & Shimizu, 2020; Silva & Shimizu, 2017; Dai et al., 2024; Yang et al., 2022; 2024; Shimizu, 2022; Drton et al., 2025a; Liu et al., 2021; Schkoda et al., 2024; Tramontano et al., 2022; Rothenhäusler et al., 2015), together with those discussed in §1, and many more. Beyond structure learning, LiNG models also provide

benign conditions for many other tasks, including causal effect identification (Tchetgen Tchetgen et al., 2024; Kivva et al., 2023; Xie et al., 2022; Tramontano et al., 2024; 2025), model selection (Schkoda & Drton, 2025), covariate selection (Zhang & Wiedermann, 2024), experimental design (Sharifian et al., 2025), etc.

2164

2165

2166 Below, we also discuss how the results in this work, especially the edge rank tools and the motivation  
 2167 of a bipartite matching view, may be generalized to other parameter settings.

2168

2169

2170 For the linear Gaussian setting, existing results in the literature can be directly translated into our  
 2171 edge rank language. Unlike the non-Gaussian setting where the mixing matrix is identifiable, in the  
 2172 Gaussian setting, only the covariance matrix is available. The graphical characterization of covariance  
 2173 matrix ranks, known as “trek-separation,” has been established by Sullivant et al. (2010). Specifically,  
 2174 the concept of a bottleneck, which we term the “path rank” on the one-sided directed paths, is  
 2175 extended to the bottleneck along the two-sided directed paths, known as “treks”. Since the duality  
 2176 between path ranks and edge ranks hold universally in graphs regardless of the parametric setting,  
 2177 the existing characterization on trek-based path ranks can be directly translated into trek-based edge  
 2178 rank language. As for the technical roadmap, one may first note that the non-Gaussian equivalence  
 2179 condition we build in this work is necessary but not sufficient for the Gaussian setting. That is, two  
 2180 graphs that are equivalent in non-Gaussian models are guaranteed to remain equivalent in Gaussian  
 2181 models; however, graphs that are distinguishable under non-Gaussianity may collapse into the same  
 2182 equivalence class under Gaussianity. We see the closing of this gap as the most immediate future  
 2183 direction for extending our current work.

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

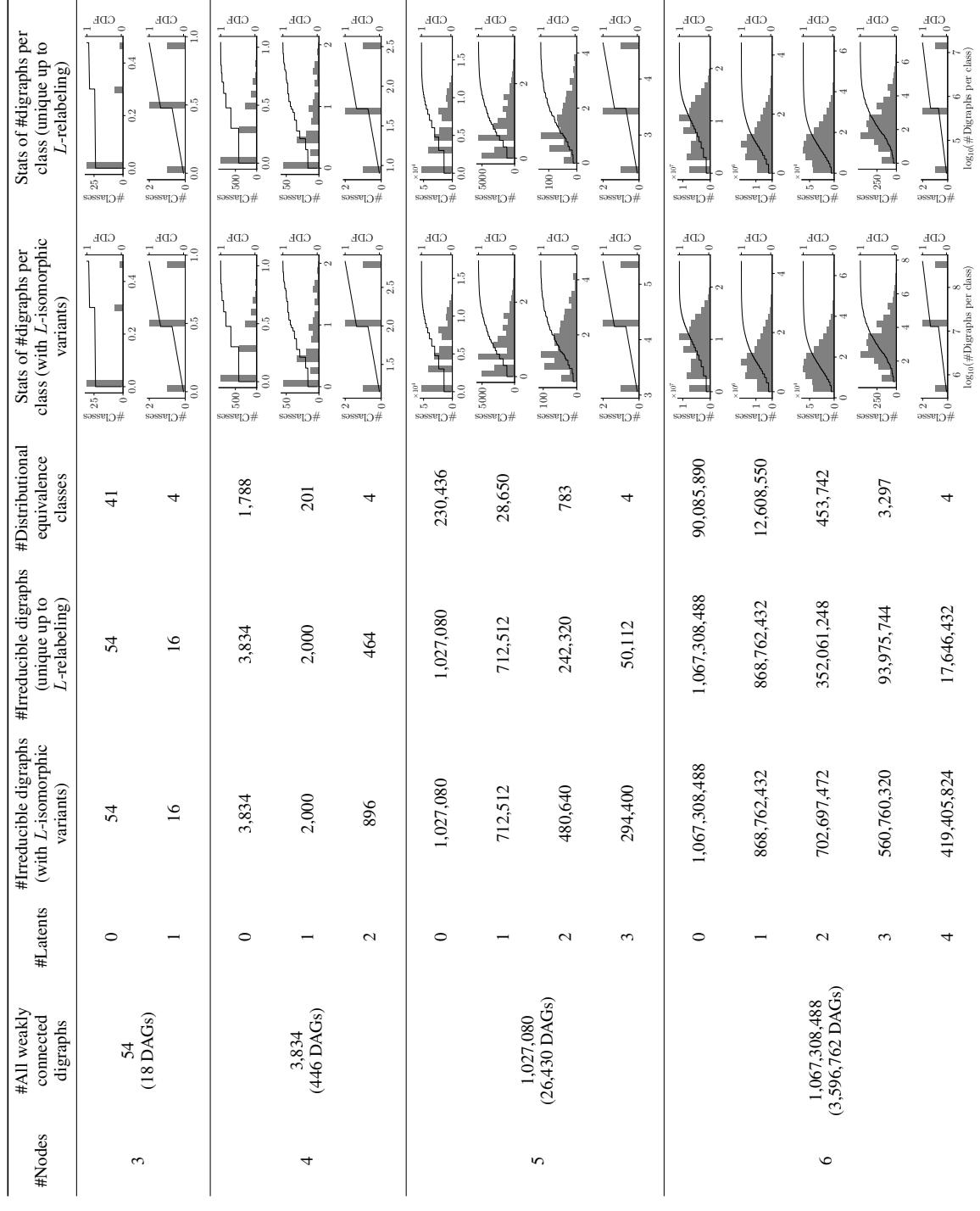
For the discrete setting, our results are likely generalizable as well. Several recent works have explored path ranks in graphs from discrete data (Gu & Xu, 2023; Chen et al., 2024b), where the algebraic counterpart becomes the tensor ranks in the contingency table. However, a precise graphical characterization, analogous to “trek-separation” in the Gaussian case above, has yet to be developed. That said, such a characterization is promising, since the linear Gaussian and discrete models behave similarly in many aspects. For example, both are closed under marginalization and conditionalization; both admit a correspondence between Markov and distributional equivalence, in both cyclic and acyclic cases (Geiger & Meek, 1996; Pearl & Dechter, 1996). Motivated by these parallels already noted in literature, we believe our results can also extend to the discrete setting, and will be directly applicable once the corresponding graphical characterization is developed.

For nonlinear or even nonparametric settings, theoretical generalization remains possible. When the model is partially linear and partially nonlinear, low-dimensional bottlenecks in the linear component remain directly observable through covariance ranks (Spirtes, 2013). When the model is fully nonlinear or even nonparametric, there also exists prior results on the identifiability of latent-variable models (Hu, 2008; 2017). Although the techniques differ, the underlying motivation remains closely related to ranks, particularly those in the Jacobian matrix. However, despite the theoretical meaningfulness, the practical estimation and reliable testing of these ranks remain an open challenge. This challenge can be echoed by viewing rank constraints as generalizations of conditional independence constraints. In linear models, conditional independencies correspond to low ranks in the covariance matrix and can be directed tested via Fisher’s Z test. In contrast, robust conditional independence tests in nonlinear settings are still under active development (Duong & Nguyen, 2024; Yang et al., 2025).

## 2214 D EVALUATION RESULTS

### 2217 D.1 QUANTIFYING THE SIZES OF EQUIVALENCE CLASSES

2218  
 2219  
 2220  
 2221 For different numbers of vertices  $n$  and latent vertices  $l$ , we report the total number of weakly connected graphs with  $n$  vertices, the  
 2222 subset that are irreducible when the first  $l$  vertices are latent (both with and without  $L$ -isomorphic variants), and the corresponding  
 2223 numbers of distributional equivalence classes they fall into. The final two columns present statistics on how irreducible digraphs (both  
 2224 with and without  $L$ -isomorphic variants) are distributed among those equivalence classes.  
 2225



2268 D.2 ASSESSING GLVLING ALGORITHM'S RUNTIME  
22692270 Table 4: Running time comparison between our glvLiNG algorithm and a mixed integer linear  
2271 programming (MILP) baseline for constructing digraphs that satisfy the rank constraints of oracle  
2272 OICA mixing matrices. Ground-truth graphs are generated from the Erdős–Rényi model with total  
2273 number of vertices  $n$  and average in-degree avgdeg, with  $\ell$  vertices randomly designated as latent.  
2274 Each entry reports the mean and standard deviation over 50 models (when completed); empty entries  
2275 indicate runs that did not finish within 10 minutes. All times are reported in seconds. Experiments  
2276 were run on an Apple M4 chip.  
2277

| $n$ | $\ell$ | avgdeg | MILP               | glvLiNG            | glvLiNG Phase 1    | glvLiNG Phase 2   |
|-----|--------|--------|--------------------|--------------------|--------------------|-------------------|
| 5   | 1      | 1      | $0.045 \pm 0.013$  | $0.015 \pm 0.005$  | $0.014 \pm 0.005$  | $0.001 \pm 0.000$ |
|     |        | 3      | $0.112 \pm 0.008$  | $0.020 \pm 0.002$  | $0.019 \pm 0.002$  | $0.001 \pm 0.000$ |
| 7   | 1      | 1      |                    | $0.101 \pm 0.045$  | $0.098 \pm 0.044$  | $0.002 \pm 0.000$ |
|     |        | 3      |                    | $0.169 \pm 0.024$  | $0.165 \pm 0.024$  | $0.004 \pm 0.000$ |
| 9   | 3      | 1      | $37.402 \pm 0.000$ | $0.048 \pm 0.013$  | $0.045 \pm 0.012$  | $0.003 \pm 0.001$ |
|     |        | 3      |                    | $0.083 \pm 0.014$  | $0.075 \pm 0.013$  | $0.007 \pm 0.001$ |
| 11  | 1      | 1      |                    | $0.691 \pm 0.304$  | $0.687 \pm 0.303$  | $0.004 \pm 0.001$ |
|     |        | 3      |                    | $1.129 \pm 0.191$  | $1.122 \pm 0.190$  | $0.007 \pm 0.001$ |
| 13  | 3      | 1      |                    | $0.319 \pm 0.091$  | $0.308 \pm 0.090$  | $0.009 \pm 0.001$ |
|     |        | 3      |                    | $0.667 \pm 0.132$  | $0.634 \pm 0.128$  | $0.031 \pm 0.007$ |
| 15  | 5      | 1      |                    | $0.082 \pm 0.023$  | $0.075 \pm 0.022$  | $0.005 \pm 0.001$ |
|     |        | 3      |                    | $0.260 \pm 0.057$  | $0.230 \pm 0.051$  | $0.023 \pm 0.005$ |
| 17  | 1      | 1      |                    | $3.637 \pm 1.533$  | $3.630 \pm 1.532$  | $0.007 \pm 0.000$ |
|     |        | 3      |                    | $7.706 \pm 0.883$  | $7.693 \pm 0.881$  | $0.013 \pm 0.002$ |
| 19  | 3      | 1      |                    | $2.174 \pm 0.499$  | $2.142 \pm 0.500$  | $0.030 \pm 0.002$ |
|     |        | 3      |                    | $4.979 \pm 0.763$  | $4.873 \pm 0.748$  | $0.102 \pm 0.021$ |
| 21  | 5      | 1      |                    | $0.530 \pm 0.111$  | $0.492 \pm 0.111$  | $0.032 \pm 0.002$ |
|     |        | 3      |                    | $2.348 \pm 0.426$  | $2.170 \pm 0.396$  | $0.159 \pm 0.045$ |
| 23  | 1      | 1      |                    | $22.838 \pm 9.667$ | $22.827 \pm 9.667$ | $0.011 \pm 0.001$ |
|     |        | 3      |                    | $38.173 \pm 7.725$ | $38.155 \pm 7.721$ | $0.017 \pm 0.005$ |
| 25  | 3      | 1      |                    | $12.501 \pm 4.602$ | $12.404 \pm 4.593$ | $0.094 \pm 0.016$ |
|     |        | 3      |                    | $23.517 \pm 5.807$ | $23.362 \pm 5.751$ | $0.150 \pm 0.062$ |
| 27  | 5      | 1      |                    | $4.277 \pm 1.430$  | $4.069 \pm 1.433$  | $0.190 \pm 0.009$ |
|     |        | 3      |                    | $13.150 \pm 4.009$ | $12.376 \pm 3.712$ | $0.723 \pm 0.310$ |

2322 D.3 BENCHMARKING EXISTING METHODS UNDER ORACLE INPUTS  
2323  
2324  
23252326 Table 5: Evaluation of existing methods under possible model misspecification on arbitrary latent-  
2327 variable models. Ground-truth graphs are generated from the Erdős-Renyi model with total number  
2328 of vertices  $n$  and average in-degree avgdeg, with  $\ell$  vertices randomly designated as latent. Only  
2329 irreducible models are chosen. Each entry reports the mean and standard deviation of the structural  
2330 Hamming distances (SHDs) between the result and truth over 50 random models.2331 Algorithms are provided with their oracle tests, that is, for them to directly query oracle generalized  
2332 independent noise (GIN) conditions from the digraph. When the number of their identified latent  
2333 variables is fewer than truth, we simply add isolated latent variables into the result. When the  
2334 identified number of latents is larger (which seems not happened), we planned to choose the removal  
2335 that leads to best result. Finally, the best possible result is reported, i.e., we choose the digraph in  
2336 the ground-truth equivalence class that is closer to their output as the truth. The latent variables are  
2337 viewed as unlabeled.

| $n$ | $\ell$ | avgdeg | PO-LiNGAM          | FastGIN            |
|-----|--------|--------|--------------------|--------------------|
| 10  | 3      | 1      | $15.48 \pm 2.75$   | $31.64 \pm 4.62$   |
|     |        | 2      | $24.30 \pm 4.41$   | $36.80 \pm 4.22$   |
|     |        | 3      | $35.40 \pm 3.61$   | $39.96 \pm 4.88$   |
|     |        | 4      | $45.22 \pm 3.53$   | $41.04 \pm 3.81$   |
|     | 5      | 1      | $18.04 \pm 3.99$   | $32.36 \pm 4.38$   |
|     |        | 2      | $28.44 \pm 3.48$   | $36.68 \pm 4.31$   |
|     |        | 3      | $39.18 \pm 3.60$   | $40.42 \pm 4.40$   |
|     |        | 4      | $50.00 \pm 3.45$   | $41.00 \pm 4.57$   |
|     | 7      | 1      | $31.10 \pm 4.87$   | $74.22 \pm 8.04$   |
|     |        | 2      | $48.26 \pm 6.67$   | $76.80 \pm 6.66$   |
|     |        | 3      | $64.12 \pm 5.59$   | $81.64 \pm 8.28$   |
|     |        | 4      | $84.60 \pm 5.73$   | $85.56 \pm 8.61$   |
| 15  | 5      | 1      | $35.02 \pm 5.74$   | $71.70 \pm 6.94$   |
|     |        | 2      | $54.84 \pm 6.04$   | $78.44 \pm 7.01$   |
|     |        | 3      | $72.96 \pm 6.62$   | $79.98 \pm 8.15$   |
|     |        | 4      | $92.28 \pm 7.71$   | $82.50 \pm 7.35$   |
|     | 7      | 1      | $36.44 \pm 5.63$   | $71.34 \pm 8.37$   |
|     |        | 2      | $58.00 \pm 6.24$   | $77.90 \pm 8.25$   |
|     |        | 3      | $79.90 \pm 7.34$   | $79.16 \pm 8.79$   |
|     |        | 4      | $101.04 \pm 5.90$  | $84.56 \pm 8.99$   |
|     | 9      | 1      | $48.60 \pm 6.12$   | $129.88 \pm 14.18$ |
|     |        | 2      | $76.92 \pm 8.29$   | $136.36 \pm 13.05$ |
|     |        | 3      | $103.04 \pm 8.30$  | $138.24 \pm 11.98$ |
|     |        | 4      | $129.14 \pm 10.46$ | $146.86 \pm 13.02$ |
| 20  | 5      | 1      | $54.04 \pm 5.23$   | $122.78 \pm 12.67$ |
|     |        | 2      | $84.10 \pm 8.44$   | $136.04 \pm 12.85$ |
|     |        | 3      | $115.72 \pm 8.72$  | $139.76 \pm 13.64$ |
|     |        | 4      | $146.44 \pm 9.10$  | $141.64 \pm 10.75$ |
|     | 7      | 1      | $58.70 \pm 6.36$   | $128.46 \pm 11.96$ |
|     |        | 2      | $92.86 \pm 8.41$   | $132.48 \pm 12.36$ |
|     |        | 3      | $124.00 \pm 9.60$  | $140.76 \pm 12.31$ |
|     |        | 4      | $155.48 \pm 7.83$  | $143.76 \pm 11.55$ |
|     | 9      | 1      | $64.40 \pm 7.38$   | $120.08 \pm 12.43$ |
|     |        | 2      | $98.04 \pm 10.43$  | $135.24 \pm 12.75$ |
|     |        | 3      | $134.16 \pm 10.34$ | $137.52 \pm 12.30$ |
|     |        | 4      | $167.86 \pm 11.28$ | $142.76 \pm 11.39$ |

2376 D.4 EVALUATING GLVLING’S PERFORMANCE WITH EXISTING METHODS IN SIMULATIONS  
23772378 **OICA estimation part** We first describe how we handle the OICA estimation part.  
23792380 For our choice of OICA implementation, we have tried multiple options and find that overall, the  
2381 MATLAB implementation<sup>2</sup> of SDP-ICA (Podosinnikova et al., 2019) tends to provide best estimated  
2382 mixing matrices across multiple settings. We thus adopt it in our experiments.  
23832384 For the number of latent variables, although theoretically identifiable, existing OICA implemen-  
2385 tations still require specifying this number as an input. Hence, following the common practice as  
2386 in (Salehkaleybar et al., 2020), we test multiple candidate values and select the one minimizing the  
2387 loss on a held out set.  
23882389 **Handling empirical ranks in an OICA matrix** We then explain how we process the mixing matrix  
2390 estimated from OICA. Having obtained an OICA-estimated mixing matrix, the core task of glvLiNG  
2391 becomes constructing a bipartite graph to realize the rank patterns in this mixing matrix, which define  
2392 a transversal matroid. When OICA is not an oracle, these empirical ranks may violate matroid axioms,  
2393 just like how conditional independencies in data may violate a graphoid in nonparametric settings.  
23942395 To address this, in our implementation, we assign a “full-rank confidence score” to each relevant block  
2396 of  $A$ . Specifically, let  $\sigma_{\min}$  be  $A$ ’s minimum singular value, we use the score  $\frac{1}{1+\exp(-\alpha(\sigma_{\min}-\epsilon))}$ , and  
2397 in experiments, we set  $\alpha = 25$  and  $\epsilon = 0.02$ . Then, in phase 1 (recovering latent outgoing edges),  
2398 we approximate the closest valid transversal matroid that maximizes agreement with these scores.  
2399 In phase 2 (recovering observed outgoing edges), for efficiency we simply threshold these scores to  
2400 determine each variable’s outgoing edges independently. We have simulated and verified that this  
2401 procedure is robust to moderately noisy ranks, by e.g., assigning true full-rank blocks scores from  
2402  $\mathcal{N}(0.75, 0.2)$  and others from  $\mathcal{N}(0.25, 0.2)$ , both 0, 1 truncated.  
24032404 **Simulation setup** In simulation, we compare glvLiNG with existing methods including LaHi-  
2405 CaSl<sup>3</sup> (Xie et al., 2024) and PO-LiNGAM<sup>4</sup> (Jin et al., 2024). We generate random Erdős-Renyi  
2406 model with total number of vertices  $n$  from 5 to 13, number of latent variables  $\ell$  from 1 to 5, average  
2407 in-degree  $d$  of 1 and 3, and sample size  $N$  from 1,000 to 200,000. We sample data with linear causal  
2408 weights uniformly from  $[-2.5, -0.5] \cup [0.5, 2.5]$ , and exogenous noise are sampled from a uniform  
2409 distribution  $[-0.5, 0.5]$ , following (Podosinnikova et al., 2019). We calculate the minimum SHD  
2410 between all graphs in the true equivalence class to the discovery output graph as the SHD result.  
24112412 **Simulation results** The results are presented in Figure 7. From it we have the following observa-  
2413 tions:  
24142415 First of all, it is not surprising to see that LaHiCaSl and PO-LiNGAM perform better when the  
2416 graph is sparser. For example, when  $d = 1$ , these two methods perform better than glvLiNG, though  
2417 the difference remains modest. This is perhaps because, when the graph is sparser, maintaining  
2418 irreducibility typically means more edges outgoing from latent variables, while edges from observed  
2419 ones to others are fewer. This aligns well with the model assumptions of these two methods. For  
2420 example, LaHiCaSl assumes a hierarchical latent-variable model in which all observed variables  
2421 are leaf nodes. Given this additional benefit from their sparsity constraints, and the fact that both  
2422 LaHiCaSl and PO-LiNGAM estimates ranks using the GIN condition which is more efficient than  
2423 OICA, it is not surprising to see that they perform better in this setting.  
24242425 However, when the graph is denser, glvLiNG performs particularly better. For example, when  $d = 3$ ,  
2426 glvLiNG consistently outperforms the other two methods, and the difference is considerable. This is  
2427 perhaps because, when the graph is denser, more complex structures become common, including ar-  
2428 bitrary edges between latent and observed variables, as well as cycles. Model assumptions of existing  
2429 methods are more likely to be violated, making them less effective at recovering these structures. In  
2430 contrast, with a structural-assumption-free design, glvLiNG avoids such model misspecification, and  
2431 still allows the recovery of these structures.  
24322<sup>2</sup><https://github.com/gilgarmish/oica>3<sup>3</sup><https://github.com/jinshi201/LaHiCaSl>4<sup>4</sup><https://github.com/Songyao-Jin/PO-LiNGAM>

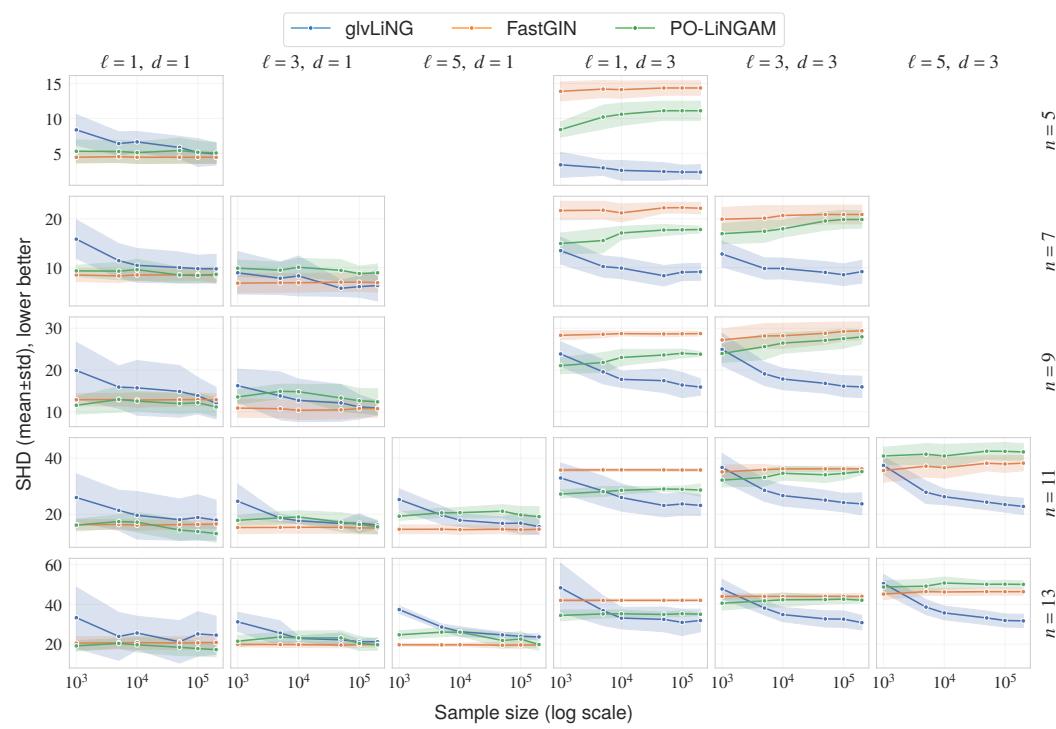


Figure 7: Simulation results comparing glvLiNG with existing methods with varying sample size  $N$  (the global x-axis), and each subplot shows a setting under a specific number of total variables  $n$ , number of latent variables  $\ell$ , and the average in-degree  $d$ . Mean and standard deviation of SHD are calculated from 25 random irreducible models.

We also observe that glvLiNG tends to be more robust to latent dimensionality. For example, when  $n = 13$  and  $d = 3$ , increasing the number of latents  $\ell$  from 1 to 5, the average SHD of glvLiNG increases from 33.1 to 35.7, while other method, such as PO-LiNGAM, increases from 35.3 to 50.7. This is perhaps because glvLiNG jointly recovers all latent-outgoing edges at once, using an OICA mixing matrix whose dimensionality is already fixed. In contrast, the other two methods requires incrementally clustering and adding latent variables.

## D.5 ANALYZING A REAL-WORLD DATASET WITH GLVLiNG ALGORITHM

For the real-world experiment, we use a Hong Kong stock market dataset that involves the daily dividend/split-adjusted closing prices for 14 major stocks from January 4, 2000 to June 17, 2005 (1331 samples). These 14 stocks represent the dominant sectors of the market: 3 of them are on banking (HSBC Holdings, Hang Seng Bank, Bank of East Asia), 5 on real estate (Cheung Kong, Henderson Land, Hang Lung Properties, Sun Hung Kai Properties, Wharf Holdings), 3 on utilities (CLP Holdings, HK & China Gas, HK Electric), and 3 on commerce (Hutchison, Swire Pacific 'A', Cathay Pacific Airways). All of them were constituents of Hang Seng Index (HSI), and they were almost the largest companies of the Hong Kong stock market at the time.

By applying glvLiNG on this dataset, we recovered an equivalence class of causal graphs containing 2 latent variables. The presentation (see Appendix C.3) of this equivalence class is shown in Figure 8. Here is a summary: the class consists of 19,008 causal graphs with  $16=14+2$  vertices, and among them the numbers of edges range between 29 to 34. In the presentation, there are 20 “solid” (must appear) and 14 “dashed” (may appear) edges.

This result suggests several interesting observations, as follows:

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

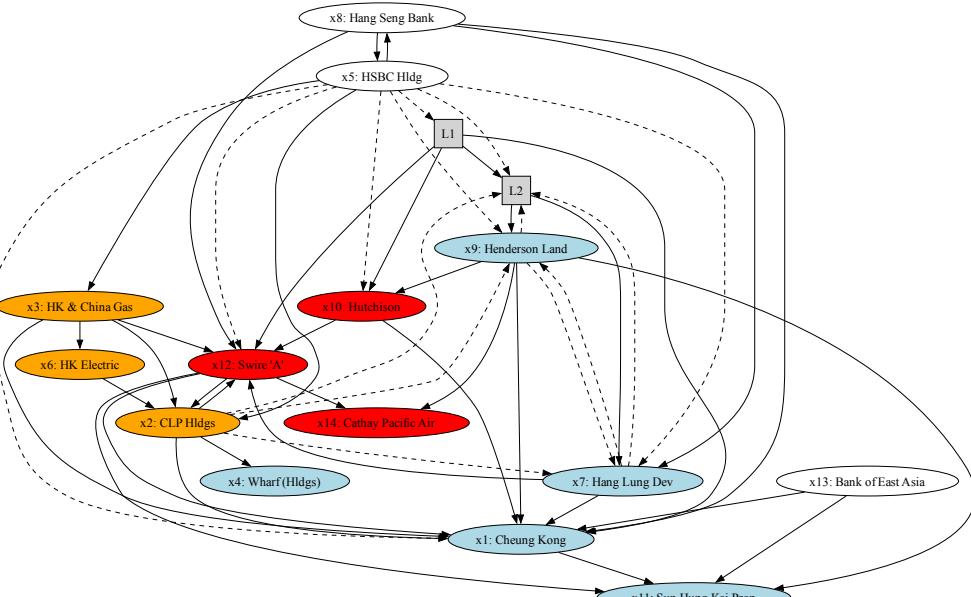
2502

2503

2504

2505

2506 **Figure 8: Presentation of the equivalence class that glvLiNG estimates from the stock market data.**  
 2507 **Different colors of nodes indicate different sectors. Solid and dashed edges indicate edges that must**  
 2508 **appear in all or at least one equivalent graph(s).**



1. Large banks seem to be major upstream causes. For example, the two largest banks, HSBC Holdings and Hang Seng Bank, together form a 2-cycle that has 9 children across sectors, but there are no edges into them.
2. Real estates, in contrast, seem to be downstream effect receivers. For example, Cheung Kong has 10 parents, but only 1 edge pointing out from it.
3. Utilities are heavily involved in cycles. For example, among 17 simple cycles in the graph, CLP Holdings belongs to 11 of them. These cycles are often across sectors as utilities - real estate - commerce - utilities.
4. One latent variable seems interpretable. It has one parent HSBC Holdings, and three children (all with solid edges): Cheung Kong, Hutchison, and Swire Pacific 'A'. Among them, Cheung Kong and Hutchison were two core holdings of a same group.
5. Stocks under the same sector tend to be connected more closely.

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537