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Abstract

A central challenge in organ transplantation is the extremely low acceptance rate
of donor organ offers—typically in the single digits—leading to high discard rates
and suboptimal use of available grafts. Current acceptance models embedded
in allocation systems are non-causal, trained on observational data, and fail to
generalize to policy-relevant counterfactuals. This limits their reliability for both
policy evaluation and simulator-based optimization. In this work, we reframe organ
offer acceptance as a counterfactual prediction problem and propose a method to
learn from routinely recorded—but often overlooked—refusal explanations. These
refusal reasons act as direction-only counterfactual signals: for example, a refusal
reason such as "old donor age" implies acceptance might have occurred had the
donor been younger. We formalize this setting and introduce CLEXNET, a novel
causal model that learns policy-invariant representations via balanced training and
an explanation-guided augmentation loss. On both synthetic and semi-synthetic
data, CLEXNET outperforms existing acceptance models in predictive performance,
generalization, and calibration, offering a robust drop-in improvement for sim-
ulators and allocation policy evaluation. Beyond transplantation, our approach
provides a general method for incorporating human direction-only explanations
as a form of model supervision, improving performance in settings where only
observational data is available.

1 Introduction

Organ transplantation is often the definitive treatment for end-stage organ failure. Yet demand for
donor organs persistently outweighs supply [36]. As such, many patients deteriorate or die while
waiting for a suitable donor [61, 28, 1]. Optimizing allocation systems to match donated organs with
compatible recipients is therefore a critical task.

Organ offer refusals cause widespread inefficiencies in transplant systems. The acceptance
rate of organ offers in the U.S. is extremely low: only 1% of kidney, 3% of liver, and 5% of lung
offers are accepted [41]. Each refusal not only delays transplantation for the recipient but triggers a
cascading effect across the system. Organs accumulate cold ischemic time as they are offered down
the ranked waitlist, increasing the risk of graft failure and reducing transplant success [35, 38, 62, 20].
Moreover, extended offer chains burden allocation logistics and significantly increase the probability
of eventual organ discard [42, 57].

Existing acceptance models are oversimplified and unfit for counterfactual estimation. Current
ML-based allocation studies sidestep the complexity of refusals, assuming every offer is accepted [8,
6, 7, 65, 66]. This simplifying assumption breaks down in practice, leading to unrealistic simulations
and misinformed policy guidance. Even real-world simulators used by transplant organizations that
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Figure 1: Illustrative overview of organ offer acceptance. Left: An incoming liver offer O1 is
broadcasted down the observed-policy πobs ranking. Each candidate Xi either accepts (green tick)
or refuses (red cross) and—if refusing—supplies a categorical refusal reason (call-outs). Right:
Geometric view of the patient space X and organ offer space O. The blue shaded region marks
the domain covered by the observational dataset Dobs; the dashed purple curve encloses the full
feasible domain F . Dashed arrows show atomic refusal-reason directions, solid arrows contrastive
counterfactual edits αiδi that would cross the decision boundary and convert a refusal into an
acceptance. For example, based on the factual samples in Dobs and direction δ1, a model should learn
that the decision boundary lies between the intersected boundaries (the yellow points) of Dobs and F .

incorporate acceptance models [49, 44, 45], fall short for two key reasons. First, they are typically
based on logistic regression [54, 56, 55, 18, 19], which, while interpretable, lacks the capacity to
model the complex, high-dimensional interactions involved in clinical decision making. Modern
machine learning alternatives offer significantly greater expressiveness [64, 33, 10, 67, 40]. Second,
these models are trained on observational data generated under the current policy, inheriting spurious
correlations—manifestations of shortcut learning [23]—that lead to confounding bias [5], and failure
to generalize to counterfactual policy-relevant scenarios. Even after adjusting for confounding bias,
reliable generalization to unseen counterfactual policies remains difficult without additional sources
of information.

Refusal reasons are untapped direction-only contrastive explanations. A key yet unused source
of supervision to improve acceptance models lies in the refusal reasons recorded with each declined of-
fer [12, 29]. These categorical reasons—for example, "old donor age" or "high cold ischemic
time"—act as directional signals, suggesting how a donor or recipient attribute could be modified to
change the acceptance outcome. Crucially, these signals are contrastive but not quantitative: they
indicate which features to adjust, but not by how much, nor whether such adjustments are minimal,
or whether the response surface is local or monotonic.

Current explanation-guided methods cannot handle direction-only explanations. Existing
explanation-guided methods require richer forms of supervision such as precise counterfactual
distances [24, 21], local input-gradient constraints [47, 59] or global monotonicity rules [25, 37].
As such, these methods are ill-suited for this setting in which only a sparse, directional signal is
available. Bridging this methodological gap is crucial for building unbiased acceptance models and
fully utilizing the explanatory power of this routinely collected data.

Our contributions. We propose a new learning framework that formalizes this novel supervision
regime and introduce CLEXNET. Our contributions are threefold:
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• We formalize a new learning setting in which the only extra supervision available is a set of
categorical refusal reasons that point out a direction—but never the magnitude—in which
donor or recipient attributes would need to change for an organ offer to be accepted.

• We construct a guarded explanation-guided augmentation scheme that converts each cate-
gorical refusal reason into a set of feasible counterfactual edits, enabling any classifier to
learn from direction-only feedback without needing distance or monotonicity information.

• We introduce CLEXNET, a causally calibrated acceptance model that learns policy-invariant
representations using adversarial balancing and an explanation-guided augmentation loss.
This model simultaneously corrects for observational bias and respects directional refusal
constraints.

Through comprehensive synthetic and semi-synthetic experiments, we demonstrate that CLEXNET
outperforms existing acceptance models in generalization, calibration, and predictive accu-
racy—offering a practical and robust improvement for policy simulators. More broadly, our approach
opens a new direction in counterfactual machine learning by operationalizing contrastive human
feedback in high-stakes, observational settings like organ transplantation.

2 Problem formulation

During the organ offer process, the organ is repeatedly offered electronically to potential transplant
recipients in a ranking until a potential recipient accepts the offer as shown in Figure 1. In this section,
the offer made to each patient is modeled, and the mathematical notation is introduced.

X O

Y R

Figure 2: Graphical structure of or-
gan offer and patient response. An
organ offer O is extended, following the
existing policy πobs, to a candidate pa-
tient characterized by X. The patient re-
sponds with a binary decision Y , which
is determined by both the patient’s fea-
tures and the offer’s features. In cases of
refusal, the patient supplies a refusal rea-
son R, which can be expressed in terms
of X and O through a predefined map-
pingM.

Making an offer. Consider X ⊂ Rdx as the space of all
possible patients and O ⊂ Rdo as the space of all possible
organ offers. Let X ∈ X and O ∈ O be the feature
vectors of a patient and an organ offer respectively.

After an offer has been made, an answer Y ∈ {0, 1},
where 0 represents a refusal and 1 represents accep-
tance, is received from the patient. When a patient de-
clines an offer, they must provide a reason. Consider
R = {r1, r2, . . . , rK} as the set of all possible refusal rea-
son categories. Each r ∈ R represents a discrete category
for the reason why an offer might be refused. For example,
these categories might correspond to issues related to the
donor age or the cold ischemic time of the organ. Finally,
let R ∈ R ∪ {∅} denote a variable representing such rea-
son, allowing for the absence of a reason, represented by
R = ∅, in the case of acceptance.

We assume we have an observational dataset containing
N instances of patient-offer pairs and their corresponding
answer and reason, resulting in a dataset of observations of
quadruplets D = {(Xi,Oi, Yi, Ri) : i = 1 . . .K}, where
all patients and organs are sampled from some underlying
distributions p(X) and p(O). Finally, considerQ ∈ P(X )
2 as a set that represents the wait list.

The dataset D is observed under policy πobs : Q × O → SQ where SQ
3 denotes the generated

ranking of patients in the wait list. The ranking SQ directly dictates the sequence of potential
transplant recipients are considered. As a result, the generation of the observed datasetD is inherently
influenced by πobs. A graphical representation of the underlying structure of D is shown in Figure 2.

For both the answers, Yi and the reasons Ri we assume that they are generated following the Rubin-
Neyman potential outcomes framework [48]. For each patient there are two sets of potential outcomes
{Y (o) : o ∈ O} and {R(o) : o ∈ O}, and that the observed outcomes Yi and Ci are consistent with
the potential outcomes Y (Oi) and R(Oi) for the observed offer.

2P(·) is the power set of the given set.
3S(·) is the symmetric group of a given set.
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Interpreting direction-only reasons. Consider ∆ = (X ∪O)∩{−1, 0, 1}dx+do and letM : R→
∆ denote a function that maps refusal categories onto corresponding signed vector embeddings in the
constrained patient-offer space ∆. For any refusal category r ∈ R, the embedded reason is δ ∈ ∆,
given byM(r) = δ.

The embedded reason δ represents the direction of a contrastive counterfactual explanation [51]; in
what direction the features of X and O have to change such that the offer would get accepted. As the
complete counterfactual explanations are not disclosed, for each continuous feature we only encode
one of three possible options for the direction: decrease (-1), remain unchanged (0) and increase (1).

Assumption 1 (Counterfactual existence). Consider δX and δO as vectors composed by the
elements of δ that correspond to the features of X and O respectively such that δ = (δX, δO). For
any observed refusal with a refusal reason R ̸= ∅ with corresponding embedding δ, we assume that:

∃αX ∈ Rdx
+ , αO ∈ Rdo

+ : Y (X+ αXδX,O+ αOδO) = 1, (1)

where αX and αO are vectors that represent the needed magnitudes of change in the features of X
and O respectively and α = (αX, αO). In words, this assumption states that a positive counterfactual
can be found if a factual negative sample is edited along the direction δ.

Assumption 2 (Feasible magnitude). Let F ⊂ X ∪ O be a realistic and feasible region of
patient-organ pairs. Consider A as the space of all edit magnitudes such that:

∀α ∈ A : (X+ αXδX,O+ αOδO) ∈ F . (2)

With this assumption, F limits the possible edit magnitudes such that the counterfactuals would
remain in a specific, predefined region. For example, it would not make sense if O+αOδO results in
an organ from a donor with a negative age feature. Graphical representations of reasons transformed
into counterfactual edits are shown in Figure 1.

Causal assumptions. To identify the effects of organ offers on patient responses we impose three
standard causal assumptions. First, positivity (or overlap) requires that for every patient–offer
feature pair (X,O) such that X has nonzero support in the wait-list distribution, the observed policy
πobs assigns a strictly positive probability of that offer being made, i.e. Pr(O | X) > 0. Second,
unconfoundedness (or ignorability) assumes that, conditional on the patient and offer covariates, the
pair of potential outcomes {Y (o), R(o) : o ∈ O} is independent of the ranking and assignment
mechanism, formally:

{Y (o), R(o)}o∈O ⊥⊥ πobs
∣∣ X. (3)

Finally, we assume the stable unit treatment value assumption (SUTVA), which consists of two
parts: (i) consistency, meaning that the observed outcome and refusal reason coincide with the
corresponding potential outcomes under the realized offer, Y = Y (O) and R = R(O), and (ii) no
interference, meaning that one patient’s response and reason are unaffected by the offers or decisions
of any other patient.

3 CLEXNET

We introduce CLEXNET4, a causal – explanation–guided acceptance model that jointly tackles three
challenges:

(i) Predictive accuracy on the (biased) training distribution;
(ii) Causal robustness, i.e. invariance to the organ-allocation mechanism that generated the

data; and
(iii) Faithfulness to refusal reasons, which convey only a direction in which features must

change for an organ to be accepted.

To achieve these goals, the network couples an adversarially–balanced representation with a direc-
tional explanation–guided augmentation loss. Figure 3 gives a bird’s-eye view of the CLEXNET
architecture and Algorithm 1 details the training loop.

4CLEXNET components that correspond with our main contributions are marked with blue
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Figure 3: Architecture of our CausaL, EXplanation guided organ-offer model (CLEXNET).
Inputs X,O go through a shared representation ϕ, which feeds both a clustering head cθp and an
acceptance head YθY . The observed refusal category R is embedded as δ and combined with X and
O before passing it to Φθϕ . All three losses are aggregated into LCLEX . The plus operator with
the dashed outline indicates where generated counterfactual edits are injected during training. We
use blue to represent components related to representations, gray for simple vector operators, purple
for losses, pink for loss multipliers, yellow for components that are only present during training
and green for model inputs used at inference time. The components that correspond with our main
contributions are circled with dashed outlines.

Balancing away confounding bias. Under the observed allocation rule πobs, patients receive offers
that are not independent of their covariates. Simply minimizing the binary-cross-entropy on such
data would entangle acceptance with the policy’s selection shortcuts [52, 50]. In this setting, the
organs are sparse and complex high dimensional objects. Following previous work [8], we utilize
organ clusters ci(O), i = 1 . . . k to reduce the dimensionality of the treatment space. These clusters
serve as surrogates for treatment in the balancing step. We aim at adversarially learning [22, 13, 8] an
intermediate representation ϕ which is invariant to the propensity of the cluster of the provided organ.

Consider an acceptance model CLEXNETθϕ,θY ,θp with parameters θϕ, θY and θp such that the
balanced representation ϕ = Φθϕ(X,O), the organ cluster ĉ = cθp(ϕ), and the acceptance probability
Ŷ = YθY (ϕ) are learned jointly.

Using these parameters, we construct a Cross Entropy (CE) loss component for the organ cluster and
a Binary Cross Entropy (BCE) loss for the offer acceptance probability:

LCE(θϕ, θp) := −
1

N

N∑
i=1

[
I[ĉi = c(Oi)] · log(ĉi)

]
, (4)

LBCE(θϕ, θY ) := −
1

N

N∑
i=1

[
Yi · log(Ŷi) + (1− Yi) · log(1− Ŷi)

]
. (5)

We minimize BCE on the acceptance head and maximize cross-entropy error on the cluster head via
a gradient-reversal layer [22, 8]. Concretely, letting λ ∈ [0, 1] control the trade-off:

LBCE(θϕ, θY )︸ ︷︷ ︸
Accuracy

− λ · LCE(θϕ, θp)︸ ︷︷ ︸
ϕ uninformative about c

, (6)

where the multiplier λ serves to control between balancing the representation ϕ and acceptance
prediction. Balancing guarantees that, conditioning on ϕ, the empirical distribution of organ clusters
resembles a randomised trial, thereby attenuating selection bias [50, 13]. At this point, ϕ can be a
balanced representation, but the refusal explanations are not yet being used.

Embedding reasons. Besides predicting Y and being balanced, we also aim for CLEXNETθϕ,θY ,θp
to respect the given refusal reasons. To be able to learn from the refusal reasons, they must first be
embedded in X ∪O. A fixed lookupMmaps every reason to a signed vector and is used to transform
each observed quadruplet into (Xi,Oi, Yi,M(ri)) = (Xi,Oi, Yi, δi). Negative, zero, and positive
entries of δi respectively indicate whether to decrease, hold, or increase the associated feature.
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Algorithm 1: CLEXNET : single–instance training step with explanation-guided augmented loss
Input: instance (X,O, Y,R); clusters c(·); lookupM(·);
domain F ; weights λ, ρ; edits M ; threshold pex
Init: encoder Φθϕ ; acceptance head YθY ; cluster head cθp
ϕ← Φθϕ(X,O); Ŷ ← YθY (ϕ); ĉ← cθp(ϕ) ; ▷ forward pass of factual
LBCE ← BCE(Y, Ŷ ); LCE ← CE(ci, ĉ) ; ▷ derive losses
LEXPL ← 0 ; ▷ initialize explanation loss
if Y = 0 and R ̸= ∅ then

δ ←M(R) ; ▷ embedded reason
for m = 1 to M do

(X̃(m), Õ(m))← Sample((X,O), δ,F) ; ▷ guided augmentation (Eq.1, 2)
p(m) ← YθY (Φθϕ(X̃

(m), Õ(m))) ; ▷ forward pass of counterfactual

pmax ← maxm p(m); pavg ← 1
M

∑
m p(m) ; ▷ max and avg of counterfactuals

if pmax < pex then
LEXPL ← BCE(pavg, pex) ; ▷ guarded explanation loss (Eq.7, 8)

LCLEX ← LBCE − λLCE + ρLEXPL;
{θϕ, θY , θp} ← Update

(
∇LCLEX

)
; ▷ optimization step (optional)

Guarded explanation-guided augmentation. Relying on Assumptions 1 and 2, we formulate an
explanation loss component that is protected by a logical guard such that (i) the explanation loss is
only considered for negative samples and (ii) the model does not already respect the explanation:

Gi := I[Yi = 0] · I[ max
αi∈Ai

YθY (Φθϕ(Xi + αXi
δXi

,Oi + αOi
δOi

) ≤ pex︸ ︷︷ ︸
CLEXNET’s Assumption 1

)], (7)

where pex acts as a threshold that should be met by at least one augmented sample, offering a tunable
relaxation of Assumption 1. For each negative example we draw M step–size vectors αi ∈ Ai

inside a pre-defined feasible set F (Assumption 2) and form augmented samples. If none of those
augmented samples already scores above the target probability pex, the network is penalized with an
additional explanation loss:

LEXPL(θϕ, θY ) :=
1

N

N∑
i=1

Gi · BCE( avg
αi∈Ai

[
YθY (Φθϕ(Xi + αXi

δXi
,Oi + αOi

δOi︸ ︷︷ ︸
CLEXNET’s counterfactual edits 3

))
]
, pex)

 .
(8)

This loss ensures that when changing the inputs following the given refusal reason, the model will
predict an acceptance. The full loss combines representation balancing (Equation 6) and explanations:

LCLEX(θϕ, θY , θp) := LBCE(θϕ, θY )− λ · LCE(θϕ, θp) + ρ · LEXPL(θϕ, θY , θp)︸ ︷︷ ︸
CLEXNET’s explanatory guidance 3

, (9)

where the multiplier ρ ∈ [0, 1] serves to control between balancing the representation ϕ, acceptance
prediction and respecting the refusal reasons. CLEXNET’s optimal parameters are then given by:

θ∗p := argmax
θp

LCLEX(θ∗ϕ, θ
∗
Y , θp) and (θ∗ϕ, θ

∗
Y ) := argmin

θϕ,θY

LCLEX(θϕ, θY , θ
∗
p). (10)

Finally, these parameters are learned by optimizing LCLEX(θϕ, θY , θp) using stochastic gradient
descent-based optimization and by placing a gradient reversal layer before the clustering head cθp .
An instance-level training loop is shown in Algorithm 1, which deviates from a standard training loop
in the case of a negative instance with a provided refusal reason.

Intuitively, the adversarial term removes information that stems from πobs, while the explanation term
injects causal directionality unavailable from labels alone. The two components thereby complement
each other: without balancing, the model would learn confounded shortcuts; without explanations, it
would be free to satisfy the loss in any direction, including biologically implausible ones.
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Implementation notes. In Equations 7 and 8, Ai represents the domain of feasible edit magnitudes
for a specific instance. While Ai depends on Xi and Oi, a more general feasible region F ⊂ X ∪O
can be defined beforehand which can then be used to findAi for every instance. Note that F need not
coincide with the entire domain that would be explored in a gold-standard randomized controlled trial
(RCT) [26]: practitioners are free to tighten the feasible region F by excluding biologically or logisti-
cally implausible edits based on their domain knowledge. Instead, our implementation constructs
a hyper-box whose bounds are the per-feature minima and maxima observed in D. Consequently,
Ai is then constructed feature-wise for each instance. Finally, a random sampling method is used to
sample M step-sized αi vectors.

The confidence in the explanations is represented by pex: if there exists a sample along direction δ
that achieves acceptance probability pex, then LEXPL becomes zero for that instance, otherwise, all
sampled instances trigger a higher LEXPL component.

4 Related work

ML for organ allocation. Current U.S. match-runs still hinge on simple urgency scores—most
prominently MELD [39] and MELD-Na[34]—that ignore how an organ’s quality, competing patients,
and logistics jointly shape long-term benefit. Motivated by these limitations, a growing line of
work designs machine-learning-driven allocation rules. Causal policies rank candidates by estimated
individual treatment effect or counterfactual survival [43, 66, 65, 8, 6], aiming to disentangle medical
need from policy-induced confounding. A second stream enriches the objective with operational
constraints such as transport distance, fairness and cold-ischemia limits, turning allocation into a
combinatorial optimization problem, with often no closed-form solution [4, 11, 9, 45, 40]. More
recent hybrids tackle both aspects simultaneously, coupling causal value estimates with stochastic
models of future organ and patient arrivals so that present-day decisions account for tomorrow’s
opportunities [8, 6, 7]. However, apart from one approach [40], no prior work has embedded
an acceptance estimator within the allocation policy itself—let alone one grounded in a causal
framework.

Learning with domain knowledge. While not being mutually exclusive, learning from the observed
refusal reasons differs from injecting expert knowledge as inductive bias into a model: the former are
empirical, data-driven labels or features obtained from real clinical decisions, whereas the latter entails
imposing pre-defined domain rules or structures (e.g. hard-coding a donor age cutoff or penalty) into
the learning process instead of letting the model discover such patterns from data [17, 60]. While
incorporating domain knowledge can improve sample-efficiency, generalization and interpretability
[31, 63], it introduces notable challenges. Eliciting, formalizing and maintaining expert rules is
costly and time-consuming—the long-recognized "knowledge-acquisition bottleneck" of expert
systems [53, 32, 14]. Moreover, relying on domain knowledge risks embedding incorrect or outdated
assumptions: if an expert’s belief is flawed, encoding it can mislead the model and remain hidden
until it causes failures [3, 58, 16]. Consequently, leveraging the recorded refusal reasons—grounded
in actual outcomes—offers a complementary and often safer causal signal, whereas expert-derived
inductive biases must be applied judiciously and subjected to continuous post-deployment validation.

5 Experiments

Experiments on the choice of the feasible region F , additional results for Experiment 5.1, and
findings regarding empirical support for Assumption 1 can be found under Appendix A. More
detailed information about experimental setups, synthetic functions, generation of refusal reasons
and used features can be found in Appendix B. Information regarding hyperparameters and an
acknowledgments section can be found in Appendix C and D respectively.

All code, synthetic generators and an implementation of CLEXNET are made public to facilitate
independent assessment: https://github.com/AlessandroMarchese/ClexNet.

5.1 Does CLEXNET generalize better?

Experimental setup. To evaluate the performance of different acceptance estimators we create two
synthetic datasets that consist of patient-organ offer pairs: Dobs and DF , where Dobs represents the
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observational dataset which is affected by selection bias and DF represents an unbiased dataset with
random patient-organ pairs, which is used to test the models in an unbiased way. Dobs is then split
further into Dtrain, which is used to train the models, and Dtest, which is used to test the models on
observational data. We evaluate our model on both synthetic and semi-synthetic experiments.

For the synthetic evaluation, we construct a synthetic binary outcome function following a sim-
ilar methodology to previous work in individual treatment effect estimation [8, 2, 27, 30, 52]:
fY (X,O) = 1

1+v exp (h(X,O))+NY
, where h(X,O) is a random non-linear function and v is a scalar

which is set such that the average acceptance probability corresponds with a chosen acceptance
ratio. Y is then sampled from a Bernoulli distribution with probability fY (X,O). Finally, refusal
reasons are generated for all negative samples by finding the direction of the necessary edit such that
fY (X+ αXδX,O+ αOδO) reaches at least some predefined probability pex.

For the semi-synthetic evaluation, we use UNOS-PTR [15] liver offers recorded between 2021 and
2024. This data consists of approximately 1.1M offers made between 24k unique organs and 46k
unique patients. We considered refusal reasons regarding donor age and cold ischemic time. The
used patient and organ features are shown in Appendix B.

Benchmarks. The performance of CLEXNET is compared against other traditional ML estimators
from previous work [33, 10] and used in official simulators [54, 55, 56, 18, 19]. We also compare
CLEXNET against other neural estimators: a single-task adaptation of PATIENTNET [40] and an
ORGANITE model [8], adapted for binary classification.

Table 1: Performance metrics on acceptance. Models are trained and tested on both synthetic
and semi-synthetic datasets. BCE, AUC, AUPRC and Brier score are evaluated on the test sets DF .
Standard deviations are instance-based and are shown in brackets. Models are ranked from least to
most complex. Performances on the observational test sets can be found in Appendix A.

Model Synthetic data Semi-synthetic UNOS-PTR data
BCE AUC AUPRC Brier BCE AUC AUPRC Brier

Logistic Regression [33] .840 (.685) .597 .816 .298 (.255) 1.265 (2.536) .540 .279 .237 (.390)

Random Forest [33, 10] .543 (.313) .737 .889 .182 (.139) 2.195 (6.829) .536 .268 .236 (.400)

PATIENTNET [40] .784 (1.259) .799 .920 .230 (.355) .828 (1.348) .593 .308 .233 (.397)

ORGANITE [8] .442 (.696) .840 .932 .140 (.234) .855 (1.402) .598 .308 .235 (.402)

CLEXNET (λ = 0) .427 (.799) .845 .938 .132 (.263) .539 (.487) .655 .355 .181 (.190)

CLEXNET .377 (.690) .872 .948 .117 (.221) .514 (.514) .704 .408 .170 (.206)

+ Balancing

+ Explanations

+ Explanations

Results. The results are shown in Table 1. The single-task PATIENTNET, which ignores treatment-
specific balancing, struggles to generalize beyond the biased training distribution, whereas OR-
GANITE’s domain-invariant design recovers a sizeable performance boost. Building on the same
balancing idea while further leveraging direction-only refusal information, CLEXNET consistently
tops the table: it achieves the lowest error, the best ranking ability, and the sharpest probability
calibration, demonstrating that coupling causal balancing with explanation-guided augmentation
yields the most transferable acceptance model.

5.2 Does confounding affect performance?

Experimental setup. We test how robust CLEXNET is under different levels of confounding
compared to other models. The same synthetic setup is used as in Experiment 5.1. However, the level
of linear bias ψ is gradually increased meaning that organs in Dobs become more dependent on the
corresponding observed patients.

Results. Figure 4 plots performance metrics against an increasing linear confounder level ψ.
PatientNet is the most vulnerable and reveals a substantial loss of accuracy and calibration with
increasing bias. ORGANITE & CLEXNET are comparatively stable thanks to their balancing
mechanism. Their metrics do drift upward/downward as bias strengthens, but the changes are
modest and far smaller than those seen for PATIENTNET, showing that balancing—and for CLEXNET,
the additional direction-only supervision—effectively dampens the impact of confounding.
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Figure 4: Robustness of CLEXNET to increasing confounding. Linear confounding ψ is gradually
introduced to add bias into the patient-organ pairs that are present in Dobs. The models are tested
on DF . The bands represent 95% bootstrap percentile confidence intervals for each model. More
information about the confounding mechanism can be found in Appendix B.

5.3 Are all directional reasons equally informative?

Experimental setup. We vary the mechanism that selects positive counterfactual samples paired
with negative observations to generate directional refusal reasons δi. Three mechanisms are compared:
(i) random sampling from an unbiased set of feasible patient–organ pairs; (ii) inverse probability
weighting (IPW), which reweights samples using a kernel density estimate p̂obs(X,O); and (iii) a
boundary intersection method that selects counterfactuals crossing the decision boundary in low-
density regions. A separate CLEXNET model is trained on the explanations generated by each
mechanism.

Results. Even with explanations, the quality of the refusal-reason generation matters (Table 2).
Random uniform sampling often samples from within the relatively high-density observational region.
Although IPW favors positive counterfactuals in underrepresented regions, it does not guarantee
that the decision boundary will not be crossed in the high-density observational region. Instead, the
boundary intersection sampler tries to generate counterfactuals whose directions contain information
that is not already contained in the observed distribution. Hence, effort spent on gathering plausible
counterfactual directions is repaid in out-of-distribution performance.

Table 2: Impact of different reason generation mechanisms on CLEXNET. All metrics are
evaluated on the unbiased set DF . Instance-based standard deviations are shown in brackets.

Reason mechanism BCE AUC AUPRC Brier
Uniform Random .401 (.752) .855 .940 .123 (.233)
IPW .405 (.649) .841 .930 .126 (.222)

Boundary Intersection .368 (.750) .889 .958 .114 (.233)
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6 Discussion

6.1 Limitations

While CLEXNET closes several gaps in current organ–offer modeling, important caveats remain.

Dependence on the refusal–vector mapping M. Our framework assumes a predefined mapping
from each categorical refusal code to a signed direction vector δ =M(R). In practice, some refusal
reasons are coarse and represent latent features, requiring edits to a predefined set of multiple features
that define the latent feature (e.g. "poor donor quality"). Any systematic misspecification of
M will bias the explanation loss in Equation 8, potentially driving the decision boundary in an
implausible direction.

Feasibility region F and edit set Ai. We bound counterfactual edits by a hyper-box whose edges
are the feature-wise minima and maxima observed in Dobs. This choice is intentionally conservative
but imperfect: (i) it still permits biologically infeasible edits that are purely numerical outliers and
(ii) it omits latent constraints such as blood-type compatibility or size-matching rules that are not
explicit features. A misspecified F can either suppress the explanation loss (if too large) or force the
model into an unreachable region (if too small; see Experiment A.1). Embedding clinical constraints
(or a learned generative prior) into the augmentation sampler remains a challenge.

(Semi-)Synthetic evaluation. All quantitative experiments are performed on controlled synthetic or
semi-synthetic data sets whose generative mechanisms match the modeling assumptions (directional
explanations refer to unobserved counterfactuals, F can be reasonably approximated by a hyper-box
aroundDobs, etc.). Real data exhibit additional noise sources: missingness, time-varying policies, and
outdated measurements. Deploying CLEXNET in an actual simulator therefore requires (i) auditing
its calibration and fairness on historical wait-list snapshots and (ii) stress-testing under counterfactual
policy shifts [7].

Distributional changes are likely. The data-generating process that underpins CLEXNET is not
static. Organ supply trends, recorded patient data, refusal codes, clinical practices, and policy rules all
evolve over time, leading to exogenous distribution shifts. Moreover, once a model-based allocation
policy is implemented, clinicians may change their acceptance behavior in response to the new
incentives (performative prediction)—an endogenous shift created by the model itself [46]. Both
phenomena can erode calibration, bias subgroup performance, and invalidate causal assumptions if
left unchecked. Routine drift detection, scheduled re-evaluation of the refusal–vector mappingM,
and prospective shadow evaluation on fresh wait-list data are therefore mandatory safeguards before,
during, and after deployment.

While the first two limitations are CLEXNET-specific and aim to weave richer domain knowledge
directly into the architecture; the latter two address long-standing open problems for all causal models
used in organ allocation [66, 65, 8, 6, 7, 40]. Addressing these limitations constitutes an important
research agenda before CLEXNET can reliably inform real-world organ allocation policy.

6.2 Future work

Embedding richer refusal information. Language-model embeddings could translate each coded
or free-text refusal into a vector that lives in the same space as patient and donor features. An
alignment layer could then connect that vector to the model’s gradients, producing soft weights over
which attributes should change—extending beyond simple directions and accommodating distance
or monotonic hints. Treating the text-to-edit map as learnable replaces the predefined lookup table,
opens the doors to free-text refusal reasons and lets uncertainty in explanations flow through training,
effectively offering a continuous, instance-based relaxation of Assumption 1.

Refining the feasible region. A practical edit domain could be built by shrinking the hyper-box to
the high-density core of the observed patient-donor distribution and discarding segments that violate
hard clinical rules such as blood type or size compatibility. This density-trimmed, constraint-aware
region screens out implausible counterfactuals while keeping unbiased coverage of realistic cases,
sharpening the explanation loss and improving data efficiency.
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A Additional results and experiments

A.1 What role does F play?

As explained in Section 3, the role of F is crucial for the construction of Ai. Without F , the model
would not know where to stop looking for plausible counterfactuals. CLEXNET constructs this
feasible region F by storing the maximum and minimum values according to the features on the
observational dataset Dobs to create F , resulting in a hyper-box. In this experiment, we evaluate how
well that works and look at other greedy and conservative approaches.

Experimental setup. The construction of the feasible region F is adapted to allow for its expansion
or contraction. Let fmin and fmax denote the minimum and maximum observed values of a specific
feature in Dobs, and let fµ be its observed mean. The bounds of the hyper-box are redefined
feature-wise as:

f
(σ)
min := fµ + σ(fmin − fµ) and f (σ)max := fµ + σ(fmax − fµ). (11)

where σ is a scaling factor that expands (σ > 1) or contracts (0 < σ < 1) the region around fµ. Thus,
by varying σ, CLEXNET is evaluated under different feasible region sizes F (σ).

Results. The results are shown in Figures 6 and 5. CLEXNET’s performance worsens significantly
as F is contracted by decreasing σ. When F is slightly expanded, the performance mostly remains
stable. Thus, underestimating F is worse than overestimating it.

Intuitively, when F is wrongly contracted, the decision boundary in unobserved regions gets wrong-
fully restricted, causing a significant drop in performance. In Figure 1, for example, the decision
boundary would be squeezed between the observational region and F . Instead, choosing a F that is
too large simply diminishes the explanatory signal in Equation 8 rather than wrongly constraining the
model. However, if F is set too large (such as in Figure 5), the signal from the explanations becomes
less useful.

Figure 5: The effects of changing F on CLEXNET’s performance. Performance metrics on the
unbiased test set DF are shown for CLEXNET with different constructions of F . These constructions
are achieved by changing the scaling factor σ that expands or contracts the original regionF (at σ = 1,
marked by a vertical blue dashed line). The bands represent 95% bootstrap percentile confidence
intervals.
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Figure 6: The effects of changing F by magnitudes on CLEXNET’s performance. Performance
metrics on the unbiased test setDF are shown for CLEXNET with different constructions of F . These
constructions are achieved by changing the scaling factor σ that expands or contracts the original
region F (at σ = 1, marked by a vertical blue dashed line). The bands represent 95% bootstrap
percentile confidence intervals.

A.2 Observational test set performance

Results on the observational test set Dtest from Experiment 5.1 are reported in Table 3. The results
show that PATIENTNET and ORGANITE perform better on the synthetic observational test set as
they are less constrained than CLEXNET. On real observational data, Random Forest outperforms the
other models. However, as shown in Table 1, CLEXNET is able to generalize significantly better on
the unbiased test sets DF .

Table 3: Performance metrics on acceptance (observational test set). Models are trained and tested
on both synthetic and semi-synthetic datasets. BCE, AUC, AUPRC and Brier score are evaluated on
the observational test sets Dtest. Standard deviations are shown in brackets.

Model Synthetic data Semi-synthetic UNOS-PTR data
BCE AUC AUPRC Brier BCE AUC AUPRC Brier

Logistic Regression [33] .707 (.388) .590 .558 .254 (.172) .101 (.547) .826 .102 .024 (.131)

Random Forest [33, 10] .359 (.346) .941 .947 .107 (.145) .107 (.974) .867 .164 .022 (.125)

PATIENTNET [40] .229 (.694) .969 .970 .063 (.204) .118 (.479) .712 .052 .024 (.140)

ORGANITE [8] .243 (.289) .979 .977 .068 (.114) .116 (.495) .640 .052 .024 (.142)

CLEXNET (λ = 0) .236 (.576) .962 .961 .066 (.193) .158 (.348) .626 .042 .032 (.123)

CLEXNET .275 (.367) .970 .958 .076 (.129) .159 (.337) .598 .036 .030 (.123)

A.3 Empirical support for Assumption 1

Although CLEXNET uses a relaxed version of Assumption 1, it is possible to test empirical support
for this assumption in the real data.

Experimental setup. To test support for Assumption 1, we try to match each refusal, with corre-
sponding refusal reason, to a similar acceptance that i) satisfies that reason and ii) is within a certain
range of the refusal.

16



Table 4: Support for Assumption 1 versus allowed matching range. Percentages shown are the
cumulative support for donor-age–related reasons, cold–ischemic-time–related reasons, and overall,
as the maximum Euclidean-distance threshold increases.

Allowed matching range
(Euclidean distance)

Support for donor age
related reasons

Support for cold ischemic time
related reasons

Overall
Support

≤ 1 0.1% 0.1% 0.1%
≤ 2 7.0% 4.7% 6.2%

≤ 3 71.7% 68.8% 70.7%
≤ 4 98.7% 97.8% 98.4%
≤ 5 99.9% 99.8% 99.9%
≤ 6 100.0% 100.0% 100.0%

Results. If we allow for matching refusals with acceptances within a Euclidean distance of 3
(considering that the feature space has 76 dimensions after OHE), we can find suitable positives that
satisfy Assumption 1 for over 70% of the observed refusals with reasons related to donor age or cold
ischemic time.

B Experimental setups

B.1 Experimental setup for all synthetic studies

This section spells out every stochastic component, hyper-parameter and practical decision that enters
the construction of the synthetic data sets used throughout all experiments. Re-implementing the
pipeline line-by-line should therefore reproduce the raw data on which CLEXNET and the baselines
were trained and evaluated.

Notation recap. A single observation is a quadruplet (X,O, Y,R) where

• X ∈ Rdx — patient covariates (demographic, clinical, logistical),
• O ∈ Rdo — organ–offer attributes (donor and procurement information),
• Y ∈ {0, 1}— acceptance indicator, 1 represents accepted,
• R ∈ R— categorical refusal reason when Y = 0.

We fix dx = do = 5 in all experiments.

B.1.1 Generating patient covariates X

Patients are sampled i.i.d. from a standard multivariate normal:

X ∼ N
(
0, Idx

)
. (12)

This choice deliberately avoids introducing any implicit structure; all correlations subsequently arise
from the confounding mechanism.

B.1.2 Generating organ offers O with tunable confounding

To model the clinical intuition that organs are not allocated independently of the candidates to whom
they are offered, we introduce a linear confounding parameter ψ ∈ [0, 1) and draw

O = ψXA⊤ +
√
1− ψ2ε ε ∼ N (0, Ido), Apq ∼ N

(
0,

1√
dx

)
. (13)

When ψ = 0 organs and patients are independent; as ψ → 1 they become almost deterministically
aligned via a random matrix A (Experiment 5.2 sweeps across ψ).

Moreover, an additional, non-linear bias is added by following the procedure:

1. draw an i.i.d. pool of N0 candidate pairs (X,O) using Steps B.1.1–B.1.2 (with ψ = 0);
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2. pass every pair through a random, non-linear function g(X,O) (randomly initialized, frozen
thereafter) and retain the scalar score si = g(Xi,Oi);

3. keep only the top 5% and bottom 5% of pairs by si.

The retained 10% constitute the observational data set:

Dobs =
(
(Xi,Oi) : si in extreme decile

)
, N := |Dobs| ≈ 0.1N0.

Train/test split. We allocate 70% of Dobs to Dtrain, 15% for a validation set and 15% to Dtest

(stratified by Y ).

B.1.3 Ground-truth outcome mechanism fY

Acceptance probability is a random logistic transformation of a frequently used scoring function with
an additional interaction term [8, 2, 27, 30, 52]:

h(X,O) = w1X+w2O+X⊤W3O, (14)

fY (X,O) =
1

1 + v exp (h(X,O)) +NY
(15)

Here, w1 and w2 represent random vectors, and W3 ∈ Rdx×do is a matrix with random entries.
The scalar v is chosen such that EDobs

[fY ] ≈ 0.50, making acceptance a balanced label. Finally,
outcomes are sampled such that Y ∼ Bernoulli

(
fY (X,O)

)
.

B.1.4 Generating direction-only refusal reasons R

For every negative instance Y = 0 we synthetically attach a direction δ rather than an absolute
counterfactual. The procedure is as follows:

1. Draw an auxiliary set Dδ
F of (X′,O′) pairs without the bias.

2. Keep only those candidates with fY (X′,O′) ≥ pex (default pex = 0.5).
3. Uniformly sample one such "positive" and compute δ := (X′ −X,O′ −O), then map δ onto ∆

based on the sign of each element.
4. (Optional) Map δ to a categorical refusal label R via a lookup tableM−1 (many-to-one). The

last step is bypassed in the experiments and δ is used directly. The model never sees magnitude
information since delta mapped onto ∆.

Feasible domain F . We store the per-feature minima and maxima over all draws (before selection).
Sampling magnitudes α ∈ Ai then clamps each edited feature to this hyper-box to respect Assumption
2.

B.2 Experimental setup for semi-synthetic studies

Liver offers from the UNOS-PTR [15] dataset, recorded between 2021 and 2024, are used for the
semi-synthetic evaluation of CLEXNET. Following previous work [33], only offers related to organs
that eventually got placed are considered, resulting in approximately 1.1M offers. The considered
features are shown in Table 5. For the construction of DF , a separate CLEXNET model was trained
on the observational data (including the refusal reasons) and used as fY (X,O). Next, real patients
are paired with real organs to generate DF . This way, the real covariate structures of patients and
organs are preserved.

B.3 Compute resources

Experiments ran on a 13th Gen Intel(R) Core(TM) i9-13900HX processor with 32GB RAM.
End-to-end wall-clock time: training CLEXNET ≈ 60s per run, including the in-the-loop explanation-
guided augmentation (Algorithm 1).
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Table 5: Considered features from the UNOS-PTR dataset [15] to represent patients and organs.

Patient Features
GENDER recipient gender
DAYSWAIT_CHRON days on liver waiting list
ETHCAT recipient ethnicity category
INIT_AGE age in years at time of listing
INIT_ALBUMIN initial waiting list albumin
INIT_ASCITES initial waiting list ascites
INIT_BMI_CALC calculated candidate bmi at listing
INIT_BILIRUBIN initial waiting list bilirubin
INIT_INR initial waiting list inr
INIT_SERUM_CREAT initial waiting list serum creatinine
INIT_SERUM_SODIUM initial waiting list serum sodium
HGT_CM_CALC calculated recipient height (cm)
WGT_KG_CALC calculated recipient weight (kg)
DIAG recipient primary diagnosis

Organ Features
AGE_DON donor age (yrs)
ALCOHOL_HEAVY_DON ddr heavy alcohol use (heavy= 2+ drinks/day) (y/n/u)
BMI_DON_CALC donor bmi - pre/at donation calculated
COD_CAD_DON deceased donor-cause of death
COLD_ISCH total cold ischemic time (hours)
ETHCAT_DON donor ethnicity category
HGT_CM_DON_CALC calculated donor height (cm)
HIST_CANCER_DON deceased donor-history of cancer (y/n)
HIST_CIG_DON deceased donor-history of cigarettes in past (more than 20 pack yrs)
GENDER_DON donor gender
NON_HRT_DON deceased donor-non-heart beating donor

C CLEXNET’s hyperparameters

The hyperparameters that were used for CLEXNET in the experiments can be found in Figure 7. The
same hyperparameters are used for Φθϕ(X,O), YθY (ϕ) and cθp(ϕ) across all neural network based
models. Following previous work [8], the organ clustering function c(·) and thus the organ clusters ci
are determined by a k-means clustering algorithm.

Two studies are shown in which novel hyperparameters are varied:

1. In Table 6 variations of CLEXNET with different values for λ and ρ are shown. These
parameters control the trade-offs between predictions on the observational data, represen-
tation balancing and respecting explanations. Both parameters significantly impact the
performance on DF .

2. On Figure 7 variations of CLEXNET with different values of M are shown. This parameter
controls how many augmented data points need to be sampled in the training loop (Algorithm
1) for each instance with a refusal reason. The results show that the benefit of increasing M
flattens after a certain magnitude is reached (M = 100 in this case).
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Table 6: CLEXNET’s performance with different loss weights. CLEXNET variants are shown
with different weights for loss components λ (for representation balancing) and ρ (for explanatory
supervision). The blue cells correspond to the results from Experiment 5.1. Standard deviations are
calculated using bootstraps and are shown in brackets.

BCE on Dtest

λ \ ρ 0.05 0.10 0.15 0.20
0.05 .225 (.027) .231 (.026) .236 (.028) .243 (.034)
0.10 .243 (.023) .250 (.025) .255 (.029) .248 (.024)
0.15 .276 (.026) .281 (.027) .275 (.031) .281 (.032)
0.20 .284 (.032) .293 (.030) .296 (.027) .297 (.025)

BCE on DF
λ \ ρ 0.05 0.10 0.15 0.20
0.05 .431 (.008) .400 (.009) .419 (.009) .446 (.009)
0.10 .405 (.007) .411 (.007) .396 (.007) .396 (.009)
0.15 .405 (.007) .405 (.006) .377 (.007) .384 (.007)
0.20 .390 (.007) .383 (.007) .392 (.008) .395 (.006)

AUROC on Dtest

λ \ ρ 0.05 0.10 0.15 0.20
0.05 .978 (.010) .975 (.010) .973 (.011) .969 (.013)
0.10 .977 (.010) .976 (.010) .975 (.012) .976 (.011)
0.15 .974 (.011) .972 (.012) .970 (.014) .966 (.015)
0.20 .965 (.016) .963 (.015) .967 (.014) .973 (.012)

AUROC on DF
λ \ ρ 0.05 0.10 0.15 0.20
0.05 .841 (.004) .880 (.004) .869 (.004) .861 (.004)
0.10 .854 (.004) .849 (.004) .865 (.004) .873 (.004)
0.15 .845 (.004) .841 (.005) .872 (.004) .873 (.004)
0.20 .865 (.004) .869 (.004) .860 (.004) .853 (.004)

AUPRC on Dtest

λ \ ρ 0.05 0.10 0.15 0.20
0.05 .976 (.012) .972 (.011) .970 (.013) .964 (.017)
0.10 .975 (.012) .973 (.012) .972 (.015) .972 (.013)
0.15 .968 (.016) .967 (.017) .958 (.024) .957 (.022)
0.20 .949 (.030) .947 (.027) .953 (.026) .965 (.021)

AUPRC on DF
λ \ ρ 0.05 0.10 0.15 0.20
0.05 .932 (.003) .953 (.002) .947 (.002) .944 (.002)
0.10 .940 (.003) .937 (.003) .945 (.002) .950 (.002)
0.15 .933 (.003) .931 (.003) .948 (.002) .948 (.002)
0.20 .943 (.003) .945 (.003) .941 (.003) .937 (.003)

Brier on Dtest

λ \ ρ 0.05 0.10 0.15 0.20
0.05 .066 (.011) .069 (.010) .069 (.011) .071 (.012)
0.10 .068 (.009) .071 (.010) .073 (.011) .070 (.009)
0.15 .078 (.010) .079 (.010) .076 (.011) .078 (.011)
0.20 .080 (.011) .083 (.011) .083 (.010) .083 (.010)

Brier on DF
λ \ ρ 0.05 0.10 0.15 0.20
0.05 .131 (.003) .119 (.002) .123 (.003) .128 (.003)
0.10 .125 (.002) .127 (.002) .121 (.002) .120 (.002)
0.15 .126 (.002) .127 (.002) .116 (.002) .118 (.002)
0.20 .120 (.002) .118 (.002) .121 (.002) .123 (.002)

Figure 7: CLEXNET’s performance for different augmentation batch sizes. Performance metrics
on the unbiased test set DF are shown for CLEXNET with different values for the augmentation batch
sizeM. The default value used in other experiments is set atM = 100 (marked by a vertical blue
dashed line). The bands represent 95% bootstrap percentile confidence intervals.
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Table 7: CLEXNET’s Hyperparameters
Component Hyperparameters

Shared Encoder
Φθϕ(X,O)

Dense(32, L2),
ReLU Activation
Dense(32, L2),
ReLU Activation

Acceptance Head
YθY (ϕ)

Dense(32, L2),
Sigmoid Activation

Organ Cluster Head
cθp(ϕ)

Dense(32, L2),
ReLU Activation

Organ Cluster Amount
k

3

Organ Cluster Loss Weight
λ

0.15

Explanation Loss Weight
ρ

0.15

Augmentation Batch
M

100

Training Parameters Maximum Epochs: 1000
Patience: 30
Learning Rate: 1× 10−3
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Sections 3 and 5 contain what is promised by the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: A dedicated section is provided.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There are no theoretical results, assumptions are stated in Section 2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: A link to the code for the experiments and the implementation of CLEXNET is
provided. All relevant experimental details are included in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: A link to the code for the experiments and the implementation of CLEXNET is
provided. All relevant experimental details are included in the Appendix. UNOS data needs
to be requested to OPTN, authors cannot share this data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: A link to the code for the experiments and the implementation of CLEXNET is
provided. All relevant experimental details are included in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Results contain variances and/or confidence intervals.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Machine specifications are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The impact that a better organ acceptance model could have is discussed in the
introduction.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Citations to the original work are added behind every model in experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: A link to the code for the experiments and the implementation of CLEXNET is
provided. All relevant experimental details are included in the Appendix.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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