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Representational aspects of depth and conditioning in normalizing flows
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Abstract
Normalizing flows are among the most popular
paradigms in generative modeling, especially for
images, primarily because we can efficiently eval-
uate the likelihood of a data point. Training nor-
malizing flows can be difficult because models
which produce good samples typically need to
be extremely deep and can often be poorly con-
ditioned: since they are parametrized as invert-
ible maps from Rd → Rd, and typical training
data like images intuitively is lower-dimensional,
the learned maps often have Jacobians that are
close to being singular. In our paper, we tackle
representational aspects around depth and con-
ditioning of normalizing flows: both for general
invertible architectures, and for a particular com-
mon architecture, affine couplings. We prove that
Θ(1) affine coupling layers suffice to exactly rep-
resent a permutation or 1×1 convolution, as used
in GLOW, showing that representationally the
choice of partition is not a bottleneck for depth.
We also show that shallow affine coupling net-
works are universal approximators in Wasserstein
distance if ill-conditioning is allowed, and experi-
mentally investigate related phenomena involving
padding. Finally, we show a depth lower bound
for general flow architectures with few neurons
per layer and bounded Lipschitz constant.

1. Introduction
Deep generative models are one of the lynchpins of unsu-
pervised learning, underlying tasks spanning distribution
learning, feature extraction and transfer learning. Paramet-
ric families of neural-network based models have been im-
proved to the point of being able to model complex distri-
butions like images of human faces. One paradigm that
has received a lot attention is normalizing flows, which
model distributions as pushforwards of a standard Gaussian
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(or other simple distribution) through an invertible neural
network G. Thus, the likelihood has an explicit form via
the change of variables formula using the Jacobian of G.
Training normalizing flows is challenging due to a couple
of main issues. Empirically, these models seem to require a
much larger size than other generative models (e.g. GANs)
and most notably, a much larger depth. This makes training
challenging due to vanishing/exploding gradients. A very
related problem is conditioning, more precisely the smallest
singular value of the forward map G. It’s intuitively clear
that natural images will have a low-dimensional structure,
thus a close-to-singular G might be needed. On the other
hand, the change-of-variables formula involves the determi-
nant of the Jacobian of G−1, which grows larger the more
singular G is.

While recently, the universal approximation power of vari-
ous types of invertible architectures has been studied if the
input is padded with a sufficiently large number of all-0
coordinates (Dupont et al., 2019; Huang et al., 2020) or
arbitrary partitions and permutations are allowed (Teshima
et al., 2020), precise quantification of the cost of invertibility
in terms of the depth required and the conditioning of the
model has not been fleshed out.

In this paper, we study both mathematically and empirically
representational aspects of depth and conditioning in nor-
malizing flows and answer several fundamental questions.

2. Related Work
On the empirical side, flow models were first popularized by
(Dinh et al., 2014), who introduce the NICE model and the
idea of parametrizing a distribution as a sequence of trans-
formations with triangular Jacobians, so that maximum like-
lihood training is tractable. Quickly thereafter, (Dinh et al.,
2016) improved the affine coupling block architecture they
introduced to allow non-volume-preserving (NVP) transfor-
mations, (Papamakarios et al., 2017) introduced an autore-
gressive version, and finally (Kingma & Dhariwal, 2018)
introduced 1x1 convolutions in the architecture, which they
view as relaxations of permutation matrices—intuitively,
allowing learned partitions for the affine blocks. Subse-
quently, there have been variants on these ideas: (Grathwohl
et al., 2018; Dupont et al., 2019; Behrmann et al., 2018)
viewed these models as discretizations of ODEs and intro-
duced ways to approximate determinants of non-triangular
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Jacobians, though these models still don’t scale beyond
datasets the size of CIFAR10. The conditioning/invertibility
of trained models was experimentally studied in (Behrmann
et al., 2019), along with some “adversarial vulnerabilities”
of the conditioning. Mathematically understanding the rela-
tive representational power and statistical/algorithmic impli-
cations thereof for different types of generative models is
still however a very poorly understood and nascent area of
study.

Most closely related to our results are the recent works of
(Huang et al., 2020), (Zhang et al.) and (Teshima et al.,
2020). The first two prove universal approximation results
for invertible architectures (the former affine couplings, the
latter neural ODEs) if the input is allowed to be padded with
zeroes. The latter proves universal approximation when
GLOW-style permutation layers are allowed through a con-
struction that operates on one dimension at a time. This is
very different than how flows are trained in practice, which
is typically with a partition which splits the data roughly in
half. It also requires the architectural modification of GLOW
to work. As we’ll discuss in the following section, our re-
sults prove universal approximation even without padding
and permutations, but we focus on more fine-grained impli-
cations to depth and conditioning of the learned model and
prove universal approximation in a setting that is used in
practice. Another work (Kong & Chaudhuri, 2020) studies
the representational power of Sylvester and Householder
flows, normalizing flow architectures which are quite differ-
ent from affine coupling networks. In particular, they prove
a depth lower bound for local planar flows with bounded
weights; for planar flows, our general Theorem 4 can also
be applied, but the resulting lower bound instances are very
different (ours targets multimodality, theirs targets tail be-
havior).

3. Overview of Results
3.1. Results About Affine Coupling Architectures

We begin by proving several results for a particularly com-
mon normalizing flow architectures: those based on affine
coupling layers (Dinh et al., 2014; 2016; Kingma & Dhari-
wal, 2018). The appeal of these architecture comes from
training efficiency. Although layerwise invertible neural
networks (i.e. networks for which each layer consists of
an invertible matrix and invertible pointwise nonlinearity)
seem like a natural choice, in practice these models have
several disadvantages: for example, computing the determi-
nant of the Jacobian is expensive unless the weight matrices
are restricted.

Consequently, it’s typical for the transformations in a flow
network to be constrained in a manner that allows for effi-
cient computation of the Jacobian determinant. The most

common building block is an affine coupling block, orig-
inally proposed by (Dinh et al., 2014; 2016). A coupling
block partitions the coordinates [d] into two parts: S and
[d] \ S, for a subset S with |S| containing around half the
coordinates of d. The transformation then has the form:
Definition 1. An affine coupling block is a map f : Rd →
Rd, s.t. f(xS , x[d]\S) = (xS , x[d]\S � s(xS) + t(xS))

Of course, the modeling power will be severely constrained
if the coordinates in S never change: so typically, flow
models either change the set S in a fixed or learned way
(e.g. alternating between different partitions of the channel
in (Dinh et al., 2016) or applying a learned permutation in
(Kingma & Dhariwal, 2018)). As a permutation is a discrete
object, it is difficult to learn in a differentiable manner –
so (Kingma & Dhariwal, 2018) simply learns an invertible
linear function (i.e. a 1x1 convolution) as a differentiation-
friendly relaxation thereof.

3.1.1. UNIVERSAL APPROXIMATION WITH
ILL-CONDITIONED AFFINE COUPLING
NETWORKS

First, we address universal approximation of normalizing
flows and its close ties to conditioning. Namely, a recent
work (Theorem 1 of (Huang et al., 2020)) showed that deep
affine coupling networks are universal approximators if we
allow the training data to be padded with sufficiently many
zeros. While zero padding is convenient for their analysis
(in fact, similar proofs have appeared for other invertible
architectures like Augmented Neural ODEs (Zhang et al.)),
in practice models trained on zero-padded data often per-
form poorly. Another work (Teshima et al., 2020) proves
universal approximation with the optional permutations and
|S| = d − 1 needed for the nonconstructive proof. We
remove that requirement in two ways, first by giving a con-
struction that gives universal approximation without permu-
tations in 3 composed couplings and second by showing that
the permutations can be simulated by a constant number of
alternating but fixed coupling layers.

First we show that neither padding nor permutations nor
depth is necessary representationally: shallow models with-
out zero padding are already universal approximators in
Wasserstein.
Theorem 1 (Universal approximation without padding).
Suppose that P is the standard Gaussian measure in Rn
with n even andQ is a distribution on Rn with bounded sup-
port and absolutely continuous with respect to the Lebesgue
measure. Then for any ε > 0, there exists a depth-3 affine
coupling network g, with maps s, t represented by feedfor-
ward ReLU networks such that W2(g#P,Q) ≤ ε.
Remark 1. A shared caveat of the universality construction
in Theorem 1 with the construction in (Huang et al., 2020) is
that the resulting network is poorly conditioned. In the case
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of the construction in (Huang et al., 2020), this is obvious
because they pad the d-dimensional training data with d ad-
ditional zeros, and a network that takes as input a Gaussian
distribution in R2d (i.e. has full support) and outputs data
on d-dimensional manifold (the space of zero padded data)
must have a singular Jacobian almost everywhere.1 In the
case of Theorem 1, the condition number of the network
blows up at least as quickly as 1/ε as we take the approxi-
mation error ε→ 0, so this network is also ill-conditioned
if we are aiming for a very accurate approximation.

Remark 2. Based on Theorem 3, the condition number
blowup of either the Jacobian or the Hessian is necessary for
a shallow model to be universal, even when approximating
well-conditioned linear maps. The network constructed in
Theorem 1 is also consistent with the lower bound from
Theorem 4, because the network we construct in Theorem 1
is highly non-Lipschitz and uses many parameters per layer.

3.1.2. THE EFFECT OF CHOICE OF PARTITION ON DEPTH

Next, we ask how much of a saving in terms of the depth
of the network can one hope to gain from using learned
partitions (ala GLOW) as compared to a fixed partition.
More precisely:

Question 1: Can models like Glow (Kingma & Dhariwal,
2018) be simulated by a sequence of affine blocks with a
fixed partition without increasing the depth by much?

We answer this question in the affirmative at least for equally
sized partitions (which is what is typically used in practice).
We show the following surprising fact: consider an arbitrary
partition (S, [2d] \ S) of [2d], such that S satisfies |S| = d,
for d ∈ N. Then for any invertible matrix T ∈ R2d×2d, the
linear map T : R2d → R2d can be exactly represented by a
composition of O(1) affine coupling layers that are linear,
namely have the form Li(xS , x[2d]\S) = (xS , Bix[2d]\S +
AixS) or Li(xS , x[2d]\S) = (CixS + Dix[2d]\S , x[2d]\S)

for matrices Ai, Bi, Ci, Di ∈ Rd×d, s.t. each Bi, Ci is
diagonal. For convenience of notation, without loss of gen-
erality let S = [d]. Then, each of the layers Li is a matrix

of the form
[
I 0
Ai Bi

]
or
[
Ci Di

0 I

]
, where the rows and

columns are partitioned into blocks of size d.

With this notation in place, we show the following theorem:

Theorem 2. For all d ≥ 4, there exists a k ≤ 24 such that
for any invertible T ∈ R2d×2d with det(T ) > 0, there exist
matrices Ai, Di ∈ Rd×d and diagonal matrices Bi, Ci ∈

1Alternatively, we could feed a degenerate Gaussian supported
on a d-dimensional subspace into the network as input, but there is
no way to train such a model using maximum-likelihood training,
since the prior is degenerate.

Rd×d≥0 for all i ∈ [k] such that

T =

k∏
i=1

[
I 0
Ai Bi

] [
Ci Di

0 I

]

Note that the condition det(T ) > 0 is required, since
affine coupling networks are always orientation-preserving.
Adding one diagonal layer with negative signs suffices to
model general matrices. In particular, since permutation
matrices are invertible, this means that any applications of
permutations to achieve a different partition of the inputs
(e.g. like in Glow (Kingma & Dhariwal, 2018)) can in prin-
ciple be represented as a composition of not-too-many affine
coupling layers, indicating that the flexibility in the choice
of partition is not the representational bottleneck.

It’s a reasonable to ask how optimal the k ≤ 24 bound is –
we supplement our upper bound with a lower bound, namely
that k ≥ 3. This is surprising, as naive parameter counting
would suggest k = 2 might work. Namely, we show:

Theorem 3. For all d ≥ 4 and k ≤ 2, there exists an in-
vertible T ∈ R2d×2d with det(T ) > 0, s.t. for all Ai, Di ∈
Rd×d and for all diagonal matrices Bi, Ci ∈ Rd×d≥0 , i ∈ [k]
it holds that

T 6=
k∏
i=1

[
I 0
Ai Bi

] [
Ci Di

0 I

]

Beyond the relevance of this result in the context of how
important the choice of partitions is, it also shows a lower
bound on the depth for an equal number of nonlinear affine
coupling layers (even with quite complex functions s and
t in each layer) – since a nonlinear network can always be
linearized about a (smooth) point to give a linear network
with the same number of layers. In other words, studying
linear affine coupling networks lets us prove a depth lower
bound/depth separation for nonlinear networks for free.

Remark 3 (Significance of Theorem 2 for Approximation
in Likelihood/KL). All of the universality results in the liter-
ature for normalizing flows, including Theorem 1, prove uni-
versality in the Wasserstein distance or in the related sense
of convergence of distributions. A stronger and probably
much more difficult problem is to prove universality under
the KL divergence instead: i.e. to show for a well-behaved
distribution P , there exists a sequence Qn of distributions
generated by normalizing flow models such that

KL(P,Qn)→ 0. (1)

This is important because Maximum-Likelihood training at-
tempts to pick the model with the smallest KL, not the small-
est Wasserstein distance, and the minimizers of these two
objectives can be extremely different. For P = N(0,Σ),
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Theorem 2 certainly implies (1) for bounded depth linear
affine couplings, and thus gives the first proof that global
optimization of the max-likelihood objective of a normaliz-
ing flow model would successfully learn a Gaussian with
arbitrary nondegenerate Σ.

3.2. Results about General Architectures

In order to guarantee that the network is invertible, nor-
malizing flow models place significant restrictions on the
architecture of the model. The most basic and general ques-
tion we can ask is how this restriction affects the expressive
power of the model — in particular, how much the depth
must increase to compensate.

More precisely, we ask:

Question 2: is there a distribution over Rd which can be
written as the pushforward of a Gaussian through a small,
shallow generator, which cannot be approximated by the
pushforward of a Gaussian through a small, shallow layer-
wise invertible neural network?

Given that there is great latitude in terms of the choice of
layer architecture, while keeping the network invertible, the
most general way to pose this question is to require each
layer to be a function of p parameters – i.e. f = f1 ◦ f2 ◦
· · · ◦ f` where ◦ denotes function composition and each
fi : Rd → Rd is an invertible function specified by a vector
θi ∈ Rp of parameters. This framing is extremely general:
for instance it includes layerwise invertible feedforward
networks in which fi(x) = σ⊗d(Aix+ bi), σ is invertible,
Ai ∈ Rd×d is invertible, θi = (Ai, bi) and p = d(d+ 1). It
also includes popular architectures based on affine coupling
blocks which we discussed in more detail in the previous
subsection.

We answer this question in the affirmative: namely, we show
for any k that there is a distribution over Rd which can be
expressed as the pushforward of a network with depth O(1)
and size O(k) that cannot be (even very approximately)
expressed as the pushforward of a Gaussian through a Lip-
schitz layerwise invertible network of depth smaller than
k/p.

Towards formally stating the result, let θ = (θ1, . . . , θ`) ∈
Θ ⊂ Rd′ be the vector of all parameters (e.g. weights,
biases) in the network, where θi ∈ Rp are the parameters
that correspond to layer i, and let fθ : Rd → Rd denote the
resulting function. Define R so that Θ is contained in the
Euclidean ball of radius R.

We say the family fθ is L-Lipschitz with respect to its pa-
rameters and inputs, if

∀θ, θ′ ∈ Θ : Ex∼N (0,Id×d) ‖fθ(x)− fθ′(x)‖ ≤ L‖θ − θ′‖

and ∀x, y ∈ Rd, ‖fθ(x)− fθ(y)‖ ≤ L‖x− y‖. 2 We will
discuss the reasonable range for L in terms of the weights
after the Theorem statement. We show3:

Theorem 4. For any k = exp(o(d)), L = exp(o(d)), R =
exp(o(d)), we have that for d sufficiently large and any
γ > 0 there exists a neural network g : Rd+1 → Rd
with O(k) parameters and depth O(1), s.t. for any family
{fθ, θ ∈ Θ} of layerwise invertible networks that are L-
Lipschitz with respect to its parameters and inputs, have p
parameters per layer and depth at most k/p we have

∀θ ∈ Θ,W1((fθ)#N , g#N ) ≥ 10γ2d

Furthermore, for all θ ∈ Θ, KL((fθ)#N , g#N ) ≥ 1/10

and KL(g#N , (fθ)#N ) ≥ 10γ2d
L2 .

Remark 4. First, note that while the number of parameters
in both networks is comparable (i.e. it’s O(k)), the invert-
ible network is deeper, which usually is accompanied with
algorithmic difficulties for training, due to vanishing and
exploding gradients. For layerwise invertible generators, if
we assume that the nonlinearity σ is 1-Lipschitz and each
matrix in the network has operator norm at most M , then
a depth ` network will have L = O(M `)4 and p = O(d2).
For an affine coupling network with g, h parameterized by
H-layer networks with p/2 parameters each, 1-Lipschitz
activations and weights bounded by M as above, we would
similarly have L = O(M `H).

Remark 5. We make a couple of comments on the “hard”
distribution g we construct, as well as the meaning of the
parameter γ and how to interpret the various lower bounds
in the different metrics. The distribution g for a given γ will
in fact be close to a mixture of k Gaussians, each with mean
on the sphere of radius 10γ2d and covariance matrix γ2Id.
Thus this distribution has most of it’s mass in a sphere of
radius O(γ2d) — so the Wasserstein guarantee gives close
to a trivial approximation for g. The KL divergence bounds
are derived by so-called transport inequalities between KL
and Wasserstein for subgaussian distributions (Bobkov &
Götze, 1999). The discrepancy between the two KL diver-
gences comes from the fact that the functions g, fθ may
have different Lipschitz constants, hence the tails of g#N
and f#N behave differently. In fact, if the function fθ had
the same Lipschitz constant as g, both KL lower bounds
would be on the order of a constant.

2Note for architectures having trainable biases in the input
layer, these two notions of Lipschitzness should be expected to
behave similarly.

3In this Theorem and throughout, we use the stan-
dard asymptotic notation f(d) = o(g(d)) to indicate that
lim supd→∞

f(d)
g(d)

= 0. For example, the assumption k, L,R =

exp(o(d)) means that for any sequence (kd, Ld, Rd)
∞
d=1 such that

lim supd→∞
max(log kd,logLd,logRd)

d
= 0 the result holds true.

4Note, our theorem applies to exponentially large Lipschitz
constants.
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