
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPOSITIONAL DIFFUSION WITH GUIDED SEARCH
FOR LONG-HORIZON PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative models have emerged as powerful tools for planning, with composi-
tional approaches offering particular promise for modeling long-horizon task dis-
tributions by composing together local, modular generative models. This compo-
sitional paradigm spans diverse domains, from multi-step manipulation planning
to panoramic image synthesis to long video generation. However, compositional
generative models face a critical challenge: when local distributions are mul-
timodal, existing composition methods average incompatible modes, producing
plans that are neither locally feasible nor globally coherent. We propose Composi-
tional Diffusion with Guided Search (CDGS), which addresses this mode averag-
ing problem by embedding search directly within the diffusion denoising process.
Our method explores diverse combinations of local modes through population-
based sampling, enforces global consistency through iterative resampling between
overlapping segments, and prunes infeasible candidates using likelihood-based fil-
tering. CDGS matches oracle performance on seven robot manipulation tasks,
outperforming baselines that lack compositionality or require long-horizon train-
ing data. The approach generalizes across domains, enabling coherent text-guided
panoramic images and long videos through effective local-to-global message pass-
ing. More details: https://cdgsearch.github.io/

1 INTRODUCTION

Search 
potential 
global plans

Prune plans with local 
inconsistencies 

Select the best 
global plan

At
 e

ve
ry

 d
en

oi
si

ng
 s

te
p 
𝑡

Local Plan       
distributions

Construct global 
plan distribution 

Sample sequence of 
local plans

Mode-averaging: 
jumping out of 
distribution

At
 e

ve
ry

 d
en

oi
si

ng
 s

te
p 
𝑡

Compositional Diffusion (Prior work)

Compositional Diffusion with Guided Search (Ours)

Start Goal Candidate 
Plan

Transition 
Distribution

Selected 
Plan

Figure 1: Compositional Diffusion with Guided
Search (CDGS) composes short-horizon plan dis-
tributions to sample long-horizon goal-directed
plans directly at inference. Unlike naı̈ve composi-
tional sampling, it explores diverse plans and fil-
ters locally inconsistent paths to avoid “mode av-
eraging”, yielding globally coherent plans.

Synthesizing coherent long sequences is a cru-
cial and challenging task, requiring reasoning
over extended horizons. This task arises natu-
rally in various domains: robotic actions must
enable future steps, parts of a panorama must
align semantically, and subjects in a video must
remain consistent across hundreds of frames.

Recent work leverages generative models to
learn long sequence distributions [25, 3], with
diffusion models [53, 21] gaining popularity
for modeling multi-modal data [9, 20]. How-
ever, full-sequence data is expensive to acquire,
and monolithic models fail to generalize be-
yond training horizons [10]. As an alternative,
compositional generation effectively combines
short-horizon local distributions to sample
long-horizon global plans [66, 44, 40]—e.g.,
chaining skills for task planning, connecting
images into panoramas, or stitching clips into
videos. While this improves data-efficiency and
allows extrapolation beyond training data, it in-
troduces a critical challenge: as local plan dis-
tributions become highly multimodal, the dis-
tribution of global plans inherits combinatorial
multi-modality. For example, in the robotics

1

https://cdgsearch.github.io/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

pick(hook) pull(cube, hook) place(hook) pick-place(cube) pick-place(cube)

T2I SD2.0 Prompt: A photo of the dolomites with red lava flowing through the valley (512 x 4608)

T2V CogVideoX-2B Prompt: A cute happy panda, … paws strum a acoustic guitar, … (350 frames, 720p)

Figure 2: Applications of CDGS. (Top) Long horizon motion planning: CDGS discovers a valid
multi-step plan to move the blue cube to the green cube’s original position via : (1) using the hook
to pull blue cube in workspace, (2) displace the green cube to make space and (3) moving the blue
cube to the target position. (Mid) CDGS generates coherent panoramic images. (Bottom) CDGS
can stitch short clips to generate consistent, longer videos.

scenario in Fig. 2, because the robot has a large combination of actions and objects it can act on, the
search space of possible plans grows exponentially with the length of the planning horizon.

Existing methods for compositional generation offer a promising approach, using score-averaging
to compose modes of local distributions into a global distribution [66, 44]. However, these methods
have an important limitation: their inability to handle the combinatorial multi-modality leads them
to average incompatible local modes (mode-averaging), ultimately producing invalid global plans.
Addressing such complex multi-modal distributions requires inference methods that jointly reason
about compatibility between local modes and effectively navigate the exponentially large search
space.

To address the challenge and overcome the limitation, we aim to identify compatible sequences of
local modes that compose into a globally coherent plan. Given the diversity and multi-modality of
the search space, we take inspiration from classical search techniques and introduce Compositional
Diffusion with Guided Search (CDGS), a guided search mechanism integrated into the diffusion
denoising process as illustrated in Fig. 1. To facilitate the search during inference, at each diffusion
timestep, our method introduces two key components: (i) iterative resampling to enhance local-
global message passing in compositional diffusion to propose globally plausible candidates, and
(ii) likelihood-based pruning to remove incoherent candidates that fall into low-likelihood regions
due to mode-averaging. Together, these components enable CDGS to efficiently sample coherent
long-horizon plans. For robotics tasks, our method outperforms or is on par with baselines that
lack compositionality or use long-horizon data for training, respectively. We also show the efficacy
of our method in long text-to-image and text-to-video tasks (Fig. 2), producing more coherent and
consistent generations.

2 BACKGROUND

Problem formulation. A long-horizon plan generation problem is characterized by the task of con-
structing a global plan τ = (x1, . . . ,xN) as a sequence of variables xi, by sampling from the joint
distribution p(τ). The problem becomes goal-directed if τ must connect a given start x1 = xs to a
desired goal xN = xg. Such problems arise in diverse domains: long-horizon manipulation planning,
panoramic images, and long videos. While modeling the full joint distribution p(τ) would directly
model all dependencies between any xi, it usually entails end-to-end learning from long-horizon
data, which can be infeasible or expensive to obtain. In the absence of long-horizon data, a promis-
ing strategy is to approximate the joint distribution p(τ) with a factor graph of overlapping local
distributions that can be learned from short-horizon data. For the joint variable τ = (x1,x2, . . . ,xN),
we construct a factor graph [30] connecting variable nodes {xi}N

i=1 and factor nodes {y j}M
j=1, where

each factor y j represents the joint distribution of contiguous subsequences of τ . For example, we
represent τ = (x1,x2, . . . ,x5) with factors y1 = (x1,x2,x3),y2 = (x3,x4,x5). With this, we construct

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) the planning domain (b) naïve composition (c) with resampling (d) with resampling + pruning

Figure 3: Running example. (a) Consider a 1D-domain of {x1:7} variable distributions and {y1:6}
feasible directed transitions between the variables. There are two feasible long-horizon plans from
start (x1) to goal (x7): one through the top and one through the bottom. (b) in naive-composition,
sampled plans may choose to start in the top and end at the bottom, or vice versa. When this
happens, the intermediate models {y2:5} will average the modes of intermediate variables {x2:6} to
satisfy both constraints, manifesting in infeasible transitions (red) (c) adding iterative resampling
reduces the frequency of mode-averaging (d) adding pruning eliminates plans with infeasible y

the joint distribution p(τ) using the Bethe approximation [64]:

p(τ) :=
p(x1,x2,x3)p(x3,x4,x5) . . .

p(x3) . . .
=

∏
M
j=1 p(y j)

∏
N
i=1 p(xi)di−1

(1)

where di is the degree of the variable node xi. This representation enables sampling from the long-
horizon distribution p(τ) using only samples drawn from a short-horizon distribution p(y).

Diffusion models. Diffusion models are defined by a forward process that progressively in-
jects noise into the data distribution p(y(0)) and a reverse diffusion process that iteratively re-
moves the noise by approximating ∇ log p to recover the original data distribution. For a given
noise injection schedule αt , forward noising adds a Gaussian noise ε to clean samples s.t. y(t) =√

αty(0)+
√

1−αtε . With pt being the distribution of noisy samples, the denoising is performed
using the score function ∇y(t) log pt(y(t)) often estimated by a neural network εθ (y(t), t) learned via
minimizing the score matching loss [23] given by Et,y(0) [|ε − εθ (y(t), t)|2]. Such a score function
allows denoising the noise samples via sampling from

p(y(t−1)|y(t)) =N

(
y(t−1);

√
αt−1ŷ(t)0 +

√
1−αt−1 −σ2

t ε(y(t), t),σ2
t I
)

(2)

where ŷ(t)0 = y(t)−
√

1−αt εθ (y(t),t)√
αt

is the Tweedie estimate of the clean sample distribution at denoising
step t and σt controls stochasticity [54]. Several works have leveraged the flexibility of the denoising
process in performing post-hoc guidance [20] and plug-and-play generation [37, 12].

Compositional sampling with diffusion models. Under the diffusion model formulation, we can
compositionally sample [11, 66] from the factor graph representation of p(τ) by calculating the
score ∇ log p(τ) as a sum of factor and variable scores following Eq. 1:

∇ log p(τ) :=
M

∑
j=1

∇ log p(y j)+
N

∑
i=1

(1−di)∇ log p(xi) (3)

In practice, our factor graph is a chain, so overlapping variables (i.e., the ones shared between
neighboring factors y j and y j+1) have degree di = 2 while non-overlapping ones have di = 1 (i.e.
their marginals have no contribution to ∇ log p(τ)). For overlapping variables, we approximate

the marginal scores using the average of the conditional score: ∇ log p(xi) ≈
1
2

[
∇ log py j (xi| . . .) +

∇ log py j+1(xi|...)
]

where xi ∈ y j ∩ y j+1 denotes the overlapping variable between y j and y j+1. This,
along with the scores of p(y j) computed from local distribution, allows us to formulate the global
compositional score ∇ log p(τ) using Eq. 3. While this formulation enables generalization beyond
the lengths seen during training, it comes with limitations described in Sec. 3.

3 METHOD

Challenge: Compositional sampling with multi-modal distributions. Solving long-horizon tasks
requires constructing a coherent global plan distribution that induces an exponentially large search

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝝉(")

𝒚$
(")

𝒚%
(")

𝒚%
(")

Local Plan
Diffusion 

Model

𝝐𝜽(𝒚𝟏
𝒕 , 𝒕)

𝝐𝜽(𝒚𝟐
𝒕 , 𝒕)

𝝐𝜽(𝒚𝟑
𝒕 , 𝒕)

𝝐(𝝉(𝒕), 𝒕) Denoising
Diffusion

𝝉("+$)

Resampling (×	𝑈) 

Compositional Score Sampling for Global Coherence

𝝉(,)
𝒚$
(,)

𝒚%
(,)

𝒚%
(,)

𝒚$
(-+$)

𝒚%
(-+$)

𝒚%
(-+$)

DDIM 
Inversion
𝝐𝜽(𝒚(#$%), 𝑖)

𝒚$
(-)

𝒚%
(-)

𝒚%
(-)

𝐽 𝝉 𝟎 =- -
𝝏𝝐𝜽(𝒚𝒌

(#$%), 𝑖)
𝝏𝒊 𝟐

𝑻

𝒊,𝟎𝒌

𝝉(.)

... ...

Local feasibility metric with DDIM Inversion for Pruning 

𝑁(0, 𝐼)

... ... ...

... ...𝑁(0, 𝐼)

Batch
𝝉(.)

...

Batch
𝝉(")

...

Batch 
𝝉("+$)

Predicted 
Clean Sample

Local feasibility
metric 𝐽(⋅)

...

Re-populate Batch 
𝝉("+$)

Elite Batch 
𝝉("+$)

min 𝐽(⋅)

...

Figure 4: Compositional diffusion with Guided Search. At each denoising timestep, CDGS it-
eratively denoises a batch of noisy candidate global plans by (i) iterative resampling to propagate
information through averaged scores at overlaps (blue) and (ii) pruning candidates with local in-
consistencies based on the predicted clean samples (yellow). This process ensures all local plans
align and belong to high-likelihood regions of p(y), producing globally coherent plans.

space and requires reasoning about long-horizon dependencies. Data scarcity prohibits directly
learning the target global plan distribution p(τ), so a convincing alternative is to approximate it as
a composition of local plan distribution p(y) (using Eq. 1). Thus, one can sample short-horizon
local plans y1:M ∼ p(y) and compose them with suitable overlaps to form a coherent τ . However,
as the diversity of feasible local behaviors increases, p(y) becomes highly multi-modal and com-
posing such distributions causes p(τ) to inherit combinatorial multi-modality—where each mode
of the global plan distribution corresponds to a distinct sequence of modes from the local plan dis-
tribution. In this setting, naı̈ve compositional methods ([43]) that merge distributions y1:M ∼ p(y)
via score averaging (Eq. 3) often fail due to the mode-averaging issue: selecting high-likelihood
local segments that, while individually plausible, result in incompatible mode sequences—leading
to inconsistent overlaps and incoherent global plans. A natural way to address multi-modality is
to explore diverse modes during sampling, an idea recently explored by inference-time scaling ap-
proaches [42, 69]. However, these methods are limited to sampling from standalone distributions
and not a composed sequence of distributions. The key challenge is to generate a feasible sequence
of local plans that collectively form a coherent global plan—requiring a sampling algorithm that
reasons over structured combinations of modes rather than collapsing into incoherent averages.

Our method: Compositional Diffusion with Guided Search (CDGS). CDGS is a structured
inference-time algorithm designed to identify coherent sequences of local modes that form valid
global plans. Specifically, CDGS employs a population-based search to explore and select promis-
ing mode sequences beyond naı̈ve sampling. To facilitate the search, it: (i) incorporates iterative
resampling into the compositional score calculation to enhance information exchange across dis-
tant segments, leading to potentially coherent global plan candidates, and (ii) prunes the incoherent
candidates by evaluating the likelihood of their local segments with a ranking objective. Note that
this is all within a standard denoising diffusion process, making CDGS a plug-and-play sampler
applicable across domains, including robotics planning, panorama image generation, and long video
generation. In the following sections, we detail each of these components and demonstrate how
their integration enables efficient navigation of the complex multi-modal search space to produce
coherent long-horizon plans.

3.1 COMPOSITIONAL DIFFUSION WITH GUIDED SEARCH

A key challenge with multi-modal distributions is that naı̈ve compositional sampling can lead to
incoherent global plans: since each segment is independently sampled from p(y), they may not
align well at their overlaps and potentially lead to mode-averaging issues-where high-likelihood
local plans do not combine to form a feasible global plan.

To address this, our approach leverages a guided search procedure that explores promising sequences
of local modes while filtering out ones that are more likely to result in incoherent global plans.

Method formulation. At each diffusion timestep t, given a noisy global plan τ
(t), our goal is to

sample from an improved next-step distribution over τ
(t−1), that is more likely to yield a coherent

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 CDGS

Require: Start xs, Goal xg, Planning horizon H
Require: Diffusion noise schedule,
Require: Pretrained local plan score function εθ (y(t), t),
Require: number of candidate plans B, number of elite

plans K at every step
1: Initialize B global plan candidates: τ

(T )

2: τ
(T ) = (y(T )1 ◦ · · · ◦ y(T )M )∼N(0,I)

3: for t = T, . . . ,1 do
4: ε(τ(t), t) = ComposedScore(τ(t), t,εθ ,xs,xg)
5: τ̂

(t)
0 = (τ(t)−

√
1−αtε(τ

(t), t))/
√

αt

6: Rank plans using J(τ̂(t)0 ) Eq. 5
7: Select best-K global plans
8: Repopulate candidates using filtered plans
9: τ

(t−1) ∼ p(τ(t−1)|τ(t), τ̂(t)0 ) Eq. 2
10: end for
11: return τ

(0)

Algorithm 2 ComposedScore

Require: Noisy sample τ
(t), denoising timestep t,

pretrained local plan score function εθ

Require: Start and goal: xs,xg
Require: Number of resampling steps U

1: for u = 1, . . . ,U do
2: Calculate ε(τ(t), t) using Eq. 3
3: if u <U then
4: Calculate τ

(t−1) using Eq. 2
5: Add noise to xs/xg:
6: x(t−1)

s/g ∼N(
√

αt−1xs/g,(1−αt−1)I)

7: Inpaint noisy start and goal in τ
(t−1)

8: Resampling: τ
(t) ∼ p(τ(t)|τ(t−1))

9: end if
10: end for
11: return ε(τ(t), t)

global plan. To achieve this, we define a modified sampling distribution:

pJ

(
τ
(t−1)|τ(t)

)
∝ p

(
τ
(t−1)|τ(t)

)
exp

(
− J
(

τ̂
(t−1)
0

)
/λt

)
,

where (i) p(τ(t−1)|τ(t)) is the original diffusion transition realized using the compositional score
function ε(τ(t), t), (ii) τ̂

(t−1)
0 is the Tweedie-estimate of the clean global plan at timestep t − 1,

(iii) J(·) is a plan ranking metric we define below, and (iv) λt controls the exploration-exploitation
tradeoff. We approximate sampling from this distribution using a Monte Carlo search procedure
resembling the cross-entropy method: draw a batch of noisy global plans from p(τ(t−1)|τ(t)), rank
them using J and retain a subset of elite global plans that minimizes the evaluation metric J(·) as
illustrated in Algorithm 3. The number of elites K is a tunable parameter of our algorithm, enabling
exploration of many possibilities in parallel when the planning problem is very large/difficult. Now,
we just need to ensure that (i) the global plans are ranked appropriately and (ii) the candidate sam-
ples proposed by compositional sampling contain informative, globally coherent mode-sequences to
pursue.

Ranking global plans via local feasibility. To guide the search effectively, we require a mechanism
to evaluate the feasibility of candidate plans. Our key insight is that a global plan is feasible iff all of
its local transitions are feasible. Since the local model p(y) is trained to model feasible short-horizon
behavior, high-likelihood local plans are strong indicators of local feasibility. Therefore, a globally
feasible plan should consist of high-likelihood local-plan segments throughout. However, computing
exact likelihoods in diffusion models is computationally expensive [55], often intractable.

To address this, we leverage DDIM inversion [54] to approximate the likelihoods of local plan
segments y. Each local segment y of a sampled global plan τ goes through forward diffusion using
the learned score network (εθ ) such that:

y(t)
√

αt
=

y(t−1)
√

αt−1
+

(√
1−αt

αt
−

√
1−αt−1

αt−1

)
εθ (y

(t−1), t) (4)

A high-likelihood sample follows a low-curvature path, whereas low-likelihood samples exhibit high
curvature to bring noisy latents in-distribution when forward noised [18] (refer App. E). Specifically,
we define a smoothness measure based on the curvature of the diffusion trajectory during inversion:

g
(

y(0)
)
=

T

∑
i=1

∥∥∥∂εθ (y(i−1), i)
∂ i

∥∥∥
2
, J(τ(0)) =

M

∏
m=1

exp

(
−g
(

y(0)m

))
(5)

where g(y(0)) measures closeness of y(0) to the nearest mode of p(y), intuitively. A higher value
of g(y(0)) corresponds to lower-likelihood local plans. We aggregate g(y(0)) over all local plan
segments y(0)1:M in τ

(0) to define the global plan ranking metric J(τ(0)) to measure plan feasibility.
Low-quality plans have high J values, making their denoising paths more likely to be pruned.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 ITERATIVE RESAMPLING

To ensure the effectiveness of the guided search, it is not enough to rank global plans correctly—we
must also promote globally coherent candidate plans. However, standard compositional sampling
fails to propagate long-horizon dependencies across overlapping local plans. Consider the running
example in Fig. 3. After one denoising step, due to independent sampling of local plans, y1 has no
information about y6, and vice versa.

To address this, we apply iterative resampling [39]: repeatedly alternating between forward noising
τ
(t) ∼ p(τ(t)|τ(t−1)) and denoising steps. This procedure enables the score network’s predictions

for each segment to incorporate information from distant neighbors via overlapping variables, en-
couraging global consistency. Mathematically, this process resembles belief propagation on a chain
of factors where each local plan ym ∈ y1:M in τ depends on its neighbors ym−1 and ym+1 through
the respective overlaps (ym ∩ ym−1 and ym ∩ ym+1). During resampling, the belief of ym is updated
as: p(ym|ym−1,ym+1) ∝ p(ym)p(ym|ym ∩ym−1)p(ym|ym ∩ym+1) Following Algorithm 2, after U iter-
ations, this iterative resampling ensures that information propagates across the entire long-horizon
sequence, producing a more globally coherent plan.

Summary of CDGS. We propose a guided-search algorithm by integrating a population-based prun-
ing strategy within compositional sampling. Given a local plan score function, our approach samples
potentially coherent global plan candidates and filters out plans with locally inconsistent segments.
Repeating this throughout the denoising process improves the probability that the retained candi-
dates satisfy local feasibility at every segment and are therefore globally feasible plans. Our algo-
rithm benefits from adaptive compute at inference time, with the flexibility to scale the batch size B
and the number of resampling steps U for problems with longer horizons and larger search spaces.

4 EXPERIMENTAL RESULTS: ROBOTIC PLANNING

In this section, we evaluate the performance of CDGS for long-horizon robotic planning. For all the
experiments, we represent inputs with a low-dimensional state-space of the system comprising the
pose of the end-effector and the objects in the scene in the global frame of reference. For real-world
evaluations, we obtain the pose of the objects through perception, more details in App. I.

CDGS can solve learning from play and stitching problems efficiently. We evaluate CDGS
for sequential-decision making tasks using the OGBench Maze and Scene task suite [48], which
includes PointMaze and AntMaze along with five tasks for Scene where a robot must manipulate
objects (a drawer, sliding window, and cube) to reach a goal state. The primary challenge is learning
from small maze trajcetories or unstructured play data during training, which does not directly solve
the target tasks. The diversity of the unstructured plans makes the local distributions highly multi-
modal. We hypothesize that CDGS is an ideal method for this problem statement because it can
compose short-horizon plans into meaningful long-horizon plans.

Env Type GCBC GCIVL GCIQL HIQL Diffuser GSC CD Ours w/o PR Ours
PointMaze
Giant [48] stitch 0 ±0 0 ±0 0 ±0 0 ±0 − ±− 29 ±3 68 ±3 72 ±4 82 ±4

AntMaze
Giant [48] stitch 0 ±0 0 ±0 0 ±0 2 ±2 − ±− 20 ±1 65 ±3 68 ±3 84 ±3

Scene [48] play 5 ±1 42 ±4 51 ±4 38 ±3 6 ±2 8 ±2 − ±− 36 ±6 51 ±2

Table 1: OGbench: learning from stitch and play datasets. With much less training data re-
quirements, CDGS performs on-par with inverse-reinforcement learning baselines and better than
generative baselines in a receding horizon control. For GSC, CD and CDGS, we replan based on
distance from goal for maze tasks (following CD [40]) and sample the complete plan based on the
oracle planning horizon for scene task. Success rate averaged over 100 trials and 5 seeds with ran-
domly chosen task ids. Baseline performance is borrowed from original papers [48, 40]

CDGS uses a Diffuser [24] to learn the distribution of local plans (up to 4 secs of trajectory at
20 Hz) represented as a sequence of states and actions y = {s1,a1, ...,sh,ah} and then composes
them at inference for a given goal state to sample up to 10 secs of motion plans τ = {si,ai}H

i=1 (h <
H). We compare the performance of CDGS with inverse reinforcement learning baselines from
OGBench, including GCBC [41, 17], GCIVL, GCIQL [31], and HIQL [49], with results presented

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

pick(hook) pull(cube, hook) place(hook) pick(cube) place(cube)

push(cube, hook)

pick(hook)

push(cube, hook)

place(hook) place(hook)

pick(hook)

(b) 
Mode-Averaging

(a) 
Infeasible Transitions

Start Goal

(a)

(c)

(d)

Figure 5: Left: Visualizing plan pruning. When compositional sampling chooses an infeasi-
ble mode sequence, the resulting plan can hallucinate out-of-distribution transitions due to mode-
averaging as explained in Sec. 3. For instance, (a) Infeasible transitions: inhand(hook)
precondition is never met for place(hook), and (b) State hallucination: cube moves
under(rack) as a result of averaging toward the goal state, despite being geometrically infea-
sible for push(cube, hook). Our pruning objective (Eq. 5) ensures only feasible plans during
denoising, where all transitions are in-distribution with our short-horizon transition diffusion model.
Right: Scaling analysis. (H-7) denotes performance averaged over tasks of horizon 7. (c) Task
planning success improves with batch size, with larger gains from more resampling steps. (d) Mo-
tion planning success improves with resampling steps, but only when batch size is large enough

in Tab. 1. In addition we also include generative baselines with monolithic models Diffuser [25] and
compositional models like GSC [43] and CompDiffuser [40].

CDGS can solve hybrid-planning problems. Task and Motion Planning (TAMP) decomposes
robotic planning into a symbolic search for a sequence of discrete high-level skills (e.g., pick,
place, pull) followed by low-level motion planning for each skill [14]. Specifically, we formu-
late a task-and-motion-plan as τ = {y1, . . . ,ym} where yi = {si,πi,ai,si+1} where a discrete skill
πi with motion parameters ai is executed on state si to get to state si+1. This entails solving a
hybrid-planning problem where the chosen discrete skill modes and continuous action modes must
simultaneously satisfy symbolic and geometric constraints. We systematically evaluate our method
on three suites of TAMP tasks, which are described in detail in App. F.

We compare our method with learning-based TAMP and other compositional methods. Specifi-
cally, we consider the following categories: (1) privileged with Planning Domain Definition Lan-
guage (PDDL): Random CEM and STAP CEM [2] search for symbolic plans in a manually and
systematically constructed PDDL domain and apply Cross Entropy Method (CEM) optimization
over potential motion plans (2) task information provided via prompting: LLM-T2M [36] prompts
an LLM (GPT-4.1) and VLM (VLM-T2M) with descriptions of the scene along with n = 11
in-context examples (w/o and w/ scene images respectively) to generate a feasible task plan that

Remark
(Task information)

Hook Reach Rearrangement Push Rearrangement Memory
Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

Task Length 4 5 4 7 4 7
Random CEM PDDL + BFS 0.14 0.10 0.08 0.00 0.02 0.02
STAP CEM 0.66 0.70 0.76 0.70 0.00 0.00
LLM-T2M, n = 11 LM Prior +

Prompting
0.0 0.48 0.72 0.06 0.0 0.0

VLM-T2M, n = 11 0.0 0.42 0.62 0.02 0.0 0.0
GSC (Original) Oracle task plan 0.78 0.80 0.88 0.64 0.82 0.48
GSC (no task plan) No PDDL

skill-level data only

0.18 0.04 0.00 0.00 0.07 0.00
CDGS (w/o PR) 0.24 0.12 0.12 0.00 0.11 0.00
CDGS (ours) 0.64 0.58 0.84 0.48 0.42 0.18

Table 2: Evaluation on TAMP task-suite. We compare CDGS with relevant search-based (PDDL
Domain) and prompting based (LLM/VLM) baselines. CDGS performs on-par or slightly trails
privileged methods on Hook Reach and Rearrangement Push, but substantially outperforms them on
Rearrangement Memory. (success rate over 50 trials)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

T2I SD2.0 Prompt: A photo of a snowy mountain peak with skiers (512 x 4608)

T2I SD2.0 Prompt: An illustration of a beach in La La Land style (512 x 4608)

SD
C
D
G
S

M
D

C
D
G
S

Figure 6: Panorama image generation. The above figure shows the qualitative comparison of
CDGS with MD [4] and SD [33]. We show qualitative intuition behind global coherence and local
feasibility: while SD generates smooth panoramas, they fail to satisfy the global context (mountain
peak with skiers), on the other hand, MD follows the global context (beach in La La Land style) but
fails to exhibit local consistency. CDGS excels at both.

is checked by a geometric motion planner (STAP CEM in this case). (3) compositional diffusion:
GSC (no task plan) [43] performs compositional diffusion (equivalent to CDGS w/o RP and PR).
Notably, GSC and CDGS are the only methods that do not rely on explicit symbolic search or
LLM/VLM supervision for the task plan. The results of our evaluation are in Tab. 2. Note that while
GSC (Original) [43] leverages skill-level expert diffusion models and oracle task plan, in our case
it represents naı̈ve compositional sampling with a unified model (w/o oracle task plan).

CDGS’s performance scales with compute. We hypothesize that CDGS has adaptive inference-
time compute, meaning that it benefits from more compute on harder problems. We validate this
hypothesis on our most challenging TAMP tasks with a planning horizon of 7. We find that increas-
ing batch size (B) and number of resampling steps (U) increases the task planning success Fig. 5(c)
and motion planning success Fig. 5(d) of CDGS. Interestingly, we find that neither increasing B nor
U on their own is sufficient for overall motion planning success. Thus, both resampling and pruning
are essential for long-horizon tasks, as evidenced by the significant improvement of CDGS ( Tab. 2).

5 CDGS FOR LONG CONTENT GENERATION

We formulate CDGS with specific design choices that enable (i) efficient message passing for global
consistency and (ii) pruning denoised paths that lead to incoherent sequences. While these mecha-
nisms are essential for long-horizon planning, we investigate their broader applicability, particularly
in long-content generation tasks such as text-to-image (T2I) and text-to-video (T2V), which require
spatial and temporal coherence over extended horizons. Our framework demonstrates effective im-
provement in long-horizon content generation.

CDGS enables coherent panoramic image generation via stitching. We evaluate CDGS on
panoramic synthesis by composing multiple image patches. A panorama τ is represented as a
sequence of small images y, each split into three overlapping patches y = (x1,x2,x3). Using Sta-
ble Diffusion-2.0 [51], we generate up to 512×4608 panoramas by stitching 512×512 images. We
compare against (i) Multi-Diffusion (MD) [4], which averages scores across overlaps (image-domain
analogue of GSC [43]), and (ii) Sync-Diffusion (SD) [33], which enforces LPIPS-based perceptual
guidance [67]. As shown in Tab. 3, CDGS matches SD without explicit perceptual loss, indicating
effective message passing for global style and perceptual transfer while maintaining prompt align-
ment (CLIP [50]). Qualitative samples are shown in Fig. 6, with more details in App. B.

CDGS can sample temporally-consistent longer videos. We follow a setup similar to panorama
generation, composing shorter clips along the temporal axis for long-video generation. When short
sequences of frames are stitched to make a long video, a key challenge is maintaining subject con-
sistency and minimizing temporal artifacts. We use CogVideoX-2B [62] as the base model, capable
of generating ∼ 50-frame videos, and extend it to up to 350 frames at 720p resolution. We use

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Metric GSC/Multi-Diffusion Sync-Diffusion CDGS w/o PR CDGS
Intra-LPIPS ↓ 0.72 ±0.08 0.58 ±0.06 0.61 ±0.08 0.59 ±0.04

Intra-Style-L(×10−2) ↓ 2.96 ±0.24 1.39 ±0.12 1.97 ±0.08 1.38 ±0.03

Mean-CLIP-S ↑ 31.77 ±2.14 31.77 ±2.14 31.71 ±2.34 32.51 ±2.66

Table 3: Quantitative comparison of panorama generation. We generate 1000 panoramas of
dimensions 512×4608 using 14 prompts and compare different methods based on their perceptual
similarity (LPIPS [67]), style similarity (Style-loss [15]), and prompt alignment (CLIP score [50]).

T2V CogVideoX-2b Prompt: A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is 
stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window. (350 frames, 720p)

Frame 1 Frame 60 Frame 150 Frame 210 Frame 295 Frame 350

C
D

G
S

C
D

G
S 

w
/o

 P
R

Figure 7: Long video generation. CDGS w/ PR (below) maintains subject-consistency while CDGS
w/o PR (top) exhibits mode-averaging, resulting in significant changes to the subjects’ appearances.

six prompts to generate videos with naı̈ve composition (GSC/Gen-L-Video [56] equivalent), com-
positional diffusion with resampling, and CDGS. The results are evaluated with VBench [22] for
temporal consistency, subject fidelity, visual quality, and alignment with the prompt (refer Tab. 4).
Qualitative analysis in Fig. 7 clearly shows the multimodal problem where multiple local plans al-
low satisfying the global context, but with CDGS’s effect local-to-global message passing, we see
an improvement in subject consistency and temporal smoothness. This comes at a minor aesthetic
degradation—a tradeoff commonly observed in long-video generation models.

Method Subject-consistency ↑ Temporal-flickering ↑ Aesthetic-quality ↑ Prompt-alignment ↑
CogVideoX-2B (50 frames) 95.91 97.35 63.10 25.51
CogVideoX-2B (350 frames) 90.24 98.44 49.44 21.78

GSC (≡ Gen-L-Video) 89.51 96.89 60.12 25.13
Ours w/o PR 91.06 97.08 59.40 25.42

Ours 91.67 97.16 58.90 26.13

Table 4: Quantitative comparison of long-video generation. We evaluate the performance of
CDGS based on selected metrics from VBench that measure subject consistency, aesthetics, prompt
alignment and temporal artifacts. We use 6 prompts (refer App. C) and generate videos with 350
frames at 720p resolution. CDGS achieves competitive video quality but for significantly (7x) ex-
tended horizons.

6 RELATED WORK

Long-horizon content generation There are many approaches to generating long-horizon content
like panoramas and long videos [26, 38, 7, 19]. Some assume access to long-horizon training data
for end-to-end training [16, 5, 60, 61], while others with weaker assumptions about training data
will compose the outputs of short-horizon models through outpainting [59, 28] or stitching [66, 29,
34, 32, 47, 6, 40]. Our method belongs to the latter, enabling generalization to longer horizons than
seen during training.

Generative planning. Generative models such as diffusion models[53, 21] are widely used for
planning [25, 3, 8, 35, 40], though they struggle with task lengths beyond their training data. Recent
works including Diffusion-CCSP [63], GSC [44], and GFC [45] have explored compositional sam-
pling [37, 12, 66] but they sidestep the mode-averaging problem via additional mode supervision
in the form of task skeletons or constraint graphs. In contrast, our approach directly addresses the
mode-averaging problem to generate goal-directed long-horizon plans from short-horizon models.

Inference-time compute. Scaling inference-time computation is a powerful strategy for improving
the performance of generative models [58, 46]. For diffusion models [54, 27], recent work has shown
the efficacy of scaling inference-time compute through verifier-guided search during the denoising

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

process [42, 52, 65, 68, 69]. Our algorithm differs in that it addresses the unique limitation of
mode-averaging when sampling from a compositional chain of distributions.

7 CONCLUSION

We introduce CDGS, a framework integrating compositional diffusion with guided search to gener-
ate long-horizon sequences with short-horizon models. By embedding search within the denoising
process, CDGS can handle composing highly multimodal distributions and sample solutions that are
both globally coherent and locally feasible. Qualitative and quantitative results suggest that CDGS
is a general pathway for extending the reach of generative models beyond their training horizons
across robotic planning, panoramic images, and video generation.

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring that all the results presented in this paper are reproducible.
To this end, we have provided pseudocodes in the paper and released the official code
base through our anonymized project website: https://cdgsearch.github.io/. We
have also provided the hyperparameters table for motion planning (refer App. G), for im-
age generation (refer App. K) and video generation (refer App. L). Apart from this our
content-generation experiments use open-source models like Stable-Diffusion-2 (refer https:
//huggingface.co/stabilityai/stable-diffusion-2) and CogVideoX-2B (refer
https://huggingface.co/zai-org/CogVideoX-2b). For all other robotics setup, we
provide more information through appendix and our project website.

9 LLM USAGE

LLMs were not used in any manner for conceptualization of the idea, key contributions of the pro-
posed work and finding relevant prior woks.

REFERENCES

[1] Christopher Agia, Toki Migimatsu, Jiajun Wu, and Jeannette Bohg. Taps: Task-agnostic policy
sequencing. arXiv preprint arXiv:2210.12250, 2022.

[2] Christopher Agia, Toki Migimatsu, Jiajun Wu, and Jeannette Bohg. Stap: Sequencing task-
agnostic policies. In 2023 IEEE International Conference on Robotics and Automation (ICRA),
pp. 7951–7958. IEEE, 2023.

[3] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit
Agrawal. Is conditional generative modeling all you need for decision making? In The
Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=sP1fo2K9DFG.

[4] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion
paths for controlled image generation. 2023.

[5] Boyuan Chen, Diego Martı́ Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent
Sitzmann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. Advances
in Neural Information Processing Systems, 37:24081–24125, 2024.

[6] Chang Chen, Hany Hamed, Doojin Baek, Taegu Kang, Yoshua Bengio, and Sungjin Ahn.
Extendable long-horizon planning via hierarchical multiscale diffusion. arXiv preprint
arXiv:2503.20102, 2025.

[7] Xinyuan Chen, Yaohui Wang, Lingjun Zhang, Shaobin Zhuang, Xin Ma, Jiashuo Yu, Yali
Wang, Dahua Lin, Yu Qiao, and Ziwei Liu. Seine: Short-to-long video diffusion model for
generative transition and prediction. In The Twelfth International Conference on Learning
Representations, 2023.

10

https://cdgsearch.github.io/
https://huggingface.co/stabilityai/stable-diffusion-2
https://huggingface.co/stabilityai/stable-diffusion-2
https://huggingface.co/zai-org/CogVideoX-2b
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[8] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings
of Robotics: Science and Systems (RSS), 2023.

[9] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

[10] Yilun Du and Leslie Pack Kaelbling. Position: Compositional generative modeling: A single
model is not all you need. In Forty-first International Conference on Machine Learning, 2024.

[11] Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based
models. Advances in Neural Information Processing Systems, 33:6637–6647, 2020.

[12] Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus,
Jascha Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle:
Compositional generation with energy-based diffusion models and mcmc. In International
conference on machine learning, pp. 8489–8510. PMLR, 2023.

[13] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation
for reinforcement learning agents. In International conference on machine learning, pp. 1515–
1528. PMLR, 2018.

[14] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver,
Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. Annual
review of control, robotics, and autonomous systems, 4(1):265–293, 2021.

[15] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolu-
tional neural networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2414–2423, 2016. doi: 10.1109/CVPR.2016.265.

[16] Songwei Ge, Thomas Hayes, Harry Yang, Xi Yin, Guan Pang, David Jacobs, Jia-Bin Huang,
and Devi Parikh. Long video generation with time-agnostic vqgan and time-sensitive trans-
former. In European Conference on Computer Vision, pp. 102–118. Springer, 2022.

[17] Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to reach goals via iterated supervised learning. arXiv preprint
arXiv:1912.06088, 2019.

[18] Alvin Heng, Harold Soh, et al. Out-of-distribution detection with a single unconditional diffu-
sion model. Advances in Neural Information Processing Systems, 37:43952–43974, 2024.

[19] Roberto Henschel, Levon Khachatryan, Hayk Poghosyan, Daniil Hayrapetyan, Vahram Tade-
vosyan, Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Streamingt2v: Consistent,
dynamic, and extendable long video generation from text. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 2568–2577, 2025.

[20] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Ad-
vances in neural information processing systems, 33:6840–6851, 2020.

[22] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang,
Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark
suite for video generative models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 21807–21818, 2024.

[23] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

[24] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, 2022.

[25] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Con-
ference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 9902–9915. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/janner22a.html.

11

https://proceedings.mlr.press/v162/janner22a.html
https://proceedings.mlr.press/v162/janner22a.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[26] Nikolai Kalischek, Michael Oechsle, Fabian Manhardt, Philipp Henzler, Konrad Schindler,
and Federico Tombari. Cubediff: Repurposing diffusion-based image models for panorama
generation. In The Thirteenth International Conference on Learning Representations, 2025.

[27] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. Advances in neural information processing systems, 35:
26565–26577, 2022.

[28] Jihwan Kim, Junoh Kang, Jinyoung Choi, and Bohyung Han. Fifo-diffusion: Generating
infinite videos from text without training. Advances in Neural Information Processing Systems,
37:89834–89868, 2024.

[29] Subin Kim, Seoung Wug Oh, Jui-Hsien Wang, Joon-Young Lee, and Jinwoo Shin. Tuning-
free multi-event long video generation via synchronized coupled sampling. arXiv preprint
arXiv:2503.08605, 2025.

[30] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

[31] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[32] Kyowoon Lee and Jaesik Choi. State-covering trajectory stitching for diffusion planners. arXiv
preprint arXiv:2506.00895, 2025.

[33] Yuseung Lee, Kunho Kim, Hyunjin Kim, and Minhyuk Sung. Syncdiffusion: Coherent mon-
tage via synchronized joint diffusions. Advances in Neural Information Processing Systems,
36:50648–50660, 2023.

[34] Guanghe Li, Yixiang Shan, Zhengbang Zhu, Ting Long, and Weinan Zhang. Diffstitch: Boost-
ing offline reinforcement learning with diffusion-based trajectory stitching. arXiv preprint
arXiv:2402.02439, 2024.

[35] Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline
decision making. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 20035–
20064. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
li23ad.html.

[36] Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg.
Text2motion: From natural language instructions to feasible plans. Autonomous Robots, 47
(8):1345–1365, 2023.

[37] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional
visual generation with composable diffusion models. In European Conference on Computer
Vision, pp. 423–439. Springer, 2022.

[38] Yu Lu, Yuanzhi Liang, Linchao Zhu, and Yi Yang. Freelong: Training-free long video gen-
eration with spectralblend temporal attention. Advances in Neural Information Processing
Systems, 37:131434–131455, 2024.

[39] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc
Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471,
2022.

[40] Yunhao Luo, Utkarsh A Mishra, Yilun Du, and Danfei Xu. Generative trajectory stitching
through diffusion composition. arXiv preprint arXiv:2503.05153, 2025.

[41] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine,
and Pierre Sermanet. Learning latent plans from play. In Conference on robot learning, pp.
1113–1132. PMLR, 2020.

[42] Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan
Yang, Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion
models beyond scaling denoising steps. arXiv preprint arXiv:2501.09732, 2025.

[43] Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen, and Danfei Xu. Generative skill chain-
ing: Long-horizon skill planning with diffusion models. In 7th Annual Conference on Robot
Learning, 2023. URL https://openreview.net/forum?id=HtJE9ly5dT.

12

https://proceedings.mlr.press/v202/li23ad.html
https://proceedings.mlr.press/v202/li23ad.html
https://openreview.net/forum?id=HtJE9ly5dT


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[44] Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen, and Danfei Xu. Generative skill chain-
ing: Long-horizon skill planning with diffusion models. In Conference on Robot Learning, pp.
2905–2925. PMLR, 2023.

[45] Utkarsh Aashu Mishra, Yongxin Chen, and Danfei Xu. Generative factor chaining: Coordi-
nated manipulation with diffusion-based factor graph. In 8th Annual Conference on Robot
Learning, 2024. URL https://openreview.net/forum?id=p6Wq6TjjHH.

[46] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

[47] Zizheng Pan, Bohan Zhuang, De-An Huang, Weili Nie, Zhiding Yu, Chaowei Xiao, Jianfei
Cai, and Anima Anandkumar. T-stitch: Accelerating sampling in pre-trained diffusion models
with trajectory stitching. arXiv preprint arXiv:2402.14167, 2024.

[48] Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmark-
ing offline goal-conditioned rl. arXiv preprint arXiv:2410.20092, 2024.

[49] Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
conditioned rl with latent states as actions. Advances in Neural Information Processing Sys-
tems, 36, 2024.

[50] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable
visual models from natural language supervision. In International conference on machine
learning, pp. 8748–8763. PMLR, 2021.

[51] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June
2022.

[52] Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown,
and Rajesh Ranganath. A general framework for inference-time scaling and steering of diffu-
sion models. arXiv preprint arXiv:2501.06848, 2025.

[53] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Un-
supervised Learning using Nonequilibrium Thermodynamics, November 2015. URL http:
//arxiv.org/abs/1503.03585. arXiv:1503.03585 [cs].

[54] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[55] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[56] Fu-Yun Wang, Wenshuo Chen, Guanglu Song, Han-Jia Ye, Yu Liu, and Hongsheng Li.
Gen-l-video: Multi-text to long video generation via temporal co-denoising. arXiv preprint
arXiv:2305.18264, 2023.

[57] John Wang and Edwin Olson. Apriltag 2: Efficient and robust fiducial detection. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4193–4198,
2016. doi: 10.1109/IROS.2016.7759617.

[58] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[59] Chenfei Wu, Jian Liang, Xiaowei Hu, Zhe Gan, Jianfeng Wang, Lijuan Wang, Zicheng Liu,
Yuejian Fang, and Nan Duan. Nuwa-infinity: Autoregressive over autoregressive generation
for infinite visual synthesis. arXiv preprint arXiv:2207.09814, 2022.

[60] Desai Xie, Zhan Xu, Yicong Hong, Hao Tan, Difan Liu, Feng Liu, Arie Kaufman, and Yang
Zhou. Progressive autoregressive video diffusion models. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 6322–6332, 2025.

[61] Xin Yan, Yuxuan Cai, Qiuyue Wang, Yuan Zhou, Wenhao Huang, and Huan Yang. Long
video diffusion generation with segmented cross-attention and content-rich video data curation.

13

https://openreview.net/forum?id=p6Wq6TjjHH
http://arxiv.org/abs/1503.03585
http://arxiv.org/abs/1503.03585


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 3184–3194,
2025.

[62] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming
Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion
models with an expert transformer. arXiv preprint arXiv:2408.06072, 2024.

[63] Zhutian Yang, Jiayuan Mao, Yilun Du, Jiajun Wu, Joshua B Tenenbaum, Tomás Lozano-Pérez,
and Leslie Pack Kaelbling. Compositional diffusion-based continuous constraint solvers. arXiv
preprint arXiv:2309.00966, 2023.

[64] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Constructing free-energy approx-
imations and generalized belief propagation algorithms. IEEE Transactions on information
theory, 51(7):2282–2312, 2005.

[65] Jaesik Yoon, Hyeonseo Cho, Doojin Baek, Yoshua Bengio, and Sungjin Ahn. Monte carlo tree
diffusion for system 2 planning. arXiv preprint arXiv:2502.07202, 2025.

[66] Qinsheng Zhang, Jiaming Song, Xun Huang, Yongxin Chen, and Ming-Yu Liu. Diffcollage:
Parallel generation of large content with diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10188–10198, June
2023.

[67] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 586–595, 2018.

[68] Tao Zhang, Jia-Shu Pan, Ruiqi Feng, and Tailin Wu. T-scend: Test-time scalable mcts-
enhanced diffusion model. arXiv preprint arXiv:2502.01989, 2025.

[69] Xiangcheng Zhang, Haowei Lin, Haotian Ye, James Zou, Jianzhu Ma, Yitao Liang, and Yilun
Du. Inference-time scaling of diffusion models through classical search. arXiv preprint
arXiv:2505.23614, 2025.

[70] Yifeng Zhu, Abhishek Joshi, Peter Stone, and Yuke Zhu. Viola: Imitation learning for vision-
based manipulation with object proposal priors. arXiv preprint arXiv:2210.11339, 2022. doi:
10.48550/arXiv.2210.11339.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Background 2

3 Method 3

3.1 Compositional Diffusion with Guided Search . . . . . . . . . . . . . . . . . . . . 4

3.2 Iterative Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Experimental Results: Robotic Planning 6

5 CDGS for Long content generation 8

6 Related Work 9

7 Conclusion 10

8 Reproducibility statement 10

9 LLM Usage 10

A Limitations 17

B Additional Panorama Generation Results 18

C Prompts for Video Generation 19

D Compositional Score Computation: CDGS’s relation to existing literature 20

E Pruning objective via DDIM Inversion: CDGS’s relation to existing literature 20

E.1 Illustrative example: DDIM Inversion and OOD metrics . . . . . . . . . . . . . . . 21

F Additional TAMP suite details 24

F.1 Skill Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

F.2 State Space of the Unified Skill Transition Model . . . . . . . . . . . . . . . . . . 25

G Training and Sampling: More details on TAMP experiments 26

G.1 CDGS: Unified Score Model Training . . . . . . . . . . . . . . . . . . . . . . . . 26

G.2 CDGS: Sampling Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

G.3 CDGS: Runtime and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

G.4 STAP [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

G.4.1 Task Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

G.4.2 CEM Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

G.4.3 Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . 28

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

H Additional Ablations 29

H.1 CDGS: A better prior for task-level trajectory sampling . . . . . . . . . . . . . . . 29

H.2 Analyzing scaling for individual tasks . . . . . . . . . . . . . . . . . . . . . . . . 29

I Hardware Setup 30

J LLM and VLM Prompting 31

J.1 LLM Prompting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

J.2 VLM Prompting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

K Pseudo-code and Hyperparameters for Image Generation 35

L Pseudo-code and Hyperparameters for Video Generation 38

M Scaling analysis: NFE and Wall clock times 39

M.1 Toy domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

M.2 OGbench domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

N Compositional Diffusion with Guided Search: Complete Algorithm for Motion Plan-
ning 42

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A LIMITATIONS

While CDGS demonstrates strong performance in long-horizon goal-directed planning, it relies on
a few simplifying assumptions that also suggest directions for future work. We assume the ability
to specify a goal state, which simplifies planning but can be naturally extended to goal-generation
or classifier-guided goal-conditioning methods [13]. Similarly, we generate plans for a fixed hori-
zon, yet the framework can handle arbitrary horizons given the same start and goal, enabling se-
lection among multiple candidate plan lengths. Finally, long-horizon dependencies are communi-
cated through score averaging and resampling between adjacent skills; more sophisticated message-
passing or attention-based mechanisms could improve efficiency and coherence across entire plans.
These assumptions keep the problem tractable while providing a flexible foundation for extending
CDGS to more general and complex planning scenarios.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B ADDITIONAL PANORAMA GENERATION RESULTS

A photo of a grassland with animals

Silhouette wallpaper of a dreamy scene with shooting stars

Natural landscape in anime style illustration

A photo of a beautiful ocean with coral reef

A photo of a lake under the northern lights

A beautiful landscape with mountains and a river

Last supper with cute corgis

A photo of a forest with a misty fog

A photo of mountain range at twilight

A photo of a rock concert

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C PROMPTS FOR VIDEO GENERATION

We used the following standard prompts for generating the videos:

1. The camera follows behind a white vintage SUV with a black roof rack as it speeds up
a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from
it’s tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm
glow over the scene. The dirt road curves gently into the distance, with no other cars
or vehicles in sight. The trees on either side of the road are redwoods, with patches of
greenery scattered throughout. The car is seen from the rear following the curve with ease,
making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself
is surrounded by steep hills and mountains, with a clear blue sky above with wispy clouds.
realism, lifelike.

2. A cute happy panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in
a serene bamboo forest. The panda’s fluffy paws strum a miniature acoustic guitar, produc-
ing soft, melodic tunes, move hands, singings. Nearby, a few other pandas gather, watching
curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a
gentle glow on the scene. The panda’s face is expressive, showing concentration and joy
as it plays. The background includes a small, flowing stream and vibrant green foliage, en-
hancing the peaceful and magical atmosphere of this unique musical performance. realism,
lifelike.

3. A group of colorful hot air balloons take off at dawn in Cappadocia, Turkey. Dozens of
balloons in various bright colors and patterns slowly rise into the pink and orange sky. Be-
low them, the unique landscape of Cappadocia unfolds, with its distinctive ’fairy chimneys’
- tall, cone-shaped rock formations scattered across the valley. The rising sun casts long
shadows across the terrain, highlighting the otherworldly topography. realism, lifelike.

4. A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly
over a plush, blue carpet that mimics the waves of the sea. The ship’s hull is painted a
rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop,
resembling an oceanic expanse. Surrounding the ship are various other toys and children’s
items, hinting at a playful environment. The scene captures the innocence and imagination
of childhood, with the toy ship’s journey symbolizing endless adventures in a whimsical,
indoor setting. realism, lifelike.

5. A young woman with beautiful and clear eyes and blonde hair standing and white dress in
a forest wearing a crown. She seems to be lost in thought, and the camera focuses on her
face. The video is of high quality, and the view is very clear. High quality, masterpiece,
best quality, highres, ultra-detailed, fantastic. realism, lifelike.

6. A woman walks away from a white Jeep parked on a city street at night, then ascends a
staircase and knocks on a door. The woman, wearing a dark jacket and jeans, walks away
from the Jeep parked on the left side of the street, her back to the camera; she walks at a
steady pace, her arms swinging slightly by her sides; the street is dimly lit, with streetlights
casting pools of light on the wet pavement; a man in a dark jacket and jeans walks past the
Jeep in the opposite direction; the camera follows the woman from behind as she walks up
a set of stairs towards a building with a green door; she reaches the top of the stairs and
turns left, continuing to walk towards the building; she reaches the door and knocks on it
with her right hand; the camera remains stationary, focused on the doorway; the scene is
captured in real-life footage.

7. At sunset, a modified Ford F-150 Raptor roared past on the off-road track. The raised
suspension allowed the huge explosion-proof tires to flip freely on the mud, and the mud
splashed on the roll cage.

8. A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour,
while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight
streaming through the window.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D COMPOSITIONAL SCORE COMPUTATION: CDGS’S RELATION TO
EXISTING LITERATURE

Composing the distributions defined by multiple diffusion models is well-explored in literature
[12, 63]. Specifically we want to sample from the distribution of long-horizon sequences τ =
(x1,x2, ...,xN) by composing distributions of short-horizon sequences. There have been two main
ways of composing short-horizon diffusion models in a chain:

1. Score-Averaging: approaches like GSC [44] and CDGS partition τ into overlapping seg-
ments where the score for regions of overlap can be obtained by score-averaging:

p(τ) ∝
p(x1,x2,x3)p(x3,x4,x5) . . .

p(x3) . . .

2. Conditioning: CompDiffuser [40] partitions τ into non-overlapping segments that are con-
ditioned on adjacent segments

p(τ) ∝ p(x1|x2)p(xN |xN−1)
N−1

∏
i=2

p(xi|xi−1,xi+1)

Since CompDiffuser [40] requires training a model with conditions, we follow the more plug-n-
play format of GSC [43]. For TAMP, the key difference between CDGS and GSC is that individual
skill-level transitions for GSC are already conditioned on the task plan. This means that CDGS
samples from the unified model p(si−1,ai,si) where for GSC individual segments are sampled from
p(si−1,ai,si|πi) since the oracle skill-sequence (task plan) π1:H is already provided. This greatly
simplifies compositional sampling as the models in GSC only conduct motion planning, thus reduc-
ing multi-modality and mode-averaging issues significantly, whereas the models in CDGS conduct
full task and motion planning.

E PRUNING OBJECTIVE VIA DDIM INVERSION: CDGS’S RELATION TO
EXISTING LITERATURE

DDIM Inversion is simply running the DDIM [54] denoising process backward i.e., forward noising
in a deterministic way, to extract the denoising path from clean samples. Since we sample plans from
a composed distribution, transition segments of a good plan should follow high-likelihood regions
of the unified skill-transition distribution. A DDIM sampling based denoising looks like:

x(t−1) =
√

αt−1

(
x(t)−

√
1−αtεθ (xt , t)√

αt

)
+
√

1−αt−1εθ (x(t), t)

We follow [18] to formulate this metric by first forward-noising each segment of the sampled plan
from the task-level distribution according to:

x(t)
√

αt
=

x(t−1)
√

αt−1
+

(√
1−αt

αt
−

√
1−αt−1

αt−1

)
εθ (x(t−1), t)

With δt =

√
1−αt

αt
and y(t) = x(t)

√
1+δ 2

t , we can convert the above into:

dyt = εθ (x(t−1), t)dδt

Lets consider two forward-noising paths from two samples: one from high-likelihood region and one
from a low-likelihood region. For both the samples, the rate of change of the integration path and its
curvature directly indicate the likelihood of the clean sample. A high-likelihood sample will follow a
smoother path with less curvatures while a low -likelihood sample will follow a high-curvature path
to bring the noisy samples to high-likelihood regions of the noisy distribution. Hence, we consider

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Taylor expansion to analyze the higher order terms:

y(t+1) = y(t)+(δt+1 −δt)
dy(t)

dδt
|(y(t),t)+(δt+1 −δt)

2 d2y(t)

dδ 2
t

|(y(t),t)+ . . .

= y(t)+(δt+1 −δt)εθ (x(t−1), t)+(δt+1 −δt)
2 dεθ (x(t−1), t)

dδt
|(y(t),t)+ . . .

where the second derivative term can be further decomposed into

dεθ (x(t−1), t)
dδt

=
∂εθ (x(t−1), t)

∂x(t−1)

dx(t−1)

dδt
+

∂εθ (x(t−1), t)
∂ t

dt
dδt

We find that the time-derivative term
∂εθ (x(t−1), t)

∂ t
is sufficient to distinguish between denoising

path from high and low likelihood samples. Thus, we construct our pruning objective as:

g(x(0)) =
T

∑
t=1

∥∥∥∥∥∂εθ (x(t−1), t)
∂ t

∥∥∥∥∥
2

which is summing the curvature of the complete denoising timestep. A lower value of g(x0) in-
dicates high-likelihood samples. The final objective of a sampled plan τ composing of segments
(x1,x2, . . . ,xH), where xk = (sk−1,πk−1,ak−1,sk), is calculated as:

H

∏
k=1

exp
(
−g(x(0)k )

)
Based on the cumulative score of all segments of a plan, we select top-M plans to move on to the
next denoising timestep of the compositional sampling process.

In this section, we want to understand the efficacy of the DDIM inversion based pruning objective.

E.1 ILLUSTRATIVE EXAMPLE: DDIM INVERSION AND OOD METRICS

Experiment description: We learn a 1D distribution of x such that [−1.0,−0.5]∪ [−0.1,0.2]∪
[0.6,1.0] is in-distribution (ID) and remaining segments are out of distribution (OOD) by construc-
tion. We learn a simple MLP score function to represent the diffusion model.

We draw clean samples uniformly from [−1.0,1.0] and use DDIM inversion with the learned score
function to noise them for 100 timesteps and then use 100 steps of DDIM denoising to reconstruct
the clean samples back. Note that the original clean samples contain both ID and OOD while the
reconstructed samples only contain ID.

We calculate the following metrics:

1. DDIM inversion metric: This is what is used in CDGS. The goal is to quantify the curvature
of the inversion path. Smoother path means high-likelihood clean sample, while a path
with abrupt direction changes mean low-likelihood clean samples. We only measure the
cummulative curvature of the first 20% inversion trajectory as, after that the path stabilizes
as noisy latents come within in-distribution regions.

2. Reconstruction metric: We calculate the error between the reconstructed sample and the
clean sample. Note that this is after 100 steps of inversion followed by 100 denoising steps
as shown in Fig. 8.

3. Restoration Gap: This is another form of reconstruction metric but we do not need to
inversion to obtain the noisy latents. We can sample any denoising timestep, add noise
to the timestep using xt =

√
αtx0 +

√
1−αtε, ε ∈ N(0, I) and then denoise xt from

timestep t to obtain reconstructed clean sample x̂t
0. Thus restoration gap can be calculated

as: Et [x̂t
0 − x0]. This can be repeated for multiple choice of timesteps.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

𝑥

Clean Sample 
(ID and OOD)

Reconstructed 
Sample (Only ID)

D
D

IM
 In

ve
rs

io
n 

(F
or

w
ar

d 
N

oi
si

ng
)

D
D

IM
(R

ev
er

se
 D

en
oi

si
ng

)

In-distribution region for clean data

Figure 8: This plot contrasts the DDIM Inversion (forward noising, blue lines) with DDIM Denois-
ing (reverse, red lines) on a 1D dataset where green areas mark the in-distribution (ID) regions. Top.
(Inversion, t = 0 → 100) shows both ID and out-of-distribution (OOD) clean samples diffusing into
noise using the learned score function. Bottom.(Denoising, t = 100 → 0) illustrates the learned
model starting from noise and guiding all trajectories to reconstruct samples only within the valid
ID regions, demonstrating how OOD paths are pulled back to the data manifold.

Advantages of the curvature-based approach over reconstruction-based alternatives for likeli-
hood approximation: We see two directions of improvement when using CDGS’s curvature-based
metric vs reconstruction-based alternatives:

1. DDIM inversion only requires forward noising while reconstruction methods require both
forward noising and denoising back.

2. For distributions with disjoint modes (like the one considered for this experiment), it is not
necessary that the reconstructed sample after noising and denoising will belong to the same
mode as the original clean sample. This makes reconstruction-based metrics invalid or
overly conservative, neglecting in-distribution segments. We show this in Fig. 9 where the
ID samples from middle segment after reconstruction belong to the left and right segments.
While this increases the reconstruction error, the curvature metric can robustly handle this
phenomenon. On the other hand, the restoration gap fails to give any meaningful signal.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

𝑥

O
O

D
 M

et
ric

𝑥

D
iff

us
io

n 
tim

es
te

ps

Figure 9: Comparing DDIM trajectories and associated OOD metrics. Left shows superimposed
DDIM inversion (noising, blue) and denoising (reconstruction, red) paths. The blue lines show
samples starting from both ID and OOD regions (e.g., the middle segment) being noised. The red
lines show that all trajectories, when denoised, are guided back to the ID (green) regions. Bottom
highlights the initial steps of the inversion (noising) paths. It illustrates that paths starting from
OOD samples exhibit abrupt changes in noising directions, while paths starting in-distribution are
smoother. Right compares OOD metrics (where a lower score is better). The Inversion Score (blue)
accurately identifies the OOD and ID regions. The Reconstruction Error (red) is overly conservative,
incorrectly flagging the middle segment as OOD. The Restoration Gap (green) provides no useful
signal, failing to distinguish between ID and OOD regions.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F ADDITIONAL TAMP SUITE DETAILS

We evaluate our framework on three task domains (hook reach, rearrangement push, and
rearrangement memory) with two tasks each. Each of the considered suites focuses on un-
derstanding long-horizon success of one particular skill. For example, hook reach is about
the long-term effect of executing hook, while rearrangement push focuses on push and
rearrangement memory is designed to confuse the TAMP framework that perform hierarchi-
cal planning with non goal-conditioned motion planners. Each task’s challenge is directly propor-
tional to the long-horizon action dependency required to complete it. For example, pull affects
immediately if the next skill is pick. But place affects the next skill after executing one inter-
mediate skill (like pick). Similarly, action dependency is after two skills for rearrangement
push and rearrangement memory tasks. We describe all of such considered tasks below.

1. Hook Reach (Task 1):
• Scene: Table with a rack, hook, and cube
• Start: Rack and hook are in workspace, cube is beyond workspace
• Goal: Pick up the cube
• Action Skeleton: pick(hook) → pull(cube, hook) → place(hook) → pick(cube)

2. Hook Reach (Task 2):
• Scene: Table with a rack, hook, and cube
• Start: Rack and hook are in workspace, cube is beyond workspace
• Goal: Place the cube on the rack
• Action Skeleton: pick(hook) → pull(cube, hook) → place(hook) → pick(cube) →

place(cube, rack)

Figure 10: Hook Reach Task 2

3. Rearrangement Push (Task 1):
• Scene: Table with a hook, cube, and rack
• Start: Hook and cube are in workspace, rack is beyond workspace
• Goal: Position the cube under the rack
• Action Skeleton: pick(cube) → place(cube) → pick(hook) → push(cube, hook, rack)

4. Rearrangement Push (Task 2):
• Scene: Table with a hook, cube, and rack
• Start: Hook is in workspace, cube and rack are beyond workspace
• Goal: Position the cube under the rack
• Action Skeleton: pick(hook) → pull(cube, hook) → place(hook) → pick(cube) →

place(cube) → pick(hook) → push(cube, hook, rack)

Figure 11: Rearrangement Push Task 2

5. Rearrangement Memory (Task 1):

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• Scene: Table with a hook, red cube, and blue cube
• Start: All objects (hook, red cube, blue cube) are in workspace
• Goal: Put the red cube where the blue cube is
• Action Skeleton: pick(blue cube) → place(blue cube) → pick(red cube) →

place(red cube)
6. Rearrangement Memory (Task 2):

• Scene: Table with a hook,red cube, and blue cube
• Start: Hook and blue cube are in workspace, red cube is beyond workspace
• Goal: Put the red cube where the blue cube is
• Action Skeleton: pick(hook) → pull(red cube, hook) → place(hook) →

pick(blue cube) → place(blue cube) → pick(red cube) → place(red cube)

Figure 12: Rearrangement Memory Task 2

F.1 SKILL STRUCTURE

We consider a finite set of parameterized skills in our skill library. The parameterization, data
collection, and training method for each of the skills is described as follows:

1. Pick: Gripper picks up an object from the table and the parameters contain 4-DoF pose in
the object’s frame of reference (x,y,z,θ).

2. Place: Gripper places an object at the target location and parameters contain 4-DoF pose
in the place target’s frame of reference (x,y,z,θ). This skill requires specifying two set of
parameters, the target pose and the target object (e.g. hook, table).

3. Push: Gripper uses the grasped object to push away another object. The skill is motivated
from prior work [43, 1] where a hook object is used to Push blocks. The parameters of
this skill are (x,y,r,θ) such that the hook is placed at the (x,y) position on the table and
pushed by a distance r in the radial direction θ w.r.t. the origin of the manipulator.

4. Pull: Gripper uses the grasped object to pull another object inwards. The skill is also
motivated from prior work [43, 1] where a hook object is used to Pull blocks. The pa-
rameters of this skill are (x,y,r,θ) such that the hook is placed at the (x,y) position on the
table and pulled by a distance r in the radial direction θ w.r.t. the origin of the manipulator.

F.2 STATE SPACE OF THE UNIFIED SKILL TRANSITION MODEL

CDGS assumes access to 6D object poses. In practice, we construct the system state as a concate-
nated vector of poses of objects present in the scenario. We use a fixed object order ([robot, rack,
hook, cube1, cube2, . . . ]), passing zero-vectors for absent objects, consistent across all baselines for
the experiment.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

G TRAINING AND SAMPLING: MORE DETAILS ON TAMP EXPERIMENTS

G.1 CDGS: UNIFIED SCORE MODEL TRAINING

For our TAMP suite, we collect 10000 random skill transition demonstrations for each skill by
rolling out random policies in the environment. This ensures enough diversity in the system tran-
sitions in the training data. As shown in Fig. 13, we use a mixture-of-experts (MOE) model where
we use N feedforward MOE layers. Each layer has a gating network and M experts, where dif-
fusion timestep information is used through an adaptive layer normalization (AdaLN) layer. The
outputs from each expert are merged using the predicted gating softmax weights to get the final
score of the noisy transition tuple. For OGbnch [48], we just use the datasets provided by them:
https://github.com/seohongpark/ogbench

Po
si

tio
na

l E
nc

od
in

g

𝐸 !
,#

𝐸 $
,#

𝐸 %
,#

𝐸 !
,#

𝐸&,#

𝐷 !
,#

𝐷 $
,#

𝐷 %
,#

𝐷 !
,#

W
ei

gh
te

d 
su

m
of

ex
pe

rt
ou

tp
ut

s

𝑠'
(&)

C
on

ca
te

na
te𝜋'

(&)

𝑎'
(&)

𝑠*
(&)

𝜖# 𝑠'
& , 𝜋'

& 𝑎'
& , 𝑠*

& , 𝑡 	

𝑡

M
O

E 
La

ye
r

Tr
an

sf
or

m
er

 G
at

in
g 

N
et

w
or

k 
+ 

Ad
aL

N

G
at

in
g 

Fu
nc

tio
n

Ex
pe

rt
s

×	𝑀

So
ftM

ax
 

G
at

in
g

W
ei

gh
ts

C
on

ca
te

na
te

×	𝑁

Figure 13: Network architecture for the score function

We particularly use https://huggingface.co/docs/diffusers/en/index library to
deploy training and sampling. We provide the training hyperparameters of our setup below:

Table 5: Training setup hyperparameters for CDGS

Hyperparameter Value
Num. MOE layers 3
Num. Experts per layer 6
Encoder output dim 256
Gating network Transformer num. heads 4
Hidden-dims 256
Optimizer torch.AdamW
Learning rate 1e−4
Positional Encoding sinusoidal
Num. Training Steps 1e6
Num Diffusion timesteps 500
Diffusion β schedule cosine
Prediction type epsilon

Effect of training data coverage. If we consider an “ideal” score function and a perfect repre-
sentation of the system transition distributions, a solution exists if there is an overlap between the
pre-condition and effect of two chosen skills that are required to solve the plan. If such an overlap-
ping segment does not exist, CDGS will not be able to complete the plan. Hence, the training data
for each skill must be diverse enough to ensure that the overlap exists. Also, it is worth noting that
we use separate dataloaders for all skills to ensure equal distribution of skills in training batches and
thus equal preference when sampling.

26

https://github.com/seohongpark/ogbench
https://huggingface.co/docs/diffusers/en/index


1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

G.2 CDGS: SAMPLING STRATEGY

For the main denoising loop, we use T denoising timesteps and start with a initial batch size of B.
For a plan of horizon H, we perform the compositional score computation and iterative resampling
with U(t) number of resampling steps at every denoising timestep t. We devise an adaptive strategy
where we apply

1. no pruning for the first few denoising steps until Te = keT . We call this as exploration
phase. We keep the number of resampling iterations to low during this phase.

2. pruning starts from Te = keT and is done until Tp = kpT . During this, at each denoising
timestep, we do some resampling iterations U(t) and then select top-K elites based on the
pruning metric.

3. once we have potentially high-quality globally coherent sequences of local modes after a
few steps of pruning, we start increasing resampling iterations. This allows us to align the
local plans more closely with the optimal mode sequences.

We show the value of each hyperparameter in Tab. 6.

Table 6: TAMP suite experiments: Sampling setup hyperparameters for CDGS

Hyperparameter Value
Denoising timesteps T 10
Batch size B 100 for H = 7 and 50 for H = 4&5

Resampling schedule U(t)
T − t +1

T
(UT )

Maximum resampling steps UT 50 for H = 7 and 40 for H = 4&5
Exploration ends at ke 0.7
Pruning ends at kp 0.3
Top-K pruning selection 0.2×B
Pruning objective calculated with P DDIM inversion steps 0.4×T

Thus for a plan of horizon H, the total number of function evaluation (NFE) comes to be:

NFE = UT × T (T +1)
2︸ ︷︷ ︸

Main Denoising Loop

+(ke − kp)T ×P︸ ︷︷ ︸
Pruning phase

Since using a single model allows batch operations of converting the B plans of horizon H into a
single batched model evaluation with B×H short transitions.

G.3 CDGS: RUNTIME AND EVALUATION

We observe the inference time of CDGS to be 0.5 × H sec (linear with H) on an Nvidia L40s
GPU where H is the plan length. For success metrics, we consider a task success according to the
following: (1) Hook Reach: the cube is on rack in a stable position (2) Rearrangement Push:
≥ 50% of the cube is under the rack and (3) Rearrangement Memory: cube within 0.05 m of
target positions.

G.4 STAP [1]

For STAP, we use their policies, critics, and dynamics models trained with their inverse reinforce-
ment learning pipeline (text2motion [36]) available at https://github.com/agiachris/
STAP. For Rearrangement Push, we modify the criteria of the Under predicate such that >= 50%
of the cube must be under the rack to be successful. We train a new model using STAP’s code for
Push and use their pre-trained models for the other skills.

27

https://github.com/agiachris/STAP
https://github.com/agiachris/STAP


1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

G.4.1 TASK PLANNING

STAP by itself is only a motion planner. In order to solve full TAMP problems, it must be integrated
with an external task planner. Symbolically-feasible skill sequences found by the task planner are
evaluated and ranked by STAP for geometric feasibility. For our experiments, we use a BFS-based
symbolic planner that searches through a hand-designed PDDL domain.

To better reflect practical considerations, we design the PDDL domain for each task so that provided
geometric information is minimized while ensuring that the correct task plan can always be found.
We modify the BFS algorithm so that it can revisit previously visited states as the hidden geometric
predicates may be different despite the same symbolic predicates.

Remark on Rearrangement Memory task. There are two particular characteristics required in a
TAMP to solve Rearrangement Memory task:

1. The symbolic planner must understand which particular symbolic state will satisfy the goal
condition. Since most required skills are pick and place, the symbolic effect of all
place actions are same. As the exact goal position is not embed in the symbolic states, it
is not possible for a naı̈ve task planner to solve for a skill sequence.

2. The task planner can give many feasible solutions that the motion planner must evaluate to
find the final task and motion plan. This requires goal-conditioned planners. Since STAP
uses Q-function based value estimates to evaluate plans, we find that it struggles with the
task as it is not a goal-conditioned method.

G.4.2 CEM SAMPLING

The STAP baselines use a CEM-based sampling algorithm. An initial prior for the actions is sampled
for the start state, and then optimized using the value and dynamics models with CEM-optimization.
The only difference between Random CEM and STAP CEM is that Random CEM samples the prior
from a uniform distribution? (double-check) while STAP samples the prior from its learned policy
models

To make a fair comparison between CDGS’s diffusion-based sampling and STAP’s CEM-based
sampling, we match the sampling budget based on the number of function evaluations. Since our
unified model serves the same purpose as STAP’s policy, value, and dynamics models, we consider
evaluating one set of STAP’s policy, value, and dynamics models for a skill to be one function
evaluation. For STAP, the CEM runs num iterations of sampling for N ∗batchsizesamples. Thus, we
match the number of sampling iterations and batch size. The exact budgets for each task are given
below.

Table 7: CEM-sampling parameters for STAP

Task Samples Iterations Elites Total NFE CDGS NFE
Hook Reach 1 40 132 16 5280 2300
Hook Reach 2 50 165 20 8250 2300
Rearrangement Push 1 50 165 20 8250 2300
Rearrangement Push 2 70 336 28 23520 2850
Rearrangement Memory 1 40 132 16 5280 2300
Rearrangement Memory 2 70 336 28 23520 2850

G.4.3 UNCERTAINTY QUANTIFICATION

The LLM Planner in text2motion [36] can sometimes generate symbolically invalid actions i.e.
(place(cube) when nothing is in hand), which are out-of-distribution for the learned models.
text2motion uses a simple ensemble-based OOD detection method (detailed in appendix A.2 of
their paper) to filter out symbolically-invalid actions. We use this for all text2motion baselines. For
completeness, we also include this in STAP’s baselines as STAP CEM + UQ, but it does not make
any significant improvements.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

H ADDITIONAL ABLATIONS

H.1 CDGS: A BETTER PRIOR FOR TASK-LEVEL TRAJECTORY SAMPLING

The proposed method constructs a task-level distribution from skill-level distribution given the cur-
rent state, the intended goal state and the planning horizon. Specifically, CDGS finds a sequence
of modes with overlapping pre-condition and effects by systematic exploration and pruning. While
this does not always ensure that the plan is symbolically-geometrically feasible, we observe that
choosing the top two plans and expanding the BFS tree with system rollouts leads to higher success
rates. As shown in Tab. 8, the CDGS (BFS-2) proves to be an upper bound of our approach. This
points out that CDGS constructs meaningful task-level distribution with correct task plans.
Table 8: The success rate of the proposed CDGS algorithm is shown and compared with a variant
that performs BFS with the top-2 skill chains at every step and uses system dynamics to rollout. All
results are calculated from 50 trials for each task.

Hook Reach Rearrangement Push Rearrangement Memory
Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

Task Length 4 5 4 7 4 7
Full Generative TAMP (no PDDL, skill-level data only)

CDGS (ours) 0.64 0.58 0.84 0.48 0.42 0.18
Full Generative TAMP (no PDDL, skill-level data only) + Rollout with system dynamics
CDGS (BFS-2) 0.72 0.64 0.90 0.62 0.48 0.22

H.2 ANALYZING SCALING FOR INDIVIDUAL TASKS

We analyze how varying the batch size B and the number of resampling iterations U affects over-
all planning performance across all long-horizon tasks of horizon (H) 4&5 (Hook Reach Task 1

(a) (b)

(c) (d)

Figure 14: We show the effect of scaling B and U on the overall task planning and motion planning
success of CDGS for shorter tasks (H = 4&5) in (a,b) and longer tasks (H = 7) in (c,d)

and Task 2; Rearrangement Push Task 1; Rearrangement Memory Task 1) and longer H = 7 (Re-

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

arrangement Push Task 2; Rearrangement Memory Task 2) in Fig. 14. As shown in Fig. 14(a,
c), increasing B yields a clear, monotonic rise in task-planning success: larger candidate sets di-
versify the search over the task-level distribution and enable the pruning stage to more reliably
identify viable skill sequences. Motion-planning success exhibits a similar trend in Fig. 14(b, d),
demonstrating that a more diverse initial sample pool benefits the motion-planning optimization as
well. We can also seeFig. 14(b, d) that at lower batch size, increasing the number of resampling
steps yields only marginal improvements: without pruning, repeated denoising can still suffer from
mode-averaging local minima, where incorrect skill sequences become self-reinforcing. It is only
when resampling is coupled with pruning that results in better task planning as well as permit bidi-
rectional “message-passing” of information between the start and goal states—compensating for
temporal misalignments at skill (pre-condition and effect) intersection—and thereby unlock signifi-
cant gains in both task and motion success rates.

I HARDWARE SETUP

The experimental setup, illustrated in Fig. 15, consists of the same Franka Panda robot arm,
several blocks, a rack, and a hook, observed by an Azure Kinect camera. The camera is
mounted in an inclined front-view configuration. AprilTag [57] (https://github.com/
fabrizioschiano/apriltag2) markers are used for SE(3) pose detection. We employ De-
oxys [70] (https://github.com/UT-Austin-RPL/deoxys_control) for control. Af-
ter obtaining the SE(3) poses of all the objects: (1) we construct the same environment in simulation,
(2) deploy our algorithm in simulation, and (3) execute the planned action in real environment and
finally replan.

Camera

April Tags

Figure 15: Hardware setup

30

https://github.com/fabrizioschiano/apriltag2
https://github.com/fabrizioschiano/apriltag2
https://github.com/UT-Austin-RPL/deoxys_control


1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

J LLM AND VLM PROMPTING

J.1 LLM PROMPTING

To make the fairest comparison, we use the same prompt style and in-context examples as
text2motion[36], which can be found in Appendix B.2. of their paper. We find that having the
model generate multiple candidate task-plans during the shooting phase is critical to task perfor-
mance, so we add a minimal system prompt to make the LLM instruction-following explicit. An
example of a full prompt for LLM-T2M, n = 1 for hook Reach Task 1 is shown below.

User Prompt

Respond directly in the format specified in the output format section, following the
instructions exactly for how many sequences to generate i.e. generate 5 sequences if asked
for the ”Top 5 robot action sequences”.

Available primitives: [’pick(a)’, ’place(a, b)’, ’pull(a, hook)’, ’push(a, hook, rack)’]
Available predicates: [’on(a, b)’, ’inhand(a)’, ’under(a, b)’]
Available scene objects: [’table’, ’blue box’, ’cyan box’, ’hook’, ’rack’, ’red box’, ’yel-
low box’]
Object relationships: [’inhand(hook)’, ’on(red box, rack)’, ’on(yellow box, table)’,
’on(blue box, table)’, ’on(cyan box, rack)’, ’on(rack, table)’]
Human instruction: could you move all the boxes onto the rack?
Goal predicate set: [[’on(yellow box, rack)’, ’on(blue box, rack)’]]
Top 1 robot action sequences: [’pull(yellow box, hook)’, ’place(hook, table)’,
’pick(yellow box)’, ’place(yellow box, rack)’, ’pick(blue box)’, ’place(blue box, rack)’]

Available scene objects: [’table’, ’rack’, ’hook’, ’red box’]
Object relationships: [’on(rack, table)’, ’on(hook, table)’, ’on(red box, table)’]
Human instruction: How would you get the red box in the robot’s hand?
Goal predicate set: [[’inhand(red box)’]]
Top 5 robot action sequences (python list of lists):

Model Completion

[ [’pick(red box)’], [’push(red box, hook, rack)’, ’pick(red box)’], [’pick(hook)’,
’place(hook, table)’, ’pick(red box)’], [’pick(hook)’, ’place(hook, rack)’, ’pick(red box)’],
[’pick(hook)’, ’place(hook, table)’, ’push(red box, hook, rack)’, ’pick(red box)’] ]

Interestingly, even though many of the prompts contain partial-to-complete solutions in the in-
context examples like the one above, we find that this does not guarantee the LLM will generate
the correct plan.

A key piece to text2motion’s success for planning despite LLM’s lack of geometric awareness is
the alternation between shooting and greedy search. When the shooting motion planner fails to find
a geometrically feasible motion plan from the 5 task plan candidates, the algorithm falls back to a
say-can style greedy search that executes the next action deemed most feasible by a combination of
the LLM task planner and the motion planner. This allows the LLM task planner to explore with
geometric feedback, and is the reason why text2motion is able to solve Rearrangement Push
Task 1. For our evaluations, we allow 10 tries, which is much more than the steps required to solve
any of the tasks in our evaluation suites.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

J.2 VLM PROMPTING

For VLM experiments, we modify the system prompt and insert scene images before the scene
description. Below is an example of Hook Reach Task 1 with n = 11 in-context examples.

User Prompt

Respond directly in the format specified in the output format section, following the instruc-
tions exactly for how many sequences to generate i.e. generate 5 sequences if asked for the
”Top 5 robot action sequences”. Review the provided images carefully when constructing
your plan.
Available primitives: [’pick(a)’, ’place(a, b)’, ’pull(a, hook)’, ’push(a, hook, rack)’]
Available predicates: [’on(a, b)’, ’inhand(a)’, ’under(a, b)’]
Available scene objects: [’table’, ’hook’, ’rack’, ’yellow box’, ’blue box’, ’red box’]
Object relationships: [’inhand(hook)’, ’on(yellow box, table)’, ’on(rack, table)’,
’on(blue box, table)’]
Human instruction: How would you push two of the boxes to be under the rack?
Goal predicate set: [[’under(yellow box, rack)’, ’under(blue box, rack)’], [’under(blue box,
rack)’, ’under(red box, rack)’], [’under(yellow box, rack)’, ’under(red box, rack)’]]
Top 1 robot action sequences: [’push(yellow box, hook, rack)’, ’push(red box, hook, rack)’]

Available scene objects: [’table’, ’blue box’, ’cyan box’, ’hook’, ’rack’, ’red box’, ’yel-
low box’]
Object relationships: [’inhand(hook)’, ’on(red box, rack)’, ’on(yellow box, table)’,
’on(blue box, table)’, ’on(cyan box, rack)’, ’on(rack, table)’]
Human instruction: could you move all the boxes onto the rack?
Goal predicate set: [[’on(yellow box, rack)’, ’on(blue box, rack)’]]
Top 1 robot action sequences: [’pull(yellow box, hook)’, ’place(hook, table)’,
’pick(yellow box)’, ’place(yellow box, rack)’, ’pick(blue box)’, ’place(blue box, rack)’]

Available scene objects: [’table’, ’blue box’, ’hook’, ’rack’, ’red box’, ’yellow box’]
Object relationships: [’on(hook, table)’, ’on(red box, table)’, ’on(blue box, table)’,
’on(yellow box, rack)’, ’on(rack, table)’]
Human instruction: Move the ocean colored box to be under the rack and ensure the hook
ends up on the table.
Goal predicate set: [[’under(blue box, rack)’]]
Top 1 robot action sequences: [’pick(red box)’, ’place(red box, table)’, ’pick(yellow box)’,
’place(yellow box, rack)’, ’pick(hook)’, ’push(blue box, hook, rack)’, ’place(hook, table)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’red box’, ’yellow box’, ’rack’,
’blue box’]
Object relationships: [’on(hook, table)’, ’on(red box, table)’, ’on(blue box, table)’,
’on(cyan box, table)’, ’on(rack, table)’, ’under(yellow box, rack)’]
Human instruction: How would you get the cyan box under the rack and then ensure the
hook is on the table?
Goal predicate set: [[’under(cyan box, rack)’, ’on(hook, table)’]]
Top 1 robot action sequences: [’pick(blue box)’, ’place(blue box, table)’, ’pick(red box)’,
’place(red box, table)’, ’pick(hook)’, ’push(cyan box, hook, rack)’, ’place(hook, table)’]

Interestingly, we find that including images in the prompt degrades the performance.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

User Prompt

Available scene objects: [’table’, ’cyan box’, ’hook’, ’blue box’, ’rack’, ’red box’]
Object relationships: [’on(hook, table)’, ’on(rack, table)’, ’on(blue box, table)’,
’on(cyan box, table)’, ’on(red box, table)’]
Human instruction: How would you push all the boxes under the rack? Goal predicate set:
[[’under(blue box, rack)’, ’under(cyan box, rack)’, ’under(red box, rack)’]]
Top 1 robot action sequences: [’pick(blue box)’, ’place(blue box, table)’, ’pick(hook)’,
’push(cyan box, hook, rack)’, ’place(hook, table)’, ’pick(blue box)’, ’place(blue box,
table)’, ’pick(hook)’, ’push(blue box, hook, rack)’, ’push(red box, hook, rack)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’rack’, ’red box’, ’blue box’]
Object relationships: [’on(hook, table)’, ’on(cyan box, rack)’, ’on(rack, table)’,
’on(red box, table)’, ’inhand(blue box)’]
Human instruction: How would you set the red box to be the only box on the rack?
Goal predicate set: [[’on(red box, rack)’, ’on(blue box, table)’, ’on(cyan box, table)’]]
Top 1 robot action sequences: [’place(blue box, table)’, ’pick(hook)’, ’pull(red box,
hook)’, ’place(hook, table)’, ’pick(red box)’, ’place(red box, rack)’, ’pick(cyan box)’,
’place(cyan box, table)’]

Available scene objects: [’table’, ’cyan box’, ’red box’, ’hook’, ’rack’]
Object relationships: [’on(hook, table)’, ’on(rack, table)’, ’on(cyan box, rack)’,
’on(red box, rack)’]
Human instruction: put the hook on the rack and stack the cyan box above the rack - thanks
Goal predicate set: [[’on(hook, rack)’, ’on(cyan box, rack)’]]
Top 1 robot action sequences: [’pick(hook)’, ’pull(cyan box, hook)’, ’place(hook, rack)’,
’pick(cyan box)’, ’place(cyan box, rack)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’rack’, ’red box’, ’blue box’]
Object relationships: [’on(hook, table)’, ’on(blue box, rack)’, ’on(cyan box, table)’,
’on(red box, table)’, ’on(rack, table)’]
Human instruction: Move the warm colored box to be underneath the rack.
Goal predicate set: [[’under(red box, rack)’]]
Top 1 robot action sequences: [’pick(blue box)’, ’place(blue box, table)’, ’pick(red box)’,
’place(red box, table)’, ’pick(hook)’, ’push(red box, hook, rack)’]

Available scene objects: [’table’, ’blue box’, ’red box’, ’hook’, ’rack’, ’yellow box’]
Object relationships: [’on(hook, table)’, ’on(blue box, table)’, ’on(rack, table)’,
’on(red box, table)’, ’on(yellow box, table)’]
Human instruction: situate an odd number greater than 1 of the boxes above the rack
Goal predicate set: [[’on(blue box, rack)’, ’on(red box, rack)’, ’on(yellow box, rack)’]]
Top 1 robot action sequences: [’pick(hook)’, ’pull(blue box, hook)’, ’place(hook, ta-
ble)’, ’pick(blue box)’, ’place(blue box, rack)’, ’pick(red box)’, ’place(red box, rack)’,
’pick(yellow box)’, ’place(yellow box, rack)’]

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

User Prompt

continued...

Available scene objects: [’table’, ’cyan box’, ’hook’, ’yellow box’, ’blue box’, ’rack’]
Object relationships: [’on(hook, table)’, ’on(yellow box, rack)’, ’on(rack, table)’,
’on(cyan box, rack)’]
Human instruction: set the hook on the rack and stack the yellow box onto the table and set
the cyan box on the rack
Goal predicate set: [[’on(hook, rack)’, ’on(yellow box, table)’, ’on(cyan box, rack)’]]
Top 1 robot action sequences: [’pick(yellow box)’, ’place(yellow box, table)’, ’pick(hook)’,
’pull(yellow box, hook)’, ’place(hook, table)’]

Available scene objects: [’table’, ’rack’, ’hook’, ’cyan box’, ’yellow box’, ’red box’]
Object relationships: [’on(yellow box, table)’, ’on(rack, table)’, ’on(cyan box, table)’,
’on(hook, table)’, ’on(red box, rack)’]
Human instruction: Pick up any box.
Goal predicate set: [[’inhand(yellow box)’], [’inhand(cyan box)’]] Top 1 robot action
sequences: [’pick(yellow box)’]

Available scene objects: [’table’, ’rack’, ’hook’, ’red box’]
Object relationships: [’on(rack, table)’, ’on(hook, table)’, ’on(red box, table)’]
Human instruction: How would you get the red box in the robot’s hand? Goal predicate set:
[[’inhand(red box)’]]
Top 5 robot action sequences (python list of lists):

Model Completion

[ [’pick(red box)’], [’pick(hook)’, ’place(hook, table)’, ’pick(red box)’], [’pick(rack)’,
’place(rack, table)’, ’pick(red box)’], [’pick(hook)’, ’place(hook, table)’, ’pick(rack)’,
’place(rack, table)’, ’pick(red box)’], [’pick(red box)’, ’place(red box, table)’,
’pick(red box)’] ]

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

K PSEUDO-CODE AND HYPERPARAMETERS FOR IMAGE GENERATION

@torch.no_grad()
def text2panorama_noise_resample_pruning(self, prompts,

height=512, width=2048, num_inference_steps=50,
guidance_scale=7.5, num_samples_per_prompt=10, top_K=0.2

):

# Prompts -> text embeds
text_embeds = self.get_text_embeds(prompts)

# Define panorama grid and get views for individual segments
views, covered_width = get_views_gtamp(height, width)
latent = torch.randn((

num_samples_per_prompt,
self.unet.in_channels,
height // 8,
covered_width

), device=self.device)
count = torch.zeros_like(latent)
value = torch.zeros_like(latent)

self.scheduler.set_timesteps(num_inference_steps)

with torch.autocast('cuda'):
num_timesteps = len(self.scheduler.timesteps)
for i, t in enumerate(tqdm(self.scheduler.timesteps)):

U = int(
min(

max(
(float(i) / float(len(self.scheduler.timesteps))) * \
self.num_resampling_steps,
5

),
self.num_resampling_steps
)

)
for u in tqdm(range(U), leave=False):

count.zero_()
value.zero_()

all_latents = []

for h_start, h_end, w_start, w_end in views:
latent_view = latent[:, :, h_start:h_end, w_start:w_end]
all_latents.append(latent_view)

latent_view = torch.stack(all_latents, dim=0) # [N, B, C, H, W]
N, B = latent_view.shape[0], latent_view.shape[1]
latent_view_batched = latent_view.view(

-1,
*latent_view.shape[2:]

) # [N*B, C, H, W]

positive_text_embeds, negative_text_embeds = text_embeds.chunk(2)
positive_text_embeds = positive_text_embeds.repeat(N*B, 1, 1)
negative_text_embeds = negative_text_embeds.repeat(N*B, 1, 1)
text_embeds_batched = torch.cat([

positive_text_embeds,
negative_text_embeds

], dim=0) # [2*N*B, 77, 768]

latent_model_input = torch.cat([latent_view_batched] * 2, dim=0)

noise_pred = self.unet(

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

latent_model_input,
t,
encoder_hidden_states=text_embeds_batched)['sample']

# perform guidance
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + \

guidance_scale * (noise_pred_cond - noise_pred_uncond)

noise_pred_batched = noise_pred.view(
N, B,
noise_pred.shape[-3],
noise_pred.shape[-2], noise_pred.shape[-1]

) # [N, B, C, H, W]

for idx, (h_start, h_end, w_start, w_end) in enumerate(views):
noise_pred_batched_view = noise_pred_batched[idx] # [B, C,
# compute the denoising step with the reference model
value[:, :, h_start:h_end, w_start:w_end] += noise_pred_batched_view
count[:, :, h_start:h_end, w_start:w_end] += 1

noise_combined = torch.where(count > 0, value / count, value)
latent = self.scheduler.step(noise_combined, t, latent)

if u < U-1 and i < len(self.scheduler.timesteps)-1 and i > 0:
pred_x0 = latent['pred_original_sample']
latent = latent['prev_sample']
latent = self.undo_step(latent, pred_x0, noise_combined, t)

elif u == U-1 and \
(i < 0.4*num_timesteps and i > 0.1*num_timesteps):
pred_x0 = latent['pred_original_sample']
latent = latent['prev_sample']
latent = self.inversion_pruning(

pred_x0,
latent,
text_embeds_batched,
views,
guidance_scale,
top_K

)
else:

latent = latent['prev_sample']

return latent

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

def inversion_pruning(self, pred_x0, latents, text_embeds, views,
guidance_scale, top_K

):

num_models = len(views)
B = pred_x0.shape[0]
all_timesteps = self.scheduler.timesteps.flip(dims=(0,))
num_inference_steps = len(all_timesteps)

batched_x0s = []
for h_start, h_end, w_start, w_end in views:

batched_x0s.append(pred_x0[:, :, h_start:h_end, w_start:w_end])

batched_x0s = torch.stack(batched_x0s, dim=0) # [num_models, N, C, H, W]
batched_x0s = batched_x0s.view(

num_models * B, -1,
batched_x0s.shape[-2],
batched_x0s.shape[-1]

)

inversion_latents = batched_x0s.clone()
all_noise_prediction = []

for idx, i in tqdm(
enumerate(all_timesteps[:-num_inference_steps//2+1]),
leave=False,
total=num_inference_steps-1

):
t = i
t_next = all_timesteps[idx + 1]
alpha_t = self.scheduler.alphas_cumprod[t]
alpha_t_next = self.scheduler.alphas_cumprod[t_next]
sqrt_alpha_t = torch.sqrt(alpha_t)
sqrt_alpha_t_next = torch.sqrt(alpha_t_next)
sqrt_one_minus_alpha_t = torch.sqrt(1 - alpha_t)
sqrt_one_minus_alpha_t_next = torch.sqrt(1 - alpha_t_next)

with torch.no_grad():
latent_model_input = torch.cat([inversion_latents] * 2)
noise_pred = self.unet(

latent_model_input,
t,
encoder_hidden_states=text_embeds

)['sample']
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred_combined = noise_pred_uncond + \

guidance_scale * (noise_pred_cond - noise_pred_uncond)

x0_pred = (inversion_latents - \
sqrt_one_minus_alpha_t * noise_pred_combined) / sqrt_alpha_t

x0_pred = torch.clamp(x0_pred, -1.0, 1.0)
noise_pred_combined = (inversion_latents - \

sqrt_alpha_t * x0_pred) \
/ sqrt_one_minus_alpha_t

inversion_latents = sqrt_alpha_t_next * x0_pred + \
sqrt_one_minus_alpha_t_next * noise_pred_combined

all_noise_prediction.append(noise_pred_combined)

all_intermediate_noise_preds = torch.stack(all_noise_prediction, dim=1)
derivative = torch.diff(all_intermediate_noise_preds, dim=1)

all_scores = torch.norm(
derivative.reshape(num_models*B, -1),
dim=1

).reshape(num_models, B)

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

final_scores = all_scores.mean(dim=0) # (B,)

num_selected_samples = max(int(top_K * B), 1)
topk_indices = torch.topk(

final_scores,
k = num_selected_samples,
largest=False

)[1]

arranged_batch = latents.clone()
arranged_batch = arranged_batch[topk_indices]

while arranged_batch.shape[0] < B:
arranged_batch = torch.cat([arranged_batch, arranged_batch], dim=0)

arranged_batch = arranged_batch[:B]

return arranged_batch

Table 9: Sampling setup hyperparameters for panorama generation experiments

Hyperparameter Value
Denoising timesteps T 50
Batch size B 10
Composition weights γ1:H 0.5

Resampling schedule U(t)
T − t +1

T
(UT )

Maximum resampling steps UT 10
Exploration ends at ke 0.2
Pruning ends at kp 0.5
Top-K pruning selection 0.4×B
Pruning objective calculated with P DDIM inversion steps 0.5×T

All experiments were run on single NVIDIA™ L40s or NVIDIA™ A100 GPUs.

L PSEUDO-CODE AND HYPERPARAMETERS FOR VIDEO GENERATION

We modify CogVideoX pipeline provided in Huggingface: https://github.com/
huggingface/diffusers/blob/v0.35.1/src/diffusers/pipelines/
cogvideo/pipeline_cogvideox.py.

We keep the logic same as images.

Table 10: Sampling setup hyperparameters for long-video generation experiments

Hyperparameter Value
Denoising timesteps T 30
Batch size B 10
Composition weights γ1:H 0.5

Resampling schedule U(t)
T − t +1

T
(UT )

Maximum resampling steps UT 10
Exploration ends at ke 0.3
Pruning ends at kp 0.6
Top-K pruning selection 0.4×B
Pruning objective calculated with P DDIM inversion steps 0.5×T

All experiments were run on single NVIDIA™ H100 GPUs.

38

https://github.com/huggingface/diffusers/blob/v0.35.1/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
https://github.com/huggingface/diffusers/blob/v0.35.1/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
https://github.com/huggingface/diffusers/blob/v0.35.1/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py


2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

M SCALING ANALYSIS: NFE AND WALL CLOCK TIMES

In general, we consider T denoising iterations for which we perform U steps of iterative resampling
to get the candidate global plans and then perform T steps of DDIM inversion steps to prune in-
feasible candidates. Eventually, at each denoising step, CDGS selects the best-K denoising paths.
We repeat the selected denoising paths to fill up the batch for the next denoising step. Since we
use stochasticity in the main denoising loop, the same denoising paths can lead to different clean
samples.

Thus, we can compute the NFEs as:

NFE = T ×U +T ×T (6)

If we consider model inference complexity to be O(1), the computational complexity of CDGS is
O(T 2) if T ≥U else it is O(U2). To give a comparison CDGS is (U +T ) times more expensive to
run than naı̈ve compositional sampling.

To reduce the complexity and compute requirements, we perform some engineering-modifications:

1. we observe that early pruning does not help a lot since Tweedie estimates for noisy samples
at higher noise levels are not very accurate, hence:
(a) instead of always performing U resampling steps, we gradually increase U throughout

the denoising process such that we do not overfit to bad denoising paths at earlier
timesteps

(b) we can deploy pruning only for the last 20% denoising iterations
this makes effective number of resampling steps approximately U/2.

2. we also observe that abrupt direction and magnitude changes of score functions are more
prominent in the initial DDIM inversion steps (eventually it stabilizes as noisy latents come
in-distribution), allowing us to stop DDIM inversion steps at T/2.

This allows making CDGS only (0.5U +0.1T ) more expensive than naı̈ve compositional diffusion.
To give a practical example, by incorporating jit compilation, a single model inference for Stable
Diffusion 2.1 takes 1.5 secs on a NVIDIA™ L40s GPU and with T = 50 it takes 75 secs to generate
panoramic image using naı̈ve compositional sampling. With U = 10 and pruning happening for
0.2T steps, with CDGS it takes around 700 secs.

Compute and wall-clock time are completely dependent on the base local generative model and the
number of inference steps required to generate a good sample from it. For example we observe that
for toy and robotics domains, T = 50 is sufficient to sample good solutions. Also, note that, for a
batch of B candidate global plan for horizon H each with M local segments, we construct a batch of
local segments of size B×M to denoise all the local segments in parallel for every denoising step.
This step depends on the available GPU memory, which limits the maximum batch size.

M.1 TOY DOMAIN

We analyze the runtime and success of scaling inference-time compute in the toy-domain. All
experiments in this section were run on single NVIDIA™ V100 GPUs.

In our first experiment, we disable pruning and ablate the number of resampling steps U as shown
in Fig. 16. We find that:

1. wall-clock time scales linearly with the additional compute
2. increasing resampling steps can address declining performance as horizons increase
3. overall, a key finding is that the improvement in performance with increasing U diminishes

as the horizon increases

In our second experiment, we ablate the choice of the parameters for pruning: start and end. We find
that:

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Figure 16: Left: runtime scales linearly with horizon length and resampling steps. Right: success
rates decline over horizon lengths, but this is alleviated by additional resampling.

Figure 17: Comparison of time and success heatmaps for pruning

1. the cost of pruning increases wall-clock linearly.
2. we perform this experiment with horizon H = 20 and number of resampling steps U = 30.

Bu adding pruning, we note that with minimal increase in wall-clock time (around 5%), we
can push the success rate to be 100%.

3. One additional insight we obtained is that pruning until the end of the denoising process
is essential. This supports our key insight that as Tweedie estimates get accurate at lower
noise levels, pruning becomes more effective in selecting better denoising paths.

It is worth noting that because of independently sampling local segments, the complexity of the prob-
lem increases exponentially with horizon. For example, for a horizon of H = 5 and each transition
having two feasible modes, there can be 2H possible sequences of feasible factor modes; only two of
them will be valid for coherent global plan synthesis. CDGS is able to navigate this exponentially
increasing domain by linearly scaling the compute and memory requirements.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

M.2 OGBENCH DOMAIN

We report the wall clock times and associated gain in performance for the OGbench Maze domains
(similar for both PointMaze and AntMaze) in Fig. 18. It is worth noting that CDGS uses more
compute to scale performance even with naı̈ve compositional methods.

Figure 18: We show results for OGBench maze tasks. We observe that performance improves with
adding resampling steps along with additional computational time. With pruning, we see more
improvement in performance with only an additional 10% compute time. Overall, CDGS with
resampling and pruning takes around 10-12x more time than GSC. This relationship validates that
CDGS scales linearly with number of resampling steps and pruning.

It should be noted that CDGS with resampling and pruning can scale the performance of naı̈ve
compositional sampling, in a training-free manner, to an extent that:

1. beats baselines like CompDiffuser [40] that use overlap information while training and
learn an overlap conditioned score function.

2. performs on par with baselines like SCoTS [32] that use data augmentation to synthesize
datasets with long-horizon data and train a policy on the new dataset.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

N COMPOSITIONAL DIFFUSION WITH GUIDED SEARCH: COMPLETE
ALGORITHM FOR MOTION PLANNING

Problem with the TAMP benchmark: TAMP benchmark is based on skill-level action learning.
For example, for push skill, this means that instead of learning the low-level end-effector motion,
we are learning start pose of the end effector wrt the target object’s position (here, cube) and by how
much we want to gripper to move to complete the skill execution. This structure implies that for
every skill, only certain objects can move in the environment, and the other objects remain static.

Subproblem 1: What happens when more objects move in the predicted state of the plan-
ner? Since the planner is trained on diverse set of skill transitions and predicts the sequence of
{(si,πi,ai,si+1)}, it is likely that for a particular predicted skill πi, for example pull, objects other
than the target cube move in the predicted next state of the transition. For DDIM inversion objec-
tive, even if the planned transition of the target object is correct, it will reject the transition as other
objects have moved too.

Solution: We use learned forward dynamics model per skill to ensure that only the objects rel-
evant to the predicted skill move for a planned transition. Basically for every predicted skill in
the planned sequence of CDGS {(si,πi,ai,si+1)}, we use forward dynamics model fπi to overwrite
si+1 = fπi(si,ai) such that only the pose of target objects (hook, gripper and target cube in case of
pull skill) to change and other objects remain static. This allows DDIM inversion to evaluate and
score planned local transitions appropriately.

Changes in algorithm to incorporate the solution:

Algorithm 3 CDGS

Require: Start xs, Goal xg, Planning horizon H
Require: Diffusion noise schedule,
Require: Pretrained local plan score function εθ (y(t), t),
Require: number of candidate plans B, number of elite plans K at every step

1: Initialize B global plan candidates: τ
(T )

2: τ
(T ) = (y(T )1 ◦ · · · ◦ y(T )M )∼N(0,I)

3: for t = T, . . . ,1 do
4: ε(τ(t), t) = ComposedScore(τ(t), t,εθ ,xs,xg)
5: τ̂

(t)
0 = (τ(t)−

√
1−αtε(τ

(t), t))/
√

αt

6: τ̂
(t)
0,new = LearnedForwardDynamics(τ̂(t)0 )

7: Rank plans using J(τ̂(t)0,new) Eq. 5
8: Select best-K global plans
9: Repopulate candidates using filtered plans

10: τ
(t−1) ∼ p(τ(t−1)|τ(t), τ̂(t)0 ) Eq. 2

11: end for
12: return τ

(0)

42


	Introduction
	Background
	Method
	Compositional Diffusion with Guided Search
	Iterative Resampling

	Experimental Results: Robotic Planning
	CDGS for Long content generation
	Related Work
	Conclusion
	Reproducibility statement
	LLM Usage
	Limitations
	Additional Panorama Generation Results
	Prompts for Video Generation
	Compositional Score Computation: CDGS's relation to existing literature
	Pruning objective via DDIM Inversion: CDGS's relation to existing literature
	Illustrative example: DDIM Inversion and OOD metrics

	Additional TAMP suite details
	Skill Structure
	State Space of the Unified Skill Transition Model

	Training and Sampling: More details on TAMP experiments
	CDGS: Unified Score Model Training
	CDGS: Sampling Strategy
	CDGS: Runtime and evaluation
	STAP agia2022taps
	Task Planning
	CEM Sampling
	Uncertainty Quantification


	Additional Ablations
	CDGS: A better prior for task-level trajectory sampling
	Analyzing scaling for individual tasks

	Hardware Setup
	LLM and VLM Prompting
	LLM Prompting
	VLM Prompting

	Pseudo-code and Hyperparameters for Image Generation
	Pseudo-code and Hyperparameters for Video Generation
	Scaling analysis: NFE and Wall clock times
	Toy domain
	OGbench domain

	Compositional Diffusion with Guided Search: Complete Algorithm for Motion Planning

