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Abstract

Low-Rank Adaptation (LoRA) has emerged as a popular parameter-
efficient fine-tuning (PEFT) method for Large Language Models (LLMs),
yet it still incurs notable overhead and suffers from parameter interfer-
ence in multi-task scenarios. We propose LoRA with Reduced Interference
(LoRI), a simple yet effective approach that freezes the projection matrices
A as random projections and sparsifies the matrices B using task-specific
masks. This design substantially reduces the number of trainable param-
eters while maintaining strong task performance. Moreover, LoRI mini-
mizes cross-task interference in adapter merging by leveraging the orthog-
onality between adapter subspaces, and supports continual learning by
using sparsity to mitigate catastrophic forgetting. Extensive experiments
across natural language understanding, mathematical reasoning, code
generation, and safety alignment tasks demonstrate that LoRI outperforms
full fine-tuning and existing PEFT methods, while using up to 95% fewer
trainable parameters than LoRA. In multi-task experiments, LoRI enables
effective adapter merging and continual learning with reduced cross-task
interference. Code is available at: https://github.com/juzhengz/LoRI.

1 Introduction

Large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Chowdhery et al.,
2023) have transformed deep learning, showcasing remarkable capabilities across vari-
ous domains. However, their deployment remains computationally demanding, partic-
ularly when fine-tuning is required to adapt to downstream tasks or align with human
preferences. To mitigate the high resource costs, researchers have developed a range of
parameter-efficient fine-tuning (PEFT) techniques. Among these techniques, LoRA (Hu
et al., 2021) has gained widespread adoption due to its compelling balance of performance
and efficiency. Nevertheless, LoRA still introduces notable memory overhead, particu-
larly in large-scale models. Consequently, recent research has focused on further optimiz-
ing LoRA by reducing the number of trainable parameters without compromising perfor-
mance (Kopiczko et al., 2023; Ding et al., 2023; Zhang et al., 2023b).

Recent studies (Yu et al., 2024; Panda et al., 2024) have shown that delta parameters – the
differences between fine-tuned and pretrained model weights – exhibit significant redun-
dancy. Furthermore, previous works (Zhang et al., 2023b; Zhu et al., 2024) have observed
that freezing matrices A in LoRA often achieves comparable performance to training them.
Motivated by these findings, we propose LoRA with Reduced Interference (LoRI). LoRI
keeps matrices A fixed as random projections, while training matrices B using task-specific
sparse masks. To retain the most critical elements of B, LoRI performs a calibration process
to extract sparse masks by selecting the highest-magnitude elements across all layers and
projections. As shown in Figure 1(a), LoRI maintains performance even with 90% sparsity
in B while keeping A frozen. This demonstrates that adaptation does not require updating
A, and that B has considerable redundancy. By applying more constrained updates than
LoRA, LoRI significantly reduces the number of trainable parameters while better preserv-
ing the pretrained model’s knowledge during adaptation.
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Figure 1: (a) Varying sparsity ratios in matrices B while freezing A. Performance remains stable even
at 90% sparsity in matrices B. (b) Merging three adapters via weighted averaging. LoRA suffers
degradation due to parameter interference, while LoRI preserves task performance. (c) Continual
learning from Safety to NLU. LoRA suffers from catastrophic forgetting, while LoRI retains safety
alignment. Results for NLU are averaged over eight tasks. GSM8K accuracy (Math), HumanEval
pass@10 (Code), and HEx-PHI refusal rate (Safety) are reported individually. Base model: Llama-3-
8B, rank r = 32.

Multi-task learning is essential for enabling versatile models with multi-task capabili-
ties, which is traditionally performed via joint training on a combination of task-specific
datasets (Caruana, 1997; Sener & Koltun, 2018). However, training large models on this
data mixture is prohibitively expensive in terms of time and compute. Model merging is
a training-free alternative for building powerful models by combining existing ones (Il-
harco et al., 2022; Yadav et al., 2023; Yu et al., 2024). This approach is well-suited for merg-
ing LoRA adapters, enabling multi-task capabilities within a single model during infer-
ence (Wang et al., 2024a; Prabhakar et al., 2024; Stoica et al., 2024). However, as shown in
Figure 1(b), directly merging heterogeneous LoRAs often results in parameter interference,
leading to degraded performance compared to single-task LoRAs. Additionally, many ex-
isting merging methods require trial-and-error to identify the optimal method for a spe-
cific combination of tasks. LoRI addresses these challenges by using fixed, randomly ini-
tialized projection A, which maps task-specific adapters into approximately orthogonal
subspaces. This reduces interference when merging multiple adapters. In addition, LoRI
enables adapter merging without manual selection of merging methods.

Beyond multi-tasking, safety-critical scenarios require that each newly introduced adapter
enhances model capabilities while preserving the safety alignment of the pretrained base
model (Qi et al., 2023). LoRI provides a lightweight continual learning approach for
adapting models while preserving safety, where training is performed sequentially across
tasks (Lopez-Paz & Ranzato, 2017; Wu et al., 2022; Ouyang et al., 2022). The strategy in-
volves first fine-tuning an adapter on safety data to establish alignment, followed by sepa-
rate adaptation to each downstream task. However, as illustrated in Figure 1(c), continual
learning often leads to catastrophic forgetting (Li & Hoiem, 2017; Dong et al., 2023; Luo et al.,
2023), wherein the adaptation to new tasks substantially compromises previously acquired
knowledge. LoRI mitigates forgetting by leveraging the sparsity of projection B through
task-specific masks. This isolation of parameter updates across tasks facilitates continual
learning with minimal interference, preserving both safety and task effectiveness.

To evaluate the effectiveness of LoRI, we conduct extensive experiments across a diverse
suite of benchmarks spanning natural language understanding (NLU), mathematical rea-
soning, code generation, and safety alignment tasks. Using Llama-3-8B and Mistral-7B as
base models, our results show that LoRI achieves performance comparable to – or better
than – full fine-tuning (FFT), LoRA, and other PEFT methods, while using up to 95% fewer
trainable parameters than LoRA. Notably, LoRI with 90% sparsity in B surpasses LoRA by
17.3% on HumanEval with Llama-3. Beyond single-task adaptation, we evaluate LoRI in
multi-task settings, including adapter merging and continual learning scenarios. Concate-
nated merging of LoRI adapters consistently outperforms LoRA adapters overall, closely
matching the performance of single-task LoRA baseline. In continual learning, LoRI signif-
icantly outperforms LoRA in mitigating catastrophic forgetting of safety alignment, while
maintaining strong performance on downstream tasks.
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Figure 2: Overview of the proposed LoRI method. (a) LoRI freezes the projection matrices At and
sparsely updates Bt using task-specific masks Mt. (b) LoRI enables adapter merging of multiple task-
specific adapters with reduced parameter interference. (c) LoRI builds safety adapters by continual
learning with reduced catastrophic forgetting.

2 Method

2.1 Freezing Low-Rank Projections with Sparse Masking

Freezing Projection A. LoRA (Hu et al., 2021) fine-tunes a weight update matrix as a
product of two low-rank matrices to adapt LLMs to new tasks. Formally, for a specific task
t, given a pretrained weight matrix W0 ∈ Rdin×dout , the weight update ∆t ∈ Rdin×dout is
constrained to a low-rank decomposition:

h = xW0 + x∆t = xW0 + xAtBt. (1)

where At ∈ Rdin×r, Bt ∈ Rr×dout , and r ≪ min{din, dout}. We denote ∆t as the LoRA
adapter for task t. In practice, LoRA adapters are typically applied to multiple projection
matrices (e.g., Wq, Wv) within each transformer layer.

Typically, the low-rank projection matrices At and the low-rank expansion matrices Bt are
updated via gradient descent. Matrices At are usually initialized with Kaiming Uniform
distribution (He et al., 2015), while matrices Bt are initialized to zero, ensuring that ∆t =
0 at the start of training. However, in LoRI, we fix At as random projections, meaning
that the model only learns how to combine the fixed subspace via Bt. By freezing At, we
eliminate the need to store their gradients and optimizer states, thereby reducing memory
consumption. During inference, similar to LoRA, LoRI merges the low-rank updates by
adding AtBt to W0, ensuring no additional inference latency compared to full fine-tuning.

Sparse Masking for Projection B. LoRI freezes matrices At and selectively updates only
the most relevant parameters in Bt for each task, as illustrated in Figure 2(a). For task t,
it first extracts sparse masks Mt through a calibration process, then applies the masks to
constrain training to a limited subset of parameters in Bt. During mask calibration, LoRI
updates Bt without masking using a calibration dataset DC

t , sampled from the adaptation
dataset Dt. After this phase, LoRI collects all Bt matrices from the model across layers
and projections. Then it computes a global threshold τt, defined as the s% quantile of the
absolute values of all elements from these matrices, where s is the sparsity ratio. For each
matrix Bt, the corresponding sparse mask Mt is computed as:

Mt = I (|Bt| ≥ τt) , where τt = Quantiles

(⋃
|Bt|
)

. (2)

Here, I(·) denotes the indicator function applied element-wise. This ensures that only the
top-(1− s)% of parameters (by magnitude) across all layers and projections are retained.
The masks can also be derived using gradient-based measures such as the Fisher informa-
tion matrix (Guo et al., 2023; Iurada et al., 2025) or SNIP score (Lee et al., 2018). However,
these methods capture local sensitivity at a specific training step, whereas magnitude re-
flects cumulative importance over the entire fine-tuning process.
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It is well established that the importance of projection matrices varies significantly across
different layers and projections (Zhang et al., 2023a;d; Kopiczko et al., 2023). Our masking
strategy enables global comparison of parameters and facilitates effective allocation of the
parameter budget determined by the sparsity ratio. Notably, the masks for each task t are
calibrated only once and can be reused as needed.

After mask calibration, LoRI resets Bt to zero and trains on the adaptation dataset Dt,
with updates restricted to the masked parameters. The LoRI adapter is expressed as ∆t =
At(Bt ⊙ Mt). The algorithm of LoRI is detailed in Appendix B. In practice, the sparsity
ratio s can reach up to 90%, meaning that only a small fraction of parameters in matrices
Bt are updated, while the majority remain unchanged. This selective adaptation enables
the model to focus on modifying the most critical parameters needed for specific tasks,
while preserving the foundational knowledge encoded in the pretrained base model. In
the limiting case of a single task and zero sparsity, our method reduces to LoRA-FA (Zhang
et al., 2023b), which has been shown to perform competitively with standard LoRA.

2.2 Reducing Interference in Adapter Merging via Orthogonality

Orthogonality of LoRI Adapters. A central challenge in adapter merging is parameter in-
terference, where combining multiple adapters leads to degraded performance due to con-
flicting parameter updates. Given a set of trained LoRI adapters {∆1, ∆2, . . . , ∆T}, the goal
is to construct a unified model that combines knowledge from all tasks with minimal inter-
ference, as illustrated in Figure 2(b). Formally, we define the excess loss due to parameter
interference for a specific task t as:

It = Lt(Wmerge)−Lt(W0 + αt∆t), (3)

where Wmerge is the merged model, W0 is the pretrained weight matrix, ∆t is the LoRI
adapter for task t, αt ∈ R is a scalar weight, and Lt is the loss function for task t. A high It
indicates significant interference.

LoRI mitigates this interference by leveraging approximate orthogonality, achieved by freez-
ing the projection matrices At as independent random matrices. This design leads to the
following property, whose proof is provided in Appendix C:

Property 1. Let As, At ∈ Rdin×r be independent random matrices with i.i.d. entries drawn from
a Kaiming Uniform distribution for distinct tasks s ̸= t. Let their corresponding LoRI adapters be
∆s = As(Bs ⊙Ms) and ∆t = At(Bt ⊙Mt), where the trained matrices (Bs ⊙Ms) and (Bt ⊙Mt)
have finite Frobenius norms. Under the condition that r ≪ din, as the input dimension din → ∞,
the adapters are approximately orthogonal:

⟨∆s, ∆t⟩F → 0 in probability. (4)

We describe two merging methods: concatenated merging (weighted averaging) and linear
merging (Task Arithmetic) (Ilharco et al., 2022), both of which exploit the approximate
orthogonality of LoRIs.

Concatenated Merging (Weighted Averaging). This method constructs the merged
model by creating a weighted sum of individual task adapters. This is achieved by con-
catenating the weighted A and masked B matrices:

A′ = [α1 A1 α2 A2 . . . αT AT ], B′ =
[
(B1 ⊙M1)

⊤, . . . , (BT ⊙MT)
⊤
]⊤

, (5)

where αt ∈ R are scalar weights (e.g., uniform or task-prioritized). The final merged model
is then formed by adding their product to the base model weights:

Wmerge = W0 + A′B′ = W0 +
T

∑
t=1

αt At(Bt ⊙Mt) = W0 +
T

∑
t=1

αt∆t. (6)

By summing approximately orthogonal adapters, we ensure that the updates for each task
occupy largely disjoint subspaces, thereby reducing interference (Ilharco et al., 2022; Ortiz-
Jimenez et al., 2023; Xiong et al., 2024).
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The reduction in interference can be explained by a theoretical sketch based on two key as-
sumptions. The first is the local linearity of the loss landscape (Li et al., 2018), which allows
for a first-order Taylor approximation. The second is the gradient alignment assumption,
formally expressed as ∇Lt(W0 + αt∆t) ∝ ∆t. This posits that at a task’s solution, the di-
rection of steepest descent is primarily aligned with the adapter updates already made for
that task. Under these assumptions, the excess loss It is approximately the inner product
of the gradient and the updates from the other tasks:

It ≈
〈
∇Lt(W0 + αt∆t), ∑

s ̸=t
αs∆s

〉
F

∝ ∑
s ̸=t

αk⟨∆t, ∆s⟩F. (7)

Since Property 1 establishes that ⟨∆t, ∆s⟩F → 0 for s ̸= t, the total interference loss becomes
negligible: It ≈ 0. This heuristic argument provides strong intuition for why concatenated
merging is effective, which is then validated by our empirical results.

Linear Merging (Task Arithmetic). Alternatively, the merged model can be formed by
summing the At and masked Bt matrices independently before multiplication:

Wmerge = W0 +

(
T

∑
t=1

αt At

)(
T

∑
t=1

αt(Bt ⊙Mt)

)
= W0 +

T

∑
s=1

T

∑
t=1

αsαt As(Bt ⊙Mt). (8)

While concatenated merging directly sums approximately orthogonal adapters, this linear
merging approach introduces problematic cross-terms αsαt As(Bt ⊙ Mt) for s ̸= t. These
terms cause interference because components like {As(Bt ⊙Mt)}T

t=1 for a fixed s are gen-
erally not mutually orthogonal. As a result, concatenated merging offers a cleaner and
empirically more effective strategy for combining LoRI adapters.

2.3 Reducing Interference in Continual Learning via Sparsity

Safety-Preserving Adapters. For safety-critical applications, ensuring that new task
adaptations do not compromise established safety behaviors is crucial. Therefore, each
newly introduced adapter must preserve the base model’s safety alignment. A straightfor-
ward approach to achieve this is to merge a safety LoRI adapter into the deployed model
during every inference. However, as we will show in Section 3.4, this method may be in-
sufficient for scenarios that demand strong safety guarantees. In such cases, as illustrated
in Figure 2(c), a more reliable solution is to adopt a two-phase continual learning process
for each LoRI adapter to reinforce safety:

1. Safety Alignment Phase: Train a LoRI adapter on a curated safety dataset Dsafety,
yielding ∆safety = A(Bsafety ⊙Msafety).

2. Task Adaptation Phase: Fine-tune ∆safety on each task adaptation dataset Dt, t =
1, 2, . . . , T, reusing the calibrated task-specific masks Mt, resulting in safety-
preserving adapters ∆t = A(Bt ⊙Mt).

This method does not require recalibrating masks for each task or performing multi-
ple rounds of continual learning. Notably, we do not enforce non-overlapping masks
Mt ∩ Msafety = ∅. Enforcing such a constraint would require recalibrating masks after
the safety alignment phase due to the reduced parameter space, and could potentially de-
grade performance on downstream tasks. The expected overlap between sparse masks
with 90% sparsity is theoretically 1%. Empirically, we find that this expectation holds: the
average overlap between task-specific masks is indeed ∼ 1%, without explicitly enforcing
non-overlap. This slight overlap allows important parameters to be shared across tasks,
potentially enabling positive knowledge transfer.

Catastrophic Forgetting. Continual learning models are vulnerable to catastrophic forget-
ting (Li & Hoiem, 2017; Dong et al., 2023; Luo et al., 2023), where updates for new tasks can
overwrite and degrade previously learned knowledge. Despite the slight overlap between
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task-specific masks, the sparsity in Bt induced by Mt enables LoRI to facilitate isolated pa-
rameter updates for safety alignment and task adaptation. As a result, LoRI minimizes
cross-task interference and mitigates catastrophic forgetting in safety alignment.

3 Experiments

3.1 Experimental Setup

Datasets. We conduct a series of experiments to evaluate LoRI’s effectiveness on single-
task and multi-task settings, including adapter merging and continual learning. We focus
on four capabilities: (i) Natural Language Understanding (NLU): LoRI is trained on the
aggregation of eight NLU datasets (Hu et al., 2023), including BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), SocialIQA (Sap et al., 2019), ARC-Challenge (Clark et al., 2018),
ARC-Easy (Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018), HellaSwag (Zellers
et al., 2019), and Winogrande (Sakaguchi et al., 2021). We evaluate accuracy on the indi-
vidual test split for each dataset. (ii) Mathematical Reasoning (Math): LoRI is trained on
the GSM8K (Cobbe et al., 2021) training split and evaluated on the GSM8K test split. (iii)
Code Generation (Code): LoRI is trained on CodeAlpaca (Chaudhary, 2023) and evaluated
using pass@1, pass@5, and pass@10 on HumanEval (Chen et al., 2021). (iv) Safety Align-
ment (Safety): LoRI is trained on Saferpaca (Bianchi et al., 2023), which extends Alpaca-
Cleaned (Taori et al., 2023) with 2,000 safety instructions. Safety performance is assessed
by measuring the refusal rate on harmful queries from HEx-PHI (Qi et al., 2023).

Baselines. In single-task experiments, we compare LoRI with full fine-tuning (FFT),
LoRA (Hu et al., 2021), and DoRA (Liu et al., 2024). Results for additional PEFT base-
lines, including VeRA (Kopiczko et al., 2023), IA3 (Liu et al., 2022), LoRA-FA (Zhang et al.,
2023b), AdaLoRA (Zhang et al., 2023d), rsLoRA (Kalajdzievski, 2023), PiSSA (Meng et al.,
2024), and LoRA+ (Hayou et al., 2024), are available in Appendix E.1. In merging experi-
ments, we compare LoRI merging with several LoRA merging methods, including concate-
nated merging, linear merging (Ilharco et al., 2022), magnitude pruning, TIES-Merging (Ya-
dav et al., 2023), and DARE (Yu et al., 2024). Magnitude pruning, TIES, and DARE are
pruning-based approaches that apply sparsification to the A and B matrices before merg-
ing, based on a specified density. Magnitude pruning removes low-magnitude parameters;
TIES-Merging further merges weights with consistent signs; and DARE performs random
pruning followed by rescaling. For fair comparison, all baseline results are reproduced
using a consistent experimental setup.

Implementation Details. We use Llama-3-8B (Grattafiori et al., 2024) and Mistral-
7B (Jiang et al., 2023) as base models. We conduct all experiments on 8 NVIDIA A5000
GPUs. To explore the impact of sparsity, we provide two variants of LoRI: LoRI-D, which
uses dense B matrices, and LoRI-S, which applies 90% sparsity to B. Sparsity is imple-
mented by masking the gradients of B during backpropagation. For optimal performance,
we use the entire adaptation dataset as the calibration dataset for each task. Ablation re-
sults for calibration are presented in Section 3.5. For consistency, we use the same hyperpa-
rameters for PEFT baselines as for LoRI-D. For all adapter merging experiments, uniform
weights αt are employed across all adapters. The weights αt are treated as hyperparame-
ters, and their ablation study is detailed in Section 3.5. Detailed hyperparameter settings
are provided in Appendix D.

3.2 Single-Task Performance

Table 1 presents single-task performance on eight NLU benchmarks, while Table 2 reports
single-task performance on the math, code, and safety benchmarks. Results for additional
PEFT baselines are available in Appendix E.1. The rank for our experiments is set to r = 32.
We observed stable performance across different ranks, with additional results for r = 64
provided in Appendix E.2.
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Table 1: Performance comparison of different adaptation methods on eight NLU bench-
marks using Llama-3 and Mistral with r = 32. Bold indicates the best-performing method,
and underline indicates the second-best.

Method # Params (%) BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Avg.

Llama-3-8B
FFT 8.03G (100%) 73.8 86.8 77.6 76.7 87.6 84.1 93.2 85.1 83.1
LoRA 84M (1.03%) 76.3 89.8 82.7 83.4 91.7 88.4 95.8 88.7 87.1
DoRA 85M (1.05%) 75.9 89.8 82.7 83.5 93.2 87.9 95.3 88.2 87.1
LoRI-D 44M (0.54%) 76.4 89.0 82.7 84.2 93.6 88.5 95.9 87.9 87.3
LoRI-S 4.4M (0.05%) 75.2 89.2 82.8 83.8 92.6 88.4 95.2 87.5 86.8

Mistral-7B
FFT 7.24G (100%) 74.1 84.6 78.0 79.3 90.5 88.4 94.4 83.5 84.1
LoRA 84M (1.15%) 75.2 90.1 82.9 82.9 92.0 88.7 95.1 88.1 86.9
DoRA 85M (1.16%) 75.8 90.4 82.9 83.3 92.6 90.6 96.3 87.9 87.5
LoRI-D 44M (0.60%) 75.9 90.6 83.0 83.6 91.9 88.4 95.9 87.4 87.1
LoRI-S 4.4M (0.06%) 74.0 90.1 82.6 82.6 91.5 90.8 95.5 87.5 86.8

Table 2: Performance comparison of different adaptation methods on GSM8K (math), Hu-
manEval (code), and HEx-PHI (safety) benchmarks using Llama-3 and Mistral with r = 32.
Bold indicates the best-performing method, and underline indicates the second-best.

Method # Params (%) GSM8K HumanEval HEx-PHIPass@1 Pass@5 Pass@10

Llama-3-8B
FFT 8.03G (100%) 58.8 30.5 39.3 41.7 94.8
LoRA 84M (1.03%) 64.4 34.7 46.4 50.8 91.6
DoRA 85M (1.05%) 65.4 33.1 44.0 48.6 93.6
LoRI-D 44M (0.54%) 63.2 43.2 57.6 63.2 92.8
LoRI-S 4.4M (0.05%) 62.7 41.3 54.4 59.6 93.8

Mistral-7B
FFT 7.24G (100%) 55.5 29.1 38.5 40.4 94.1
LoRA 84M (1.15%) 57.8 33.8 42.4 45.3 91.9
DoRA 85M (1.16%) 57.5 33.7 42.6 46.8 95.3
LoRI-D 44M (0.60%) 58.0 33.8 42.0 45.1 94.7
LoRI-S 4.4M (0.06%) 57.1 33.7 43.6 48.1 95.9

While full fine-tuning (FFT) updates all model parameters, LoRA and DoRA reduce the
number of trainable parameters to approximately 1%. LoRI-D further reduces this to about
0.5% by freezing matrices A, and LoRI-S pushes this reduction to 0.05% by applying 90%
sparsity to matrices B, achieving a 95% reduction in trainable parameters compared to
LoRA. Despite tuning fewer parameters, LoRI-D and LoRI-S achieve performance com-
parable to – and even better than – LoRA and DoRA on NLU, math, code, and safety
tasks. LoRI-D generally outperforms LoRI-S slightly, due to the extremely limited parame-
ter budget in LoRI-S. Remarkably, LoRI-D and LoRI-S consistently outperform FFT, LoRA,
and DoRA on code generation tasks. On HumanEval with Llama-3, LoRI-D achieves a
pass@10 score of 63.2%, outperforming LoRA by 24.4%. LoRI-S achieves 59.6% pass@10,
exceeding LoRA by 17.3%.

The strong performance of LoRI-D suggests that effective adaptation can be achieved with-
out updating A, while the strong performance of LoRI-S indicates that B contains substan-
tial parameter redundancy. LoRI’s performance gains are attributed to the principled use
of sparsity, which serves as a strong regularizer during adaptation. Additionally, LoRI pre-
serves latent task-specific knowledge embedded in the pretrained model. This supports
the view that supervised fine-tuning (SFT) primarily unlocks capabilities already present
in pretrained models, rather than introducing new ones, which is consistent with findings
from Liu et al. (2024); Yu et al. (2024).
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Table 3: Comparison of merging methods for combining four adapters, evaluated on their
respective benchmarks. The best-performing single-task adapter, LoRI-D, is used as the
single-task baseline. Results for NLU are averaged over eight tasks. Base model: Llama-3-
8B, rank r = 32. Bold indicates the best-performing method, and underline indicates the
second-best.

Merging Adaptation NLU GSM8K HumanEval HEx-PHIPass@1 Pass@5 Pass@10

Single-Task LoRI-D 87.3 63.2 43.2 57.6 63.2 92.8

Concat LoRA 85.0 57.8 13.0 20.0 22.3 84.4
Linear LoRA 84.8 54.1 14.2 20.8 23.3 79.4
Magnitude LoRA 81.9 50.3 24.1 36.7 42.4 74.4
TIES LoRA 72.6 24.0 32.5 46.3 51.7 77.8
DARE LoRA 79.1 48.9 34.1 48.7 53.5 74.1
Concat LoRI-D 83.2 55.8 40.5 56.9 62.2 86.6
Linear LoRI-D 82.5 53.8 40.9 54.9 60.3 85.9
Concat LoRI-S 81.2 45.2 34.3 48.7 54.0 84.7
Linear LoRI-S 79.1 41.3 23.2 36.6 42.3 78.8

3.3 Adapter Merging

We consider four heterogeneous tasks for LoRA and LoRI merging: NLU, math, code, and
safety. This setting is generally more challenging than merging homogeneous adapters,
such as merging multiple NLU adapters. Table 3 presents results for merging LoRAs and
LoRIs on these four tasks. For LoRI, we apply concatenated and linear merging to the
LoRI-D and LoRI-S variants. Pruning-based methods such as magnitude pruning, TIES,
and DARE are not applied to LoRI, since these methods will prune the A matrices as
LoRI already sparsifies B, resulting in an inconsistent pruning scheme across A and B.
Additional results, including experiments on merging three adapters and evaluations of
pruning-based methods on LoRI, are provided in Appendix E.4 and E.5.

As shown in Table 3, directly merging LoRAs results in substantial performance degra-
dation, particularly for code generation and safety alignment. Although pruning-based
methods (e.g., DARE, TIES) improve code performance, they often compromise accuracy
on other tasks. In contrast, LoRI achieves consistently strong performance across all tasks.

Concatenated merging with LoRI-D achieves the best overall performance, closely match-
ing the single-task baseline, which indicates minimal interference between LoRI adapters.
For instance, it achieves 62.2% pass@10 on HumanEval and an 86.6% refusal rate on HEx-
PHI. Despite using only 5% of the parameters of LoRA, LoRI-S retains competitive perfor-
mance. Notably, on code and safety tasks, concatenated merging with LoRI-S outperforms
all LoRA merging methods.

Linear merging with LoRI also performs competitively, though it lags slightly behind con-
catenated merging due to cross-term interactions that introduce some interference. LoRI
eliminates the need for manual selection of merging methods: simple concatenated merg-
ing yields strong results. The choice between LoRI-D and LoRI-S can then be guided by
the desired trade-off between performance and parameter efficiency. We also note an im-
portant trade-off between code generation performance and other domains during adapter
merging, a phenomenon further explored in Section 3.5.

3.4 Continual Learning

While merging adapters enables multi-task capabilities, it falls short of providing robust
safety alignment in scenarios that demand strong safety guarantees. As shown in Table 3,
the highest refusal rate on HEx-PHI achieved through LoRA or LoRI merging is 86.6%. To
address this limitation, we adopt a two-phase training process: first, a safety adapter is
trained on the safety alignment dataset Saferpaca; then, it is individually adapted to each
downstream task, including NLU, math, and code.
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Figure 3: Continual learning results from safety to NLU, math, and code domains. Results for NLU
are averaged over eight tasks. GSM8K accuracy, HumanEval pass@10, and HEx-PHI refusal rate are
reported individually. Base model: Llama-3-8B, rank r = 32.
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Figure 4: Ablation studies across different settings. Base model: Llama-3-8B, rank r = 32. Additional
ablation studies are provided in Appendix F.

Figure 3 presents results from these continual learning experiments. LoRA exhibits se-
vere catastrophic forgetting on safety alignment – particularly in the safety→ NLU exper-
iment – likely due to the large size of the NLU training split (∼170k examples). Among all
methods, LoRI-S achieves the best preservation of safety alignment, even outperforming
single-task LoRI-D. This is due to its 90% sparsity in the B matrices, which enables isolated
parameter updates between the initial safety alignment and subsequent task adaptations.
LoRI-D also shows some resistance to forgetting, benefiting from frozen A matrices. For
task adaptation, LoRI-D generally outperforms LoRI-S, as the latter’s aggressive sparsity
limits its adaptation capacity. Overall, LoRI offers a lightweight and effective approach to
building safety adapters that preserve alignment while supporting adaptation to down-
stream tasks.

3.5 Ablation Studies

Calibration Steps. Calibration steps refer to the number of update steps used to generate
sparse masks for each task. Figure 4(a) shows how performance of LoRI-S changes with
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different numbers of calibration steps on math and code tasks. We observe that perfor-
mance generally improves as the number of calibration steps increases. Since the masks
only need to be calibrated once per task and can be reused, we use the entire adaptation
dataset as the calibration dataset to achieve the best performance.

Sparsity Ratio. We use model-wise masks in our experiments that retain the highest-
magnitude parameters across all layers and projections. Figure 4(b) presents the sparsity
ratios of different projection types (e.g., up, down, key, value) across layers under a 90%
sparsity on GSM8K. We observe that feedforward (FFN) projections tend to retain more
parameters (i.e., lower sparsity) than self-attention projections, indicating they are more
critical for adaptation. Additionally, the top layers are less sparse than lower layers, sug-
gesting that the top layers play a more important role in adaptation.

Mask Granularity. We compare five levels of mask granularity under 90% sparsity on
GSM8K, as shown in Figure 4(c). We compare module-wise, projection-wise, layer-wise,
and matrix-wise masking against our model-wise masking, where parameters are selected
within progressively smaller scopes. We find that coarse-grained masking (e.g., model-
wise) yields the best performance, while fine-grained masking (e.g., matrix-wise) results in
degradation. This suggests that global magnitude-based selection enables better parameter
allocation, as the importance of projection matrices varies across the model.

Merging Weights. We adopt uniform weights across all adapters for adapter merging,
rather than task-specific weights, as we do not wish to prioritize any individual task. Fig-
ure 4(d) shows the effect of different merging weights (0.2, 0.3, 0.4) for concatenated merg-
ing with LoRI-S. We observe that LoRI is moderately sensitive to merging weights, with a
noticeable trade-off between performance on code tasks and other domains. We adopt 0.3
for all adapters in LoRI-S merging, as it offers a balanced performance across domains.

4 Conclusion

In this work, we introduced LoRI, a simple yet effective approach to parameter-efficient
fine-tuning (PEFT) that substantially reduces trainable parameters while minimizing cross-
task interference. By freezing the projection matrices A as random projections and spar-
sifying B using task-specific masks, LoRI achieves strong single-task performance across
diverse domains – including natural language understanding, mathematical reasoning,
code generation, and safety alignment – while reducing trainable parameters by up to 95%
compared to LoRA. Furthermore, LoRI enables training-free adapter merging with mini-
mal performance degradation, and supports continual learning with significantly reduced
catastrophic forgetting. It also provides a lightweight approach to building safety adapters
that preserve the safety alignment of the base model.

Future Work. We identify several promising avenues for extending this work. While
LoRI currently leverages unstructured magnitude-based sparsity, future research can ex-
plore structured sparsity patterns – such as block sparsity, head pruning, or group-wise
masking – which may offer better hardware compatibility. Additionally, although this
study focuses on LLMs, the core design of LoRI is modality-agnostic. Extending LoRI to
diffusion and vision-language models for multi-modal generation is a promising direction.
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A Related Works

Parameter-Efficient Fine-Tuning. Parameter-efficient fine-tuning (PEFT) methods for
LLMs (Houlsby et al., 2019; Pfeiffer et al., 2020; Li & Liang, 2021; Lester et al., 2021; Liu
et al., 2021; Hu et al., 2021) have received increasing attention in recent years. Among
them, LoRA (Hu et al., 2021), which introduces trainable low-rank matrices, has become
one of the most widely adopted PEFT methods due to its strong performance and effi-
ciency. LoRI is motivated by reducing parameter redundancy in LoRA through an asym-
metric design: we freeze the projection matrices A and enforce sparsity on the matrices
B. Our work is closely related to several lines of research. In terms of parameter efficiency,
our goal is shared by methods such as IA3 (Liu et al., 2022), VeRA (Kopiczko et al., 2023),
and FourierFT (Gao et al., 2024). More specifically, our approach builds on the concept of
asymmetric LoRA variants, which has been explored in works like LoRA-FA (Zhang et al.,
2023b), AsymmetryLoRA (Zhu et al., 2024), and HydraLoRA (Tian et al., 2024). How-
ever, LoRI is distinct from these works by uniquely combining frozen A with sparsely up-
dated B. This targeted, asymmetric pruning of only the B matrices also differentiates our
method from general LoRA pruning techniques like Loraprune (Zhang et al., 2023c), LoRA-
drop (Zhou et al., 2024), and SoRA (Ding et al., 2023), as well as SVD-based approaches
such as AdaLoRA (Zhang et al., 2023d) and PiSSA (Meng et al., 2024).

Model Merging. Achieving multi-task capabilities typically involves training on a mix-
ture of diverse task datasets (Caruana, 1997; Sener & Koltun, 2018), which is often pro-
hibitively expensive in time and compute. As an alternative, model merging has gained
attention for combining multiple task-specific models into a single model (Matena & Raffel,
2022; Ilharco et al., 2022; Yadav et al., 2023; Yu et al., 2024). Fisher Merging (Matena & Raf-
fel, 2022) uses weights from the Fisher information matrix to combine parameters, while
Task Arithmetic (Ilharco et al., 2022) employs predefined scaling factors. TIES-Merging (Ya-
dav et al., 2023) prunes low-magnitude parameters and merges those with consistent signs,
and DARE (Yu et al., 2024) applies random pruning with rescaling. However, identify-
ing the optimal merging method often requires trial and error. More recently, there has
been growing interest in merging task-specific LoRA adapters (Chronopoulou et al., 2023;
Huang et al., 2023; Wu et al., 2024; Wang et al., 2024a; Prabhakar et al., 2024; Stoica et al.,
2024), often utilizing Mixture-of-Experts (MoE) architectures. Nonetheless, these methods
typically require additional training to coordinate the adapters effectively. In contrast, LoRI
eliminates the need for manual selection of merging methods or additional training. By
ensuring approximate orthogonality between adapters, LoRI minimizes interference and
preserves task-specific performance.

Catastrophic Forgetting. Catastrophic forgetting is a fundamental challenge in continual
learning (McCloskey & Cohen, 1989; Ramasesh et al., 2021; Liang et al., 2023; Wang et al.,
2024b), where neural networks struggle to retain previously learned knowledge when
adapting to new tasks. Wu et al. (2022) analyzed this phenomenon using layer-wise and
task-wise probing to assess knowledge retention across tasks. Several studies (Dong et al.,
2023; Luo et al., 2023) have empirically examined catastrophic forgetting in the continual
fine-tuning of LLMs. To mitigate catastrophic forgetting, various approaches have been
proposed. Rehearsal-based methods (Rolnick et al., 2019; Shin et al., 2017) store or generate
past data to reinforce prior knowledge during training. Parameter isolation methods (Rusu
et al., 2016; Mallya & Lazebnik, 2018; Konishi et al., 2023; Panda et al., 2024) allocate sep-
arate subnetworks or sparsely mask parameters for different tasks to prevent interference.
Additionally, O-LoRA (Wang et al., 2023) learns tasks in distinct low-rank subspaces while
ensuring orthogonality between them. LoRI falls under the category of parameter isolation
methods, leveraging sparse task-specific masks to mitigate catastrophic forgetting during
continual learning.

B Algorithm of LoRI

The full procedure of LoRI is summarized in Algorithm 1.
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Algorithm 1: LoRA with Reduced Interference (LoRI)

Require: Task t, mask calibration datasetDC
t , adaptation datasetDt, sparsity ratio s, model

f , loss function Lt, learning rate ηt
1: for each layer l = 1, . . . , L do
2: for each projection m = 1, . . . , M do

3: Initialize: A(l,m)
t ∈ Rdin×r ← U (−

√
3

din
,
√

3
din

), B(l,m)
t ∈ Rr×dout ← 0

4: end for
5: end for
6: for each batch (x, y) sampled from DC

t do ▷ Calibration steps
7: for each (l, m) do
8: B(l,m)

t ← B(l,m)
t − ηt · ∇B(l,m)

t
Lt( f (x, y; B(l,m)

t ))

9: end for
10: end for
11: τt ← Quantiles

(⋃
l,m |B

(l,m)
t |

)
▷ Compute global threshold τt

12: for each (l, m) do
13: M(l,m)

t ← I
(
|B(l,m)

t | ≥ τt

)
▷ Generate mask for top-(1− s)% entries

14: B(l,m)
t ← 0 ▷ Reset to zero before adaptation

15: end for
16: for each batch (x, y) sampled from Dt do ▷ Adaptation steps
17: for each (l, m) do

18: B(l,m)
t ← B(l,m)

t − ηt ·
(
∇

B(l,m)
t
Lt( f (x, y; B(l,m)

t ))⊙M(l,m)
t

)
19: end for
20: end for

C Proof of Property 1

Proof. Our goal is to show that the Frobenius inner product ⟨∆s, ∆t⟩F converges to zero in
probability. Let B̃s = Bs ⊙Ms and B̃t = Bt ⊙Mt. The inner product is given by:

⟨∆s, ∆t⟩F = Tr(∆⊤s ∆t) = Tr(B̃⊤s A⊤s At B̃t). (9)

We will prove this by showing that the random matrix X = A⊤s At converges to the zero
matrix in probability as din → ∞.

Let ak
s , al

t ∈ Rdin be the k-th and l-th columns of As and At, respectively. The entries of these
vectors are i.i.d. from a Kaiming Uniform distribution U[−a, a] where a =

√
3/din. This

implies a mean of 0 and variance of σ2 = a2/3 = 1/din. An entry of X is the inner product
Xkl = (ak

s)
⊤al

t = ∑din
i=1(As)ik(At)il .

Let Zi = (As)ik(At)il . The terms Zi are i.i.d. with E[Zi] = E[(As)ik]E[(At)il ] = 0. Each
term is bounded: |Zi| ≤ a2 = 3/din. We apply Hoeffding’s inequality to the sum ∑din

i=1 Zi,
where each term lies in [−3/din, 3/din]:

P(|Xkl | ≥ t) = P

(∣∣∣∣∣ din

∑
i=1

Zi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2t2

∑din
i=1(6/din)2

)
= 2 exp

(
−t2din

18

)
. (10)

We now bound the probability that any of the r2 entries of X exceeds a threshold t using
the union bound:

P(max
k,l
|Xkl | ≥ t) = P

(
r⋃

k,l=1

{|Xkl | ≥ t}
)
≤

r

∑
k,l=1

P(|Xkl | ≥ t) ≤ 2r2 exp
(
−t2din

18

)
. (11)
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Table 4: Hyperparameter settings for LoRI on NLU datasets.

Method LoRI-D LoRI-S LoRI-D LoRI-S LoRI-D LoRI-S LoRI-D LoRI-S

Base Model Llama-3 Llama-3 Llama-3 Llama-3 Mistral Mistral Mistral Mistral
Rank r 32 32 64 64 32 32 64 64
α 64 64 128 128 64 64 128 128
Sparsity Ratio 0 0.9 0 0.9 0 0.9 0 0.9
Learning Rate 5e-5 5e-4 5e-5 1e-4 1e-5 1e-4 1e-5 1e-4
Dropout 0.05
Optimizer AdamW
Batch size 32
Warmup Steps 0
Epochs 1
Where q, k, v, o, gate, up, down

We can now show that ∥X∥F is small with high probability. Let the failure probability be δ.
By setting the bound from the previous step to δ, we can solve for t:

δ = 2r2 exp
(
−t2din

18

)
=⇒ t =

√
18 log(2r2/δ)

din
. (12)

With probability at least 1 − δ, we have maxk,l |Xkl | ≤ t. This allows us to bound the
Frobenius norm of X:

∥X∥2
F =

r

∑
k,l=1
|Xkl |2 ≤ r2(max

k,l
|Xkl |)2 ≤ r2t2. (13)

Thus, with probability at least 1− δ:

∥X∥F ≤ r · t = r

√
18 log(2r2/δ)

din
= O

(
r

√
log r
din

)
. (14)

Since r ≪ din, the term ∥X∥F → 0 as din → ∞. This shows that X converges to the zero
matrix in probability.

Finally, we bound the magnitude of the original inner product using the Cauchy-Schwarz
inequality for the Frobenius inner product and the sub-multiplicative property of the
Frobenius norm:

|⟨∆s, ∆t⟩F| = |Tr(B̃⊤s XB̃t)| = |⟨B̃s, XB̃t⟩F|
≤ ∥B̃s∥F∥XB̃t∥F

≤ ∥B̃s∥F∥X∥F∥B̃t∥F.

(15)

The norms ∥B̃s∥F and ∥B̃t∥F are finite, as determined by the trained adapters. Since we
have shown that ∥X∥F → 0 in probability, the entire expression must also converge to 0 in
probability.

D Hyperparameter Settings

We summarize the hyperparameter settings used for LoRI in Tables 4, 5, 6, and 7. These
include settings for different tasks (NLU, math, code, safety), adapter variants (LoRI-D,
LoRI-S), base models (Llama-3-8B and Mistral-7B), and ranks (32 and 64).

For the merging experiments, the hyperparameter settings for merging four adapters are
provided in Tables 8 and 9, while those for merging three adapters are provided in Table 10.
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Table 5: Hyperparameter settings for LoRI on the math dataset GSM8K.

Method LoRI-D LoRI-S LoRI-D LoRI-S LoRI-D LoRI-S LoRI-D LoRI-S

Base Model Llama-3 Llama-3 Llama-3 Llama-3 Mistral Mistral Mistral Mistral
Rank r 32 32 64 64 32 32 64 64
α 64 64 128 128 64 64 32 64
Sparsity Ratio 0 0.9 0 0.9 0 0.9 0 0.9
Learning Rate 5e-5 5e-4 5e-5 1e-3 5e-5 5e-4 1e-4 5e-4
Dropout 0.05
Optimizer AdamW
Batch size 32
Warmup Steps 0
Epochs 3
Where q, k, v, o, gate, up, down

Table 6: Hyperparameter settings for LoRI on the code dataset CodeAlpaca.

Method LoRI-D LoRI-S LoRI-D LoRI-S LoRI-D LoRI-S LoRI-D LoRI-S

Base Model Llama-3 Llama-3 Llama-3 Llama-3 Mistral Mistral Mistral Mistral
Rank r 32 32 64 64 32 32 64 64
α 64 64 128 128 64 64 128 128
Sparsity Ratio 0 0.9 0 0.9 0 0.9 0 0.9
Learning Rate 5e-5 5e-4 1e-5 1e-4 5e-5 5e-4 1e-5 1e-4
Dropout 0.05
Optimizer AdamW
Batch size 32
Warmup Steps 0
Epochs 2
Where q, k, v, o, gate, up, down

Table 7: Hyperparameter settings for LoRI on the safety dataset Saferpaca.

Method LoRI-D LoRI-S LoRI-D LoRI-S LoRI-D LoRI-S LoRI-D LoRI-S

Base Model Llama-3 Llama-3 Llama-3 Llama-3 Mistral Mistral Mistral Mistral
Rank r 32 32 64 64 32 32 64 64
α 64 64 128 128 64 64 128 128
Sparsity Ratio 0 0.9 0 0.9 0 0.9 0 0.9
Learning Rate 5e-5 5e-4 1e-5 1e-4 5e-5 5e-4 1e-5 1e-4
Dropout 0.05
Optimizer AdamW
Batch size 32
Warmup Steps 0
Epochs 1
Where q, k, v, o, gate, up, down

Table 8: Hyperparameter settings for merging four adapters using Llama-3-8B.

Adaptation LoRA LoRA LoRA LoRA LoRA LoRI-D LoRI-D LoRI-S LoRI-S
Merging Concat Linear Magnitude TIES DARE Concat Linear Concat Linear

Base Model Llama-3 Llama-3 Llama-3 Llama-3 Llama-3 Llama-3 Llama-3 Llama-3 Llama-3
Weights 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3
Density - - 0.3 0.7 0.7 - - - -

Table 9: Hyperparameter settings for merging four adapters using Mistral-7B.

Adaptation LoRA LoRA LoRA LoRA LoRA LoRI-D LoRI-D LoRI-S LoRI-S
Merging Concat Linear Magnitude TIES DARE Concat Linear Concat Linear

Base Model Mistral Mistral Mistral Mistral Mistral Mistral Mistral Mistral Mistral
Weights 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3
Density - - 0.3 0.7 0.7 - - - -
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Table 10: Hyperparameter settings for merging three adapters using Llama-3-8B.

Adaptation LoRA LoRA LoRA LoRA LoRA LoRI-D LoRI-D LoRI-S LoRI-S
Merging Concat Linear Magnitude TIES DARE Concat Linear Concat Linear

Base Model Llama-3 Llama-3 Llama-3 Llama-3 Llama-3 Llama-3 Llama-3 Llama-3 Llama-3
Weights 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4
Density - - 0.3 0.7 0.7 - - - -

Table 11: Performance comparison of different adaptation methods on eight NLU bench-
marks using Llama-3 with r = 32. Bold indicates the best-performing method, and
underline indicates the second-best.

Method # Params (%) BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Avg.

FFT 8.03G (100%) 73.8 86.8 77.6 76.7 87.6 84.1 93.2 85.1 83.1
LoRA 84M (1.03%) 76.3 89.8 82.7 83.4 91.7 88.4 95.8 88.7 87.1
VeRA 1.38M (0.02%) 64.4 81.8 62.6 67.3 85.7 60.9 78.5 56.9 69.8
IA3 1.70M (0.02%) 68.6 84.8 74.5 77.6 89.4 75.7 90.6 75.0 79.5
LoRA-FA 44M (0.54%) 74.0 89.6 83.3 83.8 93.4 88.6 96.1 87.4 87.0
AdaLoRA 84M (1.03%) 75.6 89.2 82.4 83.1 91.0 87.8 94.4 87.6 86.4
rsLoRA 84M (1.03%) 72.8 84.8 78.8 76.0 87.0 85.0 91.0 82.8 82.3
PiSSA 84M (1.03%) 68.1 84.4 78.2 75.1 85.1 82.8 89.3 82.8 80.7
LoRA+ 84M (1.03%) 67.0 80.3 78.5 70.1 82.3 81.5 88.9 79.7 78.5
DoRA 85M (1.05%) 75.9 89.8 82.7 83.5 93.2 87.9 95.3 88.2 87.1
LoRI-D 44M (0.54%) 76.4 89.0 82.7 84.2 93.6 88.5 95.9 87.9 87.3
LoRI-S 4.4M (0.05%) 75.2 89.2 82.8 83.8 92.6 88.4 95.2 87.5 86.8

E Additional Experimental Results

E.1 Comparison with Additional PEFT Methods

To provide a comprehensive benchmark, we evaluate LoRI against several widely adopted
parameter-efficient fine-tuning (PEFT) methods, including VeRA (Kopiczko et al., 2023),
IA3 (Liu et al., 2022), LoRA-FA (Zhang et al., 2023b), AdaLoRA (Zhang et al., 2023d),
rsLoRA (Kalajdzievski, 2023), PiSSA (Meng et al., 2024), LoRA+ (Hayou et al., 2024), and
DoRA (Liu et al., 2024). The results, presented in Tables 11 and 12, demonstrate that our
proposed methods are highly effective.

LoRI-D, which uses 44M trainable parameters (0.54% of the full model and half of LoRA’s),
consistently achieves state-of-the-art performance, particularly on NLU and code genera-
tion benchmarks. LoRI-S, despite its aggressive sparsity (0.05% of the full model and 5%
of LoRA’s), remains highly competitive and often surpasses other PEFT methods. While
VeRA and IA3 are more parameter-efficient, their performance is substantially lower than
LoRI-S. Despite this efficiency, LoRI-D and LoRI-S deliver comparable – and often superior
– performance across NLU, math, code, and safety domains. These results underscore two
key insights: (1) effective adaptation does not require updating the projection matrices A,
as demonstrated by LoRI-D; and (2) the matrices B contains significant redundancy that
can be effectively pruned, as shown by LoRI-S.

E.2 Results with Rank r = 64

We evaluate several adaptation methods using a higher adapter rank of r = 64 across a
diverse set of tasks. This allows for more expressive adapter representations while still
maintaining efficiency compared to full fine-tuning. Table 13 presents performance on
eight natural language understanding (NLU) benchmarks, while Table 14 includes results
on GSM8K (math), HumanEval (code), and HEx-PHI (safety). Across Llama-3 and Mistral
models, LoRI-D and LoRI-S consistently perform competitively, often outperforming larger
adapter methods like LoRA and DoRA, while using fewer parameters.
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Table 12: Performance comparison of different adaptation methods on GSM8K (math),
HumanEval (code), and HEx-PHI (safety) benchmarks using Llama-3 with r = 32. Bold
indicates the best-performing method, and underline indicates the second-best.

Method # Params (%) GSM8K HumanEval HEx-PHIPass@1 Pass@5 Pass@10

FFT 8.03G (100%) 58.8 30.5 39.3 41.7 94.8
LoRA 84M (1.03%) 64.4 34.7 46.4 50.8 91.6
VeRA 1.38M (0.02%) 30.6 32.4 45.1 50.9 74.7
IA3 1.70M (0.02%) 48.0 32.7 45.6 51.5 85.4
LoRA-FA 44M (0.54%) 64.8 42.9 57.5 64.2 94.1
AdaLoRA 84M (1.03%) 63.3 33.5 45.0 49.4 91.9
rsLoRA 84M (1.03%) 61.3 28.4 35.5 38.3 98.1
PiSSA 84M (1.03%) 61.3 32.0 40.3 43.3 97.8
LoRA+ 84M (1.03%) 61.7 33.0 42.7 46.0 98.8
DoRA 85M (1.05%) 65.4 33.1 44.0 48.6 93.6
LoRI-D 44M (0.54%) 63.2 43.2 57.6 63.2 92.8
LoRI-S 4.4M (0.05%) 62.7 41.3 54.4 59.6 93.8

Table 13: Performance comparison of different adaptation methods on eight natural lan-
guage understanding (NLU) benchmarks using Llama-3 and Mistral with r = 64. Bold
indicates the best-performing method, and underline indicates the second-best.

Method # Params (%) BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Avg.

Llama-3-8B
FFT 8.03G (100%) 73.8 86.8 77.6 76.7 87.6 84.1 93.2 85.1 83.1
LoRA 168M (2.05%) 75.2 89.0 81.2 82.3 92.4 89.1 95.3 88.2 86.6
DoRA 169M (2.06%) 76.4 89.0 82.0 82.6 92.3 87.5 95.1 87.3 86.5
LoRI-D 88M (1.07%) 75.8 90.4 82.7 83.3 92.6 88.6 95.9 87.4 87.1
LoRI-S 8.8M (0.11%) 76.5 90.2 81.9 83.5 93.8 87.5 96.2 87.2 87.1

Mistral-7B
FFT 7.24G (100%) 74.1 84.6 78.0 79.3 90.5 88.4 94.4 83.5 84.1
LoRA 168M (2.26%) 77.4 90.2 83.5 84.0 93.0 89.3 95.6 89.4 87.8
DoRA 169M (2.28%) 76.0 90.6 83.5 83.3 92.8 89.6 95.7 87.6 87.4
LoRI-D 88M (1.18%) 75.9 90.7 83.7 82.0 92.1 90.0 96.4 87.8 87.3
LoRI-S 8.8M (0.12%) 74.2 90.7 83.5 83.0 92.6 89.5 95.8 89.5 87.3

Table 14: Performance comparison of different adaptation methods on GSM8K (math),
HumanEval (code), and HEx-PHI (safety) benchmarks using Llama-3 and Mistral with
r = 64. Bold indicates the best-performing method, and underline indicates the second-
best.

Method # Params (%) GSM8K HumanEval HEx-PHIPass@1 Pass@5 Pass@10

Llama-3-8B
FFT 8.03G (100%) 58.8 30.5 39.3 41.7 94.8
LoRA 168M (2.05%) 63.9 38.6 52.9 59.2 94.1
DoRA 169M (2.06%) 63.8 39.4 53.6 59.7 93.4
LoRI-D 88M (1.07%) 63.8 41.9 55.4 60.3 96.6
LoRI-S 8.8M (0.11%) 61.8 44.1 57.4 62.4 96.3

Mistral-7B
FFT 7.24G (100%) 55.5 30.5 39.3 41.7 94.1
LoRA 168M (2.26%) 56.7 33.9 43.1 46.9 95.9
DoRA 169M (2.28%) 57.8 32.9 43.3 47.2 96.6
LoRI-D 88M (1.18%) 58.2 33.3 43.6 47.3 90.9
LoRI-S 8.8M (0.12%) 58.4 32.1 42.2 46.3 93.4
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Table 15: Comparison of merging methods for combining four adapters, evaluated on their
respective benchmarks. The best-performing single-task adapter, LoRI-D, is used as the
single-task baseline. Results for NLU are averaged over eight tasks. Base model: Mistral-
7B, rank r = 32. Bold indicates the best-performing method, and underline indicates the
second-best.

Merging Adaptation NLU GSM8K HumanEval HEx-PHIPass@1 Pass@5 Pass@10

Single-Task LoRI-D 87.1 58.0 33.8 42.0 45.1 94.7

Concat LoRA 82.5 52.4 32.3 40.8 44.1 75.6
Linear LoRA 81.4 48.0 33.1 41.6 43.9 76.6
Magnitude LoRA 77.5 42.7 32.7 41.8 45.6 80.9
TIES LoRA 31.3 23.5 32.0 40.2 43.5 81.9
DARE LoRA 76.1 43.0 32.0 41.0 44.6 83.4
Concat LoRI-D 79.3 52.4 34.4 42.8 45.5 83.8
Linear LoRI-D 78.1 50.5 35.2 42.7 45.5 79.7
Concat LoRI-S 79.2 46.1 33.3 41.6 45.9 79.4
Linear LoRI-S 75.5 40.3 28.8 36.0 39.6 83.1

Table 16: Comparison of merging methods for combining four adapters on eight NLU
benchmarks. The best-performing single-task adapter, LoRI-D, is used as the single-task
baseline. Base model: Llama-3-8B, rank r = 32. Bold indicates the best-performing
method, and underline indicates the second-best.

Merging Adaptation BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Avg.

Single-Task LoRI-D 76.4 89.0 82.7 84.2 93.6 88.5 95.9 87.9 87.3

Concat LoRA 73.9 89.1 81.1 81.4 92.4 83.0 94.4 84.5 85.0
Linear LoRA 73.7 88.8 81.1 80.7 91.6 84.4 93.9 84.1 84.8
Magnitude LoRA 72.0 87.1 76.8 79.4 91.7 81.5 90.4 76.4 81.9
TIES LoRA 68.2 83.8 67.3 69.5 87.8 69.2 73.3 61.4 72.6
DARE LoRA 70.7 85.0 74.1 77.5 90.7 76.6 86.8 71.0 79.1
Concat LoRI-D 74.0 87.7 77.8 81.0 92.4 81.0 92.7 78.9 83.2
Linear LoRI-D 73.7 87.7 76.7 80.3 92.1 80.1 92.0 77.7 82.5
Concat LoRI-S 71.8 86.2 76.1 79.2 91.5 78.6 89.8 76.3 81.2
Linear LoRI-S 70.7 85.3 75.1 78.0 90.8 75.0 86.5 71.3 79.1

E.3 Merging Four Adapters

To support multi-task learning within a unified model, we study the merging of four task-
specific adapters using various strategies. Table 15 reports results using Mistral-7B across a
range of tasks. Additionally, Tables 16 and 17 break down the performance of NLU on indi-
vidual benchmarks using Llama-3 and Mistral, respectively. We compare merging methods
such as concatenated merging, linear merging, magnitude pruning, TIES, and DARE. LoRI-
based approaches demonstrate strong performance and stability when merging multiple
adapters.

E.4 Merging Three Adapters

We further evaluate the merging of three adapters to understand performance when adapt-
ing to a smaller set of tasks. Tables 18 and 19 summarize the results for Llama-3 across
different benchmarks. Similar to the four-task setting, LoRI-D remains a strong performer,
often exceeding the performance of LoRA. These results highlight that LoRI-based meth-
ods are effective with varying levels of task diversity.

E.5 Pruning-Based Merging Methods

Finally, we explore pruning-based merging methods, which aim to compress and combine
multiple adapters by selectively retaining important weights. We focus on three methods:
magnitude pruning, TIES, and DARE. Results are reported for merging both four-adapter
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Table 17: Comparison of merging methods for combining four adapters on eight NLU
benchmarks. The best-performing single-task adapter, LoRI-D, is used as the single-task
baseline. Base model: Mistral-7B, rank r = 32. Bold indicates the best-performing method,
and underline indicates the second-best.

Merging Adaptation BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Avg.

Single-Task LoRI-D 75.9 90.6 83.0 83.6 91.9 88.4 95.9 87.4 87.1

Concat LoRA 69.0 88.0 78.1 79.9 90.9 84.2 92.4 77.8 82.5
Linear LoRA 69.2 86.9 77.9 78.5 90.2 82.1 91.5 75.1 81.4
Magnitude LoRA 68.7 84.9 74.4 75.9 89.1 77.5 85.6 64.1 77.5
TIES LoRA 18.4 69.8 40.7 14.0 21.9 20.1 14.6 50.9 31.3
DARE LoRA 69.4 84.3 73.1 74.2 88.9 74.3 82.6 61.8 76.1
Concat LoRI-D 68.4 85.9 75.6 76.6 89.4 81.3 85.9 71.1 79.3
Linear LoRI-D 66.3 86.0 74.9 75.3 88.9 80.8 85.0 68.0 78.1
Concat LoRI-S 72.6 85.4 74.6 76.5 89.7 80.1 86.0 68.9 79.2
Linear LoRI-S 67.6 83.8 72.0 73.0 88.3 74.6 80.9 64.3 75.5

Table 18: Comparison of merging methods for combining three adapters, evaluated on
their respective benchmarks. The best-performing single-task adapter, LoRI-D, is used
as the single-task baseline. Results for NLU are averaged over eight tasks. Base model:
Llama-3-8B, rank r = 32. Bold indicates the best-performing method, and underline indi-
cates the second-best.

Merging Adaptation NLU GSM8K HumanEval
Pass@1 Pass@5 Pass@10

Single-Task LoRI-D 87.3 63.2 43.2 57.6 63.2

Concat LoRA 86.4 54.5 13.0 19.8 21.8
Linear LoRA 86.1 51.9 8.8 14.5 16.7
Magnitude LoRA 83.8 52.0 23.3 37.4 43.0
TIES LoRA 79.4 26.9 36.3 48.7 53.7
DARE LoRA 81.1 53.3 36.0 49.5 53.9
Concat LoRI-D 84.8 59.6 41.5 56.4 61.6
Linear LoRI-D 84.6 57.6 38.3 51.6 56.8
Concat LoRI-S 83.3 51.8 31.2 44.6 49.8
Linear LoRI-S 81.0 41.7 26.6 40.0 44.6

Table 19: Comparison of merging methods for combining three adapters on eight NLU
benchmarks. The best-performing single-task adapter, LoRI-D, is used as the single-task
baseline. Base model: Llama-3-8B, rank r = 32. Bold indicates the best-performing
method, and underline indicates the second-best.

Merging Adaptation BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Avg.

Single-Task LoRI-D 76.4 89.0 82.7 84.2 93.6 88.5 95.9 87.9 87.3

Concat LoRA 74.7 89.6 81.8 82.9 93.7 86.2 95.8 86.8 86.4
Linear LoRA 73.9 89.6 81.4 81.9 93.5 85.5 95.6 87.1 86.1
Magnitude LoRA 72.2 87.2 78.9 81.2 92.2 83.2 93.0 82.4 83.8
TIES LoRA 69.5 84.8 74.0 78.4 91.2 77.4 88.8 71.4 79.4
DARE LoRA 71.0 85.6 75.8 79.5 91.0 78.8 90.7 76.2 81.1
Concat LoRI-D 73.8 89.0 79.8 81.0 93.0 83.0 94.6 84.0 84.8
Linear LoRI-D 74.1 88.4 80.2 81.3 92.9 82.1 94.1 83.6 84.6
Concat LoRI-S 70.3 87.2 79.1 80.8 92.4 82.1 93.2 81.3 83.3
Linear LoRI-S 61.5 86.4 78.0 79.5 91.7 80.8 91.3 78.5 81.0
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Table 20: Comparison of magnitude pruning, TIES, and DARE for combining four
adapters, evaluated on their respective benchmarks. The best-performing single-task
adapter, LoRI-D, is used as the single-task baseline. Results for NLU are averaged over
eight tasks. Base model: Llama-3-8B, rank r = 32. Bold indicates the best-performing
method within each group.

Merging Adaptation NLU GSM8K HumanEval HEx-PHIPass@1 Pass@5 Pass@10

Single-Task LoRI-D 87.3 63.2 43.2 57.6 63.2 92.8

Magnitude LoRA 81.9 50.3 24.1 36.7 42.4 74.4
Magnitude LoRI-D 84.3 50.5 33.3 45.2 51.4 85.9
Magnitude LoRI-S 76.4 35.2 25.2 36.5 41.0 68.4

TIES LoRA 72.6 24.0 32.5 46.3 51.7 77.8
TIES LoRI-D 79.1 38.0 40.3 54.6 59.8 85.3
TIES LoRI-S 70.4 25.9 34.6 48.4 53.2 77.8

DARE LoRA 79.1 48.9 34.1 48.7 53.5 74.1
DARE LoRI-D 83.4 52.0 35.4 51.3 57.8 81.9
DARE LoRI-S 73.4 27.2 34.8 48.1 53.5 75.3

Table 21: Comparison of magnitude pruning, TIES, and DARE for combining four
adapters, evaluated on their respective benchmarks. The best-performing single-task
adapter, LoRI-D, is used as the single-task baseline. Results for NLU are averaged over
eight tasks. Base model: Mistral-7B, rank r = 32. Bold indicates the best-performing
method within each group.

Merging Adaptation NLU GSM8K HumanEval HEx-PHIPass@1 Pass@5 Pass@10

Single-Task LoRI-D 87.1 58.0 33.8 42.0 45.1 94.7

Magnitude LoRA 77.5 42.7 32.7 41.8 45.6 80.9
Magnitude LoRI-D 76.0 41.5 29.0 36.0 38.7 79.4
Magnitude LoRI-S 70.5 32.4 28.1 36.1 39.3 77.5

TIES LoRA 31.3 23.5 32.0 40.2 43.5 81.9
TIES LoRI-D 65.0 45.4 35.3 44.5 47.8 68.4
TIES LoRI-S 67.8 32.9 28.6 37.2 40.8 78.4

DARE LoRA 76.1 43.0 32.0 41.0 44.6 83.4
DARE LoRI-D 76.2 42.3 29.2 37.1 40.7 89.1
DARE LoRI-S 71.9 34.3 29.2 40.5 44.9 85.0

(Tables 20 and 21) and three-adapter (Table 22) settings, using Llama-3 and Mistral as base
models. LoRI-D consistently achieves strong performance across all pruning-based merg-
ing methods. However, the performance of LoRI-S is somewhat lower in these settings.
This is because pruning-based methods operate on the dense A matrices but not on the
sparse B matrices. This mismatch leads to an inconsistent pruning scheme, which can re-
sult in a loss of effectiveness.

F Additional Ablation Studies

Figure 5 presents GSM8K accuracy across a grid of sparsity ratios and learning rates using
Mistral-7B with rank r = 64. We observe that sparse adapters require larger learning rates
to train effectively. In particular, models with high sparsity (e.g., above 70%) perform best
with a learning rate of 10−4 or higher. This suggests that stronger optimization is necessary
to compensate for limited capacity in sparse adapters.

In Figure 6, we analyze how sparsity is distributed across layers and projections when
enforcing 90% global sparsity on GSM8K. We find that feedforward (FFN) projections tend
to retain more parameters – i.e., they exhibit lower sparsity – than self-attention projections.
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Table 22: Comparison of magnitude pruning, TIES, and DARE for combining three
adapters, evaluated on their respective benchmarks. The best-performing single-task
adapter, LoRI-D, is used as the single-task baseline. Results for NLU are averaged over
eight tasks. Base model: Llama-3-8B, rank r = 32. Bold indicates the best-performing
method within each group.

Merging Adaptation NLU GSM8K HumanEval
Pass@1 Pass@5 Pass@10

Single-Task LoRI-D 87.3 63.2 43.2 57.6 63.2

Magnitude LoRA 83.8 52.0 23.3 37.4 43.0
Magnitude LoRI-D 84.6 53.7 34.8 48.9 54.7
Magnitude LoRI-S 77.8 36.6 25.5 38.8 43.8

TIES LoRA 79.4 26.9 36.3 48.7 53.7
TIES LoRI-D 82.1 42.2 39.2 52.7 57.7
TIES LoRI-S 73.8 35.2 34.8 47.9 52.5

DARE LoRA 81.1 53.3 36.0 49.5 53.9
DARE LoRI-D 84.0 55.2 33.8 45.8 51.8
DARE LoRI-S 75.3 36.6 36.2 48.9 53.4
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Figure 5: GSM8K accuracy under different sparsity ratios and learning rates. Base model:
Mistral-7B, rank r = 64.

This indicates that FFN components are more critical for effective adaptation. Additionally,
sparsity decreases toward the top of the network, suggesting that higher layers are more
important for task-specific specialization.

Lastly, Figure 7 explores the effect of merging weights when combining three LoRI-S
adapters using concatenated and linear merging. We find a noticeable trade-off between
performance on code tasks and other domains (e.g., NLU and math). Higher merging
weights can improve NLU performance but tend to degrade performance on code, high-
lighting the challenge of balancing generalization and specialization in multi-task settings.
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Figure 6: Sparsity ratios across layers and projections under a 90% sparsity on GSM8K.
Base model: Llama-3-8B, rank r = 32.
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(a) Concatnated merging with LoRI-S.
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(b) Linear merging with LoRI-S.

Figure 7: Ablation study on the effect of merging weights when combining three adapters.
Base model: Llama-3-8B, rank r = 32.
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